
FUNCTIONAL EQUATIONS FOR HIGHER LOGARITHMSHERBERT GANGLAbstrat. Following earlier work by Abel and others, Kummer gave fun-tional equations for the polylogarithm funtion Lim(z) up to m = 5 in 1850,but no example for larger m was known until reently. We give the �rst gen-uine 2-variable funtional equation for the 7�logarithm. We investigate andrelate identities for the 3-logarithm given by Gonharov and Wojtkowiak anddedue a ertain family of funtional equations for the 4-logarithm.1. Introdution1.1. An essential property of the logarithm is its funtional equation
log(xy) = log(x) + log(y) .An essential property of the dilogarithm, whih is de�ned by the power series

Li2(z) =

∞∑

n=1

zn

n2
, |z| < 1,and an be analytially ontinued to C − [1,∞) , is the 5-term relation (note theinvolutary symmetry (x, y) 7→ ( 1−x

1−y−1 , 1−y
1−x−1 )

)

Li2(xy) − Li2(x) − Li2(y) − Li2

( 1 − x

1 − y−1

)
− Li2

( 1 − y

1 − x−1

)
= (elementary) ,whih was found�in a lot of di�erent forms�by Spene, Abel and many others (f.[6℄, Chapter I). Here the �elementary� right hand side onsists a sum of produtsof logarithms.In 1840, Kummer [5℄ found funtional equations for higher polylogarithms

Lim(z) =

∞∑

n=1

zn

nm
, |z| < 1,(whih an be likewise analytially ontinued) up to m ≤ 5. His method does notextend to higher m, though�for a more detailed statement we refer the reader toWehsung's paper [10℄, where more funtional equations in Kummer's spirit arederived and where it is shown that there are no suh �Kummer-type� equations for

m > 5.Other e�orts in the diretion of �nding new equations, even with the help of aomputer, seemed also to be restrited to m ≤ 5 (f., e.g., [8℄, [9℄, where a numberof new 1-variable equations in that range were given).In our thesis [2℄ we gave the �rst (non-trivial) funtional equations for m = 6 (infat, a whole family of equations in two variables) and for m = 7, as well as manynew examples for m ≤ 5 (some of those results had already been inluded in [14℄and in Chapter 16 of [7℄). The main tool in our�omputer-aided�investigationwas Zagier's riterion for funtional equations of the assoiated one-valued versionsof the m-logarithm (f. [14℄, Proposition 1 and Proposition 3).The relation of polylogarithms and algebrai K−theory, and in partiular Za-gier's onjeture on speial values of Dedekind zeta funtions, have made it learthat the question of �nding funtional equations for higher polylogarithms�as well1



2 HERBERT GANGLas to relate them to eah other�is a entral one (f., e.g., [15℄). For m = 3, Gon-harov [4℄ found a basi funtional equation as the key step in his proof of Zagier'sonjeture for this ase, while Wojtkowiak [12℄ gave a whole family of relations.The relationship between these equations has not been lari�ed so far.The ontents of the paper are as follows: in �2, we reall a general funtionalequation for the dilogarithm, whih is found to have some �ompanion� for thetrilogarithm (Proposition 3.1) whih in turn speializes to Wojtkowiak's triloga-rithm equations (Corollary 3.2). We restate (in �3.1) Gonharov's equation ininreasingly symmetri ways and relate it (in �3.2 and �3.3) to Wojtkowiak's equa-tions�the ombining link being a 34-term equation, in fat a very speial ase ofWojtkowiak's equation whih turns out to be equivalent to Gonharov's one. In�4, we state a family of 4-logarithm equations, a uniform and rather simple proofof whih is given at the end of the paper (�6). Finally, in �5, we present our �high-sore result� (obtained in 1992): a funtional equation for the 7-logarithm in twovariables (with 274 terms).2. A general dilogarithm equation2.1. Reall that the funtion Lim(z) is a many-valued funtion on C−{0, 1} butthat one has the one-valued ontinuous funtion Lm : C → R given by
Lm(z) = ℜm

( m∑

r=0

2rBr

r!
logr |z|Lim−r(z)

)
, |z| ≤ 1, z 6∈ {0, 1},where ℜm denotes the real part for m odd and the imaginary part for m even,and Br the r-th Bernoulli number (B0 = 1, B1 = −1/2, B2 = 1/6, . . . ). For

|z| > 1 , Lm(z) is given by the funtional equation Lm(z) = (−1)m−1Lm(1/z) ,while for z ∈ {0, 1,∞} one extends the funtion by ontinuity. For m = 2 , thisis the famous Bloh�Wigner dilogarithm (f., e.g., [1℄). For m > 2 , one-valuedversions of Lim were introdued by Ramakrishnan, Wojtkowiak and Zagier. Theabove funtion Lm(z) was introdued by Zagier [14℄ who denoted it Pm(z) . It hasthe advantage that the orresponding funtional equations of Lim beome �lean�for Lm, e.g., in the 5-term relation stated above the elementary term on the righthand side disappears when we replae Li2 by L2 .Note that we an onsider Lm as a funtion on C[C] , the formal C-linear om-binations of elements in C, by extending it linearly.2.2. There is a general funtional equation for the dilogarithm found by Rogers�for a polynomial φ without onstant term�and generalized by Wojtkowiak [12℄and Zagier [16℄ to any rational funtion φ (f. also Wehsung [10℄, [11℄). For m ∈ Nput
L̃m(x, y, z, w) = Lm

(
cr(x, y, z, w)

)
= Lm

(
x − z

x − w

y − w

y − z

)
,where cr denotes the ross ratio.Theorem 2.1. Let φ : P1

C
→ P1

C
be a rational funtion, α, B, C, D ∈ P1(C) .Then, denoting deg(φ) the degree of φ and putting A = φ(α) , we obtain

∑

β,γ,δ

L̃2(α, β, γ, δ) = deg(φ) · L̃2(A, B, C, D) ,where β, γ and δ run through the preimages of B, C and D, respetively, withmultipliities.The proposition ontains as a speial ase the 5-term relation (e.g., if we take
φ(z) = z(1−z) and B = 1, C = 0, D = ∞) and in fat many other known equations.A funtional equation whih is not overed by the proposition (and presumably



FUNCTIONAL EQUATIONS FOR HIGHER LOGARITHMS 3the only one, essentially) is the one relating z and z̄, its omplex onjugate, via
L2(z̄) = −L2(z). We expet that the latter, together with the equation in theabove proposition, generates all funtional equations for the dilogarithm. In fat,a result by Wojtkowiak [13℄ states that all funtional equations for the dilogarithmwith arguments C-rational expressions in �nitely many variables an be written asa sum of 5-term relations.3. Trilogarithm equationsThe following equation for the trilogarithm was found by symmetrizing a fun-tional equation given by Wojtkowiak [12℄.Theorem 3.1. Let φ : P1

C
→ P1

C
be a rational funtion, Ai, Bj , Ck, Dl ∈ P1(C) ,

i, j, k, l ∈ {1, 2} . Then, denoting deg(φ) the degree of φ, we have
∑

i,j,k,l

(−1)i+j+k+l

( ∑

αi,βj,γk,δl

L̃3(α, β, γ, δ) − deg(φ) · L̃3(Ai, Bj , Ck, Dl)

)
= 0 ,where αi, βj , γk and δl run through the preimages of Ai, Bj, Ck and Dl, respe-tively, with multipliities.Wojtkowiak's original equation [12℄, pp.226-227, (a related equation had beenfound earlier by Wehsung, f. [11℄, �.4) is obtained by speializing the equationfrom the proposition above and an be stated in a simpler form as follows:Corollary 3.2. Let A, B, C ∈ P1(C) , φ : P1

C
→ P1

C
a rational funtion of degree

n and x an independent variable.Let φ−1(A) = {αi}n
i=1 , φ−1(B) = {βi}n

i=1 and φ−1(C) = {γi}n
i=1 . Then

L̃3 (φ(x), C, B, A) −
n∑

i,j,k=1

L̃3 (x, γi, βj , αk)

−
n∑

i,j,k=1

L̃3 (x, αi, αj , γk) −
n∑

i,j,k=1

L̃3 (x, βi, βj , γk)

+

n∑

i,j,k=1

L̃3 (x, αi, αj , βk) +

n∑

i,j,k=1

L̃3 (x, βi, βj , αk)

= const,i.e., the expression on the left hand side is independent of x .Here it is understood that αi , βj and γk run through all preimages (ounted withmultipliity) of A , B and C , respetively.3.1. Around Gonharov's equation.3.1.1. The original desription. Gonharov [4℄ found a beautiful interpretation ofertain funtional equations in terms of on�guration spaes, and as a ruial by-produt he provided an equation for the trilogarithm in three variables αi forwhih he gave a threefold symmetry. We reprodue it here using the shorthand
βi = 1−αi +αiαi−1 (i = 1, 2, 3), where indies are understood modulo 3: form the



4 HERBERT GANGLformal linear ombination γ(α1, α2, α3) ∈ Z[Q(α1, α2, α3)] given by
γ(α1, α2, α3) =

3∑

i=1

([ 1

αi

]
+ [βi] +

[αiαi−1

βi

]
+
[ βi

βi+1αi+2

]
+
[
− βiαi+1

βi+1

])

+
[
− 1

α1α2α3

]
−

3∑

i=1

([ βi

αi−1

]
+
[ βi

βi+1αiαi−1

]
+ [1]

)
.(3.1)Proposition 3.3. With the above notation, we have

L3

(
γ(α1, α2, α3)

)
= 0 .Sine there are 22 non-onstant terms ourring in γ(α1, α2, α3), we will refer toit as 22-term (or Gonharov's) relation.3.1.2. A more symmetri desription. Sine Gonharov's equation plays suh a en-tral role for the theory, it seems worthwhile to analyze its struture a bit further.There is atually a muh bigger symmetry group G (of order 192) than the yligroup on three letters ating on the set of arguments and dividing the 22 non-onstant terms into 2 orbits, one of length 16 (orresponding to the 15 terms inthe �rst sum in (3.1) plus the single term [

− 1
α1α2α3

]), the other one of length 6(orresponding to the seond sum, with the exlusion of the onstant terms [1]).
G is generated by two involutions
π1 : (α1, α2, α3) 7→

(
α1, α2,−

β1

α1β3

)
, π2 : (α1, α2, α3) 7→

( 1

α1
,

1

α3
,

1

α2

)
,together with the obvious symmetry of order 3 (shifting the indies mod 3). Theset onsisting of the arguments in the sixteen terms of the �rst orbit is transformedeither into itself (e.g., via π1) or into the set of inverses (e.g., via π2). We give a pre-sentation with more obvious symmetries: let t1, . . . , t4 be four variables, subjet tothe onstraint ∏i ti = 1 . Then the following element in Q(t1, t2, t3) is annihilatedby L3 for eah (meaningful) evaluation of t1, t2, t3 in C

(with t4 = (t1t2t3)
−1
):

∑

i

[ti] +
∑

i,j

i6=j

[
1 − ti

1 − t−1
j

]
− 1

4

∑

i,j

i6=j

[ti tj ]−
1

8

∑

{i,j,k,l}={1,2,3,4}

[
(1 − ti)(1 − tj)

(1 − t−1
k )(1 − t−1

l )

]
−3[1] .The obvious S4 -ation on the set of arguments (where we identify [z] and [1/z]),together with the involution (f. �1.1)

ti 7→
1 − ti

1 − t−1
i+2

(i mod 4 )generates the symmetry group G (of order 192) mentioned above.3.1.3. A yet more symmetri desription. Consider the �nite group G′ (of order96) of automorphisms of Q(y1, y2, y3, z1, z2, z3), generated by G′ = 〈g, h〉, where
g : (y1, y2, y3, z1, z2, z3) 7→ (

1

y1
, z2, z3, z1, y2, y3),(3.2)

h : (y1, y2, y3, z1, z2, z3) 7→ (y2, y3, y1, z2, z3, z1) .(3.3)The orbits of y1 and of y1 − z3

1 − y1z2

y2 − z1

1 − y2z3

y3 − z2

1 − y3z1
under G′ have order 12and 32, respetively. As in the previous subsetion, we introdue �parametrizationvariables� t1, . . . , t4, subjet to the onstraint ∏4

j=1 tj = 1, and form 6 arguments
{Ai}i=1,2,3 = {tit4}i , {Bi}i=1,2,3 =

{1 − t−1
j

1 − ti

1 − t−1
k

1 − t4

∣∣∣ {i, j, k} = {1, 2, 3}
}

.



FUNCTIONAL EQUATIONS FOR HIGHER LOGARITHMS 5The involutory automorphism indued by
(t1, t2, t3, t4) 7→

(
ι(t4, t1), ι(t3, t2), ι(t2, t3), ι(t1, t4)

)where ι(x, y) =
1 − x

1 − y−1
, ats on (B1, B2, B3, A1, A2, A3) like the automorphism gin (3.2) above while the automorphism indued by (t1, t2, t3) 7→ (t2, t3, t1) ats like

h in (3.3).If we put yi and zi equal to Ai and Bi, respetively, in the above, then the G′-orbitof the expression y1 − z3

1 − y1z2

y2 − z1

1 − y2z3

y3 − z2

1 − y3z1
ontains only 16 di�erent terms upto inversion of the arguments�obviously, the G′-orbit of y1 ontains only 6 termsup to inversion�and the resulting 16+6 arguments oinide preisely with the onesourring in Gonharov's equation.3.1.4. Other desriptions. A di�erent way to use the above parametrization with

Ai and Bi in order to exhibit the symmetries among the 22 terms is obtained byputting αi = −
√

Ai, βi =
√

Bi. Then the four elements αε1

1 αε2

2 αε3

3 with εj ∈ {±1}
(j = 1, 2, 3) and ∏ εj = −1 , together with the twelve elements αεi

i β
εi+1

i+1 β
εi+2

i+2(i mod 3) with εj ∈ {±1} and ∏ εj = 1, form the 16 arguments in the seondorbit above in �3.1.3, while the α2
i and β2

i give the 6 arguments in the �rst orbit.Yet another desription�in terms of equations instead of parametrizations�isgiven by the following 9 (redundant) equations where we put q(x, y) =
x − y

1 − xy
:

B−1
i =

q(Bi−1, Bi+1)

q(Ai+1, Ai−1)
,

A−1
i = q(Ai+1,

1

Bi−1
) q(Ai−1,

1

Bi+1
) ,

Ai+1(1 − Ai)
2

Ai(1 − Ai+1)2
=

Bi+1(1 − Bi)
2

Bi(1 − Bi+1)2
,where i = 1, 2, 3 and the indies are taken modulo 3. (Obviously, we an breakthe symmetry and redue this to a system of 7 equations in only 4 variables byeliminating, say, A1 and B1. The system of equations is no omplete intersetion,though.)3.2. Relating Gonharov's and Wojtkowiak's equations. In order to om-pare the equations resulting from Gonharov's and Wojtkowiak's approah, wepropose to study an �intermediate� relation, with 34 terms, whih allows an inter-pretation for both situations.1. In Wojtkowiak's equation, the �intermediate� relation ours when we onsiderthe rational funtion

φ(x) =
x − a

x − c−1
· x − b

x − abc
= cr(x, xbc, b, abc) ,(for x = 1 this is a Bi-type term above) and (A, B, C) = (∞, 0, 1), and subtratingtwo di�erent speializations for x of the ensuing terms from Corollary 3.2�eahspeialization providing 17 terms�we are left with 34 terms whih form a funtionalequation in three variables. The generi 17 terms are given, in fatored form, as



6 HERBERT GANGLthe arguments of the following formal linear ombination in Z[F ], F = Q(a, b, c, t):
f(a, b, c, t) =

[ (1 − ct)a

a − t

]
+
[ (1 − ct)b

b − t

]
+
[ 1 − ct

c(a − t)

]
+
[ 1 − ct

c(b − t)

]

+
[ abc − t

(a − t)bc

]
+
[ abc− t

(b − t)ac

]
+
[abc− t

a − t

]
+
[abc − t

b − t

]

+
[ (a − t)b(ac − 1)

(b − t)a(bc − 1)

]
+
[ (t − a)(1 − bc)

(t − b)(1 − ac)

]
+
[ (tc − 1)b(ac − 1)

(abc − t)(bc − 1)

]
+
[ (tc − 1)a(bc − 1)

(abc − t)(ac − 1)

]

−
[ (1 − ct)abc

abc − t

]
−
[ (1 − ct)

(abc − t)c

]
−
[ t − a

t − b

]
−
[b(a − t)

a(b − t)

]
−
[ (b − t)(a − t)c

(abc − t)(1 − ct)

]
.De�nition 3.4. The 34-term relation is given by the di�erene

f(a, b, c, t) − f(a, b, c, u) ∈ Z[F ] , F = Q(a, b, c, t, u).Remark 3.5. From Corollary 3.2 it results that L3 vanishes on 34-term relations.2. Let us reall that Gonharov [4℄ has de�ned a triple ratio for 6 points in theprojetive plane over a �eld F , with values in Z[F ], in suh a way that it respetsa 7-term relation: for any 7 distint points P1, . . . , P7 in P2 one has
7∑

i=1

(−1)i · triple ratio(P1, . . . , P̂i, . . . , P7) = 0 .In the setting of on�gurations, the 34-term relation mentioned above enodes thewell-de�nedness of the triple ratio assoiated to a on�guration of six points Pi(i = 1, . . . , 6) in general position in the plane as follows.Gonharov redues suh a on�guration with the help of the 7-term relationabove to more degenerate on�gurations by introduing the intersetion point Qof the line through the points P1, P2 with the line passing through P3 and P4. Heuses the fat that he has already de�ned the triple ratio for the more degenerateon�gurations whih result by leaving out any other of the 6 original points Pi.But there are di�erent possibilities for hoosing Q, depending on the ordering ofthe Pi�e.g., one ould swith the roles of P2 and P3�and one veri�es (this isnot expliitly done in [4℄) that the di�erene of two suh possibilities, if non-zero,essentially results in two sets of 17 terms whih orrespond preisely to the 34 termsin question. (Here �essentially� alludes to the fat that we argue modulo two simplefuntional equations for the trilogarithm, the inversion relation L3(x) = L3(1/x)and the 3-term relation L3(x) + L3

(
1/(1 − x)

)
+ L3(1 − 1/x) = L3(1).)3.3. Relating the 34-term and 22-term equation. In this subsetion, we willindiate a proof of the following fat:Proposition 3.6. The 22-term relation and the 34-term relation are equivalent inthe sense that eah one, together with its speializations, implies the other.If we take the di�erene of the speializations of f(a, b, c, t) to t = 1 and t = 0,respetively, then a number of terms degenerate and we are left with the sum of aKummer-Spene relation and a 22-term relation. (Again, we work up to inversionand 3-term relation, the latter being a speialization of both 22-term and 34-termequation.) Similarly, the di�erene of the speializations to t = a and t = 0 givesa version of the Kummer-Spene relation itself. Thus the 34-term relation impliesthe 22-term relation. Conversely, the substitution

(t1, t2, t3) 7→
(
cr(t, 0, c−1, a), cr(t, 0, b, c−1), cr(t, 0, a, abc)

)



FUNCTIONAL EQUATIONS FOR HIGHER LOGARITHMS 7maps the terms of the 22-term relation above in the form given in �3.1.2 to the17 terms of f(a, b, c, t) together with �ve terms (plus a onstant term) whih areindependent of t. This shows immediately that the 22-term relation implies the34-term relation.Combining the proposition with the previous subsetion, we onlude:Proposition 3.7. Gonharov's 22-term relation is subsumed in Wojtkowiak's fam-ily of equations in Corollary 3.2.3.4. A 21-term equation. Yet another related equation of possible interest is asum of four 22-term relations whih ombines to a funtional equation in 3 variableswith less, viz. only 21, di�erent non-onstant arguments (up to inversion), but withoe�ients in {±1,±2}: with γ as in (3.1), onsider
Γ(x, y, z) = γ

( 1

1 − x
,

1 − x

1 − xy
, 1 − z

)
+ γ
(
1 − 1

x
,

1 − xy

y(1 − x)
,

1

1 − z−1

)and note that its symmetrization in the �rst 2 arguments, whih of ourse alsoonstitutes a funtional equation for the trilogarithm, has the following form�weintrodue a �symmetrizing variable� z2 = (x1x2z1)
−1 and put j(t, u) = 1−u−1

1−t :
Γ(x1, x2, z1)+Γ(x2, x1, z1) = −2[x1 x2] − 2[1]

+2
2∑

i=1

(
[xi] + [j(xi, x3−i)] + [zi] + [j(zi, z3−i)]

−[xi j(z1, z2)] − [j(xi, x3−i) j(z1, z2)] − [xiz1] − [j(xi, x3−i) z1]
)

+

2∑

i=1

(
[xi z1 j(xi, x3−i) j(z1, z2)] + [j(xi, x3−i) j(z1, z2) / (xi z1)]

)
.4. 4-logarithm equationsIt is in general a tedious job to verify even a single funtional equation for thepolylogarithms. Therefore it seems worthwhile �nding a rather short way to ver-ify a whole family of them. We propose to do this for a family of equations forthe 4-logarithm, using essentially only one (and atually trivially heked) polyno-mial equation. One an proeed similarly (albeit in a somewhat more ompliatedfashion) with other families (f. [3℄, Thm. 4.4 and Thm. 4.9), even up to n = 6.Let us emphasize that not only had there been no example for n ≥ 6 previouslyknown (apart from the trivial distribution relations) but Wehsung [10℄ even provedthat the type of equation (alled �Kummer-type�) whih gave the only examples for

n = 4, 5 known at the time is not �good enough� for n ≥ 6. The following example,whih is proved in �6, is not of Kummer-type.Theorem 4.1. Let F be a �eld of harateristi 0, φ(x) = xn−1(x − 1) for some
n ∈ N. For some t, u ∈ F , let {xi}n

i=1 = φ−1(t) resp. {yi}n
i=1 = φ−1(u) be thesets of preimages in some �nite extension �eld F ′ of F . Then the following elementin Z[F ′] is annihilated by L4:(4.1) n(n − 2)

[∏
i xi∏
j yj

]
− (n − 1)2

n∑

i,j=1

[
1 − x−1

i

1 − y−1
j

]
+ n2

n∑

i,j=1

[
1 − xi

1 − yj

]

− n2(n − 1)2
n∑

i,j=1

[
xi

yj

]
+ n(n − 1)2

n∑

i=1

([
1 − 1

xi

]
−
[
1 − 1

yi

])
.



8 HERBERT GANGL5. A 7-logarithm equationIn this setion we give a 2-variable funtional equation for the 7�logarithm.This funtional equation onsists of 274 terms, but by using an appropriately sym-metrized notation we an write it in a more digestible form.5.1. Let F be the rational funtion �eld in two variables Q(t, u) . Put
f1(z) =

−z

1 − z + z2
, f2(z) =

z − 1

1 − z + z2
, f3(z) =

z(1 − z)

1 − z + z2

and f(z) = −f1(z)f2(z)f3(z) =
z2(1 − z)2

(1 − z + z2)3
.Notie that the group G ∼= S3 generated by z → 1/z and z → 1 − z permutes the

fi and leaves f invariant. For a, b, c, d ∈ Z de�ne elements {a, b; c, d}0(t, u) and
{a, b; c, d} in C[C] by

{a, b; c, d}0(t, u) =

3∑

i,j=1

[
f(t)afi(t)

b−a

f(u)cfj(u)d−c

]
and

{a, b; c, d} = {a, b; c, d}0(t, u) + {c, d; a, b}0(t, u)

= {a, b; c, d}0(t, u) + {a, b; c, d}0(u, t) ,where the latter equation holds only up to inversions of the arguments (whih, ofourse, does not a�et the funtional equation to be presented below). Finally, set
ξ
(3)
7 = − 1

18 · 609
4 {−1,−1;−1,−1} − 1

3 · 35 {−1,−1;−2, 1} + 1
3 · 105

8 {−1,−1; 3, −5}
− 1

3 · 21 {−1,−1;−1, 4} − 1
3 · 15 {−1,−1;−2, 5} + 1

3 · 15 {−1,−1; 3,−4} ,

ξ
(2)
7 = + 1

2 · 700 { 1, 0; 1, 0} + 1
2 · 175

4 { 1,−3; 1,−3} + 1
2 · 28 {−2, 3;−2, 3}

− 35 { 1,−3;−2, 3} − 140 {−2, 3; 1, 0} + 175 { 1, 0; 1,−3} ,

ξ
(1)
7 = + 1

2 · 700 { 1,−2;−1, 2} + 3150 { 0, 1; 1,−1} + 1
2 · 1575 {−1, 1; 1, −1}

− 2100 { 1,−2; 0,−1} + 1
2 · 6300 { 0, 1; 0,−1} − 1050 {−1, 2;−1, 1}

− 1
2 · 700 {−1, 2;−1, 2} − 1

2 · 1575 {−1, 1;−1, 1} − 1
2 · 6300 { 0, 1; 0, 1}

+ 1050 {−1, 2; 1,−1} + 2100 { 0,−1;−1, 2} − 3150 { 1,−1; 0, −1} .Theorem 5.1. The element ξ7 = ξ
(1)
7 + ξ

(2)
7 + ξ

(3)
7 ∈ Q[F ] is a funtional equationfor L7 , i.e.,

L7

(
ξ7(t, u)

)
= 0for any t, u ∈ C where fj(t), fj(u) /∈ {0,∞} , j = 1, 2, 3 .Proof. Funtional equations for polylogarithms an be haraterized by an algebrairiterion (f. [14℄, Proposition 1), so the proof an be redued to heking thisriterion for ξ7 whih was done with a omputer program. The statement applies, ofourse, to any funtional equation; the di�ulty lies in �nding funtional equations,not in heking their validity.5.2. Remark. In ξ7 the denominator of the �rst fator of a oe�ient (whihwe suppress if it is 1) gives the multipliity of an argument in the sum {a, b; c, d}(where we identify [z] and [1/z] ).We assoiate a weight to eah {a, b; c, d} by wt({a, b; c, d}) = wt(a, b) in thefollowing way: setting wt(a, b) = 1

2 (|a|+ |a+ b|+ |2a+ b|) we �nd that in all terms
{a, b; c, d} of ξ7 we have wt(a, b) = wt(c, d) .
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(i)
7 (i = 1, 2, 3) with weight i. There is a weight-preservingoperation on these bloks whih also inludes the oe�ients. We explain this op-eration in more detail in the following subsetion.5.3. More symmetri form of ξ7 . Let (Z3)0 = {(a, b, c) ∈ Z3 | a + b + c = 0}and (Z3)1 = {(a, a, b) ∈ Z3} . We onsider the map

Θ : Z3 → Z3 ,(5.1)
(a, b, c) 7→ (a,−b − c, b − a)(5.2)whih sends (Z3)0 to (Z3)1 , and a seond one (the fi are taken as in (5.1))

Φ : Z3 → {φ : P1
C → P1

C | φ rational} ,(5.3)
α = (α1, α2, α3) 7→

(
φα : z 7→

(
− f1(z)

)α1
f2(z)α2f3(z)α3

)
.(5.4)The symmetri group S3 operates on (Z3)0 and Z3 via permutation.For eah k ∈ Z we have the element (k,−1, 1 − k) ∈ (Z3)0 .We set

Ak = Θ
(
S3 · (k,−1, 1 − k)

)
, k = 1, 2, 3.Then we have

A1 = {±(1, 1,−2),±(−1,−1, 1),±(0, 0, 1)} ,

A2 = {(2, 2,−3), (−1,−1, 3), (−1,−1, 0)} ,

A3 = {(−1,−1,−1), (−1,−1, 4), (−2,−2, 5), (−2,−2, 1), (3, 3,−4), (3, 3,−5)} .We will denote by δ the S3-invariant element (−1,−1,−1) of A3 whih will play aspeial role. Finally we de�ne for α = (α1, α2, α3) 6= 0 a �weight�
ω(α) =

1

α1 − α3
.Then Theorem 5.1 an be restated more onisely by saying that

60 ξ7 =

3∑

i=1

ξ(i)with
ξ(1) = − 29

20

[ φδ(t)

φδ(u)

]
+

∑

α∈A3\{δ}

ω(α)
∑

σ∈S3/S2

([φσα(t)

φδ(u)

]
+
[ φδ(t)

φσα(u)

])
,

ξ(2) =
20

3

∑

α,β∈A2

ω(α)ω(β)
∑

σ,τ∈S3/S2

[ φσα(t)

φτβ(u)

]
,

ξ(3) = − 30
∑

α,β∈A1

ω(α)ω(β)
∑

σ,τ∈S3/S2

[ φσα(t)

φτβ(u)

]
.Altogether we get 1 + 30 + 81 + 162 = 274 di�erent arguments (up to inverses)sine in the last sum (over A1 ) the arguments assoiated to (α, β) and (−α,−β)are inverse to eah other.



10 HERBERT GANGL6. A proof of Theorem 4.1Proof. Using Zagier's riterion (f. [14℄, Proposition 1) alluded to earlier, weneed only verify that the above ombination lies in the kernel of the map
β4 : Z[F ′] −→ Sym2F ′× ⊗

∧
2 F ′×

[x] 7−→ x⊙2 ⊗
(
x ∧ (1 − x)

)
.Here the ∧ 2 denotes the seond exterior produt (i.e., two-fold tensors subjet tothe relations x ∧ x = 0). Note that xy ∧ z = x ∧ z + y ∧ z.Our strategy is as follows: a few preliminary onsiderations (steps 0�2) allow torewrite the β4-images in a more onvenient way, so that the theorem is essentiallyredued to Claim 6.1 (in step 3).Part I: Reformulations. 0. Note that t−φ(z) is a polynomial in (the variable)

z with roots equal to {xi}i, therefore
t − φ(z) = φ(xi) − φ(z) = λ

∏

i

(xi − z)for some onstant λ. Thus, for any �xed l and m,
t − u = φ(xl) − φ(ym) = λ

∏

i

(xi − ym) = µ
∏

j

(xl − yj)for some onstants λ and µ (whih atually turn out to be equal to ±1 and thereforean be negleted in the following).1. As a �rst preliminary step, we express α and 1 − α in terms of the fators xiand yj for eah of the arguments α in (4.1). In order to save indies, we put x = xland y = ym for some �xed l, m ∈ {1, . . . , n}. We obtain
1 − x

1 − y
=

yn−1X

xn−1Y
and 1 − x−1

1 − y−1
=

ynX

xnY
,where we have set X =

∏
i xi, Y =

∏
j yj . A further deomposition we need is

1 − 1 − x

1 − y
=

yn−1

Y
(x − y) and 1 − 1 − x−1

1 − y−1
=

yn−1

xY
(x − y) .With these preparations, we an write the orresponding images under β4 as

β4

([1 − x

1 − y

])
=

(
yn−1X

xn−1Y

)⊗2

⊗ yn−1X

xn−1Y
∧ yn−1

Y
(x − y)(6.1)and

β4

([1 − x−1

1 − y−1

])
=

(
ynX

xnY

)⊗2

⊗ ynX

xnY
∧ yn−1

xY
(x − y) .(6.2)These two expressions deompose �naturally� into two parts, one of whih ontainsthe fator (x − y) in the last tensor fator. E.g., the part in ∧2

F ′× in the �rstexpression (6.1) fators as
yn−1X

xn−1Y
∧ yn−1

Y
(x − y) =

X

xn−1
∧ yn−1

Y
+

yn−1X

xn−1Y
∧ (x − y)(6.3)where the �rst summand on the right has been redued using the de�ning propertyof ∧.2. As a seond preliminary step, we �swith� to an additive notation�formally,we put ξi = “ log xi�, ηj = “ log yj�, and introdue ζlm = “ log(xl − ym)� as wellas the shorthands ξ =

∑
i ξi and η =

∑
j ηj (note also that the ∧ now satis�es
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(a + b) ∧ c = a ∧ c + b ∧ c); then the term (6.1) resp. (6.2) is written, using thedeomposition (6.3), as(6.4) (

(n − 1)(ηm − ξl) + ξ − η
)3 ∧ ζlm

+
(
(n − 1)(ηm − ξl) + ξ − η

)2 ·
(
ξ − (n − 1)ξl

)
∧
(
− η + (n − 1)ηm

)resp.(6.5) (
n(ηm − ξl) + ξ − η

)3 ∧ ζlm

+
(
n(ηm − ξl) + ξ − η

)2 ·
(
ξ − (n − 1)ξl + ηm

)
∧
(
− η + (n − 1)ηm − ξl

)
.Introduing the shorthands S = ξ − η and slm = ξl − ηm , we rewrite the lattertwo equations as

(
S − (n − 1)slm

)3 ∧ ζlm +
(
S − (n − 1)slm

)2 ·
(
ξ − (n − 1)ξl

)
∧
(
− η + (n − 1)ηm

)
(6.6)resp.
(
S − nslm

)3 ∧ ζlm +
(
S − nslm

)2 ·
(
ξ − (n − 1)ξl + ηm

)
∧
(
− η + (n − 1)ηm − ξl

)
.

(6.7)Part II: Calulations. 3. So far, we have only reformulated the objets underonsideration. Now we an proeed to the two atual alulations involved, the �rstof whih follows easily from the readily veri�ed identity
(
ξ − (n − 1)ξl

)
∧
(
η − (n − 1)ηm

)
=
∑

i,j

(2 − n)δil+δjmξi ∧ ηj .(6.8)Here δij(= 1 if i = j, and = 0 otherwise) denotes the usual �Kroneker-δ�.Using relation (6.8) together with the presentations (6.6) and (6.7), the β4-imageof the �rst two terms in (4.1) beomes
β4

(
n2
[ 1 − xl

1 − ym

]
− (n − 1)2

[1 − x−1
l

1 − y−1
m

])
= T lm

1 + T lm
2 + T lm

3 + T lm
4(6.9)where

T lm
1 =

(
(2n − 1)S3 − 3n(n − 1)S2slm + n2(n − 1)2s3

lm

)
∧ ζlm ,

T lm
2 = −

(
n2
(
S − (n − 1)slm

)2 − (n − 1)2(S − nslm)2
)(∑

i,j

(2 − n)δil+δjm ξi ∧ ηj

)
,

T lm
3 = (n − 1)2(S − nslm)2 ·

(
ηm ∧ ξl

)
,

T lm
4 = (n − 1)2(S − nslm)2 ·

(
ξ ∧ ξl + ηm ∧ η

)
.We will sum the latter expression over all l and m (unless expliitly indiatedotherwise, all sums in the following run from 1 to n).



12 HERBERT GANGLClaim 6.1. With notations as above, we have
∑

l,m

β4

(
n2
[ 1 − xl

1 − ym

]
− (n − 1)2

[1 − x−1
l

1 − y−1
m

])

= n(n − 2)

(
− S3 ∧

( 1

n

∑

l,m

ζlm

)
+ S2

∑

l,m

ξl ∧ ηm

)

+ n2(n − 1)2

(
∑

l,m

s3
lm ∧ ζlm −

∑

l,m

s2
lm(ξl ∧ ηm)

)

+
∑

i

f1(ξi) +
∑

j

f2(ηj)for some funtions fk (k = 1, 2) depending on only one of the variables t and u.Proof. We will need the following immediately veri�ed identities:
Z :=

1

n

∑

i,j

ζij =
∑

i

ζim =
∑

j

ζlj , ∀l , ∀m ,(6.10)
S =

∑

i

ξi −
∑

j

ηj =
1

n

∑

i,j

sij ,(6.11)
∑

m

(ξ − nξm) =
∑

l

(η − nηl) = 0 ,(6.12)and the �distribution properties� (for �xed l, m):
∑

i,j

(2 − n)δil+δjm =
∑

i

(2 − n)δil = 1 ,(6.13)as well as some simple onsequene of the above
∑

l,m

slm(2 − n)δil+δjm = S − (n − 1)sij .(6.14)[Proof: write slm = ξl − ηm and use suessively the equations in (6.13).℄We will �rst treat the sum∑l,m T lm
4 whih is easily redued to the form∑i f1(ξi)+∑

j f2(ηj) sine eah of its terms whih is dependent on both ξ's and η's is anelledin the sum by virtue of (6.12).Thus it will su�e to identify the sum ∑3
i=1

∑
l,m T lm

i with the �rst two lineson the right hand side of the laim. The �rst two terms of(6.15) ∑

l,m

T lm
1 = (2n − 1)S3 ∧

∑

l,m

ζlm − 3n(n − 1)S2
∑

l,m

slm ∧ ζlm

+ n2(n − 1)2
∑

l,m

s3
lm ∧ ζlmombine to

−n(n− 2)S3 ∧ Z
(note that∑l,m slm∧ζlm = S∧Z by using (6.10) and (6.11)), while the third termon the right of (6.15) is already of the desired form.The term

∑

l,m

T lm
2 = −

∑

l,m

(
(2n − 1)S2 − 2n(n − 1)Sslm

)∑

i,j

(2 − n)δil+δjm ξi ∧ ηj



FUNCTIONAL EQUATIONS FOR HIGHER LOGARITHMS 13deomposes into two simpler sums, the �rst of whih is given as
−(2n − 1)S2

∑

i,j

∑

l,m

(2 − n)δil+δjm ξi ∧ ηj = −(2n− 1)S2
∑

i,j

ξi ∧ ηj ,(6.16)where we have used (6.13), while the seond one equals(6.17) 2n(n − 1)S
∑

l,m

slm

∑

i,j

(2 − n)δil+δjm ξi ∧ ηj =

2n(n − 1)S2
∑

i,j

ξi ∧ ηj − 2n(n− 1)2S
∑

i,j

sij

(
ξi ∧ ηj

)by virtue of (6.14). Finally, expanding ∑l,m T lm
3 as a �polynomial� in S gives usthree further sums, one being quadrati, one linear and one onstant in S; thequadrati one ombines with (6.16) and with the �rst term on the right in (6.17) to

n(n− 2)S2
∑

i,j ξi ∧ ηj , the linear one anels with the seond term in (6.17), andthe onstant one is given by −n2(n − 1)2
∑

l,m s2
lm(ξl ∧ ηm) . This proves Claim6.1.4. We �nish by observing that the �rst two terms on the right hand side of Claim6.1 orrespond preisely to the images under β4 of −n(n − 2)

[∏
xi/
∏

yj

] and
n2(n−1)2

∑
i,j

[
xi/yj

], respetively, while∑l,m T lm
4 , whih orresponds to the lasttwo terms of the laim, an be reognized readily�after more areful investigationof the terms �purely in ξi or ηj�� as the image under β4 of −n(n − 1)2

(∑
i

[
1 −

x−1
i

]
−∑j

[
1 − y−1

j
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