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�Smoothing�

Aording to TheFreeDitionary, �smoothing� an have the followingmeanings:1. To make (something) even, level, or unwrinkled.2. To rid of obstrutions, hindranes, or di�ulties.3. To soothe or tranquilize; make alm.4. To make less harsh or rude; re�ne.

in short....
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Example 1

�Certi�ate of deposit� (CD) rates for 69 Long Island banks [S℄
7.56 7.57 7.71 7.82 7.82 7.90 8.00 8.00 8.00 8.00
8.00 8.00 8.00 8.05 8.05 8.06 8.11 8.17 8.30 8.33
8.33 8.40 8.50 8.51 8.55 8.57 8.65 8.65 8.71
7.51 7.75 7.90 8.00 8.00 8.00 8.15 8.20 8.25 8.25
8.30 8.30 8.33 8.33 8.34 8.35 8.36 8.40 8.40 8.40
8.40 8.40 8.40 8.45 8.49 8.49 8.49 8.50 8.50 8.50
8.50 8.50 8.50 8.50 8.50 8.50 8.52 8.70 8.75 8.78How would you visualize these data?
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Example 1 (ont.)

Straightforward idea: Histogram.

Histogram of CDrates
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> hist(CDrates, freq=FALSE)Does this adequately represent the distribution of the data?
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Example 1 (ont.)

Vary anhor point (top) or number of bins (bottom):
Histogram of CDrates
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> hist(CDrates, freq=FALSE, breaks=...)
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Example 1 (ont.)

Observations:Histogram shapes an be quite di�erent for the same data andeven for the same number of bins.Histograms are not �smooth� (but the true underlying densitysupposedly is!)If we try to make them �smoother� by reduing the number of bins,we disard important information ontained in the data.Can one do that better?
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Example 1 (ont.)

Kernel density estimation (�Kernel smoothing�):
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density.default(x = CDrates, adjust = 0.7, kernel = "gaussian")

N = 69   Bandwidth = 0.08068
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> density(CDrates, kernel="gaussian", adjust=0.7)
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Example 2

Strontium isotopes found in n = 106 fossil shells versus age [RWC℄.
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> data(fossil, package="SemiPar"); attach(fossil)

> plot(age, strontium.ratio)
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Example 2 (ont.)

Interpolation (using grid of size 200) vs. Linear regression:
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Interpolation
Linear regression

Atually, both are not satisfatory!
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Example 2 (ont.)

Smooth nonparametri regression:
95 100 105 110 115 120
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> library(pspline)

> fossil.spline <- sm.spline(age, strontium.ratio)This �t is based on so-alled smoothing splines.
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Example 3

Temperature data for 56 ities in the US [RWC℄:

Variables:
min.temp ≡ average minimum January temperature

latitude ≡ degrees latitude

longitude ≡ negative degrees longitude
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Example 3 (ont.)

Additive model:

min.temp = m1(latitude ) + m2(longitude )is modelling a separate in�uene of latitude and longitudeon min.temp :
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> library(gam); data(ustemp, package="SemiPar"); attach (ustemp)

> gam.us <- gam(min.temp) ∼s(latitude)+s(longitude)); plot(gam.us)
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Example 3 (ont.)

Spatial model: min.temp = m(latitude, longitude )is modelling an interating in�uene of latitude and
longitude on min.temp :
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[theta= 220, phi= 10]

> library(np)

> us2dim <- npreg(min.temp ∼longitude+latitude, regtype= "ll",

bws=c(5,5))

> npplot(us2dim$bws, theta=220, view="fixed")

– p. 13/197



Example 4

Speed-Flow diagram reorded on a Californian Freeway.Eah point orresponds to average �ow and speed reorded at aertain loation within a 30-seonds-interval.
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> data(lane2, package="hdrcde"); plot(lane2)
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Example 4 (ont.)

Nonparametri regression?
500 1000 1500 2000

10
20

30
40

50
60

flow

sp
ee

d

The �tted nonparametri regression urve estimates the expected
speed given flow, but does it give the best description of the data set?
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Example 4 (ont.)

Alternative: prinipal urves, �smooth urves through the middle ofthe data loud�:
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Prinipal urves form the nonparametri analogue to prinipalomponents.
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Summary

We understand Smoothing as a term for statistial methods inluding1. Nonparametri (kernel) density estimation2. Nonparametri regression, inludingUnivariate regressionSurfae smoothingAdditive modelsSemiparametri modelsSpatial models3. Prinipal urves (and the like)

The main emphasis of this ourse is on item 2.
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Content

Roughly, the ourse is strutured into four major bloksKernel based methodsSpline based methodsBayesian and partially Bayesian methodsPrinipal urvesThis ategorization is quite arti�ial and arbitrary. For example, what issaid in the �kernel based method� setion on linear smoothers andbandwidth seletion holds equally well for the splines. Further, theBayesian methods that we investigate are atually a variant of splinebased methods, too.
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Software

We will work with two publily available and free software pakages:
R, available at

http : //cran.r− project.org/

BayesX , available at
http : //www.stat.uni− muenchen.de/ ∼ bayesx/bayesx.html
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Setion 1: Kernel based methods

Sope of this setion:Kernel funtions and kernel density estimation;Kernel regression;Loal linear and loal polynomial regression;Derivative estimation;MSE, Bias, and Variane;Linear smoothers;Con�dene and predition bands;Smoothing parameter seletion;Feature extration;Robust smoothing;Bivariate smoothing and �the urse of dimensionality�.
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Density estimation

Consider the problem of estimating a density f(·) from data x1, . . . , xn.Note that

f(x) =
d

dx
F (x) = lim

h−→0

F (x + h) − F (x − h)

2h
, (1)

where F (·) an be estimated by the empirial distribution funtion

F̂ (x) = {#xi:xi≤x}
n . Plugging this into (1), one obtains for �xed h

f̂(x) =
1

2h

{#xi : xi ∈ (x − h, x + h]}

n
=

1

nh

n∑

i=1

1

2
1{(x−h,x+h]}(xi) =

=
1

nh

n∑

i=1

K

(
xi − x

h

)

using the uniform kernel: K(u) = 1
2 if −1 < u ≤ 1 and 0 otherwise.
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Density estimation (ont.)

We apply this estimator on the CD rates data:
> plot(density(CDrates, kernel="rectangular", adjust=0 .7))
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N = 69   Bandwidth = 0.08068

D
en

si
ty

This is quite wiggly! Problem: The kernel that we used is�unsmooth�.Consequene: We need better (smoother) kernels!
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Kernel density estimation

For instane, we may use aGaussian density for K.Generally, a kernel funtion K issymmetri, bounded, andnon-negative, with∫
K(u) du = 1. (Exeptionsexist!)The kernel density estimator
f̂(x) =

1

nh

n∑

i=1

K

(
xi − x

h

)

estimates the density by re-distributing the point mass 1
nsmoothly to its viinity.
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Kernel funtions

Commonly used kernel funtions are summarized in the following table:

Kernel name K(u) = option kernel=‘‘...’’in R funtion densityUniform 1
2 · 1[−1,1](u) rectangularTriangular (1 − |u|) · 1[−1,1](u) triangularGaussian 1√

2π
e−u2/2 gaussianEpanehnikov 3

4(1 − u2) · 1[−1,1](u) epanechnikovBiweight 15
16(1 − u2)2 biweight
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Comparison of kernel funtions
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Comparison of bandwidths

Hene, for the same bandwidth h, the results are more or lesssimilar as long as the kernel is �smooth�.Far more important than the hoie of the kernel is the hoie ofthe bandwidth h:
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Bandwidth seletion

A simple rule of thumb was provided by [Si, p.48℄:
hopt = 0.9An−1/5

with A = min(st.dev., IQR/1.34).This formula is based on asymptoti onsiderations (i.e.
h −→ 0, nh −→ ∞) and is optimal for a normally distributeddensity (�normal referene�). The hybrid measure of spread, A, isused to aount for multimodal distributions.There exist a large number of alternative bandwidth seletionmethods, but this one is the simplest, omputationally fastest, andworks generally well.We onsider bandwidth seletion, inluding its theoretialbakground, in more detail in the ontext of nonparametriregression.
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Bivariate density estimation

For bivariate data x1, . . . , xn, xi ∈ R2 we need a bivariate kernel
K : R2 −→ R, whih an either be realized through a product kernel(generated from a univariate kernel K):

KP (u1, u2) = K(u1)K(u2)or through a radially symmetric kernel
KS(u1, u2) = onst · K (√

u2
1 + u2

2

)

If K is a Gaussian kernel, then KP and KS are equivalent, andone gets
K(u1, u2) =

1

2π
exp(−

1

2
(u2

1 + u2
2)
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Bivariate density estimation (ont.)

Bivariate Gaussian kernel:
x

y

z

Straightforward extension to higher dimensional kernels:

K(u) = (2π)−d/2 exp(−
1

2
uT u)
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Bivariate density estimation (ont.)

Instead of a single bandwidth h, we need then two bandwidths h1and h2 ontrolling the smoothness of the �t in diretion of theorresponding axis. The estimate of the �true� density f(x1, x2) isgiven by

f̂(x1, x2) =
1

nh1h2

n∑

i=1

K

(
x1 − Xi1

h1
,
x2 − Xi2

h2

)

d−variate ase: f̂(x) = 1
n

∑n
i=1 KH(x −Xi) with

KH(x) = |H|−1/2K(H−1/2x), with bandwidth matrix H ∈ Rd,d.For d = 2,
H =

(
h2

1 0

0 h2
2

)
.
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Bivariate density estimation (ont.)

Kernel density estimate of tra� data (h1 = 100, h2 = 5):

flow

500

1000

1500

2000

sp
ee

d

20

30

40

50
60

Joint D
ensity

0e+00

2e−05

4e−05

6e−05

[theta= 40, phi= 10]

> library(np)

> sf.npdens <- npudens(tdat =lane2[,c("flow","speed")], bws=c(100,5))

> plot(sf.npdens, view="fixed", theta=40)
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Bivariate density estimation (ont.)

It is more enlightening to implement it by hand. With
K(·) =dnorm( ·) ,

> bidens<- function(X,Y, xgrid, ygrid, h1,h2) {
+ n<-length(X); n1 <-length(xgrid); n2<-length(ygrid)

+ dens <- matrix(0,n1,n2)

+ for (i in 1:n1) {
+ for (j in 1:n2) {
+ dens[i,j]<-(n * h1* h2)ˆ (-1) *

sum(dnorm((X-xgrid[i])/h1) * dnorm((Y-ygrid[j])/h2) )

+ }
+ }
+ return(dens)

+ }
> x<-seq(0,2000,by=20)

> y<- 0:70

> sf.dens <-bidens(lane2$flow, lane2$speed, x, y, 100, 5)
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Bivariate density estimation (ont.)

Perspetive plot:
x y

sf.dens
> persp(x,y, sf.dens,theta=40)
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Bivariate density estimation (ont.)

A more attrative way of visualizing kernel density estimates isoften to use ontour plots:
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> contour(x,y, sf.dens,nlevels=30)
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Regression

Having observed data on two variables X and Y , the mainobjetive is often to onstrut a model for Y given X, enabling usto predit the response for a future observation X = x.We write suh a model in its most general form as
Y = m(X) + εwhere m is the regression funtion or signal, and ε some noise (e.g.measurement errors).As both variables play now a partiular, non-interheangeable role,this implies an asymmetri relationship between X and Y .Estimating the funtion m from (X1, Y1), . . . , (Xn, Yn) is alledregression. If a parametri (e.g. linear) model is pre-spei�ed for m,then we talk about parametri regression, otherwise nonparamatriregression.
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Polynomial and pieewise regression

Consider again fossil data.As seen before (Example 2), a linear regression line ŷ = â + b̂x islearly inappropriate to �t these data.Possible remedies:(a) Fit a higher order polynomial, e.g. ŷ = â + b̂x + ĉx2(b) Fit pieewise line segments, e.g. split at x = 105 and 115.
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From parametri to nonparametri regression

Clearly, the higher order polynomials used in (a) are a dead end: Wewould need a huge polynomial degree to �t the data adequately,e.g. p ≥ 10, whih would entail a large variability of the �t.The attempt in (b) seems to be the way to go. However, the �t hasto be smoother, and the loalization should happen automatially.Conretely, when estimating some regression funtion m(x) at aertain target point x, data (Xi, Yi) with Xi loated lose to x aremore relevant than data situated far from x.Hene, some loal weighting is required and it turns out that kernelfuntions provide a onvenient way to ahieve this.
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Loal linear regression

Example of two Epanehnikov kernel funtions plaed at x = 100 and
x = 108. For estimation at x, only the olored data points areonsidered (respetively), with the kernel funtion serving as a weightfuntion.
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The estimates m̂(x) are symbolized by + and +, respetively.
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Loal linear regression (ont.)

This proedure is arried out at every single point x, and one gets theresulting urve, a �loal linear �t� (using h = 2):
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> library(KernSmooth)

> fossil.locpoly<-locpoly(age, strontium.ratio, bandwi dth=2)Apparently there is still room for improvement w.r.t. the hoie of h(look at the last bump), and we get bak to this issue later.
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The nonparametri regression model

We onsider data (Xi, Yi) ∈ R2, i = 1, . . . , n, forming an iidsample from a population (X,Y ).We assume that preditor Xi and response Yi are related through

Yi = m(Xi) + σ(Xi)εiwhere

m(x) = E(Yi|Xi = x) is a �smooth� (i.e., twie ontinuouslydi�erentiable) underlying regression funtion
σ2(x) = Var(Yi|Xi = x) is a variane funtion.

εi is some iid noise with E(ǫi) = 0, Var(ǫi) = 1, whih isindependent of the Xi.We further denote the �design density� of X by f(·).
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Homosedastiity and Heterosedastiity

The variane funtion σ2(x) = Var(Yi|Xi = x) allows expliitly foran error variane varying over the preditor domain, a harateristiwhih is referred to as heterosedastiity. As one then models
location m(x) and scale σ(x) simultaneously, one also speaks of a

location-scale model in this ontext.An often assumed (and often approximately met, as for the fossildata) ondition is homosedastiity
σ2(Xi) ≡ σ2, i = 1, . . . , nIn nonparametri regression, it is irrelevant for the funtion-�ttingproess if the data are homosedasti or heterosedasti. However,it plays a role for the variability of the �tted urve, i.e. Var(m̂(x)),and therefore for the alulation of on�dene bands et.We assume the more general ase of heterosedasti data if notstated di�erently.
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Homosedastiity and Heterosedastiity (ont.)

Example for heterosedasti data: LIDAR (light detetion andranging) data [RWC℄.LIDAR uses the re�etion of laser-emitted light to detet hemialompounds in the athmosphere.Variables:

range: The distane travelled before light is re�eted bak toits soure (X).

logratio: The logarithm of the ratio of reeived light fromtwo laser soures (Y ).
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Loal linear regression estimation

Loal linear regression works by �tting, for eah value of x, a linearregression subjet to the kernel weights
wi(x) = Kh(Xi − x) ≡

1

h
K

(
Xi − x

h

)
.

For improved stability and ease of asymptoti alulations, weenter the loal linear regession at x, yielding the loal model

m(Xi) = β0(x) + β1(x)(Xi − x) + ǫi. (2)For ease of notation, we write β0 ≡ β0(x) and β1 ≡ β1(x).Then the locally weighted least squares problem takes the form

n∑

i=1

(Yi − β0 − β1(Xi − x))2 K

(
Xi − x

h

)
= Q1(β0, β1), (3)

– p. 45/197



Loal linear regression estimation (ont.)

whih is minimized by solving

∂Q1(β0, β1)

∂β0
= −2

n∑

i=1

(Yi − β0 − β1(Xi − x)) wi(x) = 0

∂Q1(β0, β1)

∂β1
= −2

n∑

i=1

(Yi − β0 − β1(Xi − x)) (Xi − x)wi(x) = 0

with respet to β̂0 and β̂1, yielding
β̂0 =

∑n
i=1 si(x)Yi∑n
i=1 si(x)with si(x) = wi(x)(Sn,2 − (Xi − x)Sn,1); Sn,j =

∑n
i=1 wi(x)(Xi − x)j
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Loal linear regression estimation (ont.)

From the estimated oe�ients, we get, for every x, the estimateof the regression funtion m(x) using the model (2):
m̂(x) = β̂0(x)This proedure has to be arried out for every value x of interest(e.g. an equidistant grid, or all values x = Xi, i = 1, . . . , n.)Speial ase, β1 ≡ 0 : This is local constant regression and leads tothe Nadaraya-Watson estimator

m̂(x) = β̂0(x) =

∑n
i=1 wi(x)Yi∑n
i=1 wi(x)
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Loal polynomial regression

For general polynomial order p ≥ 0, we onsider the least squaresproblem

n∑

i=1



Yi −

p∑

j=0

βj(x)(Xi − x)j




2

K

(
Xi − x

h

)

yielding estimates β̂0(x), . . . , β̂p(x).Note that a Taylor expansion of m at x of order p yields

m(z) =

p∑

j=0

m(j)(x)

j!
(z − x)j ≡

p∑

j=0

βj(x)(z − x)j
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Derivative estimation

Hene, the oe�ients βj ≡ βj(x) (j > 1) apture the informationontained in the derivatives.Generally, one has for the estimate of the j − th derivative
m̂(j)(x) = j!β̂j(x) (0 ≤ j ≤ p)Tehnially, an estimate of the j − th derivative requires p ≥ j.Pratially, one should hoose at least p ≥ j + 1.Derivative estimates are often more variable than estimates of theregression funtion. The higher the derivative, the higher tends tobe the �optimal� (in a sense to be de�ned later) bandwidth h.

– p. 49/197



Derivative estimation (ont.)

Example: Fossil data (all �ts using h = 2)
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p = 1, j = 0 p = 2, j = 1 p = 3, j = 2

m̂(x) = β̂0(x) m̂′(x) = β̂1(x) m̂′′(x) = 2β̂2(x)
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Matrix notation

Let

X =




1 X1 − x . . . (X1 − x)p... ... . . . ...
1 Xn − x . . . (Xn − x)p


 , y =




Y1...
Yn




and β = (β0, . . . , βp), W = diag{w1(x), . . . , wn(x)}. Then

n∑

i=1

wi(x)



Yi −

p∑

j=0

βj(Xi − x)j




2

= (y −Xβ)T W(y − Xβ)

with the straightforward weighted least squares solution

β̂ = (XT WX)−1XTWy (4)
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Evaluation of performane

Having an estimator m̂(x) of m(x), one is interested in assessingits performane.The riterion usually employed here is the mean squared errorMSE(x) = E
[
(m̂(x) − m(x))2|X

]

with X = (X1, . . . ,Xn).The integral-version evaluates the entire urve and is given by themean integrated squared error
MISE =

∫ MSE(x)w(x) dx

where a weight funtion, e.g. w(x) = f(x), may be employed.Note that both MSE(x) and MISE are random variables (as theydepend on X1, . . . ,Xn) and that the expetation is taken withrespet to the onditional distribution Y1, . . . , Yn|X.
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Bias-variane deomposition

We haveMSE(x) = E
[
(m̂(x) − m(x))2|X

]
=

= E[m̂2(x)|X] − 2m(x)E[m̂(x)|X] + m2(x) +

+{E[m̂(x)|X]}2 − {E[m̂(x)|X]}2 =

= {E[m̂(x)|X] − m(x)}2 + E[m̂2(x)|X] − {E[m̂(x)|X]}2 =

≡ (Bias[m̂(x)|X])2 + Var[m̂(x)|X]with Bias[m̂(x)|X] = E[m̂(x)|X] − m(x)Var[m̂(x)|X] = E[m̂2(x)|X] − {E[m̂(x)|X]}2.
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Bias and variane alulation

Firstly, note that m̂(x) = eT
1 β̂, with e1 = (1, 0, . . . , 0)T ∈ Rp.One an show that bias and variane of m̂(x) an be written in thefollowing form:Bias(m̂(x)|X) = eT

1 (XTWX)−1XTW(m − Xβ)Var(m̂(x)|X) = eT
1 (XTWX)−1(XTΣX)(XT WX)−1e1with m = (m(X1), . . . ,m(Xn))T , Σ = diag{w2

i (x)σ2(xi)}1≤i≤n.These formulas ontain unknown quantities and are hard to useand interpret.This is why asymptotical versions of these formulas are developed.
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Kernel Asymptotis

We assume that the bandwidth is small (h −→ 0), but that thenumber of observations inreases to in�nity more rapidly than thebandwidth falls (nh −→ ∞).We de�ne the kernel moments
µj =

∫
ujK(u) du, νj =

∫
ujK2(u) du.One an show that under these onditions the following asymptotiapproximations hold:polynomial order Bias(m̂(x)|X) ≈ Var(m̂(x)|X) ≈

p = 0 h2µ2

2 {m′′(x) + 2m′(x)f ′(x)
f(x) }

ν0σ2(x)
nhf(x)

p = 1 h2µ2

2 m′′(x) ν0σ2(x)
nhf(x)Literature on kernel asymptotis: Fan & Gijbels, 1996, Wand &Jones, 1995.
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Kernel Asymptotis (ont.)

Interpretation:With inreasing bandwidth h,the bias inreases,the variane falls.The bias of the loal linear �t does not depend on the designdensity f(x) (one says, the loal linear �t is design-adaptive).The loal linear �t is preferable to the loal onstant �t, beause itredues the bias ompared to a loal onstant �t, but does not leadto an inrease in variane.
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Linear smoothers

Realling the matrix notation, the �tted values for a loalpolynomial �t are given by

ŷ = Xβ̂ = X(XTWX)−1XTWy ≡ Lywith

L = X(XTWX)−1XTW.Smoothers of the form ŷ = Ly, for some n × n matrix L, arealled linear smoothers.
L is generally referred to as the hat matrix and in the smoothingontext as the smoother matrix.The degrees of freedom of a linear smoother are given by

df�t = tr(L)and represent the �equivalent� number of parameters used.
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Predition

We have a linear smoother ŷ = Ly, i.e.



ŷ1...

ŷn


 =




ℓT
X1...

ℓT
Xn







y1...
yn




where ℓT
Xi

is the row of L responsible for estimation of m(·) attarget point Xi.For any arbitrary value x, the estimate of m(x) an then be writtenas

m̂(x) = ℓT
x yIn ase of the loal linear �t,

ℓT
x =

1∑n
i=1 si(x)

(s1(x) . . . sn(x))
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Con�dene bands

The variane of m̂(x) is given by

̂Var{m̂(x)} = ℓT
xCov(y)ℓx.Assuming homosedastiity for the moment (i.e.

σ(X1) = . . . = σ(Xi) = σ), one has Cov(y) = σ2I, and hene

̂st.dev.{m̂(x)} = σ̂||ℓx||for some suitable estimate σ̂ of σ.A very rough 95% pointwise on�dene interval for m(x) is givenby

m̂(x) ± 2 × ̂st.dev.{m̂(x)} = ℓT
x y ± 2 × σ̂||ℓx||
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Con�dene bands (ont.)

Appliation to Fossil data:

> library(locfit)

> fossil.locfit <- locfit(strontium.ratio ∼lp(age, h=6),

data=fossil)

> plot(fossil.locfit, band="global", col=3)

> points(age, strontium.ratio)
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locfit also o�ers the possibility to aount for heterosedastiityusing the option band ="local" . The on�dene bands for thefossil data are almost the same then.
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Con�dene bands (ont.)

Note that this approximation is very rough.... Con�dene bandsonstruted in this mannerignore the variability in estimating σ.are inorret for small sample sizes (m̂(x) is only asymptotiallynormal).ignore the bias.ignore additional variability due to smoothing parameterseletion..... so better only refer to them as variability bands.An alternative tehnique whih tries to avoid (espeially) the �rsttwo problems uses bootstrapping.
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Con�dene bands via bootstrapping

Roughly, the strategy is as follows [BA℄:Fit a pilot smoother to get a set of residuals.Resample the residuals with replaement, yielding �new� errors.Add these errors to the pilot estimate.Compute the smooth regression funtion using the new errors.Repeat all this a number of times, say b = 200.At eah point along the urve, ompute sample quantiles usingthe b estimates.Several variants of this do exist, inluding bias and boundaryorretion.
– p. 62/197



Con�dene bands via bootstrapping (ont.)

Pointwise 95% on�dene bands for fossil data, using locfit ,with h = 6 and b = 200:
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After all, normal and bootstrap-based pointwise CI's behavesimilarly.
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Predition intervals

Pointwise on�dene bands give us for every x a confidence intervalfor the �true� value of m(x).When interested in a prediction interval for Y given a newobservation at x, one an apply the formula
ℓT
x y ± 2 × σ̂

√
1 + ||ℓx||2The additional term �1� under the square root aptures (inomplete anlogy to parametri regression) the variability of theobservations around the estimated urve (in addition to thevariability of the urve �tting itself).A 95% predition interval should ontain about 95% of theobservations.The same words of aution as for on�dene bands apply, thoughthey are less relevant here, as the predition interval is larger andwill often �swamp� the bias and other soures of inauray.
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Con�dene and Predition intervals

Predition intervals for fossil data:

> plot(fossil.locfit, band="pred",col=2)Con�dende bands Predition �bands�
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Simultaneous Con�dene bands

Again, pointwise on�dene bands give us for every x a confidence
interval for the �true� value of m(x).However, often would like to have a band [L(x), U(x)] suh that

P{L(x) ≤ m(x) ≤ U(x) for allx ∈ R} ≥ 1 − αwhere R is the range of the sample values X1, . . . ,Xn.The theory to this is relatively ompliated, though analytialsolutions exist ([L℄ , Se. 9.2, [RWC℄, Se 6.5).implemented in funtion kappa0 in R pakage locfit .Generally, for the width of predition intervals (PI), simultaneouson�dene bands (SCB), and pointwise on�dene bands (PCB),one will have the relationPI>∼ SCB ≥ PCB

– p. 66/197



Pointwise and simultaneous on�dene bands

Example: 95% on�dene bands for Fossil dataPointwise Simultaneous

95 100 105 110 115 120

0
.7

0
7

2
5

0
.7

0
7

3
5

0
.7

0
7

4
5

age

s
tr

o
n

ti
u

m
.r

a
ti
o

95 100 105 110 115 120
0

.7
0

7
2

5
0

.7
0

7
3

5
0

.7
0

7
4

5

age

s
tr

o
n

ti
u

m
.r

a
ti
o

> foss.loc <- locfit(strontium.ratio ∼lp(age,h=6), data=fossil)

> crit(foss.loc) <- crit(foss.loc,cov=0.95)

> plot(foss.loc, band="local",col=2); points(age, stron tium.ratio)

> crit(foss.loc) <- kappa0(foss.loc,data=fossil,cov=0. 95)

> plot(foss.loc, band="local",col=2); points(age, stron tium.ratio)
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Error variane estimation

The (non-bootstrapped) CI's and PI's require estimation of σ̂.Model-based estimate: σ̂ =
√

1
n−d

∑
ǫ̂2
i , where d > 0 is a biasorretion. Common hoies:(1) d = 0 (�rude� estimate),(2) d = tr(L) (by analogy to parametri regression),(3) d = 2tr(L) − tr(LLT ) (orreting the bias of the RSS),(4) d = 1.25tr(L) − 0.5 (approximation of the latter).

> foss.loc

Fitted Degrees of freedom: 8.774 # this is tr(L)

Residual scale: 2.64e-05 # this is (3)

> sqrt(sum((residuals(foss.loc))ˆ2)/106)

2.504392 e- 05 # this is (1)

> sqrt(sum((residuals(foss.loc))ˆ2)/(106-8.774))

2.614954e-05 # this is (2)

> sqrt(sum((residuals(foss.loc))ˆ2)/(106-(1.25 * 8.774-0.5)))

2.63803e-05 # this is (4)
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Seletion of smoothing parameters

Smoothers generally involve some kind of smoothing parameter,whih steers the degree of smoothing.In ase of kernel smoothers, the smoothing parameter is thebandwidth h.For seletion of the smoothing parameter, there are severalpossibilities:An experiened data analyst may use his favorite, well provensmoothing parameter (or �rule of thumb� smoothing parameterseletion tool) for a partiular appliation.�Trial and error�: Try several smoothing parameters until optialinspetion of the �tted urves indiates a reasonable �t.Use automati model seletion tools, whih normally try tomaximize or minimize some numeri �optimality riterion�Use Bayesian or mixed models whih estimate the smoothingparameter as a by-produt.
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Automati smoothing parameter seletion

Let us denote with m̂λ(x) an estimate of x using the smoothingparameter λ.A possible optimality riterion that may ome into mind is theaverage squared error

ASR(λ) =
1

n

n∑

i=1

(Yi − m̂λ(Xi))
2

This riterion will be optimal (i.e. minimal), when m̂λ(xi) = Yi,whih would mean interpolation (i.e., strong undersmoothing) ofthe data!What has gone wrong here is that the same data are used toonstrut the estimate and to validate it.
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Cross-validation

One possible solution would be to divide the data at random into atraining set (e.g. 75% of the data) and a validation set. Thetraining set is used for model �tting, and the validation set formodel seletion.This is often not feasible, as data are sare.This leads to the idea of ross-validation: Divide the data set into

K = 5 or 10 subsets κ = 1, . . . ,K. For eah i = 1, . . . , n, denote

κ(i) the subset to whih it belongs. Then minimize

CVK(λ) =
1

n

n∑

i=1

(
Yi − m̂

−κ(i)
λ (Xi)

)2

where m̂
−κ(i)
λ (Xi) is the estimate of m(Xi) using all data exeptsubset κ(i).An extreme, but the most popular, ase of this is leave-one-outross-validation, in whih K = n.
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Leave-one out ross-validation

Again, the leave-one out ross-validation riterion takes the form
CV (λ) =

1

n

n∑

i=1

(
Yi − m̂−i

λ (Xi)
)2

where m̂−i
λ (Xi) means that all data exept Xi are used to estimate

m(Xi).For linear smoothers m̂λ(Xi) =
∑

j ℓijYj , with smoother matrix

Lλ = (ℓij)1≤i≤n,1≤j≤n, this riterion an (after some simple steps[FT, p. 161℄) be written as
CV (λ) =

1

n

n∑

i=1

(
Yi − m̂λ(Xi)

1 − ℓii

)2

.
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Leave-one out ross-validation

Fossil data.

CV (λ) for a loal linear �t (left), with bandwidth seleted at
h = 0.9, and the orresponding �tted urve (right):
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The �tted urve is partly undersmoothed, whih is quite typial forross-validation.
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Generalized ross-validation

The leave-one-out CV riterion an be omputationallyburdensome.A simpli�ed version is obtained by substituting the leverage values

ℓii through their average, ℓ̄ = 1
n

∑n
i=1 ℓii = 1

n tr(Lλ).This leads to the so-alled generalized ross-validation riterion

GCV (λ) =
1

n

n∑

i=1

(
Yi − m̂λ(Xi)

1 − ℓ̄

)2

=
ASR(λ)

(1 − ℓ̄)2
(5)

whih is implemented in many smoothing software pakages (e.g.

locfit , pspline ).Normally, the urves CV (λ) and GCV (λ) are very lose.
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Other model seletion tools

Another important riterion is Mallows' Cp

Cp(λ) = ASR(λ) + 2σ̂2df�t(λ)/nusing any estimate of σ2.It an be shown through an Taylor expansion of (5) [RWC, p. 120℄that

GCV (λ) ≈ ASR(λ) + 2σ̂2(λ)df�t(λ)/nwith σ̂2(λ) = ASR(λ) [Reall that df�t(λ) = tr(Lλ)℄.Further, for Gaussian and known error σ2, the AIC riterion

AIC(λ) = −2 log L + 2df�t(λ)is exatly n
σ2 Cp(λ).The three riteria di�er essentially in the type of variane estimatorused, and one should get similar results using either of them.
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Plug-in bandwidth seletion

For kernel smoothers, one has onvenient aess to optimalbandwidths through asymptoti expressions.Basi idea: Find the bandwidth h minimizing the integratedasymptoti mean squared error MISE(h) =
∫

MSE(m̂(x)|X) dx,with

MSE(m̂(x)|X) = Bias2(m̂(x)|X) + Var(m̂(x)|X) =

=
h4µ2

2

4
(m′′(x))2 +

ν0σ
2(x)

nhf(x)
.

We set MISE′(h) = 0 and get
h = const ·

(∫
σ2(x)/f(x) dx∫
(m′′(x))2 dx

)1/5

n−1/5

Here, ∫
(m′′(x))2 dx is unknown. It has to be estimated and�plugged in� to the formula above.
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Plug-in bandwidth seletion (ont.)

A plug-in bandwidth seletor for loal linear regression isimplemented in R funtion dpill (KernSmooth )The smoothness of the estimate of the (integrated) m′′ isontrolled through Mallows' Cp.Example: Fossil data:
> library(KernSmooth)

> dpill(age,strontium.ratio)

[1] 0.7875148
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Variable bandwidth seletion

We have so far onsidered onstant bandwiths h.In pratie, the regression urve m might exhibit di�erent degreesof smoothness in di�erent parts of the preditor domain, so that a

variable bandwidth h(x) is more adequate.In locpoly , one an speify a variable bandwidth by providing avetor h1, . . . , hm, where m is the size of the grid x1, . . . , xm onwhih the estimated regression funtion is estimated.In priniple, a variable bandwidth h(x) is immediately obtained byalulating MSE′(h) = 0, yielding
h(x) =

(
ν0σ

2(x)

f(x)(m′′(x))2µ2
2

)1/5

n−1/5

for the loal linear smoother � but no implementation known.The funtion lokerns in pakage lokern features variable plug-inbandwidth seletion for loal onstant kernel smoothers.

– p. 78/197



Bandwidth seletion - Classial vs. plugin

In the nineties, there was a lear tendeny to move away from�lassial methods� as CV, as they “exhibit very inferior asymptotic and
practical performance” ompared to plug-in methods (e.g. Ruppert,Sheather & Wand, 1995)Among several objetions against CV, it was laimed that CVbandwidth are ambiguous (several minima) or too variable, thatthey undersmooth, and do not allow for variable bandwidths.These views were questioned by Loader (1999), who argued that�plug-in methods are heavily dependent on arbitrary specification of pilot
bandwidths and fail when this specification is wrong. The often quoted
variability and undersmoothing of CV reflects the uncertainty of bandwidth
selection ”.This insight leads to the resolution interpretation of the bandwidth.
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Family plots

Study simultaneously a wide range of bandwidthsThe philosophy behind this is that di�erent useful information anbe available at di�erent degrees of smoothing.Family plot for fossil data with emphasized bandwith at h = 1.2:
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A question naturally arising from this is, for instane: Is the dip atage ≈ 98 �really there�?
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Feature extration with SiZer plots

A bump or a dip orresponds to a loation where the �rstderivative rosses the zero line.Hene, look at the �rst derivative and assess if it �signi�antlyrosses zero�This is the SiZer ( Signi�ant Zero rossings of derivatives)tehnique.Illustration for fossil data, with on�dene bands
m̂′

h(x) ± q · ˆSD(m̂′
h(x)) [RWC, p. 157℄
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Feature extration with SiZer plots (ont.)

Full Sizer plot of Fossil data (blak =↑, yellow=↓).
> require(SiZer); fossil.sizer <- SiZer(age, strontium.r atio)

> plot(fossil.sizer, colorlist=c("yellow", "grey50", "b lack"))
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The bump at age 115 is signi�ant for all bandwidths onsidered.There is no level of smoothing at whih the dip at age =98 issigni�ant. Hene, it is �not really there�.
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Robust smoothing

Most smoothing methods are relatively sensitive to outliers due tothe use of a quadratic error riterion.Among the approahes to robust smoothing, the following toolshave been suggestedIterative downweighting of observations assoiated to largeresiduals (Cleveland, 1979):R funtions lowess (satterplot smoothing)and loess (surfae �tting).Estimate Med(Y |X = x) instead of E(Y |X = x). This entailsto minimize the sum of absolute instead of sum of squaredresiduals:Implementation wmat the ourse home page.More by Roland Fried on Wednesday!
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Robust smoothing (ont.)

Fossil data with two arti�ial outliers:

> fossil.0 <- lowess(fossil2$age, fossil2$str, f=0.2,ite r=0)

# not robust

> fossil.1 <- lowess(fossil2$age, fossil2$str, f=0.2) # reweighted

> fossil.2 <- wm(fossil2$age, fossil2$str, h=2) # median
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not robust
reweighted
median
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Multivariate Smoothing

Loal regression an also be used if the spae of explanatoryvariables is multivariate, i.e. if a smooth funtion m : Rd −→ R isto be estimated from observations
{(XT

i , Yi), i = 1, . . . , n}, withXi = (Xi1, . . . ,Xid)
T .Let x = (x1, . . . , xd) a point in Rd. A multivariate version of (3) isgiven by

n∑

i=1




Yi − β0 −
d∑

j=1

βj(Xij − xj)






2

KH(Xi − x), (6)

where KH(·) is now a multivariate kernel funtion as de�ned beforefor kernel density estimation.
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Multivariate Smoothing (ont.)

In matrix notation, β = (β0, β1, . . . , βd), W = diag{KH(Xi −x)},
X =




1 X11 − x1 · · · X1d − xd... ... . . . ...
1 Xn1 − x1 · · · Xnd − xd


, and the solution takes

the same form as (4).Aording to the multivariate Taylor expansion, the oe�ents

βj =
∂m

∂xj
(x), j = 1, . . . , d

play the role of partial derivatives, and β̂j are their estimates.
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Bivariate kernel smoothing

R funtions npreg (see Example 3) or loess (using �nearestneighbors� instead of bandwidths).Let's do the loal linear �t ourselves:
> fitus <- matrix(0,25,55)

> for (i in 1:25) {
> for (j in 1:55) {
> bi <- ustemp$latitude-xlat[i]

> bj <- ustemp$longitude-xlong[j]

> fitus.lm <- lm(min.temp ∼bi+bj, weights = dnorm(latitude,

xlat[i],h1) * dnorm(longitude, xlong[j],h2), data = ustemp)

> fitus[i,j]<-fitus.lm[[1]][1]

> }
> }Remarks:For the loal constant �t, remove the lines for bi and bj andjust write 1 after the ∼ symbol.

dnorm(latitude,xlat[i],h1) = 1
h1

K
(
latitude−xlat[i]

h1

).
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Bivariate kernel smoothing (ont.)

Bak to US temperatute data. Using h1 = h2 = 3:Loal onstant Loal linear

xlat

xl
o
n
g

fitu
s0

xlat

xl
o
n
g

fitu
s
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The urse of dimensionality

Attention: With loalized multivariate smoothing happens whatstatistiians all the �urse of dimensionality�.Thought experiment: Assume the bandwidth vetor
h = (h1, . . . , hd) is onstruted in way suh that the hj over eaha half of the observations of their assoiated variable. For someinterior point x, whih fration p of the data Xi, i = 1, . . . , n isatually ontained in our loal window x ± h?If d = 1, then p = 1/2 (learly).If d = 2, then p = 1/4.If d = 10, then p = (1/2)10 ≈ 0.001.Hene, in high dimensions loal neighborhoods tend to be emptyeven for large bandwidths! [HTF, p. 22�℄This problem an in tendeny already be observed in the loallinear �t to the US Temp data.
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The urse of dimensionality (ont.)

This phenomenon makes kernel smoothing for higher dimensionsdi�ult.Poor results an partiular be expeted in the boundary regions.For d ≥ 2, loal onstant smoothing, i.e. β1 ≡ . . . ≡ βd ≡ 0, maybe the safer option than loal linear smoothing.The usual way to irumvent the urse of dimensionality is toreplae the full interation model m(x1, x2) by an additiverepresentation m(x1) + m(x2). This leads to additive models andwe look at this later.Also, it useful to look at alternative smoothing methods whih donot su�er from these problems (to this extent). One suh family ofmethods are the spline based methods.
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Setion 2: Spline based methods

Sope of this setion:The broken stik model;The linear spline basis;Knot seletion;Penalization;Smoothing splines;Basis funtion systems;B- and P-Splines;Additive and semiparametri models;Generalized additive models;
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An alternative approah

Reonsider our pieewise linear model for the fossil data:
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not too bad, but disontinuous, and uses 6 degrees of freedomwe an save 2df by �joining the stiks at the knots�this leads to a ontinuous urve
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The broken stik model

The �Broken Stik model� for the fossil data:strontium.ratio = β0 +β1age+β2(age−105)+ +β3(age−115)+ +ǫwhere a+ = a if a > 0 and 0 otherwise.
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> library(SemiPar)

> fossil.spmfit <- spm(strontium.ratio ∼f(age,knots = c(105,115),

basis = "trunc.poly", spar=0.001, degree=1))

> plot(fossil.spmfit, se=FALSE, col=2)
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The linear spline basis

This idea an be further exploited. Assume we use a large numberof suh broken stiks, with split points (knots) at loations
κ1, . . . , κK . This leads to the truncated linear spline basis

1, x, (x − κ1)+, . . . , (x − κK)+and the orresponding spline model for m:
m(x) = β0 + β1x +

K∑

k=1

bk(x − κk)+ (8)

The ruial point is then the hoie of the number and loations ofthe knots.
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Knot seletion for linear splines

LIDAR data [RWC p. 62�64℄.The horizontal bar at the bottom indiates the knot positions.
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Knot seletion for linear splines (ont.)

The more knots we use, the more �exible is the �tted funtion andthe smaller is the bias.However, a large number of knots leads to an inreased varianeand to over�tting (meaning that the urve is following small,apparently random, �utuations).A possible remedy: Pruning, i.e. seletively deleting the knots (notvery pleasant as a time-onsuming trial-and error work)Hene, there is need for automati knot seletion tools. Candidatesare here lassial model seletion riteria, as for example:Cross-validationMallow's CpNote: To look for all possible submodels of a model using K knots,one has to ompare ∑K
k=0

(
K
k

)
= 2K submodels!Computationally very umbersome, though some stepwise searhalgorithms exist.
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Knot seletion for linear splines (ont.)

We are left with the following options:We an painstakenly (�automati� or by hand) try to �nd the rightknot positions κk, and the right number of knots K.Or we do not are too muh about the κk and K, but we try toontrol in some way the influence of the knots (through theparameters bk).There are two basi approahes to implement the latter idea:Through penalization;Through a mixed model or Bayesian approah.Before we look loser at these approahes, we introdue matrixnotation, whih enables us to work in a somewhat more generalframework.
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Linear splines in matrix notation
X =




1 X1 (X1 − κ1)+ . . . (X1 − κp)+... ... ... . . . ...
1 Xn (Xn − κ1)+ . . . (Xn − κp)+


,

β = (β0, β1, b1, . . . , bk)
T , y = (y1, . . . , yn)T .Fitting riterion isminimize ||y − Xβ||2 = (y −Xβ)T(y − Xβ) (9)Hene, we have usual least squares theory. Taking the derivativewith respet to β gives the normal equations

2XXT β − 2Xy = 0
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Linear splines in matrix notation (ont.)

Parameter estimates are

β̂ = (XT X)−1XTyFitted values are

ŷ = X(XTX)−1XTy ≡ LyThe hat matrix is

L = X(XTX)−1XT.Degrees of freedom used
df�t = tr(L) = K + 2
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Penalization

We want to ontrol in some way the oe�ients bk, k = 1 . . . ,Kof the trunated polynomials, suh that they are kept as small aspossible (hene, virtually eleminating super�uous knots), but arestill able resolve the omplexity of the underlying funtion m.The idea how to do this is via a roughness penalty on the sum ofsquared oe�ients b2
1 + . . . b2

k: Instead of minimizing (9), weminimize for some λ > 0

||y − Xβ||2 + λ(b2
1 + . . . b2

K)whih an be written as
||y − Xβ||2 + λβTDβwith D = diag(0,0,1K)

– p. 100/197



Penalization (ont.)
λ plays the role of a smoothing parameter similar to the bandwidth
h in kernel regression:For λ = 0, we have the usual unpenalized basis funtionapproximation of m (�no smoothing�)For λ −→ ∞, the b1, . . . , bK will be shrunk to 0. Hene, weremain with β0 and β1 (whih are not penalized), and theresulting �t will be a straight line (�maximal smoothing�).Parameter estimates:

β̂ = (XTX + λD)−1XTy (10)Fitted values:
ŷ = X(XT X + λD)−1XTy (11)Smoother (Hat) matrix:
L = X(XTX + λD)−1XT (12)
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Smoothing splines

A speial (but important) ase of penalization-based smoothingmethods are smoothing splines.Here, a knot κk is positioned at every observation Xi, giving K = nknots.One tries to �nd a funtion m that minimizes
n∑

j=1

(Yi − m(Xi))
2 + λ

∫
(m′′(u))2 du

The penalization is learly neessary here as otherwise m̂(xi) = Yi,

i = 1, . . . n, whih would mean that we had interpolated (mostseriously over�tted!) the data.This form of penalization makes the interpretation as a roughnesspenalty evident: We penalize large seond derivatives, i.e. largeurvature, of the regression funtion.
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Smoothing splines (ont.)

One an show theoretially ([GS℄, p. 15�) that the solution to thisproblem is a natural ubi spline, i.e. a string of polynomials ofthird degree suh that the seond derivatives are ontinuous at theknot loations, and the seond and third derivatives are zero at theboundary knots.Then, in the notation used before,
β = (m(X1), . . . ,m(Xn)) ≡ m,
X = In,

D is a rather omplex penalty matrix that we do not displayhere (e.g., [FT, p. 154℄).Hene, we have from (10), (11)
m̂ = ŷ = β̂ = (In + λD)−1y
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Smoothing splines (ont.)

Fossil data with smoothing splines:

> library(pspline)

> fossil.ssp<- smooth.spline(age, strontium.ratio)

> fossil.ssp

Smoothing Parameter spar= 0.8190292 lambda= 5.905486e-05 (13

iterations)

Equivalent Degrees of Freedom (Df): 13.10510

Penalized Criterion: 5.782872e-08

GCV: 7.10339e-10

> plot(age, strontium.ratio)

> lines(fossil.ssp$x, fossil.ssp$y, col=2)
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Basis funtion systems

Smoothing splines beome omputationally infeasible if the samplesize n is large (as β ∈ Rn).Hene, for large n, we really need to use a basis, with a relativelysmall number of knots.We have seen already the linear spline basis
1, x, (x − κ1)+, . . . , (x − κK)+This an, in priniple, be replaed by any general basis

φ1(x), . . . , φD(x) (often φ1(x) ≡ 1) suh that we have the model

m(x) =

D∑

j=1

βjφj(x).

The n × D design matrix X then onsists of the entries

φj(Xi)[1≤i≤n,1≤j≤D].
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Basis funtion systems (ont.)

Examples for alternative basis funtion systems areTrunated power series

m(x) = β0 + β1x + . . . βpx
p +

∑K
k=1 bk(x − κk)

p
+Radial basis funtions (�thin plate splines�):

m(x) =
∑m

j=0 βjx
j +

∑K
k=1 uk|x − κk|

2m−1,m = 1, 2, 3....Polynomial φj(x) = (x − ω)j and exponential φj(x) = eλjx bases.The Fourier series 1, sin(ωx), cos(ωx), sin(2ωx), cos(2ωx), . . ..WaveletsOthers . . . See [RS℄, p. 43�.B-Splines.
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B-Splines

A B-Spline of degree d is onstruted as follows :It onsists of d + 1 polynomial piees, eah of degree d.The polynomial piees join at d inner knots.At the joining points, derivatives up to order d − 1 are ontinuous.The B-Spline is positive on a domain spanned by d + 2 knots;elsewehere it is zero.Exept at the boundaries, it overlaps with 2d polynomial piees ofits neighbors.At a given x, d + 1 B-Splines are nonzero.
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B-Splines (ont.)

An example for a B-Spline basis onstruted of B-Splines of degree3 is given below [RS, p. 50℄

A B-spline of degree three is also alled an order four spline - orderis the number of parameters of one B-spline.
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B-Splines (ont.)

Tehnially, a B-Spline basis is onstruted as follows:Devide the domain [xmin, xmax] into m′ intervals using m′ + 1knots.Eah interval will then be overed by d + 1 B-Splines of degree d.Add additional knots to the outermost left and right knots suhthat the ondition above is also ful�lled near the boundaries, thisimplies that a total number of knots is m′ + 2d + 1 (Remark: Anypoint where any B-Spline begins or end is a knot. If two B-Splinesbegin at the same x, then there are two knots at x.)The number of B-Splines in the regression is then m = m′ + d.For a given d, denote Bj(x) the value of the j − th B-spline,

j = 1, . . . ,m + d.A B-Spline basis an be generated automatially e.g. by usingfuntion bs in pakage splines .
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B-Splines (ont.)

Given a set of n data points (X1, Y1), . . . , (Xn, Yn), the funtion
m(x) relating preditor and response is estimated as

m̂(x) =

m∑

ℓ=1

α̂ℓBℓ(x) ≡ B(x)T α̂

where α̂ = (α̂1, . . . , α̂m)T is obtained by minimizing the objetivefuntion

S =
n∑

i=1

{
Yi −B(Xi)

T α
}2

≡ (y −Bα)T (y − Bα) ≡

≡ ||y − Bα||2with B = Bℓ(Xi)1≤i≤n,1≤ℓ≤m.
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P-Splines

Now again, let the number of knots be large (to apture allrelevant features of the urve). Similarly as for smoothing splines,one ould penalize the seond derivative (O'Sullivan, 1986)
S =

n∑

i=1

{
Yi −

m∑

ℓ=1

αℓBℓ(xi)

}2

+ λ

∫ {
m∑

ℓ=1

αℓB
′′
ℓ (x)

}2

dx,

Minimization of that leads to rather omplex mathematisEilers and Marx (1996) proposed a simple alternative penalization.Idea: The resulting urve will be smooth, if adjaent oe�ents

αℓ−1, αℓ do not di�er greatly. This ould be ontrolled bypenalizing their di�erenes △αℓ = αℓ − αℓ−1, or � resemblingseond derivatives � seond di�erenes:

△α2
ℓ = △αℓ −△αℓ−1 = αℓ − 2αℓ−1 + αℓ−2
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P-Splines (ont.)

This leads to the minimization problem
S =

n∑

i=1

{
Yi −

m∑

ℓ=1

αℓBℓ(xi)

}2

+ λ

m∑

ℓ=3

(△2αℓ)
2

= ||y − αB(x)||2 + λαTDT
2 D2αwith D2 = diag(△2) ∈ Rm−2×m−2.Aording to (11), parameter estimates are then given by

α̂ = (BTB + λDT
2 D2)

−1BTyOther orders of di�erenes are possible. Generally: Smallerdi�erene orders lead to easy omputations, but large di�ereneorders give smoother �ts. The order 2 is a good ompromise.
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P-Splines (ont.)

P-spline �t for fossil data:
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> source("http://www.stat.lsu.edu/faculty/marx/pspli ne.txt")

> fossil.pspline <- pspline.fit(strontium.ratio, age,

x.predicted=age, degree=3, order=2, lambda=0.15)

> plot(fossil); lines(age[order(age)],

fossil.pspline$summary.predicted[,("Predicted")][or der(age)], col=2)
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P-Spline Software

Attention: R funtion names are here quite onfusing:The funtion smooth.Pspline in pakage pspline doesatually not use B-Splines, but penalized smoothing splines.The funtion smooth.spline in pakage stats does useB-Splines if the number of knots spei�ed is smaller than n,and it also features penalization. However, it uses seondderivatives instead of di�erenes.P-Splines (in the Eilers/Marx sense) do not exist as an invokablefuntion within an R pakage.However, they have been frequently employed as building bloks forother purposes (mgcv, survival )Further useful implementations of P-Splines do exist in onjuntionwith (partially) Bayesian methods, and we look at this later.
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Multiple preditors

Consider data on athmospheri ozone onentration in the LosAngeles basin (Breiman and Friedman, 1985)We are having n = 345 observations on the following four variables:

daggett.pressure.gradient ≡ g: pressure gradient atDaggett, California, in mmHg,
inversion.base.height ≡ h: inversion base height, infeet.

inversion.base.temp ≡ t: inversion base temperature, indegrees Fahrenheit.
ozone.level ≡ y: daily ozone onentration (response), inppm.
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Multiple preditors (ont.)

We attempt to visualize the data (red= high ozone level):
> data(calif.air.poll, package="SemiPar"); require(lat tice)

> attach(callf.air.poll)

> ozone.col<- ozone.level/max(ozone.level)

> cloud(inversion.base.temp ∼inversion.base.height +

daggett.pressure.gradient, data=calif.air.poll,

col=rgb(ozone.col,0,1-ozone.col))

daggett.pressure.gradient
inversion.base.temp

inversion.base.height
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Additive Models

Due to the urse of dimensionality, �tting a full interation model
y = m(g, h, t) + εis di�ult!A useful simpli�ation is the additive model

y = α + m1(g) + m2(h) + m3(t) + ε(The interept α ould in priniple be absorbed into any of the

mj 's, but then they are not uniquely de�ned any more).We have to estimate the three funtions m1, m2, and m3simultaneously, using smoothers with assoiated smoother matries,say, L1,L2, and L3 (for instane, penalized smoothing splines).The idea is simple: Note that y − α−m1(g)−m2(h) = m3(t) + ǫ,so given α, m1 and m2, we an �t the left hand side of thisequation versus t, yielding an estimate of m3. This proess, alledbak�tting, is iterated until onvergene.
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Bak�tting

Formally, assume we are having p preditors Xj , j = 1, . . . , p, andorresponding observations Xij , i = 1, . . . , n. Consider a a modelof type y = α +
∑p

j=1 mj(xj), and let us denote
mj = (mj(X1j), . . . ,mj(Xnj))

T . Then the bak�tting algorithm[HT, p. 91; FG, p. 266℄ proeeds as follows:
(i) Initialize: α = ȳ,mj = m0

j

(ii) Cycle: For j = 1, . . . , p, 1, . . . , p, . . .

mj = Lj(y − α −
∑

k 6=j

mj)

(iii) Continue (ii) until the individual funtions don't hange.
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Additive model for ozone data
> library(gam)

> ozone.gam<- gam(ozone.level ∼s(inversion.base.temp)+

s(inversion.base.height) + s(daggett.pressure.gradien t),

data=calif.air.poll)

> par(mfrow=c(1,3)); plot(ozone.gam)
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Additive model for ozone data (ont.)
> summary(ozone.gam)

(Dispersion Parameter for gaussian family taken to be 18.61 55)

Null Deviance: 21854.51 on 344 degrees of freedom

Residual Deviance: 6180.345 on 332.0003 degrees of freedom

AIC: 2002.594

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)

(Intercept) 1

s(inversion.base.temp) 1 3 10.8124 8.528e-07 ***
s(inversion.base.height) 1 3 9.0253 9.231e-06 ***
s(daggett.pressure.gradient) 1 3 16.6828 4.055e-10 ***
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Simple semiparametri models

Onions data: ontains 84 observations from an experimentinvolving the prodution of white Spanish onions in two SouthAustralian loations (�+� and �•�).Plotted is log(onion yield ) in grammes per plant vs. areal
dens ity of plants (plants per square metre):
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> data(onions, package=‘‘SemiPar’’); attach(onions)

> plot(dens,log(yield), pch=ifelse(location==1, 3,20))
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Simple semiparametri Models (ont.)

We try �rstly a parametri additive model:
log(yield i) = β0 + β1location i + β2dens iwhere

location i =

{
0 if ith measuremeant from Virginia
1 if ith measuremeant from Purnong Landing
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> onions.lm<- lm(log(yield) ∼
dens+location)

> print(onions.lm)

Coefficients:

(Intercept) dens location

5.61383 -0.01053 -0.31543
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Simple semiparametri Models (ont.)

At the �rst glane, a good �t, but lose inspetion reveals thatthere seems to be some urvature.This suggests to �t a semiparametri model
log(yield i) = β0 + β1location i + m(dens i)Standard gam output with pointwise on�dene bands:
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> onions1.gam<- gam(log(yield) ∼location +m(dens))

> plot(onions1.gam, se=TRUE)
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Fitting Semiparametri Models

Model: Yi = tT
i β + m(Xi) + ǫi, ti ∈ Rp, Xi ∈ R, i = 1, . . . , n.With design matrix T = (t1, . . . , tn)T for the parametri part, thisan be seen as a model with two �smoothers�

L1 = T(TTT)−1TT (this is just the usual hat matrix for thelinear model!)

L2 (smoother matrix for m(X))Iterative estimation:
β = (TT T)−1XT (y − m)

m = L2(y − Tβ)Plugging the latter into the former, this has an expliit solution

β̂ = {TT (I − L2)T}−1TT (I − L2)y.implying that no bak�tting is needed here! (Green, Jennison, &Seheult, 1985)
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Generalized additive models

A generalized additive model is a model of type
µ ≡ E(Y ) = h(η) ≡ h



β0 + tT β +

q∑

j=1

mj(Xj)





where the density f(Y ) is a member of the exponential family (theexpetation and the density have to be seen onditional on

t,X1, . . . ,Xq).

h(·) is alled the response funtion and h−1(·) the link funtion.Model �tting happens iteratively using weighting least squares(Fisher-Soring), either in onjuntion with bak�tting or using amixed model approah (later today).In the important speial ase q = 0 we have a generalized linearmodel.
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Generalized additive models (ont.)

For the hoie of the exponential family and link funtion, thefollowing general (but not obligatory) rules apply:Response type Exp. family h(η)ontinuous Normal ηont., positive Gamma η−1 or exp(η)ount data Poisson exp(η)0-1 data Bernoulli exp(η)/(1 + exp(η))proportions Binomial exp(η)/(1 + exp(η))The link funtion printed in red orresponds to the so-allednatural link, whih leads to models with onvenient mathematialand statistial properties [FT, p. 20℄.
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(Generalized) additive model software

A wide range of alternative response distributions are supported bythe R funtion gam in pakage gam . This funtion uses bak�tting,and either loal polynomials (of degree 1 or 2) or smoothing splinesas smoothers.There exists an alternative gam implementation in R pakage mgcvusing a penalized basis funtion approah, whih features automatismoothing parameter seletion via generalized ross-validation.

SemiPar supports Gaussian, Poisson, and Binomial responsedistributions.
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Example: Respiratory deaths

Respiratory Deaths in São Paulo, Brazil, 1994-1997:The response variable is the number of daily respiratory deaths ofhildren under �ve in the ity of São Paulo.As explanatory variables we have daily measurements of humidity,temperature, number of deaths due to other reasons, and a varietyof pollutant onentrations.Sample size exluding observations with missing values: n = 1128.
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Example: Respiratory deaths (ont.)
TEMPO Enumeration of days

SEGUNDA Indicator for Monday 1 : Monday

0 : not Monday

TERCA Analogous indicators for Tuesday,

QUARTA Wednesday,

QUINTA Thursday,

SEXTA Friday,

SABADO Saturday

OTHRES5 Number of other death causes than respiratory.

TMIN.2 Two-day-lag of minimum temperature in ◦C

UMID Relative humidity in %.

PMME.2 Two-day-lag of concentration of PM10 in µg/m3

SO2ME.2 Two-day-lag of of SO2 in µg/m3.

COME.2 Two-day-lag of concentration of CO in ppm.

O3ME.2 Two-day-lag of concentration of O3 in µg/m3.

RES5 Number of respiratory deaths.
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Example: Respiratory deaths (ont.)

The response is ount data � usually this is modelled by a Poissonmodel.For explanatory purposes we look loser at the number of deathsover time:
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> library(gam)

> gam.resp2<- gam(RES5 ∼s(TEMPO,df=10),

family="poisson"(link=log),data=spdata)

> plot(TEMPO,RES5); lines(TEMPO,gam.resp2$fitted,col= 2)

– p. 130/197



Example: Respiratory deaths (ont.)

There is a lear seasonal trend whih we model nonparametriallyWe are �tting now the so-alled `Core-Model�, as e.g. in Singer etal. (2002):

η = β0 + f1(TEMPO) + f2(TMIN.2) + f3(UMID) +

+ β1 · SEGUNDA + . . . + β6 · SABADO + β7 · OTHRES5

> gam.resp3<- gam(RES5 ∼ s(TEMPO,df=10)+ SEGUNDA + TERCA + QUARTA +

QUINTA + SEXTA + SABADO + s(TMIN.2)+ s(UMID) + OTHRES5,

family="poisson"(link=log))

> plot(gam.resp3)
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Example:Respiratorydeaths(ont.)
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Example: Respiratory deaths (ont.)

The usual stategy is then to add subsequently the pollutants to thismodel and see if they lead to a substantial derease in deviane
(= −2 log L + onst).For model omparion, one way is to look atAIC = −2 log L + 2df�t (the smaller, the better!)For example, adding a smooth term for SO2ME.2 dereases thedeviane and AIC from

Residual Deviance: 1325.020 on 1099.000 degrees of freedom

AIC: 4053.545to

Residual Deviance: 1303.354 on 1095.000 degrees of freedom

AIC: 4039.879whih an be heked using the summary funtion.
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Example: Respiratory deaths (ont.)

Assume we have deided for the following model:
> gam.resp5 <- gam(RES5 ∼s(TEMPO) + SEGUNDA + TERCA + QUARTA + QUINTA

+ SEXTA + SABADO + s(TMIN.2) + UMID + OTHRES5 + s(SO2ME.2) +

s(O3ME.2), family=poisson(link=log))We predit the number of respiratory deaths on Monday, the 3rd Jan1994, with 16 deaths from other soures, min. temperature of 16.7 C,humidity 86.78%, and two-day-lag SO2 and O3 onentrations of 5.9and 101.9 µg/m3, respetively, through
> predict(gam.resp5, newdata=data.frame(TEMPO=3, SEGUN DA=1, TERCA=0,

QUARTA = 0, QUINTA=0, SEXTA=0, SABADO=0, OTHRES5=16, TMIN.2=16.7,

UMID=86.78, SO2ME.2= 5.9, O3ME.2= 101.9))

0.9532295That is, the predited value is exp(0.9532295) = 2.594074 (omparedto the observed value 2).
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Setion 3: (Partially) Bayesian smoothing methods

Sope of this setion:Mixed model approah to smoothing;Geoadditive models,Random e�et models;Parametri and nonparametri Bayesian inferene;Bayesian nonparametri density estimation;Bayesian P-Splines;Geoadditive models based on maps.
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Mixed model representation of linear splines

Consider the model formula

Yi = β0 + β1Xi +
K∑

k=0

uk(Xi − κk)+ + ǫi (21)

The idea is to make a distributional assumption about
u = (u1, . . . , uK)T , whih is often taken to be

u ∼ N(0, σ2
uI)Thus, the oe�ients are hampered from taking arbitrary values,whih will ensure an inreased smoothness ompared to theunrestrited model.
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Mixed model representation of linear splines (ont.)

Denoting β = (β0, β1)
T ,

X =




1 X1... ...

1 Xn


 , Z =




(X1 − κ1)+ · · · (X1 − κK)+... . . . ...
(Xn − κ1)+ · · · (Xn − κK)+




the model (21) an be written as a mixed model

y = Xβ + Zu + ǫ, Cov [
u

ǫ

]
=

[
σ2

uI 0

0 σ2
εI

]
(22)

A mixed model an be seen as a partially Bayesian model - oneparameter vetor (u) arries a distributional assumption, but theother one (β) doesn't.
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Parameter estimation in mixed models

Rewrite (22) as

y = Xβ + ǫ∗ , where ǫ∗ = Zu + ǫThis is just a linear model with orrelated errors, sineCov(ǫ∗) ≡ V = σ2
uZZT + σ2

εIThe estimator β̃ for β is then obtained by weighted least squares. Weobtain the so-alled BLUPs (best linear unbiased preditors) for β

β̃ = (XTV−1X)−1XTV−1y (23)and u (via best prediction, [RWC℄, p. 98�),

ũ = E(u|y) = σ2
uZ

TV−1(y − Xβ̃). (24)
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Mixed models and penalized smoothing

With y|u ∼ N(Xβ + Zu, σ2
εI) and u ∼ N(0, σ2

uI), thelog-likelihood of (y,u) is given by

log(f(y,u)) = log f(y|u) + log f(u) =

= − n log σε − K log σu −
1

2σ2
ε

||y − Xβ − Zu||2 −
1

2σ2
u

||u||2

This shows how the onepts of random e�ets relates to that ofpenalization: The atual smoothing e�et is ahieved throughpenalizing high values of the uk, k = 1, . . . ,K.Set λ2 = σ2
ε/σ

2
u. We arrive at the simple minimization problem(after multipliation with 2σ2

ε)
||y −Xβ − Zu||2 + λ2||u||2. (25)
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On-the-�y estimation of smoothing parameters

The higher lambda, the more the oe�ients of the linear splinebasis are shrunk, and the smoother the �t will be.
λ = 0 orresponds to the ase �no smoothing�, i.e. to the �xede�et model (8).In ontrast to �lassial� smoothing, where the smoothingparameter has to be selected, it an be estimated here as

λ̂ =

√
σ̂2

ε

σ̂2
uwithin the mixed model framework � no need for smoothingparameter seletion routines! This is a ruial advantage over the �otherwise equivalent � formulation as penalized splines.
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Estimating the variane omponents

We remain with the task of estimating the variane omponents σ2
ǫand σ2

u.This is possible via Maximum Likelihood (ML). As y ∼ N(Xβ,V),the log-likelihood of y under this model is given by
ℓ(β,V) = −

1

2

{
n log(2π) + log |V| + (y −Xβ)T V−1(y − Xβ)

}

Substituting the formula (23) for β into the log-likelihood, oneobtains the pro�le likelihood ℓP (V), whih is a funtion only of V,whih in turn only depends on σ2
u and σ2

ε . Maximization of thepro�le-likelihood with respet to σ2
u and σ2

ε gives the ML-estimates

σ̂2
u and σ̂2

ε [RWC, p 111℄.Alternative: Bias-orreted version REML (REstrited MaximumLikelihood [RWC, p. 101℄) ℓR = ℓ − 1
2 log |XT V−1X|.
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Knot seletion in mixed models

Note again that this methodology does not do the hoie of thenumber of knots K and the hoie of the knot loations κk for us.However, due to the impliit penalization of knot parameters, theproblem of knot hoie/seletion is now less relevant. The point isthat one needs enough knots to resolve the underlying struture.Coe�ients orresponding to super�uous knots will automatiallybe shrunk to small values. In fat, SemiPar uses
K = max

(n

4
, 20

)

with

κk =
(

k+1
K+2

) th sample quantile of the uniqueXi, k = 1 . . . ,K.
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Smoothing with SemiPar

Fitting Fossil data using a linear spline basis with SemiPar:
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> library(SemiPar)

> fossil.fit1<- spm(strontium.ratio ∼ f(age,basis="trunc.poly",

degree=1))

> summary(fossil.fit1)

Summary for non-linear components:

df spar knots

f(age) 12.76 1.324 25looks okay, but still quite wiggly!
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Smoothing with SemiPar (ont.)

Trunated polynomial splines: Normally a degree p = 2 is su�ientto get a smooth �t.Attention: The default setting in SemiPar is p = 1.Fossil data:
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df spar knots df spar knots

f(age) 10.06 2.243 25 f(age) 8.867 3.419 25
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Multiple, additive, and semiparametri regression

We have learned how to �t models of type Yi = m(Xi) + ǫiAll suh extensions an be onveniently handled in a mixed modelframework by simply adding olumns to X and Z.For instane, for a semiparametri model
Yi = β1Ti + m(Xi) + eiin linear spline representation for m, one has

X =




1 T1 X1... ... ...
1 Tn Xn


 ,β =




β0

β1

β2



,
Z =




(X1 − κ1)+ · · · (X1 − κK)+... . . . ...
(Xn − κ1)+ · · · (Xn − κK)+


 ,u =




u1...

uk




Model �tting as before � no bak�tting neessary!
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Model omparison
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> onions1.spm <-

spm(log(yield) ∼location+

f(dens, basis="trunc.poly"))

> summary(onions1.spm)

Summary for non-linear

components:

df spar knots

f(dens) 4.463 37.92 17We spend 4.463df instead of 1df to reveal a rather small urvature.Is this worth the e�ort?This would require a statistial test
H0 : β2dens versus H1 : m(dens )whih means in a mixed model ontext to test

H0 : σ2
u = 0 versus H1 : σ2

u > 0
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Model omparison (ont.)

Ruppert et al. [RWC, p. 147℄ reommend to use a (restrited)likehood ratio test with test statistis
T = −2{ℓR(0, σ̂2

ε ;y) − ℓR(σ̂2
u; σ̂2

ε ;y)} = . . . = 35.90The asymptoti distribution of T under H0 is rather ompliated(roughly, it results in a mixture of χ2 distributions [RWC, p. 106,168℄.)

p− values are obtained by simulating from this mixture andounting the number (i.e. proportion) of times that the value

T = 35.90 is exeeded. For these data, this gives p = 7 × 10−10,whih is a surprisingly strong result. Hene, the nonparametri termis learly signi�ant!not implemented in SemiPar .
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Geoadditive models

Geoadditive o�er the possibility to inlude spatial information intoan additive model.There are two types of geoadditive models:1. Models using geographial information in terms of oordinates,e.g. longitude and latitude.2. Models using maps, wih are divided into ertain distrits.The extension of additive to geoadditive models of type 1. isstraightforward in a mixed model framework and is implemented in

SemiParGeoadditive models of type 2 are supported in BayesX .We have already seen a very primitive form of a geoadditive modelof type 1.: The bivariate loal onstant/ loal linear �t to the model

min.temp = m(longitude, latitude)for the US temperature data.
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Geoadditive models (ont.)

The essential idea is to use a bivariate grid of knots κk ∈ R2,
k = 1, . . . ,K �overing� the spae of the Xi, i = 1, . . . , n.Appliation on US temperature data:
> library(SemiPar)

> spm.us2 <- spm(min.temp ∼f(-longitude, latitude))

> plot(spm.us2)
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Geoadditive models (ont.)

Visualizing the �tted model:

> plot(spm.us2)You are then asked to �ut out� the area of interest by drawingpolygons with the mouse.Fitted surfae:
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Random E�et models

Look at pig weight data: Growth urves for 48 pigs.
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For eah pig, we have 9 repeated measurements. Hene, we have�within-pig-orrelation� and the data are not iid.A possible solution would be to install an interept for eah pig,whih would add 47 parameters!
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Random E�et models (ont.)

The better idea is to use random e�ets Ui ∼ N(0, σ2
U )(whih need only one parameter), and to model

weightij = β0 + Ui + m(weekj) + εijfor pig i in week j.Again, easily done by inluding the Ui into u and adding theorresponding olumns to Z.
> data(pig.weights)

> names(pig.weights)

[1] "id.num" "num.weeks" "weight"

> plot(spm(num.weeks ∼f(weight),

random= 1, group=id.num))
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weightOnly a tiny trend to non-linearity here.
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Bayesian Smoothing

Bak to our original lassi�ation of smoothing methods:1. Nonparametri (kernel) density estimation,2. Nonparametri regression, inluding additive, semiparametri,and spatial models,3. Prinipal urves (and the like).Bayesian versions exist to onepts 1. and 2. There are no Bayesianprinipal urves yet.Generally, one has to distinguish between Bayesian parametri andBayesian nonparametri inferene.
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Parametri and nonparametri Bayesian inferene

Given:Data D = X1, . . . ,Xn sampled from a population P , thedistribution of whih is modelled depending on a parametervetor θ ∈ Θ.Some prior belief p(θ) about θ.Then Bayesian inferene is based on analyzing the posterior

p(θ|D) =
p(D|θ)p(θ)

p(D)If dim(Θ) < c < ∞ then one speaks of parametri Bayesianinferene.If dim(Θ) = ∞ or dim(Θ) = O(n), then we are in the world ofnonparametri Bayesian inferene. Θ is then a funtion spae.
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Bayesian nonparametri density estimation

Quite well studied, using methods from Bayesian nonparametris.Suppose we have iid data Xi ∼ F (xi), i = 1, . . . , n with unknowndistribution funtion F .Under a Bayesian nonparametri perspetive we need a priorprobability model p(F ) for F in some in�nite dimensional funtionspae. This requires to de�ne probability measures on olletions ofdistribution funtions, so-alled random probability measures(RPM).Ferguson (1973) showed that the Dirihlet proess is a possibleRPM.
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Bayesian nonparametri density estimation (ont.)

The Dirihlet proess has a simple update rule [Ghosh &Ramamoorthi, p. 96℄, and one an show that the posteriordistribution is given by

F̂ (t|x1, . . . , xn) = pnF0(t) + (1 − pn)Fn(t|X1, . . . ,Xn),where F0(t) is a �prior' distribution funtion, Fn(t| . . .) theempirial distribution funtion, and pn ∈ [0, 1] a sequene of form

c
c+n , for some c > 0.Suh estimates are not �smooth�. A smoothing e�et enters solelythrough the prior, whih is then �roughened� through the data.Bayesian nonparametri density estimation based on mixtures ofDirihlet Proess priors is implemented in the new R pakage

DPpackage

– p. 156/197



Bayesian nonparametri density estimation (ont.)

Attempt for the CD rates:

> library(DPpackage)

> saveDP1 <- DPdensity(CDrates, prior=prior1, mcmc=mcmc,

status=TRUE)Note that in prior1 and mcmcabout 10 tuning- and hyper-parameters have to be spei�ed, and omputation takes ∼ 20 se.
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Bayesian nonparametri regression

This an be read in two ways:Bayesian nonparametri regressionBayesian nonparametri regressionWhat's the di�erene?Bayesian nonparametri regression uses the theory of Bayesiannonparametris, onstruting probability measures on density orfuntion spaes, whih then at as prior distributions for a Bayesiananalysis.objet of intensive urrent researhnot objet of this ourse!
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Bayesian nonparametri regression (ont.)

Within this ourse, we onstrain ourselves toBayesian nonparametri regression,meaning parametri Bayesian versions of usual nonparametriregression methods.Also, this is quite new and no �textbook material�.Current approahes:Bayesian P-Splines (Lang & Brezger, JCGS, 2005)Bayesian Regression Splines (Smith & Kohn, Journal ofEonometris, 1996)Bayesian Smoothing Splines (Hastie & Tibshirani, StatistialSiene, 2000)Bayesian pieewise polynomials (Denison, Mallik, & Smith,JRSSB, 1998)... ?
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Towards Bayesian P-Splines

P-Splines work generally quite well.The problem of smoothing parameter seletion remains. Typially, itis estimated via ross-validation or by minimizing the AIC riterion.This often tends to fail, espeially when several smoothingparameters have to be seleted simultaneously within an additivemodel.A Bayesian version overomes these problems, as it estimates thesmoothing parameter(s) as a by-produt, similar as in the mixedmodel approah.The Bayesian approah is very powerful (thanks to MCMC) andadopts to very omplex models, inluding (generalized) additive,semiparametri, and spatial, models.
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Towards Bayesian P-Splines (ont.)

We work diretly within the framwork of the additive model, whihwe write in short form as

Yi = tT
i β + m1(Xi1) + . . . + mq(Xiq) + εi , i = 1, . . . , n. (26)where ti is a vetor ontaining all omponents whih are modelledparametrially, β ontains the orresonding parameters, and

mj , j = 1, . . . , q are unknown funtions of metri ovariates. εi isiid error with Var(εi) = σ2.Modelling eah funtion mj(xj) through an appropriate B-Splinebasis suh that mj(x) =
∑m

ℓ=1 αjℓBjℓ(xj) ≡ Bj(x)T αj , model(26) an be written as
y = B1α1 + . . .Bqαq + Tβ + ǫwith, as before, Bj = Bjℓ(Xi)1≤i≤n,1≤ℓ≤m.
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Bayesian P-Splines

The penalized likelihood an then be written as
L(y;β,α1, . . . ,αq) − λ1

m∑

ℓ=3

(△2α1ℓ)
2 − . . . − λq

m∑

ℓ=3

(△2αqℓ)
2

whih has to be maximized with respet to β,α1, . . . ,αq.In a Bayesian approah these parameter vetors are random andhave to be supplemented with appropriate prior distributions.For the �xed e�et β = (β1, . . . , βp)
T , one simply uses di�usepriors, i.e.

βj ∝ const, j = 1, . . . , p.
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Bayesian P-Spines (ont.)

The prior for α has to aount for the penalizationTo this end, note that from △α2
jℓ = αjℓ − 2αj,ℓ−1 + αj,ℓ−2 follows

αjℓ = 2αj,ℓ−1 − αj,ℓ−2 + △2αjℓThe idea is to onstrut from this a seond order random walk priorfor αjℓ, by setting

αjℓ = 2αj,ℓ−1 − αj,ℓ−2 + ujℓ,with

ujℓ ∼ N(0, τ2
j ).The variane parameter τ2

j ontrols the amount of smoothing,orresponding to the λj in the lassial approah. Note the analogyto the mixed model approah!
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Bayesian P-Spines (ont.)

Summarizing, we work with the hierarhial model[ 1 ℄ βj ∝ const, j = 1, . . . , p.
αjℓ ∝ const, j = 1, 2.

αjℓ = 2αj,ℓ−1 − αj,ℓ−2 + ujℓ, j = 3, . . . ,m,[ 2 ℄ ujℓ ∼ N(0, τ2
j ),[ 3 ℄ τ2

j ∼ IG(aj , bj); σ2 ∼ IG(a0, b0)[ 4 ℄ aj = 1, bj = 0.005The hoie of hyperparameters in [4℄ makes the hyperpriors in [3℄almost di�use. It must not be ompletely di�use, as otherwise theposterior for the αj is improper.The atual parameters of interest are (βj)1≤j≤p, (αjℓ)1≤j≤q,1≤l≤m,

(τ2
j )j=1,...,q, and σ2. We sumarize all these parameters in onevetor θ.
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Bayesian P-Splines (ont.)

Then the posterior of the model is given by
p(θ|y) ∝ L(y;α1, . . . ,αq,β, σ2)

q∏

j=1

[
p(αj |τ

2
j )p(τ2

j )
]
p(β)p(σ2)

This posterior is is analytially intratable.Therefore, inferene is arried out by Markov Chain Monte Carlosimulation tehniques (i.e., algorithms for sampling from probabilitydistributions based on onstruting a Markov hain that has thedesired distribution as its stationary distribution. The state of thehain after a large number of steps is then used as a sample fromthe desired distribution.)The drawings happen for bloks of parameters given the otherparameters and the data.No more datails here! See Lang & Brezger, JCGS, 2005.
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Example

We �t the Fossil data using BayesX :
91.8 99.6 107 115 123

-1.6E-4

-9.0E-5

-2.1E-5

4.7E-5

1.1E-4

The entral line is is the atual �tted urve.The outermost variability bands are 95% pointwise redibleintervals.The inner variability bands are 80% pointwise redible intervals.
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Example (ont.)

How to arrive at this plot?First, need to get the data set from R into BayesX:in R:

> library(SemiPar); data(fossil)

> write(t(as.matrix(fossil)), file=’J:/Data/fossil.da t’)in BayesX :

> dataset fossil

> fossil.infile age strontium using J: \Data \fossil.datThen, �t the model strontiumi = m(agei) + εi:

> bayesreg b

> b.regress strontium=age(psplinerw2), family= gaussian using

fossil

> b.plotnonp 1
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Example for additive (semiparametri) model

Reonsider Onions data.

> data(onions, package=‘SemiPar’)

> write(t(as.matrix(onions)), file=’J:/Data/onions.da t’)

> dataset onions

> onions.infile dens yield location using J: \Data \onions.dat

> bayesreg c

> c.regress yield= location + dens(psplinerw2), family=ga ussian

using onions

> c.plotnonp 1

18.8 60.3 102 143 185

-75.9

-13.9

48.2

110

172

Effect of dens

dens
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Geoadditive models based on maps
BayesX also o�ers the possibility to model spatial e�ets diretly,when one has a ategorization of the observations into distrits.For instane, Zambian map of distrits stored in a boundary �le(*.bnd) :
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Geoadditive models based on maps (ont.)

Given a map with, say, S distrits, it is reasonable to assume thatresponses depend on the spatial loation where they have beenobserved (for instane, due to similar geographial, regional, orpolitial onditions).This an be addressed through a spatial e�et fsp = Xspγ, whihis added as an extra term to the linear preditor.
Xsp is a n × S inidene matrix whose (i, s)-th entry is one ifobservation i orresponds to distrit s

γ = (γ1, . . . , γS)T is equipped with a Markov random �eldprior whih injets the spatial orrelation into the model:

γs|γu,u 6=s ∼ N
(∑

u|neighbors of s cγu, cτ2
)

This prior suggests that similar regions should have similarparameters. E�etively, this means to do spatial smoothing!
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Example: Undernutrition in Zambia

Data on undernutrition of hildren in Zambia.Undernutrition on hildren is measured through a stunting sore(�Z-sore�) Z− sore whih is de�ned as
Zi =

AIi − MAI

σwhere AI refers to the hilds anthropologi indiator (here, heightat a ertain age), MAI refers to the median of the referenepopulation and σ refers to its standard deviation.The main interest is on modelling the dependene of undernutritionon ovariates inluding the age of the hild, the body mass index ofthe hild's mother, the distrit the hild lives in, among others.
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Example: Undernutrition in Zambia (ont.)

List and desription of variables:

Variable Description

hazstd standardized stunting Z-sore (Zi)
bmi mother's body mass index

district distrit where the hild lives
rcw mother's employment status with ategories �working� (= 1)and �not working� (= −1)
edu1/2 mother's eduational status with edu1 = 1 and edu2 = 1 for omplete primaryand seondary eduation, respetively (and -1 otherwise).

tpr loality of domiile with ategories �urban� (= 1) and �rural� (= −1)

sex hild's gender: male = 1, female = −1.
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Example: Undernutrition in Zambia (ont.)

A model of tupe

hazstd = rcw+edu1+edu2+tpr+sex+m(bmi)+m(agc)+fspis �tted, leading to the following posterior mean for the spatiale�et:
-0.36861 0 0.273055You will reate this map in the pratial!
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Setion 4: Prinipal urves

Sope of this setion:Prinipal omponent analysis;Nonlinear PCA;Hastie & Stuetzle prinipal urves;Self-onsisteny;3D prinipal urves;Alternative approahes;Prinipal manifolds.
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Prinipal urves - Introdution

Prinipal Curves are smooth urves passing through the `middle' ofa multidimensional data loud X = (X1, . . . ,Xn), where Xi ∈ Rd.Examples:d=2 d=3Simulated �C� Prie index/ employmentin the US 95-05
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Prinipal omponents

Prinipal urves are nonparametri extensions of prinipalomponents.Prinipal omponents provide a sequene of best linear orthogonalapproximations to a data loud

X = (X1, . . . ,Xn), where Xi ∈ Rd.For example, �rst and seond prinipal omponent for a simulateddata set [HTF℄:
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Prinipal omponent analysis (PCA)

Given a random variable X in Rd with ovariane matrix Σ, theeigen deomposition is given by

Σ = ΓΛΓT , (19)where Λ is a diagonal matrix ontaining the ordered eigenvalues

λj = Var(γT
j X) of Σ, j = 1, . . . , d.The olumns of

Γ = (γ1, . . . ,γd)are the eigenvetors of Σ.The �rst eigenvetor γ1 maximizes the variane of γTX (amongall γ ∈ Rd with ||γ|| = 1 ); the seond eigenvetor γ2 maximizesthe variane of γTX over all γ ∈ Rd with ||γ|| = 1 whih areorthogonal to γ1, and so on.
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Linear and Nonlinear PCA

The proess of �nding the �rst prinipal omponent line an bedisseted into two steps (w.l.o.g. µ = 0):
Projection: Find a linear mapping

f(x) : R
d −→ R,x 7→ γT

1 x (≡ t).

Reconstruction: Map bak to the data spae
g(t) : R −→ R

d, t 7→ γ1t.... suh that

n∑

i=1

||Xi − g(ti)||
2 =

n∑

i=1

||Xi − (g ◦ f)(Xi)||
2 (20)is minimized.Substituting f and/or g by nonlinear funtions leads to nonlinearprinipal omponent analysis (NLPCA) [G, Chapter 2℄
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Prinipal urves

Prinipal urves go one step further: They aim for a fullynonparametri estimation of the urve.Formally, a one-dimensional urve in a d−dimensional spae is avetor-valued funtion

g(t) : R 7→ R
d.Its j−th omponent, j = 1, . . . , d, are alled coordinate functions.De�ning a model of type

Xi = g(ti) + ei,the task is to �nd �the best� g.
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Prinipal urves (ont.)

Parametri and Prinipal omponentsnonparametri regesssion and urves
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Prinipal urve parametrization

A ommon parametrization t for (prinipal) urves g(t) : R 7→ Rdis the unid-speed-parametrization:Reall that the ar length of a urve g from a parameter t0 to

t1 is given by ℓ =
∫ t1
t0

||g′(t)|| dt.That is, if ||g′(t)|| = 1, then ℓ = t1 − t0. This means thatdistanes in parameter spae orrespond to the ar length indata spae, whih is intuitively desirable.Every urve with ||g′|| > 0 an be reparametrized to make itunit-speed.The vetor g′(t) is alled the velocity at t and g′′(t) theaeleration. For a unit-speed urve, the aeleration isorthogonal to the veloity.Other hoies of the parametrization are possible as long as it ismonotone, i.e. maintains the order of the data points projetedonto it.
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HS Prinipal urves

The �rst and groundbreaking work on prinipal urves is fromHastie & Stuetzle (HS), JASA 84, 1989.HS prinipal urves generalize linear prinipal omponents in a verynatural and diret way: The idea is to minimize the distaneproperty (20) over all �smooth� funtions g : R −→ Rd.Let X ∈ Rd be a random vetor with density f , E(X) = 0 andVar(X) �nite.Let g : T −→ Rd , T ⊂ R be a non-interseting unit-speed urve

g : T −→ Rd , T ⊂ R.The projetion index tg : Rd −→ R is de�ned as

tg(x) = supt{t : ||x − g(t)|| = inf
ℓ
||x − g(ℓ)||}

In words, tg(x) is the value of t for whih g(t) is losest to x.
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HS Prinipal urves (ont.)

De�nition: The urve g is a prinipal urve of f when it isself-onsistent, i.e.

E(X|tg(X) = t) = g(t)for all t ∈ T .
Self-onsisteny means that eahpoint on the prinipal urve isthe average of all points whihprojet there [HTF℄.If a straight line is self-onsistent,then it is a prinipal omponent.
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HS Prinipal urve estimation

Start with the �rst linear prinipal omponent line.Then, iterate betweenProjetion: Projet all data points onto this line.Reonstrution: Use a nonparametri satterplot smoother (likekernels, splines) to �t eah omponent of X against theprojetion indies t..... until the hange in the distane funtion gets negligible.
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HS Prinipal urve estimation (ont.)

Ilustration: Cirle in 4 steps.
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HS Prinipal urve software

HS prinipal urves are implemented in the R funtions
principal.curve in R pakage princurve o�eringSplinesRobust loal linear smoothers (�lowess�)in the reonstrution step.
pcurve in R pakage pcurve o�eringB-Splinesin the reonstrution step.

pcurve is more powerful and it seems to have a somewhat bettersmoothing parameter seletion, while princurve is somewhat moreompat to use.
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HS Prinipal urves in pratie

Example: Letter reognitionSimulate �C�:

> t <- seq(pi/2+0.2,3 * pi/2-0.2, length=60) # Parametriziation

> cx <- cos(t); cy <-sin(t) # gives a circular arg segment

> cx2 <- cx + rnorm(60,0,0.1); cy2 <- cy + rnorm(60,0,0.1)

# adds noise

> c2 <- cbind(cx2,cy2) # creates a data matrixFit prinipal urveusing smoothing splines in the reonstrution step

> library(princurve)

> c2prin <- principal.curve(c2)using kernels in the reonstrution step

> c2prinl <- principal.curve(c2,smoother="lowess")
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HS Prinipal urves in pratie (ont.)

Fitted urves:
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HS Prinipal urves in pratie (ont.)

One an also extrat diretly the oordinate funtions x(t), y(t),e.g. for the spline based version:

> plot(c2prin$lambda, c2prin$s[,1], xlab="t", ylab="x(t )", pch="+")

> plot(c2prin$lambda, c2prin$s[,2], xlab="t", ylab="y(t )", pch="+")
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HS Prinipal urve estimation (ont.)

3D-Example: Phillips urves.Data on In�ation and Unemployment in the US 1995-2005We have three variables:Prie index: inflUnemployment: rateTime (in months): time .One olour orresponds to one year:
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HS Prinipal urves in pratie (ont.)

Read data:

> phil.rate <- read.table("UNRATE.txt", header=T) # 1948- 2005

> phil.infl <- read.table("CPIAUCNS.txt", header=T) # 192 1-2005

> rate <- phil.rate[565:692,2] # 01/1995-08/2005

> infl <- phil.infl[889:1016,2] # 01/1995-08/2005Fit prinipal urves:

> library(pcurve); library(princurve)

> phil.hs <- principal.curve(cbind(rate,time,infl)) # Sm oothing

Splines

> phil.hs1 <- principal.curve(cbind(rate,time,infl),

smoother="lowess") # LOWESS

> phil.hs2 <- pcurve(cbind(rate,time,infl)) # B-Splines
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HS Prinipal urves in pratie (ont.)
> phil.scat <- scatterplot3d(rate, time, infl, color=..., ylab="time")

> hil.scat$points3d(phil.hs$s[,1],phil.hs$s[,2],phil .hs$s[,3],

type="l",col=2) # Smoothing Splines

> phil.scat$points3d(phil.hs1$s[,1],phil.hs1$s[,2],p hil.hs2$s[,3],

type="l",col=3) # LOWESS

> phil.scat$points3d(phil.hs2$s[,1],phil.hs2$s[,2],p hil.hs2$s[,3],

type="l",col=4) # B-Splines
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Limits of HS urves

Noisy spiral:
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Most of the urve passes through regions with no data at all!
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Limits of HS urves (ont.)

HS prinipal urves work quite nie for simple data strutures. Formore omplex strutures they often fail, for several reasons:The dependane on an initial line leads to a lak of �exibility, asan initial unsuitable assignment of projetion indies an oftennot be orret in the further run of the algorithm.It has been shown that that HS prinipal urves as de�nedabove �nd only saddle points, and not minimizers, of thedistane funtion (Duhamps and Stuetzle, 1996) (though theiroriginial motivation was to minimize it!).When HS fails, one an resort to other prinipal urve algorithms.They all attempt to identify �the middle of the data loud�, butdi�er in what they understand of this �middle�.
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Alternative prinipal urve algorithms
Polygonal line algorithms. Kégl et al. (2000) de�ne a prinipal urve asthe urve minimizing the average squared distane over all urveswith bounded length L, and onstrut a polygon to estimate it.Software (JAVA Applet) at

http://www.iro.umontreal.ca/ ∼kegl/research/pcurves/

Generative model. Tibshirani (1992) de�nes prinipal urves suh thatfor data generated as
X = g(λ) + ǫ with E(ǫ) = 0urve g is also prinipal urve of the data loud X.

Local approaches. Instead of starting with a straight line, the urve issuessively built up while proeeding through the data loud (seetalk by M. Zayed).R soure ode for loal prinipal urves at

http://www.maths.dur.ac.uk/ ∼dma0je/lpc/lpc.htm
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Prinipal manifolds

The idea of prinipal urves an be extended towardshigher-dimensional smooth objets, known as prinipal surfaes orprinipal manifolds.Already (oneptually) introdued by HS, though a publiimplementation was never provided:

The image [HTF℄ suggests a possible appliation: Classi�ation.has been used for gene lassi�ation [G, Chapter 4℄.
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Prinipal manifolds (ont.)

Alternative to HS approah: Local principal surfaces are onstrutedthrough a grid of triangles.LPS for Calif. Air Pollution data:
daggett.pressure.gradient

inversion.base.temp

inversion.base.height

suggests a seond appliation: Regression.work in progress!
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