
Miscada Dr Jochen Einbeck

ASML Induction

Basic R Programming

if/then

This command performs an action if the condition is met. One can specify an alternative action2 if an
alternative condition2 is met, and a further alternative action3 if not any condition was met.

if (condition){
action

} else if (condition2){
action2

} else {
action3

}

Both the parts commencing with else and else if are optional. For instance,

if (log(10)<pi){
pi

} else {
log(10)

}

gives the value of pi.

for

A for loop repeats an action for all elements of a set. Formally,

for (i in set ){
action

}

For instance,

for (i in 1:10){
cat(‘This is loop’, i, ‘\n’)

}

will produce 10 rows of text which report the number of the loop (The string ‘\ n’ is borrowed from the
C language and means to start a new line).



while

A while loop works similar as for, but instead of working though a set, it checks in every iteration whether
a condition is met:

while (condition){
action

}

apply

This function allows to carry out some operation onto all rows or columns of a matrix. For instance, if W
is a n× p matrix, then

apply(W, 1, sum)

would give a n× 1 vector which contains the sums over each row, and

apply(W, 2, mean)

would give the column means. Useful variants are tapply (carries out operations on the elements of W
grouped by a factor, the name of which is given as second argument), and lapply (for operations on each
element of a list W; here the second argument is not needed).

Functions

Functions allow to prepare some code which can be used later with different function arguments. For
instance,

testlog <- function(x){
if (x>0){

log(x)

} else {
cat("log not defined for non-positive argument.")

}
}

will give the logarithm of x if x is positive, and an error message otherwise.
Functions can also have more than one argument, which are then separated by commas. Default values
can be given behind a = symbol, for instance

max1<- function(a,b=1){
result<- max(a,b)

return(result)

}

max1(0.5)

[1] 1

max1(0.5,0)

[1] 0.5


