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Abstract-This  paper  describes  a  procedure  for  segmenting  imagery 
using digital  methods  and is based  on  a  mathematical-pattern recogni- 
tion  model.  The  technique  does  not  require  training  prototypes  but 
operates  in  an  “unsupervised”  mode.  The  features  most useful for  the 
given image to  be segmented  are  retained  by  the  algorithm  without 
human  interaction,  by  rejecting  those  attributes  which  do  not  con- 
tribute  to  homogeneous  clustering  in  N-dimensional  vector space. 

The basic  procedure is a  K-means  clustering  algorithm which  con- 
verges to  a local minimum  in  the average squared  intercluster  distance 
for a specified  number of clusters  The  algorithm  iterates  on  the  num- 
ber  of  clusters,  evaluating  the  clustering  based on  a  parameter  of 
clustering  quality.  The  parameter  proposed is a  product of between 
and  within  cluster  scatter  measure&  which  achieves  a  maximum value 
that is postulated  to  represent  an  intrinsic  number of clusters in the 
data. At this value, feature  rejection is implemented via a  Bhattacharyya 
measure to  make  the image segments  more  homogeneous  (thereby re- 
moving “noisy” features);  and  reclustering is performed,  The  resulting 
parameter of clustering  fidelity is maximized  with  segmented  imagery 
resulting  in  psychovisually  pleasing  and  culturally  logical image 
segments 

T 
INTRODUCTION 

HIS PAPER  describes a  procedure  for  automatically 
segmenting images into regions  using digital techniques. 
The  background of this  procedure lies in image- 

understanding  systems, an expansion of image-processing sys- 
tems  that  attempt to draw  meaningful  inferences  from visual 
data. An important  step to forming  inferences about  the visual 
data is to segment the image into regions of homogeneity to 
aid further analysis. 

The goal  of the research described herein is to develop  a 
reasonably  fast  algorithm for segmenting images into regions 
that  correspond  in a large degree to areas that would  be  per- 
ceived as essentially  homogeneous  by  a  human  interpreter. 
The  procedure  does  not use context-related  information  such 
as shape  and  relative  position. All forms of imagery  may  be 
segmented  utilizing the same algorithm,  with  a  somewhat 
expanded  feature  set  for  color  and  multispectral  data. 

The second  section of the  paper provides an overview  of 
image-understanding  systems  in  general  and  approaches to 
image segmentation  in  the past. The  approach  taken here is a 
procedure based entirely on clustering. However, while 
clustering  has  been used to refine  and  identify image  segmen- 
tations in the  past, it has previously been believed that-a pure 
clustering  approach was too cumbersome  computationally to 
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implement.  The  approach  taken here avoids many of those 
pitfalls. 

The  third  section  consists of a  theoretical  development of 
the background of clustering. Additional  tools of statistical 
data analysis are developed to determine  the  “intrinsic”  num- 
ber  of clusters  in the  data, and  a novel arrangement of these 
tools is proposed to provide a reliable and  unambiguous  stop- 
ping criterion  for  the algorithm. 

The  fourth section is a  detailed  description of the  approach 
taken. Block  diagrams and  flowcharts of the algorithm are 
provided along  with the rationale for  the various procedures 
used. A complete  description of the  feature  sets used to seg- 
ment images are  provided  and the various rejection  criteria for 
these  features are justified, based on results  obtained. To ob- 
tain  an  elementary  preclassification of region character,  a novel 
nonlinear  filter based on  the mode of the local area  histogram 
is proposed  and used to segment images. 

The results  obtained  on several kinds of images are described 
in the  fifth section. In some cases, images  were segmented 
with  more  than  one  feature  set  in  an  attempt to improve  per- 
formance.  Monochrome,  color,  and movie frames were all seg- 
mented  with  varying degrees  of  success. 

IMAGE-UNDERSTANDING SYSTEMS 
An image-understanding  system is a  system that uses visual 

data to generate  descriptions that are  useful for desired appli- 
cations. The descriptions  generated can be at very different 
levels and degrees  of detail. If an image is represented  in 
digital form,  then  the image is represented by  an  array of num- 
bers  characterizing the brightness at each  point on a  (usually) 
rectangular grid. These  brightness  elements  are called picture 
elements  (pixels).  In the limiting case, this  array of numbers 
“describes” the image. 

Image descriptions of this  form  are usually the  starting  point 
for image-understanding  systems. The system  generates  a 
series of descriptions that are  progressively more general until 
a  descriptive level is reached that satisfies the system  require- 
ments. It has  been observed that  the successive levels of  ab- 
straction  require  that  the higher levels of the system  interact 
with the lower levels, based on  the  current descriptions [ l ] .  
This processing approach is  called “heterarchical.” The image- 
understanding  system is therefore  conceptualized as having a 
hierarchy of processing levels, as shown  in  Fig, 1. 

The primitive  description level extracts  local  features  that 
are not  related to context.  The  primary  or “fiist-order” 
features of a  pixel  in  a  monochrome image are the brightness 
(with  due  consideration of the sensor-spectral response)  and 
spatial  location of the pixel. All other  features  are of  higher 
order,  that is they describe  how the pixel is related to sur- 
rounding  pixels in  the image. These  features  describe  such 
primitive  local attributes of the picture as brightness, texture 
and  color. A proper  primitive  description level of the image- 
understanding  system  would  transform  the  features  into  a 
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Fig. 1. Image understanding system. 

coordinate  system  where  numerical  distance  would be related 
to human  perceptual  difference [ 21. 

The  symbolic  description level of the system  takes the 
primitive  descriptions  and  forms  more  global  and  symbolic 
descriptions of the image. Segmentation of the image takes 
place at  this level. The  initial  segmentation is based purely  on 
perceptual  difference.  After  analysis by the  semantic  interpre- 
tation level of the  system,  the  symbolic level may be directed 
to  merge or to  further divide regions in the image. Thus  the 
decisions  about dividing the scene into similar  or homogeneous 
regions  are made at  this level of the  image-understanding sys- 
tem.  Feedback  from  the  semantic  interpretation level is neces- 
sary to  ensure that  the  symbolic  descriptions  are  consistent 
with  the  goals of the image-understanding  system. 

The  semantic  interpretation level  of the system  generates 
hypotheses  for  the  contents of the image based on  the sym- 
bolic  descriptions.  The  semantic  interpretation level then 
further  directs  the  lower  processing levels until  the  symbolic 
descriptions  confirm  one of the  hypotheses. 

A number of somewhat  different  models have been pro- 
posed other  than  the  model of Fig. 1. It has been suggested, 
for  example,  that  a goal directed  or “topdown” approach be 
used to look  for  a  specific  object  in,  or  test  a  specific  hypothe- 
sis about, an image. Examples of this  are discussed in [ 31, [4]. 
The  problem  with topdown approaches is that  the  specific 
circumstances  under  which  the  system  operates  must be well 
defined in advance. Any  substantial  departure  from  these 
circumstances will cause the system to fail to  perform 
adequately. 

Other  models  represent a middle  ground  between the com- 
pletely topdown and the  completely  bottom-up  approaches. 
These  models  differ  mainly in that  they use knowledge of the 
scene at  the earliest  possible  stage of the  imagevnderstanding 
system to refine the scene  description as it is generated 
[S I ,  [61. 
In all of these  image-understanding  system  approaches, gross 

overall image segmentation is necessary to  direct  the  attention 
of the higher  system levels, form  preliminary  hypotheses  about 
the image (such as whether  it is an aerial  photograph  or  indoor 
scene,  etc.), h d  identify  areas to  be examined  in  greater  detail 
or merged with  other areas of  lesser interest. 

Segmentation of images into  homogeneous regions has been 
a goal of image-understanding  researchers for  many years. 
Beginning with  simple  block-like  objects [ 71, image segmen- 
tors have begun attempting to segment  natural scenes. Early 
efforts [8]-[ 121 manipulated line drawings in  different ways, 
but  extracted  these  line drawings as a preprocessing  step for 
higher level operations. 

Extension of artificial  intelligence based procedures to  image 
segmentation  often used topdown approaches based on 
a priori knowledge of the image content. Many  of these  ap- 
proaches used training  algorithms to  train  the  classifier  and 
highly  heuristic  features based on the a priori knowledge of the 
image and the  purpose of the image understanding  system 
[ 13]-[ 171. An excellent  description of each of these segmen- 
tation  approaches  and  the  context  in  which  they were applied 
is contained  in [ 181. 

Common to all  of these  approaches is the  extraction of line 
drawings by various  methods.  Thus  the  region  boundaries 
represent  the  segmentation of the image. In some of these 
approaches,  the edges are  sought  directly by edge detection 
[191-[221, or  functional  approximation [23],  [241. In other 
approaches,  the  regions  are  detected f m t  and the  boundaries 
determined  later.  One  method is a  top-down  procedure 
wherein the  picture is segmented  into progressively smaller 
regions  until  certain  criteria  are  satisfied [ 251, [ 2 6 ] .  Another 
method is a  bottom-up  approach,  wherein the picture is 
divided into  a large number of small  regions  (possibly as small 
as one  pixel), which are successively merged to  form  larger 
regions [271,  [281. 

A few  attempts  at  bottom-up  approaches to  image segmen- 
tation using clustering have been made  in the  past.  The f m t  of 
these was performed  by  Haralick  and Kelly [29]. This  proce- 
dure used a modified linking or “nearest  neighbor”  rule to  
form  the clusters  on  multispectral image data.  Further work 
has been performed using textural  features  and  a  classifier 
operating  in  the  supervised  mode [30]. The supervised mode 
requires  that  the  cluster  center be determined  by  “training.” 
Finally,  clustering has also  been  applied to  images segmented 
by an edgedetection  procedure [ 3 1 1. An additional  bottom-up 
approach to  image segmentation is described  by  Ohlander 
[32]. This  procedure uses histogram  analysis to successively 
delete  points  contained  in  feature  histogram  peaks. 

PATTERN RECOGNITION, UNSUPERVISED LEARNING, 
AND CLUSTERING 

A large methodology has been  built  up over the  last several 
decades  under the general  subject  heading of pattern recogni- 
tion.  It is convenient to  divide this  body of knowledge into 
two categories. The  first  category  contains  knowledge  that is 
most  closely  related to  computer-artificial  intelligence.  The 
second  consists of mathematical  theory  and  techniques  from 
statistical  data  analysis  and  communication  theory. 

The artificial-intelligence  approaches  often use language 
theory to  describe a scene in terms of primitive  elements  or 
subpatterns  and  their  relationship to  each  other.  The  relation- 
ships  are  described  in the  syntactic-structure  models  of  formal 
language. Visual patterns are  considered to belong to  a  two- 
dimensional language. The  structural  descriptions  of  these 
patterns  in  terms of the grammar is the  syntax.  Recognition 
becomes  syntax  analysis (often called  parsing). The  limitations 
of these  approaches  are  that relatively little work  has been 
done  in  noisy  syntax  and  that  most  existing  linguistic  schemes 
are in terms of shape which is but  one of many  features avail- 
able to  human observers. An exception to this is the work by 
Fu  with recognizing  and  parsing  noisy  strings [471. Neverthe- 
less, context is easily visualized in  such  an  approach as addi- 
tional  constraints on the  relationships  between  the primitive 
elements. 

The  first  results  obtained  in  the  general  discipline  now called 
pattern  recognition were based on mathematical  models [33]. 
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These  models assume that a  sensor or series of sensors measure 
physical quantities  about an object in  the real world (Fig. 2). 
In general, the measurements of the sensors form a  vector that 
describes the object. In  the case of visual data,  the sensors  are 
usually some  form of camera,  perhaps extracting multispectral 
measurements about  the physical world. For purposes of 
manipulation  of the  data by digital computer,  the image must 
be converted into digital form by appropriately sampling the 
image. 

The  pattern space  consists of the image samples just de- 
scribed. The  “fit-order” features of an image are its bright- 
ness (possibly in several spectral regions), and the spatial co- 
ordinates of the  appropriate  point. Each point is usually called a 
picture element (pixel). Other  features, such as texture,-are 
properties  of a region [21. Thus  the  featureextraction process 
may, in  the case of images, enlarge the  amount of data re- 
quired to  represent the image considerably. 

The  feature space, as described above, represents  a high- 
dimensional  (dimension >10 is not  uncommon) space in which 
each point in the image is represented by a  vector of features 
x = (x1, x2 ,  . . . Here n is the dimension of the  feature 
space,  and xi  is the value of the  ith  feature  at a given pixel 
location. The classification problem is now to find  separating 
surfaces in n dimensions  which will partition  the  feature space 
into K  mutually exclusive and collectively exhaustive regions. 
The classification which results from assigning the vectors in 
accordance with a  particular  partitioning of  the  feature space 
can then be evaluated as to  the relevancy of such a partition to 
some  image-understanding task. 

This  model of the  feature space when applied to  the image 
segmentation problem, implicitly assumes that numerical  dif- 
ference is directly proportional to perceptual  difference, in  the 
human  perceptual system.  This is an  assumption  which is al- 
most  certainly untrue,  at  the  current  state of knowledge about 
the  human perceptual  system  and the  current  state of develop- 
ment of features used in digital image pattern-recognition 
techniques. Nevertheless, the existence of a (almost certainly) 
nonlinear transformation can be postulated which would map 
the  feature vectors into a  new space where the model described 
previously would be perceptually valid. 

The  determination  of  the separating  surfaces in  the tradi- 
tional pattern-recognition  system is made through  the use of 
prototypes  or training  samples whose correct classification is 
known.  These  samples are fed to the system  and  establish the 
decision boundaries for use in classifying unknown samples. 
This approach is often called the “supervised’’ pattern- 
recognition  approach. 

Frequently,  it is desirable to design a pattern classification 
system without  the use  of training  samples [34].  The  theoreti- 

cal framework on which unsupervised pattern recognition is 
based is very tenuous. If  nothing whatsoever is known about 
the  data,  the problem is not solvable in general. However, in 
the case of image-related data,  it is known u priori (or at least 
assumed) that  the  data represents low-level perceptual  differ- 
ences. It is to  be expected  that regions of  the image that ap- 
pear the same would produce  feature vectors that are near to 
each other, whereas regions that appear  substantially different 
would produce feature vectors that are far apart.  This assump- 
tion leads naturally to  the  expectation  that similar appearing 
regions will produce  groups of vectors that are close together 
in  feature space. These  groups of vectors will hereafter be 
called “clusters.” 

In general, the term clustering refers to  the grouping of a 
given set of objects into subsets  according to  the properties of 
each object.  The subsets  are  required to  contain objects that 
are in some sense more similar t o  each other  than to  the ob- 
jects in other subsets. Clustering has been used for several 
decades, and was first  applied by Tyron to numerical taxon- 
omy problems [35  ]. 

There  are any  number  of clustering procedures,  each having 
its  own peculiar characteristics [ 361. When it is anticipated 
that  the clusters are  tight  and widely spaced the chain method 
[37],  [38] may be used. However, the procedure runs into 
trouble when the clusters are close together and the boundaries 
are indistinct. 

There are a number of procedures which will iterate to a 
local minimum for  the average distance,  from  each sample to 
the nearest cluster mean. Perhaps the best example of these 
procedures is the nearest means algorithm adapted  by Ball 
and Hall [ 391. 

This procedure begins with  an assumed number of clusters. 
The means are arbitrarily assigned, although  the initial mean 
assignment will affect the  number of iterations required for 
convergence. The  data is then assigned to  the nearest mean. 
After all of  the data points have been assigned, the cluster 
means are recomputed based on  the assigned data points.  This 
process continues  until  the data assignment does not change, 
at which point  the process is said to have converged. This 
algorithm will iterate to a local minimum for  the average 
within-cluster distance. 

For clustering procedures of  the nearest means type,  the key 
obstacle to be overcome is the  determination of the “correct” 
number  of clusters. It has been suggested that a possible ap- 
proach is t o  obtain a measure of the clustering quality repre- 
sented by some  parameter, beta, [ 33 1, [40]. 

A number  of measures have been proposed for beta,  one of 
which is the  ratio  of  the between- to within-cluster scatter 
measure [4  11. The  withincluster and betweencluster mea- 
sures are derived from within-  and betweencluster  scatter 
matrices. These measures are intended to measure the separa- 
bility of the data. The  withincluster  scatter matrix is based on 
the  scatter of the  data  about  the cluster means, and is given by 

1 K  s, = - €{(X - C k ) ( x  - CkI t )  
k=l  

where x is the  feature vector, 
1 

e { ’ ) =  - ( x i -   C k ) ( X i -  Ck)‘ 
Mk  XiESk 

and C k  is the mean of the  kth cluster. hfk is the  number  of 
elements in the  kth cluster, xi  is an  element in  the  Kth cluster 
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Fig. 3. Clustering fidelity criterion 8,.  

(the set of such  elements being given by Sk), and K is the  total 
number of clusters. The  betweencluster  scatter matrix can be 
defined in numerous ways, but  for K 2 2 cluster, the most 
straightforward  definition is given by 

where eo is the overall mean vector of the  entire  mixture,  and 
is given by 

Here M represents the  total  number of points (pixels) t o  be 
clustered. 

The goal of using the  scatter matrices is a measure of cluster 
separability. It is therefore necessary to derive a number, 
parameter beta, from  these  matrices which is related to  cluster 
separability.  There are a number of ways of deriving such  a 
number, among which are: 

= tr Sb - p(tr  S, - c) 

p4 = tr  Sb/tr S, 

Ps = tr Sb * tr S, 

where t r (*)  indicates  “trace” or sum of the diagonal elements 
of a matrix,  and 1 -  I denotes  the  determinant of the matrix. 
When o3 is used, the procedure is to maximize tr S b ,  subject 
to  tr S, = c. Here /.I is the Lagrange multiplier  and c is 
a constant. 

The terms p1 and p2 are invariant under  any nonsingular 
linear transformation. The  terms p 3  and 8 4 ,  while easier to 
compute, depend on  the  coordinate system. 

The use of the parameter beta to  measure the “goodness” of 
clustering requires that a knee  in  the beta versus number of 
clusters be detected. If the  data is noisy  and the curve is not 
smooth, this may be very difficult. A better procedure  would 
be to  observe a  parameter ps which passes through a  maximum 
at  the intrinsic number of clusters (see Fig. 3). 

When the  number of clusters  equals 1,  tr S, = u2,  the vari- 
ance of the  mixture, tr  Sb = 0, and P5 = 0. When the  number 
of clusters equals M, where  M is the  total  number of vectors in 
the  mixture, 

tr S, = 0 and tr  S b  = a’. 

Hence os = 0. 
This measure is zero at  the limiting points of the clustering 

and greater than zero in the interval.  Therefore, i t  must attain 
at least one (and perhaps several) maximum valuds) some- 

where in  the interval. The ideal behavior for os would be for 
it t o  attain a  unique  maximum at a clustering of the  data  that 
would be regarded as “good” by a human observer. 

The use of tr S, and tr  Sb to define clustering quality im- 
plicitly  defines  a weighting function on the cluster size. Each 
term in the within- and  between-  cluster scatter matrices is 
composed of a weighted sum of terms. The weighting is based 
on  the relative frequency  (I/&) of the  data  points  in each 
cluster. 

An  interesting  relationship is true when  this  implicit weight- 
ing is used. In  this case 

tr  S, + tr  Sb = tr  9 = C 

where 9 is the covariance matrix of the  data,  and C is a  con- 
stant (sum of the  total variance of the data). Hence, 

8 5  = tr Sb - tr S, = (C- tr  S,) tr S, 

differentiating  with  respect to   t r  S,, and setting  the derivative 
equal to zero yields 

tr s, = c/2 
which implies that os achieves a  maximum at  the clustering 
that causes tr  S, t o  equal one-half the tr 191 - 

Further, 

p4 = tr  - 
tr S, 

sb 

- - C-  tr S, 
tr  S, 

When tr  S, = C/2, 

c- c/2 
c/2 

p4=-- - 1. 

Therefore,  the  ratio of between- to  within- cluster scatter 
measures will be exactly 1 at  the  “product maximum” of os. 

Knowledge of this relationship is an advantage for real-time 
applications, in  that,  determination of the  product maximum (om,) requires that clustering be performed on  one greater 
number of clusters than  the  number  at which the  product 
maximum  occurs in  order t o  detect a decrease. 

Different images can be expected to  be segmented most 
efficiently by different sets of features,  depending on  the  con- 
tent of the scene. Once  initial clustering has been performed, 
it may be desirable to  discard those  features  not  contributing 
to good clustering and  recluster based on the most important 
features. In  order t o  accomplish  this,  some means for evaluat- 
ing the usefulness of the features  is  required. A related prob- 
lem is that  the  features may be highly correlated in  the original 
space. Thus several highly correlated features may be evaluated 
as good while conveying essentially the same information due 
to  the high degree of correlation. Thus  feature selection in an 
uncorrelated  space is highly desirable. 

After  the  product maximum of os has  determined the  intrin- 
sic number of clusters, the criterion of optimality  for  the 
selection’ of a feature  set is the probability of misclustering 
(classification) of the samples. Several measures have been 
developed which upper  bound  the misclassification rate. 
Specifically, for a symmetric cost function classifier and 
Gaussian data,  the Bayes error  rate Pe has been shown to  be 
upper-bounded inversely as the  Bhattacharyya measure 
[411, [421. 
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Hence, 

Pe Q P(S1) P(S2 1 exp [-B(S1, S2 11 
for a two-class (cluster)  problem  where 

m , ' S 2 1 = +  {+ 1 ~ @ 2 1 - 1 ~ @ 1 1 + ~ @ 1 1 - 1 ~ @ 2 1 + 2 ~ ~ l l ~  

= 4 tr {([$I 1 + [@*l)-l(cl - c2)(c1 - e2)tl 
and P(S1), P(S2) are  the  prior probabilities of clusters S1 and 
S2. The Gaussian  distributions  are given by 

P(x 1 Sk = N(Ck I [@k 1 
and [ $ k ]  is the covariance  matrix of the  kth class or cluster. 

averaging,  i.e., 
For a  multiclass  problem, Pe can be  bounded  by pairwise 

The previous  equation is called the many-at-a-time form of 
the  Bhattacharyya distance measure. This  equation requires 
that  the covariance  matrix of  every class be invertible,  a  condi- 
tion  which may not be  achievable in practice  where the co- 
variance matrices  are  sample  determined. A computationally 
more  simple form of the above  results  when the one-at-a-time 
form is utilized.  This  form is given by: 

+ - {  
1 (/.+(n) - pi(n)I2 
4 u; (n) + uj ( n )  

where n refers to  the nth dimension of the space  and ai, ui are 
variances of the  ith  and  jth cluster  data on dimension n. This 
form involves only scalar means  and variances. 

Fig. 4  provides  some  insight into the behavior of the one-at- 
a-time Bhattacharyya  measure. When the variances are  equal 
but  the means  are not, as in Fig. 4(a), the fmt term of the 
Bhattacharyya  measure will be zero but  the  second  term will 
be  nonzero.  The second  term will be  large if the variance is 
small  under this  condition, implying that a large difference  in 
means  accompanied  by  small variances, is a desirable quality 
in a feature  for distinguishing  between two clusters. The 
situation  depicted  in Fig .  4(b) is the reverse, that is, the 
means  are  equal but  the variance is not. If the variances are 
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Fig. 5.  General block diagram. 

significantly  different, the  feature is still  considered of poten- 
tial usefulness in separating the clusters. Thus  in this situation, 
the second  term of the Bhattacharyya  distance will be zero 
but the first  term will be nonzero.  Finally, in Fig.  4(c) both 
the mean  and variance are  unequal  and both  terms of the 
measure will be nonzero.  The  feature  rejection  criterion  would 
be to only  retain those  features  with large Bhattacharyya 
value. 

The performing of feature evaluation-rejection in uncorre- 
lated  space  implies that  an eigenvector (or discrete  Karhunen- 
Loeve) transformation is required [431. While the dimensions 
having the largest eigenvalues will be the best  under  certain 
conditions,  they will not be optimal in general.  However, the 
one-at-a-time Bhattacharyya  measure will pick the  correct 
eigenvector regardless of their  mixture eigenvalues. The result- 
ing reduced  set  of  features  provides  computational savings as 
well as a  tighter  more  dense clustering. 

IMAGE SEGMENTATION BY CLUSTERING 
The overall approach  taken to segment images by  clustering 

is depicted  in  the general  block diagram of Fig. 5 .  The  feature 
computation block computes several features at  each pixel. 
These  features are related to brightness  and texture  for several 
window sizes centered  on every pixel. 

The  feature  decorrelation is performed  by  a  multidimen- 
sional  axis rotation (Karhunen-Loeve transformation).  The 
rotarion is performed so that  the new feature  set is uncorrelated. 

Feature  reduction,  which is accomplished  subsequently, will 
retain  only  those  features necessary for  good clustering  as  de- 
Tied  by  the Bhattacharyya measure.  If feature  reduction is 
not  performed  on  decorrelated  features, several  highly corre- 
lated  features  may  be  retained,  but  convey  essentially  the same 
information. 

Clustering is again performed  but  now  on  the  reduced fea- 
ture set. When the  optimum  number of clusters is determined, 
by the product  maximum of 0 5 ,  the  cluster means  are  for- 
warded to the  segmentation phase of the algorithm. The 
segmentation phase  assigns  every pixel  (vector) in  the image to 
the closest cluster  mean received from  the clustering  algorithm. 
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The  feature decorrelation is necessary in  order  that  the 
feature  reduction will retain  the minimum number of features 
contributing to good clustering. The  feature  reduction im- 
proves the quality of the segmentation by discarding noisy and 
less useful features. The first  clustering is performed  explicitly 
for  the purpose of evaluating the features. The algorithm 
iterates to a  correct number  of clusters,  and the  features are 
evaluated at  that  point.  The second clustering is performed 
for  the p w o s e  of finding the means with  which to segment 
the image in  the segmentation phase of  the algorithm. 

A  detailed flow-diagram of the algorithm is illustrated in 
Fig. 6.  The  feature  computation, which will be described in 
detail,  subsequently  produces as described previously a  vector 
at each pixel.location. These vectors are forwarded to  the 
covariance computation  routine and to  the Karhunen-Loeve 
rotation. 

The covariance matrix is computed over the  feature  set  and 
the diagonal elements of this  matrix are the  feature variances 
over the image. The  matrix which diagonalizes the covariance 
matrix is computed yielding 

A‘@A = A  

where A is diagonal having the eigenvalues of the covariance 
matrix as diagonal elements, i.e., 

c 

This transformation  corresponds to a  multidimensional 
axis rotation  and is the discrete form of the Karhunen-Loeve 
transformation. The covariance matrix in the  rotated space 
will be diagonal and will be 

t $ ~  = A‘@A = A .  

This rotated space of features is forwarded to  the clustering 
algorithm for clustering. 

The clustering algorithm uses the K-means  algorithm for 
K = 2, 3, 4, * , 16 clusters. At each step,  the  quality of clus- 
tering is computed as 0s = tr Sb - tr S,. The average pairwise 
Bhattacharyya  distance is computed  for every feature. At the 
product maximum of 0 5 ,  the Bhattacharyya  distance for a l l  
features is computed.  Features having a  Bhattacharyya dis- 
tance which far exceeds the overall average are  identified for 
use in the  fiial clustering. Since these  features are uncorre- 
lated, only the minimum necessary are  retained for good 
clustering. The flowchart of the algorithm is shown  in Fig. 7. 

The algorithm begins at 2 clusters. The initial means are 
established by computing  the mean and variance of each fea- 
ture over the image. The 2 initial  cluster  centers  are  chosen 
to be evenly spaced on  the diagonal of positive correlation 
at  +1  standard deviation in the hyperspace of the  feature  set. 
As the  number of clusters is incremented,  one of the vectors 
will have a largest distance to  the cluster center it is closest 
to. This vector then becomes  a new cluster  center.  Final 
segmentation is performed on every pixel, utilizing the means 
or cluster  centers computed during the clustering algorithm. 

An aspect of clustering which has a  major  effect on  the 
results is the  feature set used to describe the image. For 
monochrome imagery, the most obvious features that are 
intuitively important to human observers are brightness and 

Input  lmoge - Implies Scalar Doto 

Implies  Vector  Doto 

Fig. 6. Flow diagram of image segmentation algorithm. 

texture. Brightness is a relatively straightforward concept, 
but  texture is not. Much research has  been  performed regard- 
ing human  perception of texture,  and  the subject is far  from 
closed. 

To  date,  the most promising results obtained with texture 
operators utilize the grey level probability  dependancy ma- 
trices  proposed by Haralick [441. The  normal approach 
followed with these measures is to  compute  the grey level 
dependency  matrices  and then to derive texture measures 
from  the matrices themselves. A large number of measures 
can be computed  from these  matrices, but  Thompson [2] 
found  that perhaps five or less correlate significantly with 
human  perception. 

Other  texure measures which have been proposed  are the 
“edges per unit area” as a measure of the local edge density. 
This measure was computed  and used in segmenting several 
types of scenes. The basic edge detector is the Sobel operator 
which is defined as follows: 

and 

At each  pixel, the image is multiplied by  the [ # I ]  and [sz ] 
masks yielding s1 and s2. A function of the Sobel  magnitude 
(SM) is then de f i ed  as 

SM = log (s l 2  + ~2~ )‘I2 

and the Sobel phase (SP) is given as 

SP = arctan (z) . 

A modified  Sobel phase texture  operator was computed as 

SP* = (SP + n) SM 

in an  attempt  to suppress the phase operator when no  texture 
is present. These primitive operators  permitted segmentation 
of numerous  monochrome images, with varying degrees of 
success. 

The goal of the algorithm developed here is t o  perform 
gross overall scene  segmentation. For  this reason, very small 
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& 
Fig. 7 .  Clustering algorithm  flowchart. 

“fine grain” segments were considered  undesirable. It was 
decided to  perform  a  prefiltering to make some basic decisions 
about region character on a  local level as a  first step  prior t o  
segmentation. 

Linear operators  tend to blur the region boundaries  and 
reduce the region boundary resolution.  A  nonlinear fdter 
that does not blur the boundaries was conceived and called 
a “mode filter.”  This  filter computes a  local  area histogram 
centered  on each pixel, for  different region sizes, and  outputs 
the  mode  or most frequently occurring value. The height 
of the histogram at each pixel may also be used as a measure 
of the local dispersion (standard deviation) of the region. 
Region sizes of 3 X .3, 7 X 7, and 15 X 15 were computed. 

The  effect of the  mode filter is to replace every pixel with 
the most frequently occurring value in a small region centered 
on  the pixel.  This removes small variations in brightness and 
tends to create relatively large regions of completely  uniform 
character. The  mode filter causes almost no loss in  boundary 
resolution because the  output of the filter  does not change 
until a  majority of the values change. Then  the fiiter output 
changes value at  the  point where the  center of the window 
crosses the region boundary.’ 

Color  and  multispectral  features were computed by per- 
forming  mode  filtering on  the  three  or  more spectral images 
(i.e., red, green,  and  blue for visible color).  This  expanded 
feature set  produced  more satisfying results, as would be 
expected  from  the increased information available from  the 
multispectral data. However, as seen from Fig. 8, even this 
limited set of features tends to increase quite rapidly for  the 
large number of combinations available. There were generally 
five feature sets  which were used for image clustering. These 
feature sets  are clearly combinations of a few different  types 
of basic features, and  are based on  the Sobel operators and 
the  mode dispersion for  texture  information and on  the  mode 
value for brightness information.  The individual  sets will be 
developed in the  next  section. 

As has been previously discussed, the primary goal of this 
effort was to  develop the segmentation  algorithm. Feature 

which are nonlinear operators  the  latter  being used mainly for  outlier 
‘This fdter is not to be  confused  with  the  median Wter, both of 

rejection and noise  filtering. 

Descripdve  Level 

Spectral E a n d s  

Basic  Features 

Windoor Size 

Derirec Feature 

F u t u r e  

This feature is the 3 x 3  mode of L e  
Sobel phase of the green image 

Fig. 8. Possible  feature  combinations. 

experimentation was done as required to investigate the 
performance of the segmentation  algorithm,  but was not 
pursued in great depth as a topic having its own  merit. A 
great deal of investigation into features, especially texture, 
obviously remains to be done. However, the  features used 
here were selected mainly for  their  potential use  of imple- 
mentation possibly with charge-coupled-device (CCD) cir- 
cuitry near the focal plane of a sensor. 

EXPERIMENTAL RESULTS 
An enormous  amount of data was collected  during the 

performance of numerous experiments in segmenting various 
kinds of images. A  representative sampling of that  data is 
included in the  photographs and figures in  this section. The 
photographic  data consists of photographs of the features, 
both correlated  and  decorrelated, and  the resulting segmen- 
tations.  The graphs depict behavior of the Bhattacharyya 
distance measure, used for  feature selection, and of the cluster- 
ing quality measure 0, used to  stop  the algorithm at  the correct 
number of clusters. 

The first image to be segmented is a monochrome scene of 
an  armored  personnel carrier (APC) shown in Fig. 9. The 
feature  computation stage of  Fig. 5 computed  the following 
features as input  to  the vector-space. For  this image the 
features were: 

x1 = monochrome brightness 
x2 = Sobel log magnitude 
x3 = Sobel phase 
x4 = (3 X 3) mode of brightness 
xs = (3  X 3)  mode of Sobel log magnitude 
x6 = (3 x 3)  mode of Sobel phase 
x7 = (7 X 7) mode of brightness 
x8 = (7 X 7) mode of Sobel  log  magnitude 
xg = (7 x 7) mode of Sobel  log  magnitude 

x l0  = (15 X 15)  mode of brightness 
xll  = (15 X 15) mode of Sobel log magnitude 
xlZ = (15 X 15)  mode  of Sobel phase. 

Thus each  pixel generatts a point  or sample in 12-dimensional 
vector space x. Fig. 9 shows  each coordinate  or  feature of 
this space in pictorial form,  for viewer identification. These 
features  are  referred to as the  12 original features as they have 
not  yet been subjected to feature decorrelation or  feature 
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(k) 0) 
Fig. 9. APC image original features. (a) Original. (b) Sobel  log magnitude. (c) Sobel phase product. (d) Original, mode filtered 3 X 3. (e) Log 

magnitude, mode filtered 3 X 3. ( f )  Phase product, mode  mtered 3 X 3. (8) Original, mode filtered 7 X 7. (h) Log magnitude, mode filtered 
7 X 7. (i) Phase product, mode filtered 7 X 7. 6) Original, mode filtered 15 X 15. (k) L o g  magnitude, mode fdtered 15 X 15. 0) Phase 
product, mode filtered 15 X 15. 

reduction  (see Fig. 5). These  features were subjected to  
clustering  without  decorrelation or  feature  reduction  produc- 
ing the  segmentations of Fig. 10.  The  prQduct  maximum of 

occurred  at 9 clusters. A graph of the average Bhattacharyya 
distance versus the  number of clusters  for this image is shown 
in Fig. 11. This graph is constructed  such  that  the average 
Bhattacharyya  distance  for  each  feature is normalized by the 
average for all features  at  each  number of clusters. The  nor- 
malized overall average therefore  consists of the  horizontal 
line  at  1.0. While there is some  changing of relative  position 
between  the  features as the  number of clusters is varied,  those 
features which are  above average tend to remain above average, 
and  those which are below average tend  likewise to  remain be- 
low average. The graph  shows  reasonably  consistent  behavior 
of the  Bhattacharyya  distance  measure as the  number  of clus- 
ters varies. Thus feature  selection based on  this  measure  is  a 
consistent  procedure.  It is interesting to  observe that  the  four 
dominant  features  from Fig. 1  1  according to  the  Bhattacharyya 
measure  are xl,  x4,  x7 and x10. These  four  features  are all 
derived functions of the brightness of the original image. Thus 
no  texture  features are needed (as one  might  intuitively be- 
lieve), as simple  thresholding  appears  sufficient  for  segmenting 
this image. 

Returning to  the results of  Fig. 10,  it is apparent  that 9 
clusters  appear to be psychovisually  unpleasant  because as 
human viewers, we might believe the imagery is broken  up 
into  too  many segments or regions. Thus  feature  reduction 
is in order.  At  the  product  maximum of Ps the  four best 
features were 7, 1, 4, and  10, in that  order.  These  features 
are  original mode  filtered 7 X 7, original  unmodified,  original 
mode  filtered 3 X 3, and  original mode filtered 15 X 15  as 
mentioned earlier. Thus all of  the  texture  information has 
been discarded.  These  features were used to  again cluster 
the image and  the  results  are  shown in  Fig. 12.  The  product 
maximum of os occurred  at  2  clusters  for  this  reduced  feature 
set.  Pictorially,  this  segmentation is far  more pleasing.  Even 
when the  algorithm is forced  beyond 2 clusters,  the  additional 
segments  are  culturally  acceptable (that is, 3 regions  pick  up 
the  star of the APC, etc.). 
The covariance  matrix  of the  12 original feature  set was 

computed and diagonalized.  Each  vector  of the  rotated 
feature  set is computed from the spatially  corresponding 
vector in the  original  feature  set.  The f i t  four  features of 
the  actual  rotated  feature  set is shown  in Fig. 13. The version 
shown in Fig. 13 has been rescaled for ease of viewing. The 
covariance  matrix of the  rotated  features is diagonal  and  each 
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(c)  (dl 
Fig. 10. Twelve nonreduced correlated features. (a) Seven regions. 

(b) Eight regions. (c) Nine regions (best number of regions). (d) Ten 
regions. 
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Fig. 11. Average Bhattacharyya distance versus number of clusters. 

diagonal entry is equal t o  the variance for  the respective fea- 
ture.  The segmentation at  the  product m e u m  of & for 
the  12  rotated features  appear very similar. That  this is so 
is expected since the multidimensional rotation of the axes 
by the  rotation matrix is a linear unitary invertible-map and 
should not change the shape of the clusters. The differences 
which do exist  are  due in small part to numerical (roundoff) 
errors in  the  computation.  The nearest means algorithm will 
converge to a local minimum in the average intercluster 
distance. In addition, since convergence of the algorithm 
for a fixed number of clusters is considered to occur  when 
the means change less than  one brightness value in  any dimen- 
sion, the  fiial clustering is also slightly sensitive to  the direc- 
tion  from which the convergence is approached. Nevertheless, 

Fig. 12. Four induced correlated features. (a)  Two regions (best 

regions. 
number of regions). (b) Three regions. (c) Four regions. (d) Five 

(c) (d ) 
Fig. 13. APC image rotated features. (a) Rotated feature 1. (b) Ro- 

tated feature 2. (c) Rotated feature 3. (d) Rotated feature 4. 

the agreement is surprisingly good,  and supports  the hy- 
pothesis that intrinsic  clusters do in fact exist in the data. 

The average Bhattacharyya  distances for  the  rotated features 
were computed  for all  cluster  numbers  and are plotted in 
Fig. 14. The best of the  rotated features was substantially 
higher in Bhattacharyya  distance than  any of the  other fea- 
tures. This is to some extent  expected, since the  rotation 
process will compact  the maximum amount of information 
into  the features having the largest eigenvalues. Accordingly, 
it was decided to perform clustering on  this  one exceptionally 
good feature.  The results of this are also shown  in Fig. 15. 
The classification of  the bushes in  the images as being the 
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&- 

Fig. 14. Average Bhattacharyya distance versus number of clusters. 

Fig. 15 .  Single best decorrelated feature. (a) Two regions (best number 
of regions). (b) Three regions. (c) Four regions. (d) Five regions. 

same as the vehicle constitutes an error or misclassification 
in  the process. However, the similarity of these results is 
quite comparable  with that of the  four best nonrotated 
features of  Fig. 12. 

The  product of the between-  and the within-cluster scatter 
measure was computed  for each number of clusters. The 
between-scatter  and  within-scatter measures are normalized 
so that  they range between 0 and 1. These products are 
plotted versus the  number of clusters for  the APC image 
under various conditions in F i g .  16. 

An interesting phenomenon can be observed in  the behavior 
of the clustering quality measure (product)  in Fig. 16. The 
behavior of the quality measure for  the  rotated and  non- 
rotated  feature sets is almost identical,  which is to be ex- 
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Fig. 16. Product versus  number of clusters. 

pected if the intrinsic structure of .the  data is unchanged by 
the  feature  rotation process. The clustering quality measure 
maximum is rather broad in both cases for  the full feature 
sets. The reduced feature sets on  the  other  hand, show  a 
sharper,  more clearly defined peak in the  quality measure, 
suggesting that  the intrinsic clusters in  the data are more 
clearly defined in the reduced  sets of features. For all images 
tested,  the  quality measure tended to demonstrate a  more 
clearly def ied maximum when computed  on  feature sets 
that were expected to yield “better” clustering. 

The segmentation  procedure was also applied to polychro- 
matic imagery. It would be expected that somewhat improved 
results would be obtained  from the expanded feature  set,  and 
the results seem t o   c o n f m  this expectation.  The features 
utilized were: 

x1 = red brightness 
x2 = green brightness 
x3 = blue brightness 
x4 = (3 X 3) mode of red  brightness 
xs = (3 X 3) dispersion of red brightness 
x6 = (3 x 3 
x7 =(3 x 3 
xg = (3 x 3 
x9 = (3 x 3 

x10 = (7 x 7 
x11 = (7 x 7 
x12 = (7 x 7 
x13 = (7 X 7 
x14 = (7 X 7 
x15 = (7 x 7 

mode of green brightness 
dispersion of green brightness 
mode of blue brightness 
dispersion of blue brightness 
mode of red brightness 
dispersion of red brightness 
mode of green brightness 
dispersion of green brightness 
mode of blue brightness 
dispersion of blue brightness. 1 -  

The results of segmenting in a  15-dimensional space are 
presented in Fig. 17. The  product maximum of OS was de- 
termined to be two clusters. The additional  segmentations 
are the result of permitting the algorithm to continue  beyond 
the best number of clusters. Again, it is gratifying that  the 
additional segments appear to be culturally  relevant, in the 
sense that new regions are structural entities (i.e. windows, 
drain pipes, shadowed areas, etc.) and are not  just randomly 
scattered. 

Fig. 18 presents the clustering fidelity  criterion versus 
number of clusters and  appears t o  peak at  two clusters. Also 
the single best feature  in  rotated space  produces  an image 
segmentation  identical to  that of Fig. 17(b) to within  a very 
few number of pixels. Thus  a 15 : 1  compression  appears 
available. Note also that  the full feature set  still provided a 
sharply  peaked  maximum in  contrast t o  the monochrome 
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Fig. 19. TV rate image segmentor. 

(e) 
Fig. 17. Segmentation of house picture. (a) House original. @) Two 

regions @est number of regions). (c) Three regions. (d) Four regions. 
(e) Five regions. (f)  Six regions. 
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Fig. 18. Product versus number of clusters. 

imagery.  Indeed this well-behaved cluster maximum can be 
attributed  to  the  additional  information  that color provides. 

With certain  minor  modifications, the segmentation algo- 
rithm described in  this paper can be adapted to  near real- 
time  operation. In the sense used here,  near  real-time implies 
operation  at standard television rates. 

Fig. 19 is a  block diagram of a hypothetical system. The 
feature  computer  computes  the features in real-time  from 
the  input television image. The technology for  this block of 

Fig. 20. Motion picture results. (a) Original-Frame 1.  @) Original- 

tion-Frame 5 (four clusters). 
Frame 5.  (c) Segmentation-Frame 1 (four clusters). (d) Segmenta- 

the system is in development [45] on CCD hardware  and may 
even be implemented on the focal plane of a  multielement 
sensor. This conceptualization is sometimes called the “smart 
sensor” design. 

The raw features are then forwarded to  the  feature  rotator. 
The  feature  rotator performs  a  real-time  multidimensional 
rotation of the  input vector, that is, each component of the 
output vector is a weighted sum of the  input vector com- 
ponents.  The weights are  a function of the picture  statistics, 
specifically the picture covariance matrix which is computed 
and diagonalized by the statistical computer.  The statistical 
computer may consist of a combination of a  microprocessor 
and  other hardware. It is a reasonable assumption that  the 
picture  statistics will not change substantially over a small 
number of frames. In order  to verify this,  the algorithm 
described above was used to segment two frames of a motion 
picture of a chemical plant. The results of these  segmentations 
are shown in Fig. 20, along with the original photographs. 
The  motion picture was taken  from a moving aircraft,  and 
the originals are not spatially registered, as can be seen. They 
are five frames apart  in  the  motion picture. 
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The  two segmentations however, appear  quite similar, and 
support  the hypothesis that  the statistical structure of the 
data can be identified for  the purposes of segmentation even 
when the pictures  are not spatially registered. 

If a  real-time  system is implemented, and  frame to frame 
amplitude differences  are expected,  either  appropriate scaling 
will be required or  the  rotation matrix will have to  be found 
to  change slowly. The effect of this  procedure would be to 
rotate image feature sets  with  a nonoptimal  rotation matrix. 
Since the  rotation is performed to permit feature rejection 
in decorrelated space, the penalty for this  procedure will 
most likely be small. 

CONCLUSIONS 
This  paper has presented  a  procedure for gross segmentation 

of digital imagery. The procedure uses an unsupervised method, 
and requires no human interaction  or adjustable  thresholds. 
There  are disadvantages to using an unsupervised approach. 
So little is known  about  the human-perceptual  system that 
the resulting segmentations will usually not be as satisfying 
as segmentations  made by a human being or  those performed 
by a  carefully  trained  segmentor  operating in a supervised 
mode. Additionally, the segmentor has no knowledge of the 
intent of the segmentation except  that provided implicitly 
through  the features  selected to be used. 

There are however, advantages to  the unsupervised approach. 
The  construction of a  data set to use during the training phase 
of the supervised approach is time consuming and tedious. 
Additionally, the supervised method is incapable of satis- 
factory  performance in  situations where the statistics of  the 
scene vary substantially.  Situations that are likely to en- 
counter such  statistics  are  those in which the sensor char- 
acteristics vary and those in which near  real-time  segmentation 
of real images is desired. The difference is appearance  with 
weather, time of day,  and terrain makes an unsupervised pro- 
cedure mandatory. 

The  procedure  outlined  herein  lends itself conceptually to 
near  real-time implementation. While the design of such  a 
system to operate  at television rates will require  considerable 
ingenuity on  the  part of the circuit designers, such  a  system 
should  find wide application in target  recognition/tracking 
systems and possibly may be used to solve the problem of 
cross correlation of the same scene observed by sensors of 
radically different  characteristics. With some  generalization 
of the concept of cross correlation,  segmentations of  the 
same scene viewed by  different sensors can be compared. 

The unsupervised approach may also reveal characteristics 
in  the data (image) that were unobserved by the  human 
observer. There may exist inherent clusters in  the data that 
passed unnoticed by human beings. Use of a supervised 
procedure will tend  to  further mask these unobserved char- 
acteristics, as the training of the classifier effectively instructs 
the classifier to ignore  these characteristics. The unsupervised 
approach may eventually fi id usefulness in image enhance- 
ment because of the ability to detect unnoticed structure  in 
the data. 

Further work is certainly necessary in understanding the 
human-perceptual  system at  its  intermediate level and using 
this knowledge to develop features to  improve the perfor- 
mance of the segmentor. It may well develop that  some 

standing system. If so, the improved  understanding of the 
human-perceptual system will prove valuable as much for 
what it indicates cannot be done as it is for  its indications 
of what  can be done. 

The clarification of what is meant precisely by a “segmented 
image” is also an  avenue for  further investigation. If a “well- 
segmented image” can be represented by a  mathematical 
criteria, then analysis based on  picture statistics will almost 
certainly provide suggestions on  how to improve  segmentor 
performance.  In addition,  it will provide means for predicting 
hypothetical system  performance without having to  build and 
test  the system. 

Much of the usefulness of an  image-segmentation  system 
must be determined by application. The  current  state of the 
art in image-understanding  systems is such  that applications 
are just now being postulated,  much less implemented and 
tested.  The advantages of the procedure described herein 
seem to  be two-fold. 

First, the procedure provides the cluster means directly as a 
by-product of the segmentation process. This is opposed to  the 
previous procedures,  which  segment the scene with boundary- 
detection methods, compute features inside the boundaries, 
and only  then perform clustering to  determine  the means. 

A  second advantage of this procedure is its  potential  for 
real-time implementation. Many previous procedures have 
required exact spatial stationarity of the image data to permit 
the  iterations necessary to perform  segmentation.  This pro- 
cedure  requires only  that  the  picture statistics change slowly 
with time, and  does not require  storing the  entire image at 
one time.  Such  a  procedure will  have clear advantages when 
the sensor is mounted  on a moving platform as in target 
detection/recognition systems. 

However a  final comment must be made at this point.  The 
procedure as implemented, currently has enormous  computa- 
tional  requirements.  These  are  many  orders of magnitude 
greater than those of the techniques described in [ 191 -[30]. 
This limitation will require  a possible order of magnitude 
improvement in  computational efficiency and/or processing 
elements  before  real-time or near  real-time  applications are 
contemplated. 

ACKNOWLEDGMENT 
The  authors wish to acknowledge the  support provided by 

the personnel of the Image Processing Institute  in developing 
and maintaining the facilities necessary to carry out  the 
research report herein.  Particular thanks go to Professor 
W. K. Pratt  and Mr. Ray  Schmidt in  this regard. In addition, 
the  authors are indebted to Major David Carlstrom of  the 
IPTO Office-ARPA for suggesting this important image 
understanding research task. 

REFERENCES 
[ l ]  P. H. Winston.  “Heterarchy  in the MIT robot,” M.I.T. Artificial 

[ 2 ]  A. L. Zobrist and W. B. Thompson,  “Building a distance  function 
Intelligence  Lab., Cambridge, M& Vision Flash 8. 

for gestalt  grouping,” ZEEE Tmm. Comput., vol. C-24, pp. 71 1- 
719, July 1975. 

[3]  J. M. Tenenbaum, “On locating  objects  by  their distinguiahing 
features in multisensory images,” Artificial  Intelligence  Cent., 

[ 4 ]  C. A.  Harlow  and S. A. Esenbeis, “The analysis of radiographic 
Stanford Research Inst.,  Menlo Park, CA,  Tech.  Note 84. 

images,” IEEE Tram. Comput., vol. C-22, pp. 678-689, July 
textural recognition processes occ& at a  fairly high level in 1973. 
the human-perceptual system and do  not  lend themselves gence Lab..  Cambridge,  MA, Vision Flash 43, Mar. 1973. 

( 5 1  E. C.  Freuder, “Suggestion and advice,”  M.I.T.  Artificial  Intelli- 

to implementation in the lower levels of an image-under- [ a ]  L, “A&e knowledge,” M.I.T. Artificial  Intelligence  Lab., 



COLEMAN  AND  ANDREWS: IMAGE SEGMENTATION BY CLUSTERING  785 

Cambridge, MA, Vision Flash 53,  Oct.  1973. 

in Optical  and  Electro  Optical  Information  Processing, J .  T. 
L.  G.  Roberts,  “Machine  processing  of  three-dimensional  solids,” 

Tippett et  al . ,  Eds.  Cambridge, MA: M.I.T.  Press, 1965,  pp. 

A.  Guzman-Arean,  “Computer  recognition  of  three-dimensional 
objects in a visual scene,”  Thesis  (EE), M.I.T. Project MAC, 
Cambridge, MA, MAC-TR-59, Dec. 1968. 
P. Winston,  “Learning  structural  descriptions  from  examples,” 

Sept.  1970. 
Thesis (EE), M.I.T. Project MAC, Cambridge, MA, MAC-TR-76, 

scenes  with  shadows,”  Thesis  (EE), M.I.T. Artificial  Intelligence 
D.  L. Waltz,  “Generating  semantic  descriptions  from  drawings  of 

Lab.,  Cambridge, MA, AI-TR-271, Nov. 1972. 
Y. Shirai,  “A  heterarchial  program  for  recognition  of  polyhedra,” 
M.I.T. Artificial  Intelligence Lab., Cambridge, MA, AI Memo 
263,  June  1972. 
G. R. Grape,  “Model based (intermediate level) computer  vision,” 
Thesis (CS), Stanford Univ., Stanford,  CA,  AIM-201, May 1973. 
M. D. Kelly,  “Visual  identification  of  people  by  computer,” 
Thesis (CS), Stanford Univ., Stanford,  CA, AIM-1 30,  July  1970. 

of  photographs  of  human  faces,”  Kyoto Univ., Kyoto,  Japan, 
T. M. Sakai  and T. Kanode,  “Computer  analysis  and  classification 

Y. Yakimovsky,  “Scene  analysis using a  semantic base for  region 
Rep.,  1972. 

growing,”  Thesis (CS), Stanford Univ., Stanford, CA, AIM-209, 
July  1973. 
G. J. Agin,  “Representation  and  description  of  curved  objects,” 
Thesis (CS), Stanford Univ., Stanford, CA,  AIM-173,  Oct.  1972. 
H. G. Barrow  and  R. J .  Popplestone,  “Relational  descriptions 
in  picture  processing,” in Machine Intelligence, vol. 6, B. Meltzer 
and D. Mitchie Eds., Edinburgh,  Scotland:  University Press, 

Thesis (CS), Carnegie-Mellon Univ., Pittsburgh,  PA,  1976. 
K. Price, “Change  detection  and  analysis  in  multi-spectral images,” 

visual scene  analysis,” IEEE Trans. Comput., vol. C-20, May 
A. Rosenfeld  and M. Thurston,  “Edge  and  curve  detection  for 

1971. 
A. Rosenfeld et  al.,  “Edge  and  curve  detection:  Further  experi- 
ments,” IEEE Trans. Comput., vol. C-21, pp.  677-715,  July 

159-197. 

1970, Pp.  377-396. 

1972. 
(21 ] A. Martelli,  “Edge  detection using heuristic  methods,” Comput. 

Graphics  and  Image  Processing, vol. 1,  pp.  169-182,  1972. 
(221 M. J. Hueckel, “A  local visual operator  which  recognizes  edges 

and  lines,” J.  ACM, vol. 20,  no.  4,  pp.  634-647,  Oct.  1973. 
(231 T. Pavlidis, “Segmentation  of  pictures  and  maps  through  func- 

tional  approximation,” Comput. Graphics  and  Image  Processing, 

(241 S. L. Horowitz  and T.  Pavlidis, “Picture  segmentation  by  a 
tree  traversal  algorithm,” J. ACM, vol. 23,  no.  4,  pp.  368-388, 
ADr. 1976. 

VOl. 1, pp. 360-372,1972. 

Proc.  1st  Int.  Joint  Conf.  on  Pattern  Recognition (Washington, 

[27]  C.  R.  Brice and C. L. Fennema,  “Scene  analysis using regions,” 
Artif.  Intel.  J., vol. 1,  pp.  205-226, Fall 1970. 

[28]  T.  Pavlidis, “Linguistic  analysis  of  waveforms,”  in Software 
Engineering, J. Tou,  Ed. New York:  Academic Press, 1971, 

[29]  R. M. Haralick  and G. L. Kelly, “Pattern  recognition  with  mea- 

Proc. IEEE, vol. 57, pp. 654-665,  Apr.  1969. 
surement  space  and  spatial  clustering  for  multiple images,” 

(301 R. M.  Haralick et  al., “Textural  features  for  image  classification,” 

DC), pp.  497-498,  Oct.  1973. 

pp.  203-205. 

I 

I 

IEEE Trans. Syst., Man, and Cybern., vol. SMC-3,  pp.  610- 
621,Nov.  1973. 

311 R. M.  Haralick  and I. Dinstein, “A  spatial  clustering  procedure 
for  multi-image  data,” IEEE Trans. Circuits Syst.,  vol. CAS-22, 
May 1975. 

32 ] R. Ohlander,  “Analysis  of  natural  scenes,” Thesis (CS), Carnegie- 

331 H. C. Andrews, Introduction t o  Mathematical  Techniques in 
Mellon Univ., Pittsburgh,  PA,  June  1975. 

Pattern  Recognition. New York: Wiley. 1972. 
[ 341 R. 0. Duda-and P. E.  Hart, Pattern-  ‘Classification  and  Scene 

[ 351 R. C.  Tyron, Cluster  Analysis. Ann  Arbor, MI: Edwards,  1939. 
[ 361 G. H. Ball, “A  comparison of some  cluster-seeking  techniques,” 

Stanford  Res.  Inst.,  Stanford, CA, Tech.  Rep.  RADC-TR-66, 
514, Nov. 1966. 

[ 371 R. E. Bonner, “A logical pattern  recognition  program,” ZBM J.  
Res.  Develop., July  1962. 

[38]  R. E. Bonner,  “On  Some  Clustering  Techniques,” ZBM J.  Res. 
Develop., Jan.  1964. 

[39]  G. H.  Ball and D. J .  Hall, “ISODATA,  a  novel method  of  data 
analysis  and  pattern  classification,”  Stanford Res. Inst.,  Menlo 
Park, CA,  April  1965. 

[40]  G. Nagy, “State  of  the  art in pattern  recognition,” Proc. ZEEE, 

1411 K. Fukunaga, Introduction  to  Statistical  Pattern  Recognition. 
vol. 56, May 1968. 

(421 T. Kailath,  “The Divergence and  Bhattacharyya  Distance Mea- 
New York:  Academic Press, 1972. 

sure  in Signal Detection,” ZEEE Trans. Commun.  Technol., 

(431 T. L.  Henderson  and D. G. Lainiotis,  “Comments on Linear 

pp.  728-730, Nov. 1969. 
Feature  Extraction,” IEEE Trans. Inform  Theory, vol. IT-15, 

(44)  K. S. Fu, Sequential  Methods  in  Pattern  Recognition  and Ma- 

[45]  R. M. Haralick, K. Shannugam,  and I. Dinstein,  “Textural  Fea- 
chine Learning. New York:  Academic Press, 1968. 

tures  for Imaging Classification,” IEEE Trans. Syst. Man, Cy. 

Analysis. New York: Wiley, 1973. 

VOl. 15, PP. 52-60,  1967. 

bern.,vd.SMC-3.NOv. 1973.DD. 610-621. 
[46]  G. R;  Nudd, “Progress on th; Sobel CCD Chip  and  Circuit 11,” 

Semi-annual  Technical  Report,  Report No. 740, Image Pro- 

(47)  K. s. Fu  and P. H. Swain, “On Syntactic  Pattern  Recognition,’’ 
cessing Institute,  University  of  Southern  California, Mar. 1977. 

Sofrwme  Engineering, vol. 2, J .  T. Tou.  Ed. New York: Am- 
1251 T.- V. Robertson e t  &., “Multispectral  image  partitioning,” 

126) A. Klinger,  “Data  Structures  and  Pattern  Recognition,”  in  demic Press, i971. 
Purdue Univ., Lafayette,  IN,  TR-EE  73-26, Aug. 1973. 

~~~~ ..._ 














