Preliminaries (Task 1)

Reading in data

- Datasets which are part of R packages can be loaded easily through the the data command. For instance, the data set galaxies in R package MASS can be loaded via
library (MASS)
data(galaxies)
or
data(galaxies, package="MASS")
- Data in text files (usually, with .txt or .dat ending):

```
test <- read.table("testdata.dat", header=TRUE)
```

The option header=TRUE tells R that the first row just contains the column names (but no data).

- Similarly, for data in .csv files (comma-separated--value) format, use e.g.

```
energy.use <- read.csv("energy.csv", header=TRUE)
```

It is possible to read in data directly from a web address:

```
energy.use <-read.csv("http://www.maths.dur.ac.uk/~dma0je/PG/Mix/energy.csv", header=TRUE)
```

- Excel (.xls) files can be saved as .csv files in Excel, and so easily read into R using read.csv.

Data description

The energy data were retrieved from the Worldbank data base,

```
http://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE
```

Below is the description of the data, taken word by word from the original source file:
Indicator: Energy use (kg of oil equivalent per capita)
Description: Energy use refers to use of primary energy before transformation to other end-use fuels, which is equal to indigenous production plus imports and stock changes, minus exports and fuels supplied to ships and aircraft engaged in international transport.
Source: International Energy Agency.
Catalog Source: World Development Indicators

Basic programming (Task 2)

if/then

This command performs an action if the condition is met. One can specify an alternative action2 if an alternative condition2 is met, and a further alternative action3 if not any condition was met.

```
if (condition){
    action
} else if (condition2){
    action2
} else {
    action3
}
```

Both the parts commencing with else and else if are optional and can be omitted. For instance, the command

```
if (log(10)<pi){
    pi
} else {
    log(10)
}
```

gives the value of pi.

for

A for loop repeats an action for all elements of a set. Formally,

```
for (i in set){
    action
}
For instance,
```

```
for (i in 1:10){
```

for (i in 1:10){
cat('This is loop', i, '\n')
cat('This is loop', i, '\n')
}

```
}
```

will produce 10 rows of text which report the number of the loop (The string ' $\backslash \mathrm{n}$ ' is borrowed from the C language and means to start a new line).

while

A while loop works similar as for, but instead of working though a set, it checks in every iteration whether a condition is met:

```
while (condition){
    action
}
```

apply
This function allows to carry out some operation onto all rows or columns of a matrix. For instance, if W is a $n \times p$ matrix, then

```
apply(W, 1, sum)
```

would give a $n \times 1$ vector which contains the sums over each row, and

$$
\operatorname{apply}(\mathrm{W}, 2, \text { mean })
$$

would give the column means. Useful variants are tapply (carries out operations on the elements of W grouped by a factor, the name of which is given as second argument), and lapply (for operations on each element of a list W; here the second argument is not needed).

Functions

Functions allow to prepare some code which can be used later with different function arguments. For instance,

```
testlog <- function(x){
    if (x>0){
        log(x)
    } else {
        cat("log not defined for non-positive argument.")
    }
}
```

will give the logarithm of x if x is positive, and an error message otherwise.
Functions can also have more than one argument, which are then separated by commas. Default values can be given behind $\mathrm{a}=$ symbol, for instance

```
max1<- function(a,b=1){
    result<- max(a,b)
    return(result)
}
max1(0.5)
[1] 1
max1(0.5,0)
[1] 0.5
```


Finite Gaussian Mixtures (Tasks 3-6)

Finite Gaussian mixtures

Assume we are given K univariate normal distributions $N\left(\mu_{k}, \sigma^{2}\right), k=1, \ldots, K$. A finite Gaussian mixture is a distribution which draws with probability π_{k} from the $k-$ th normal distribution. Formally, the density of a finite Gaussian mixture is given by

$$
\begin{equation*}
f(y \mid \theta)=\sum_{k=1}^{K} \pi_{k} \phi_{\mu_{k}, \sigma^{2}}(y) \tag{1}
\end{equation*}
$$

where $K<\infty$ is the number of mixture components, $\theta=\left(\pi_{1}, \ldots, \pi_{K-1}, \mu_{1}, \ldots, \mu_{K}, \sigma\right)^{T}$ is the vector of parameters, and $\phi_{\mu_{k}, \sigma^{2}}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{y-\mu_{k}}{\sigma}\right)^{2}\right\}$ is the probability density function of a normal distribution with mean μ_{k} and variance σ^{2}, evaluated at y. Note that $\pi_{K}=1-\sum_{k=1}^{K-1} \pi_{k}$.
Of course, this could be generalized to unequal variances σ_{k}^{2}, or even other distributions than Gaussians, but we will not do this in this course.

Estimation of Gaussian mixtures

Given some data $y_{i}, i=1, \ldots, n$, we wish to obtain an estimator, $\hat{\theta}$, of θ. This is done by the EM algorithm (Expectation - Maximization). Based on a vector of starting values, say θ_{0}, the EM algorithm iterates between....

E-step Update membership probabilities $w_{i k}=P$ (obs. i belongs to comp. k) via

$$
\begin{equation*}
w_{i k}=\frac{\pi_{k} \exp \left\{-\frac{1}{2}\left(\frac{y_{i}-\mu_{k}}{\sigma}\right)^{2}\right\}}{\sum_{\ell=1}^{K} \pi_{\ell} \exp \left\{-\frac{1}{2}\left(\frac{y_{i}-\mu_{\ell}}{\sigma}\right)^{2}\right\}} \tag{2}
\end{equation*}
$$

M-Step Update parameter estimates via

$$
\begin{align*}
\hat{\pi}_{k} & =\frac{1}{n} \sum_{i=1}^{n} w_{i k} \tag{3}\\
\hat{\mu}_{k} & =\frac{\sum_{i=1}^{n} w_{i k} y_{i}}{\sum_{i=1}^{n} w_{i k}} \tag{4}\\
\hat{\sigma}^{2} & =\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} w_{i k}\left(y_{i}-\mu_{k}\right)^{2} \tag{5}
\end{align*}
$$

...until convergence is reached.

Derivation of EM algorithm for Gaussian mixtures

Complete Likelihood. Given some data $y_{i}, i=1, \ldots, n$, we wish to obtain an estimator, $\hat{\theta}$, of θ. Let G be the random vector which draws a class $k \in\{1, \ldots, K\}$. We know that $P(G=k)=\pi_{k}$. Denoting $f_{i k} \equiv P\left(y_{i} \mid G=k\right)=\phi_{\mu_{k}, \sigma^{2}}\left(y_{i}\right)$, then we also know that

$$
\begin{equation*}
P\left(y_{i}, G=k\right)=P\left(y_{i} \mid G=k\right) P(G=k)=f_{i k} \pi_{k} \tag{6}
\end{equation*}
$$

The key idea is now as follows. Assume that, for an observation y_{i}, the value of G is known, i.e. we know to which of the K components the $i-$ th observation belongs. We can express this knowledge through an indicator variable,

$$
G_{i k}=\left\{\begin{array}{lll}
1 & \text { if observation } \quad i & \text { belongs to component } \\
0 & \text { otherwise }
\end{array}\right.
$$

This gives "complete" data $\left(y_{i}, G_{i 1}, \ldots G_{i K}\right), i=1, \ldots, n$, with probability

$$
P\left(y_{i}, G_{i 1}, \ldots, G_{i K}\right)=\prod_{k=1}^{K}\left(f_{i k} \pi_{k}\right)^{G_{i k}}
$$

(this follows from (6) since only one of the $G_{i k}$'s is true). The corresponding likelihood function, called complete likelihood, is

$$
\begin{equation*}
L^{*}\left(\theta \mid y_{1}, \ldots, y_{n}\right)=\prod_{i=1}^{n} \prod_{k=1}^{K}\left(\pi_{k} f_{i k}\right)^{G_{i k}} \tag{7}
\end{equation*}
$$

One obtains the log-likelihood

$$
\begin{equation*}
\ell^{*}=\log L^{*}=\sum_{i=1}^{n} \sum_{k=1}^{K} G_{i k} \log \pi_{k}+G_{i k} \log f_{i k} \tag{8}
\end{equation*}
$$

E-step. As the $G_{i k}$ are in fact unknown, we replace them by their conditional expectations

$$
w_{i k} \equiv E\left(G_{i k} \mid y_{i}\right)=P\left(G_{i k}=1 \mid y_{i}\right)=P\left(G=k \mid y_{i}\right)
$$

Using Bayes' theorem, one has

$$
w_{i k}=P\left(G=k \mid y_{i}\right)=\frac{P(G=k) P\left(y_{i} \mid G=k\right)}{\sum_{\ell} P(G=\ell) P\left(y_{i} \mid G=\ell\right)}=\frac{\pi_{k} f_{i k}}{\sum_{\ell} \pi_{\ell} f_{i \ell}}
$$

which is equivalent to the expression provided in (22).
M-step. Setting $\partial \ell^{*} / \partial \mu_{k}=0$ for $k=1, \ldots, K, \partial \ell^{*} / \partial \sigma=0$, one obtains exactly the estimates which are given for μ_{k} and σ in (4) and (5), respectively. For the π_{k}, one needs to apply a Lagrange multiplier since $\sum_{k=1}^{K} \pi_{k}=1$. Setting

$$
\partial\left(\ell^{*}-\lambda\left(\sum_{k=1}^{K} \pi_{k}-1\right)\right) / \partial \pi_{k}=0, \quad k=1, \ldots, K
$$

one obtains the updated formula for π_{k} given in (3).

Convergence was proven in Dempster et al. (1977), Wu (1983).

Simulation from Gaussian mixtures

Given a set of parameters θ, data are simulated from a Gaussian mixture in two steps: Firstly we draw a $k \in\{1, \ldots, K\}$, then we simulate from a Gaussian:

- Draw a value x from a uniform distribution on $[0,1]$ (using runif). If

$$
\left.x \in] \sum_{j=1}^{k-1} \pi_{j}, \sum_{j=1}^{k} \pi_{j}\right],
$$

we decide for component k.

- Draw a value y from a normal distribution with mean μ_{k} and variance σ^{2} (using rnorm).

Likelihood and Disparity

We wish to compute the likelihood $L\left(\hat{\theta} \mid y_{1}, \ldots, y_{n}\right)$ (this is not the complete likelihood used in EM) of the fitted model. One has

$$
\begin{equation*}
L\left(\hat{\theta} \mid y_{1}, \ldots, y_{n}\right)=\prod_{i=1}^{n} f\left(y_{i} \mid \hat{\theta}\right)=\prod_{i=1}^{n}\left(\sum_{k=1}^{K} \hat{\pi}_{k} \phi_{\hat{\mu}_{k}, \hat{\sigma}^{2}}\left(y_{i}\right)\right) \tag{9}
\end{equation*}
$$

so that the log-likelihood is given by

$$
\begin{equation*}
\ell\left(\hat{\theta} \mid y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} \log f\left(y_{i} \mid \hat{\theta}\right)=\sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \hat{\pi}_{k} \phi_{\hat{\mu}_{k}, \hat{\sigma}^{2}}\left(y_{i}\right)\right) \tag{10}
\end{equation*}
$$

An alternative quantity which is often more convenient to use and interpret (for instance, in conjunction with likelihood ratio tests, see below), is the disparity

$$
D\left(\hat{\theta} \mid y_{1}, \ldots, y_{n}\right)=-2 \log L\left(\hat{\theta} \mid y_{1}, \ldots, y_{n}\right)=-2 \ell\left(\hat{\theta} \mid y_{1}, \ldots, y_{n}\right) .
$$

For the computation of either of these, we will need to compute all entries of the $n \times K$ matrix, say F, which is defined by the values of

$$
\hat{\pi}_{k} \phi_{\hat{\mu}_{k}, \hat{\sigma}^{2}}\left(y_{i}\right), \quad 1 \leq i \leq n, 1 \leq k \leq K
$$

Note that, with $\mathrm{y}=\left(y_{1}, \ldots y_{n}\right)$, the command

$$
\operatorname{pi}[k] * \operatorname{dnorm}(y, m u[k], \text { sigma })
$$

provides immediately the k-th column of F.

Likelihood ratio test for K

We wish to test

$$
H_{0}: K=K_{0} \quad \text { vs. } \quad H_{1}: K=K_{0}+1
$$

Denote by $\hat{\theta}_{K}$ the estimate of θ when K mixture components are used.
Wilk's likelihood ratio statistics:

$$
\begin{aligned}
W & =-2 \log \frac{L\left(\hat{\theta}_{K_{0}} \mid y_{1}, \ldots, y_{n}\right)}{L\left(\hat{\theta}_{K_{0}+1} \mid y_{1}, \ldots, y_{n}\right)}= \\
& =D\left(\hat{\theta}_{K_{0}} \mid y_{1}, \ldots, y_{n}\right)-D\left(\hat{\theta}_{K_{0}+1} \mid y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

The actual test is implemented through the bootstrap:
(i) Compute W as above. Call this value W_{0}.
(ii) From the model with K_{0} components, simulate, say, 99 data sets of size n.
(iii) For each of these 99 data sets, recalculate $\hat{\theta}_{K_{0}}$ and $\hat{\theta}_{K_{0}+1}$, and compute the corresponding values of W.
(iv) Find the position P of W_{0} within all the other values of W. The p-value is given by $1-P / 100$.

