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Part I: Preliminary material

Before the lecture and the practical, please work through Part I of the R source file available from

http://www.maths.dur.ac.uk/˜dma0je/PG/Mix/MSc/CodeMSc19.r

The following commands will become useful for the programming tasks in the practical:

if/then

This command performs an action if the condition is met. One can specify an alternative action2 if an
alternative condition2 is met, and a further alternative action3 if not any condition was met.

if (condition){
action

} else if (condition2){
action2

} else {
action3

}

Both the parts commencing with else and else if are optional. For instance,

if (log(10)<pi){
pi

} else {
log(10)

}

gives the value of pi.

for

A for loop repeats an action for all elements of a set. Formally,

for (i in set ){
action

}

For instance,

for (i in 1:10){
cat(‘This is loop’, i, ‘\n’)

}

will produce 10 rows of text which report the number of the loop (The string ‘\ n’ is borrowed from the
C language and means to start a new line).

http://www.maths.dur.ac.uk/~dma0je/PG/Mix/MSc/CodeMSc19.r


while

A while loop works similar as for, but instead of working though a set, it checks in every iteration whether
a condition is met:

while (condition){
action

}

Functions

Functions allow to prepare some code which can be used later with different function arguments. For
instance,

testlog <- function(x){
if (x>0){

log(x)

} else {
cat("log not defined for non-positive argument.")

}
}

will give the logarithm of x if x is positive, and an error message otherwise.
Functions can also have more than one argument, which are then separated by commas. Default values
can be given behind a = symbol, for instance

max1<- function(a,b=1){
result<- max(a,b)

return(result)

}

max1(0.5)

[1] 1

max1(0.5,0)

[1] 0.5

apply

This function allows to carry out some operation onto all rows or columns of a matrix. For instance, if W
is a n× p matrix, then

apply(W, 1, sum)

would give a n× 1 vector which contains the sums over each row, and

apply(W, 2, mean)

would give the column means. Useful variants are tapply (carries out operations on the elements of W
grouped by a factor, the name of which is given as second argument), and lapply (for operations on each
element of a list W; here the second argument is not needed).



Part II: The EM Algorithm for Finite Gaussian Mixtures

The theoretical aspects of this part are covered in the lecture. The slides can be downloaded from

http://www.maths.dur.ac.uk/˜dma0je/PG/Mix/MSc/SlidesMSc19.pdf

In the practical, the task is to implement a univariate version of the EM algorithm for Gaussian mixtures.
Please follow the tasks given in the code file in order to do this.

Part III: Supplementary topics

Simulation from Gaussian mixtures

Given a set of parameters θ, data are simulated from a Gaussian mixture in two steps: Firstly we draw a
k ∈ {1, . . . ,K}, then we simulate from a Gaussian:

• Draw a value x from a uniform distribution on [0, 1] (using runif). If

x ∈

k−1∑
j=1

πj ,

k∑
j=1

πj

 ,
we decide for component k.

• Draw a value y from a normal distribution with mean µk and variance σ2 (using rnorm).

Likelihood and Disparity

We wish to compute the likelihood L(θ̂|y1, . . . , yn) (this is not the complete likelihood used in EM) of the
fitted model. One has

L(θ̂|y1, . . . , yn) =
n∏
i=1

f(yi|θ̂) =
n∏
i=1

(
K∑
k=1

π̂kφµ̂k,σ̂2(yi)

)
(1)

so that the log-likelihood is given by

`(θ̂|y1, . . . , yn) =

n∑
i=1

log f(yi|θ̂) =

n∑
i=1

log

(
K∑
k=1

π̂kφµ̂k,σ̂2(yi)

)
(2)

An alternative quantity which is often more convenient to use and interpret (for instance, in conjunction
with likelihood ratio tests, see below), is the disparity

D(θ̂|y1, . . . , yn) = −2 logL(θ̂|y1, . . . , yn) = −2`(θ̂|y1, . . . , yn).

For the computation of either of these, we will need to compute all entries of the n ×K matrix, say F ,
which is defined by the values of

π̂kφµ̂k,σ̂2(yi), 1 ≤ i ≤ n, 1 ≤ k ≤ K

Note that, with y =(y1, . . . yn), the command

pi[k] ∗ dnorm(y, mu[k], sigma)

provides immediately the k−th column of F .

http://www.maths.dur.ac.uk/~dma0je/PG/Mix/MSc/SlidesMSc19.pdf


Likelihood ratio test for K

We wish to test
H0 : K = K0 vs. H1 : K = K0 + 1.

Denote by θ̂K the estimate of θ when K mixture components are used.
Wilk’s likelihood ratio statistics:

W = −2 log
L(θ̂K0 |y1, . . . , yn)

L(θ̂K0+1|y1, . . . , yn)
=

= D(θ̂K0 |y1, . . . , yn)−D(θ̂K0+1|y1, . . . , yn)

The actual test is implemented through the bootstrap:

(i) Compute W as above. Call this value W0.

(ii) From the model with K0 components, simulate, say, 99 data sets of size n.

(iii) For each of these 99 data sets, recalculate θ̂K0 and θ̂K0+1, and compute the corresponding values of
W .

(iv) Find the position P of W0 within all the other values of W . The p−value is given by 1− P/100.

Part IV: Solutions

Full solutions will be made available, following the practical, under

http://www.maths.dur.ac.uk/˜dma0je/PG/Mix/MSc/SolutionsMSc19.r

http://www.maths.dur.ac.uk/~dma0je/PG/Mix/MSc/SolutionsMSc19.r

