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"Smoothing”

According to TheFreeDictionary, “smoothing” can have the following
meanings:

1. To make (something) even, level, or unwrinkled.

. To rid of obstructions, hindrances, or difficulties.

2
3. To soothe or tranquilize; make calm.
4

. To make less harsh or crude: refine.
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"Smoothing”

According to TheFreeDictionary, “smoothing” can have the following
meanings:

1. To make (something) even, level, or unwrinkled.

To rid of obstructions, hindrances, or difficulties.

2
3. To soothe or tranquilize; make calm.
4

To make less harsh or crude: refine.

in short....
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“Certificate of deposit” (CD) rates for 69 Long Island banks [S]
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How would you visualize these data?
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Example 1
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Example 1 (cont.)

Straightforward idea: Histogram.

Histogram of CDrates
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> hist(CDrates, freq=FALSE)

Does this adequately represent the distribution of the data?
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Example 1 (cont.

Vary anchor point (top) or number of bins (bottom):

Histogram of CDrates Histogram of CDrates Histogram of CDrates
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> hist(CDrates, freq=FALSE, breaks=...)
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Example 1 (cont.)

Observations:

® Histogram shapes can be quite different for the same data and
even for the same number of bins.

® Histograms are not “smooth” (but the true underlying density
supposedly is!)

® If we try to make them “smoother” by reducing the number of bins,
we discard important information contained in the data.

® Can one do that better?
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Example 1 (cont.)

Kernel density estimation (“Kernel smoothing”):

density.default(x = CDrates, adjust = 0.7, kernel = "gaussian"”)

15
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Density
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T
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N =69 Bandwidth = 0.08068

> density(CDrates, kernel="gaussian", adjust=0.7)
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Example 2

Strontium isotopes found in n = 106 fossil shells versus age [RWC].

strontium.ratio
! ! ! !
o
oo
o]

0.70720  0.70725 0.70730  0.70735  0.70740  0.70745  0.70750

95 100 105 110 115 120

> data(fossil, package="SemiPar"); attach(fossil)
> plot(age, strontium.ratio)
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Example 2 (cont.)

Interpolation (using grid of size 200) vs. Linear regression:

strontium.ratio

—— Interpolation
—— Linear regression

0.70720  0.70725  0.70730  0.70735  0.70740  0.70745  0.70750

95 100 105 110 115 120

Actually, both are not satisfactory!
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Example 2 (cont.)

Smooth nonparametric regression:

strontium.ratio
! ! ! !

0.70720  0.70725  0.70730  0.70735  0.70740  0.70745 0.70750
|

age

> library(pspline)
> fossil.spline <- sm.spline(age, strontium.ratio)

This fit is based on so-called smoothing splines.
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Example 3

Temperature data for 56 cities in the US [RWC]:

Variables:
® min.temp = average minimum January temperature
o latitude = degrees latitude

# longitude = negative degrees longitude
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Example 3 (cont.)

® Additive model:
min.temp = m;(latitude )+ mo(longitude )

® is modelling a separate influence of latitude and longitude
on min.temp
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latitude longitude
> library(gam); data(ustemp, package="SemiPar"); attach (ustemp)

> gam.us <- gam(min.temp) ~s(latitude)+s(longitude)); plot(gam.us)
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Example 3 (cont.

® Spatial model: min.temp = m(latitude, longitude

® is modelling an interacting influence of latitude and
longitude  on min.temp :

[theta= 220, phi= 10]
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> library(np)

> us2dim <- npreg(min.temp ~longitude+latitude, regtype= "Il",
bws=c(5,5))

> npplot(us2dim$bws, theta=220, view="fixed")
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Example 4

® Speed-Flow diagram recorded on a Californian Freeway.

® Each point corresponds to average flow and speed recorded at a
certain location within a 30-seconds-interval.
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> data(lane2, package="hdrcde"); plot(lane2)
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Example 4 (cont.)

® Nonparametric regression?
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® The fitted nonparametric regression curve estimates the expected
speed given flow, but does it give the best description of the data set?
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Example 4 (cont.)

® Alternative: principal curves, “smooth curves through the middle of
the data cloud™:
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® Principal curves form the nonparametric analogue to principal
components.
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Summary

We understand Smoothing as a term for statistical methods including

1. Nonparametric (kernel) density estimation

2. Nonparametric regression, including
Univariate regression

Surface smoothing

Additive models
Semiparametric models

| 2 2 B B

Spatial models

3. Principal curves (and the like)

The main emphasis of this course is on item 2.
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Content

Roughly, the course is structured into four major blocks
® Kernel based methods

® Spline based methods

® Bayesian and partially Bayesian methods

® Principal curves

This categorization is quite artificial and arbitrary. For example, what is

said in the “kernel based method” section on linear smoothers and
bandwidth selection holds equally well for the splines. Further, the

Bayesian methods that we investigate are actually a variant of spline
based methods, too.
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HASTIE, T., TIBSHIRANI, R. , and FRIEDMAN, R. (2001)[HTF]: The

Elements of Statistical Learning, Springer.
LOADER, C. (1999)[L]: Local Regression and Likelihood, Springer.

RUPPERT, D., WAND, M.P., and CARROLL, R.J. (2003)[RWC]:

Semiparametric regression, Camebridge University Press.

SILVERMAN, B.W. (1986)[Si|: Density estimation, London: Chapman
& Hall.

SIMONOFF, J.S. (1994)[S]: Smoothing Methods in Statistics, Springer.

WAND, M.P., and JONES, M.C. (1995)[WJ]: Kernel Smoothing,
London: Chapman & Hall/CRC.

—n. 20/1¢€



Software

We will work with two publicly available and free software packages:
® R, available at

http: //cran.r — project.org/

® BayesX, available at

http: //www.stat.uni — muenchen.de/ ~ bayesx/bayesx.html
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Section 1: Kernel based methods

Scope of this section:

® Kernel functions and kernel density estimation;
® Kernel regression;

® |ocal linear and local polynomial regression;
® Derivative estimation;

® MSE, Bias, and Variance:

® Linear smoothers;

® Confidence and prediction bands;

® Smoothing parameter selection;

® Feature extraction:

® Robust smoothing;

® Bivariate smoothing and “the curse of dimensionality”.
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Density estimation

Consider the problem of estimating a density f(-) from data x1, ..., z,.
Note that
d . F(x+h)—F(z—nh)
- — ] 1
flz) = —F(z) = lim o7 , (1)

where F'(-) can be estimated by the empirical distribution function

A

F(x) = {#wifigx}. Plugging this into (1), one obtains for fixed h

. 1 {#x;:x; € (x — h,x+ h]} 1 1

f@) = 5 - = %; > H(e—hahy (i) =
B izn:K T;— X
~ nh — h

using the uniform kernel: K(u) = 5 if =1 <u <1 and 0 otherwise.
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Density estimation (cont.)

® We apply this estimator on the CD rates data:
> plot(density(CDrates, kernel="rectangular", adjust=0 7))

density.default(x = CDrates, adjust = 0.7, kernel = "rectangular")

15

1.0

0.5

0.0

7.5 8.0 8.5 9.0

N =69 Bandwidth = 0.08068

® This is quite wiggly! Problem: The kernel that we used is
“unsmooth’.

® Consequence: We need better (smoother) kernels!
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o

9

Kernel density estimation

For instance, we may use a
Gaussian density for K.

Generally, a kernel function K is
symmetric, bounded, and
non-negative, with

[ K(u) du = 1. (Exceptions
exist!)

The kernel density estimator
fo) = =S K (2t
xr) = —
nh — h

estimates the density by re-

. . . . 1
distributing the point mass

smoothly to its vicinity.

xxxxx
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Commonly used kernel functions are summarized in the following table:

Kernel functions

Kernel name | K(u) = option kernel="*...”
in R function density

Uniform 5 1_11y(w) rectangular

Triangular (1 —Jul) - 1j=1,1)(u) | triangular

Gaussian ﬁe‘“m gaussian

Epanechnikov | 2(1 — u?)-1j_11)(u) | epanechnikov

Biweight (1 — u?)? biweight
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Comparison of bandwidths

® Hence, for the same bandwidth A, the results are more or less
similar as long as the kernel is “smooth".

® Far more important than the choice of the kernel is the choice of
the bandwidth h:

h=0.035 h=0.08 h=0.12

2.0
15

15

1.0

0.5

0.5

1.0
00 02 04 06 08 10 12 14

0.0
0.0

75 8.0 8.5 7.5 8.0 8.5 9.0 7.5 8.0 8.5 9.0

h too small h too big
undersmoothing oversmoothing
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Bandwidth selection

A simple rule of thumb was provided by [Si, p.48]:
hopt = 0.9An =1/

with A = min(st.dev., IQR/1.34).

This formula is based on asymptotic considerations (i.e.

h — 0,nh — 00) and is optimal for a normally distributed
density (“normal reference”). The hybrid measure of spread, A, is
used to account for multimodal distributions.

There exist a large number of alternative bandwidth selection
methods, but this one is the simplest, computationally fastest, and
works generally well.

We consider bandwidth selection, including its theoretical

background, in more detail in the context of nonparametric
regression.
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Bivariate density estimation

® For bivariate data x1,...,Z,, x; € R? we need a bivariate kernel
K :R? — R, which can either be realized through a product kernel
(generated from a univariate kernel K):

KP<U1,U2) = K(u1)K(us)

or through a radially symmetric kernel

KS(UMUQ) — const - K <\/u% + U%)

® If K is a Gaussian kernel then K¥ and K¥° are equivalent, and

one gets

1 1
K (u1,uz) = - exp(— (6 + )
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Bivariate density estimation (cont.)

® Bivariate Gaussian kernel:

HEEEET =
=

® Straightforward extension to higher dimensional kernels:

K(u) = (27) 42 exp(—%uTu)
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Bivariate density estimation (cont.)

® Instead of a single bandwidth h, we need then two bandwidths h4
and ho controlling the smoothness of the fit in direction of the
corresponding axis. The estimate of the “true” density f(x1,x2) is

given by

A 1 < r1 — Xi1 T2 — X
= K

® d—variate case: f(z) = 150 Ku(x — X;) with
Ku(x) = [H|"Y2K(H/2x), with bandwidth matrix H € R34

For d = 2,
K20
H‘( 0 h>
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Bivariate density estimation (cont.)

® Kernel density estimate of traffic data (h; = 100, ho = 5):

[theta= 40, phi= 10]

6e-0

4e-0

c.

=1

lw)

2

i%e—o \
(M

AR
AN
> 2 N\
Oe+06-= X ~§s

2000
> library(np)

> sf.npdens <- npudens(tdat =lane2[,c("flow
> plot(sf.npdens, view="fixed", theta=40)

,"'speed")], bws=c(100,5))
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+ + + + + Vv

V V V + + + +

Bivariate density estimation (cont.)

® It is more enlightening to implement it by hand. With
K(-) =dnorm( ),

bidens<- function(X,Y, xgrid, ygrid, hl1,h2) {
n<-length(X); nl <-length(xgrid); n2<-length(ygrid)
dens <- matrix(0,n1,n2)

for (i in 1:n1) {
for (j in 1:n2) {
densli,j]<-(n *h1lxh2)"(-1) =

sum(dnorm((X-xgrid[i])/h1) *dnorm((Y-ygrid[j])/h2) )

}

}

return(dens)

}

x<-se(q(0,2000,by=20)

y<- 0:70

sf.dens <-bidens(lane2$flow, lane2%speed, x, y, 100, 5)
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Bivariate density estimation (cont.

® Perspective plot:

suap’is

Qzﬂéff%ﬁl lllllllllllllll'".
,,,,,mll,’,’/lflllllllllll”,”l" "‘

nll%llllllll 0

> persp(x,y, sf.dens,theta=40)
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Bivariate density estimation (cont.)

® A more attractive way of visualizing kernel density estimates is
often to use contour plots:

70

60

50
|

40

30
|

20

10

I I I I I
0 500 1000 1500 2000

> contour(x,y, sf.dens,nlevels=30)

—n. 36/1¢€



Regression

Having observed data on two variables X and Y, the main
objective is often to construct a model for Y given X, enabling us
to predict the response for a future observation X = .

We write such a model in its most general form as
Y =m(X)+e

where m is the regression function or signal, and € some noise (e.g.
measurement errors).

As both variables play now a particular, non-intercheangeable role,
this implies an asymmetric relationship between X and Y.

Estimating the function m from (X1,Y7),...,(X,,Y},) is called
regression. If a parametric (e.g. linear) model is pre-specified for m,

then we talk about parametric regression, otherwise nonparamatric
regression.
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o o

Polynomial and piecewise regression

Consider again fossil data.

&+[3;U IS

As seen before (Example 2), a linear regression line g
clearly inappropriate to fit these data.

Possible remedies:
Fit a higher order polynomial, e.g. § = a + bx + éx?
(b) Fit piecewise line segments, e.g. split at x = 105 and 115.

(CY) (b)

strontium.ratio
strontium.ratio

|
0
0

070720  0.70725 0.70730  0.70735  0.70740  0.70745  0.70750

070720  0.70725 0.70730  0.70735  0.70740  0.70745  0.70750

T T T T T T T T
95 100 105 110 115 120 95 100 105 110 115 120
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From parametric to nonparametric regression

® (learly, the higher order polynomials used in are a dead end: We
would need a huge polynomial degree to fit the data adequately,
e.g. p > 10, which would entail a large variability of the fit.

® The attempt in (b) seems to be the way to go. However, the fit has
to be smoother, and the localization should happen automatically.

® Concretely, when estimating some regression function m(x) at a
certain target point z, data (X;,Y;) with X; located close to = are
more relevant than data situated far from z.

® Hence, some local weighting is required and it turns out that kernel
functions provide a convenient way to achieve this.
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Local linear regression

Example of two Epanechnikov kernel functions placed at x = 100 and
x = 108. For estimation at z, only the colored data points are
considered (respectively), with the kernel function serving as a weight
function.

strontium.ratio
| | | | |

0.70720 0.70725 0.70730 0.70735 0.70740 0.70745 0.70750

95 100 105 110 115 120

The estimates m(x) are symbolized by + and +, respectively.
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Local linear regression (cont.)

This procedure is carried out at every single point x, and one gets the
resulting curve, a “local linear fit" (using h = 2):

strontium.ratio
0.70720 0.70725 0.70730 0.70735 0.70740 0.70745 0.70750

95 100 105 110 115 120

> library(KernSmooth)
> fossil.locpoly<-locpoly(age, strontium.ratio, bandwi dth=2)

Apparently there is still room for improvement w.r.t. the choice of h
(look at the last bump), and we get back to this issue later.
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The nonparametric regression model

We consider data (X;,Y;) € R?, i =1,...,n, forming an iid
sample from a population (X,Y).

We assume that predictor X; and response Y; are related through
Y, = m(Xz) + O'(Xi)&;

where

e m(x) = E(Y;|X; = x) is a "smooth” (i.e., twice continuously
differentiable) underlying regression function

s o%(xz) = Var(Y;|X; = z) is a variance function.

® ¢; is some iid noise with F(¢;) = 0, Var(¢;) = 1, which is
independent of the Xj.

We further denote the “design density” of X by f(-).
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Homoscedasticity and Heteroscedasticity

The variance function o%(z) = Var(Y;| X; = z) allows explicitly for
an error variance varying over the predictor domain, a characteristic
which is referred to as heteroscedasticity. As one then models
location m(x) and scale o(x) simultaneously, one also speaks of a
location-scale model in this context.

An often assumed (and often approximately met, as for the fossil
data) condition is homoscedasticity

(X)) =0%i=1,....,n

In nonparametric regression, it is irrelevant for the function-fitting
process if the data are homoscedastic or heteroscedastic. However,
it plays a role for the variability of the fitted curve, i.e. Var(m(x)),
and therefore for the calculation of confidence bands etc.

We assume the more general case of heteroscedastic data if not
stated differently.
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Homoscedasticity and Heteroscedasticity (cont.)

® Example for heteroscedastic data: LIDAR (light detection and
ranging) data [RWC].

® LIDAR uses the reflection of laser-emitted light to detect chemical
compounds in the athmosphere.

® Variables:
» range: The distance travelled before light is reflected back to

its source (X).
» logratio: The logarithm of the ratio of received light from
two laser sources (V).

2 o S ° g o
= o & °© o o
o S0 & O & ©o
KPS P25 90058 00%9° 66 5% 000
o 097 § & oo o ® Q%09
o § “° oo o & oy 0 000
© oo o % %
o % Q@
o
°

oo o
o0 &° o o o

lidar$range
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Local linear regression estimation

® | ocal linear regression works by fitting, for each value of z, a linear
regression subject to the kernel weights

wi(x) = Kp(X; — ) = %K (Xh_ 5”’) |

® For improved stability and ease of asymptotic calculations, we
center the local linear regession at z, yielding the local model

m(XZ) — ﬁ()(il?) + 51 (ZE)(XZ — ZE) + €;. (2)

For ease of notation, we write By = Gp(z) and (1 = G1(x).

® Then the locally weighted least squares problem takes the form

R g e L C
1=1
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Local linear regression estimation (cont.)

which is minimized by solving

8@12@27 5) _ _2; (Y; — Bo — B1(X; — x)) wi(x) =0
3@1{(}%: b _ —2; (Yi = Bo — 51(Xs — x)) (Xi — 2)wi(z) = 0

with respect to 3y and 1, yielding

Z?ﬂ si(x)Y;
Z?ﬂ si(x)

with s;(2) = w;(x)(Sn2 — (Xi — )Sn1); Snj = Sor, wi(x)(X; —z))

Bo =




Local linear regression estimation (cont.)

® From the estimated coefficients, we get, for every x, the estimate
of the regression function m(z) using the model (2):

m(x) = fo(x)
® This procedure has to be carried out for every value x of interest
(e.g. an equidistant grid, or all values z = X;,1 =1,...,n.)

® Special case, 81 = 0 : This is local constant regression and leads to
the Nadaraya-Watson estimator

_ A _ 2?21 w;(x)Y;
D ie1 wi®)
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Local polynomial regression

® For general polynomial order p > 0, we consider the least squares
problem

2
n

3 }Q—Zﬁj(m)()ﬁ'—m)j K<Xih—x)

p
i=1 7=0

yielding estimates Gy (), . .. ,Bp(aj).
® Note that a Taylor expansion of m at x of order p yields

Zom@ ()

S
|
b—
~
|
S
=
il
Q.
i M@
o
=
G
~
|
S
~
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Derivative estimation

Hence, the coefficients 3; = 3,(z) (j > 1) capture the information
contained in the derivatives.

Generally, one has for the estimate of the 5 — th derivative

m(z) = j1B;j(x) (0<j<p)
Technically, an estimate of the j — th derivative requires p > j.
Practically, one should choose at least p > 7 + 1.

Derivative estimates are often more variable than estimates of the
regression function. The higher the derivative, the higher tends to

be the “optimal” (in a sense to be defined later) bandwidth .
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Example: Fossil data (all fits using h = 2)

strontium ratio

0.70725 0.70730 0.70735 0.70740 0.70745 0.70750

0.70720

Derivative estimation (cont.)

fossilLlocpoly$y

4e-05

2e-05

0e+00

-2¢-05

1st derivative

fossil2.locpoly$y

1e-05

0e+00

-1e-05

-2e-05

-3e-05

2nd derivative

a\
N
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Matrix notation

Let

1 Xl—ZC (Xl—ilj')p Y1
X=|: 5 Cy=
1 X,—2 ... (X, —2x)? Y,

and B8 = (Bo,...,0p), W =diag{wi(z),...,wp(x)}. Then

> wi(z) (Y - Bi(Xi - :v)j> = (y —XB)'W(y - XB)
i=1 =0

with the straightforward weighted least squares solution

8= X"WX) X Wy (4)
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Evaluation of performance

Having an estimator m(z) of m(x), one is interested in assessing
its performance.

The criterion usually employed here is the mean squared error
MSE(z) = F [(m(a:) — m(az))Q\X}

with X = (X1,..., X,,).

The integral-version evaluates the entire curve and is given by the
mean integrated squared error

MISE:/I\/ISE(:U)w(:U) dx

where a weight function, e.g. w(z) = f(x), may be employed.

Note that both MSE(x) and MISE are random variables (as they
depend on X7,..., X,) and that the expectation is taken with
respect to the conditional distribution Y7,... Y, |X.
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Bias-variance decomposition

We have
MSE(z) = [(m(az) m(aj))2]X]
= Eln?(2)[X] - 2m(z) Elin(z)|X] + m*(z) +
HEm(2)[X]}? — {Eln(2)X]}* =
= {Eln(z)|X] = m(z)}? + Elm*(2)[X] — {Eln(z)[X]}* =
= (Biasi(2)|X])* + Var[i(z)[X]
with

Bias[in(2)[X] = Eln(z)|X] — m(z)
Var|m(z)|X] E[in®(x)|X] — {E[m(x)|X]}?.



L I

Bias and variance calculation

Firstly, note that 1 (z) = €73, with e; = (1,0,...,0)T € R
One can show that bias and variance of m(x) can be written in the
following form:
Bias((2)|X) = ef (XIWX)"'X?W(m - Xg3)
Var(m(2)|X) = el (XITWX) I(XTEX)(XTWX) le

with m = (m(Xl), e ,m(Xn))T, > = diag{w?($)02<$i)}1§i§n.

These formulas contain unknown quantities and are hard to use
and interpret.

This is why asymptotical versions of these formulas are developed.

—n. 54/1¢



Kernel Asymptotics

We assume that the bandwidth is small (h — 0), but that the

number of observations increases to infinity more rapidly than the
bandwidth falls (nh — ©0).

We define the kernel moments
nj = [wWK(u)du, v; = [w K?*(u)du.

One can show that under these conditions the following asymptotic
approximations hold:

polynomial order | Bias(m(x)|X) ~ Var(m(z)|X) ~
p=0 %{m”(x) +2m/ () L) ';;géégi
p=1 —-m’(z) —iff(x)

Literature on kernel asymptotics: Fan & Gijbels, 1996, Wand &
Jones, 1995.
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Kernel Asymptotics (cont.)

Interpretation:

® With increasing bandwidth h,
» the bias increases,
» the variance falls.

® The bias of the local linear fit does not depend on the design
density f(x) (one says, the local linear fit is design-adaptive).

® The local linear fit is preferable to the local constant fit, because it
reduces the bias compared to a local constant fit, but does not lead
to an Increase In variance.
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Linear smoothers

Recalling the matrix notation, the fitted values for a local
polynomial fit are given by

A

y=X08=XX'WX)"'XWy =Ly
with
L=XX'WX)"'xX'w,

Smoothers of the form ¥y = Ly, for some n x n matrix L, are
called linear smoothers.

L is generally referred to as the hat matrix and in the smoothing
context as the smoother matrix.

The degrees of freedom of a linear smoother are given by
dfﬁt — tr(L)

and represent the “equivalent” number of parameters used.
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Prediction

® We have a linear smoother y = Ly, i.e.

U1 59 Y1

where £% is the row of L responsible for estimation of m(-) at
target point X.

® For any arbitrary value z, the estimate of m(x) can then be written
as
. T
m(z) = £,y
® In case of the local linear fit,

o7 — Z”_llsz-(w) (51(2) ... s ()

—n. 58/1¢



Confidence bands

® The variance of m(x) is given by
Var{m(z)} = € Cov(y)ls.

® Assuming homoscedasticity for the moment (i.e.
0(X1) =...=0(X;) = o), one has Cov(y) = oI, and hence

A

st.dev.{rh(xz)} = 7||€;||

for some suitable estimate ¢ of o.

® A very rough 95% pointwise confidence interval for m(z) is given

by
() £+ 2 x st.dev.{m(z)} = Ty +2 x &[4,
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Confidence bands (cont.)

® Application to Fossil data:
> library(locfit)
> fossil.locfit <- locfit(strontium.ratio
data=fossil)
> plot(fossil.locfit, band="global", col=3)
> points(age, strontium.ratio)

~Ip(age, h=6),
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® |locfit also offers the possibility to account for heteroscedasticity

using the option band ="local"

. The confidence bands for the

fossil data are almost the same then.

—n. 60/1¢€



Confidence bands (cont.)

® Note that this approximation is very rough.... Confidence bands
constructed in this manner

# ignore the variability in estimating o.

» are incorrect for small sample sizes (m(x) is only asymptotically
normal).

°

ignore the bias.

# ignore additional variability due to smoothing parameter
selection.

® ... so better only refer to them as variability bands.

® An alternative technique which tries to avoid (especially) the first
two problems uses bootstrapping.
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Confidence bands via bootstrapping

® Roughly, the strategy is as follows [BA]:

K

e o o 0o @

Fit a pilot smoother to get a set of residuals.

Resample the residuals with replacement, yielding “new” errors.
Add these errors to the pilot estimate.

Compute the smooth regression function using the new errors.
Repeat all this a number of times, say b = 200.

At each point along the curve, compute sample quantiles using
the b estimates.

® Several variants of this do exist, including bias and boundary
correction.
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Confidence bands via bootstrapping (cont.)

® Pointwise 95% confidence bands for fossil data, using locfit
with h = 6 and b = 200:

strontium.ratio

0.70720 0.70725 0.70730 0.70735 0.70740 0.70745 0.70750

I I I I I I
95 100 105 110 115 120

® After all, normal and bootstrap—agased pointwise Cl's behave
similarly.
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Prediction intervals

Pointwise confidence bands give us for every x a confidence interval
for the “true” value of m(x).

When interested in a prediction interval for Y given a new
observation at x, one can apply the formula

Ly £2 % 64/1+ ||€.]]2

The additional term “1" under the square root captures (in
complete anlogy to parametric regression) the variability of the
observations around the estimated curve (in addition to the
variability of the curve fitting itself).

A 95% prediction interval should contain about 95% of the
observations.

The same words of caution as for confidence bands apply, though
they are less relevant here, as the prediction interval is larger and
will often “swamp” the bias and other sources of inaccuracy.
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Confidence and Prediction intervals

® Prediction intervals for fossil data:

> plot(fossil.locfit, band="pred",col=2)

. " ] 'Y} "
Confidende bands Prediction “bands
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£ D £ o
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. 7 01
o)
g -
5
N 0
0 N
© [ | | | | [
95 100 105 110 115 120 95 100 105 110 115 120
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Simultaneous Confidence bands

Again, pointwise confidence bands give us for every = a confidence
interval for the “true” value of m(x).

However, often would like to have a band [L(x),U(x)] such that
P{L(z) <m((x) < U(x)forallz e R} >1—«

where R is the range of the sample values X7,...,X,,.

The theory to this is relatively complicated, though analytical
solutions exist ([L] , Sec. 9.2, [RWC(], Sec 6.5).

implemented in function kappaO in R package locfit .

Generally, for the width of prediction intervals (PI), simultaneous
confidence bands (SCB), and pointwise confidence bands (PCB),
one will have the relation

Pl >SCB > PCB
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Pointwise and simultaneous confidence bands

Example: 95% confidence bands for Fossil data

vV V. V V V

Pointwise

0.70745
|

strontium.ratio
0.70735
]

0.70725
1

strontium.ratio

age
foss.loc <- locfit(strontium.ratio

crit(foss.loc) <- crit(foss.loc,cov=0.95)

Simultaneous

0.70735 0.70745
| | |

0.70725
1

age

~Ip(age,h=6), data=fossil)

plot(foss.loc, band="local",col=2); points(age, stron tium.ratio)
crit(foss.loc) <- kappaO(foss.loc,data=fossil,cov=0. 95)
plot(foss.loc, band="local",col=2); points(age, stron tium.ratio)
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Error variance estimation

® The (non-bootstrapped) Cl's and PI’s require estimation of &.

® Model-based estimate: 6 = \/ﬁ > é?, where d > 0 is a bias

correction. Common choices:

(1) d =0 (“crude” estimate),

(2) d =tr(L) (by analogy to parametric regression),

(3) d = 2tr(L) — tr(LL"Y) (correcting the bias of the RSS),
(4) d =1.25tr(L) — 0.5 (approximation of the latter).

> foss.loc

Fitted Degrees of freedom: 8.774 # this is tr(L)

Residual scale: 2.64e-05 # this is (3)

> sqrt(sum((residuals(foss.loc))"2)/106)

2.504392 e- 05 # this is (1)

> sqrt(sum((residuals(foss.loc))"2)/(106-8.774))

2.614954e-05 # this is (2)

> sqrt(sum((residuals(foss.loc))"2)/(106-(1.25 *8.774-0.5)))
2.63803e-05 # this is (4)
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Selection of smoothing parameters

® Smoothers generally involve some kind of smoothing parameter,
which steers the degree of smoothing.

® In case of kernel smoothers, the smoothing parameter is the
bandwidth h.

® For selection of the smoothing parameter, there are several
possibilities:
# An experienced data analyst may use his favorite, well proven

smoothing parameter (or “rule of thumb” smoothing parameter
selection tool) for a particular application.

» Trial and error’: Try several smoothing parameters until optical
inspection of the fitted curves indicates a reasonable fit.

® Use automatic model selection tools, which normally try to
maximize or minimize some numeric “optimality criterion”

# Use Bayesian or mixed models which estimate the smoothing
parameter as a by-product.
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Automatic smoothing parameter selection

Let us denote with m ) (x) an estimate of x using the smoothing
parameter A\.

A possible optimality criterion that may come into mind is the
average squared error

1 n

ASR(N) = =3 (Vi = (X))°
1=1

This criterion will be optimal (i.e. minimal), when m)(z;) =Y;
which would mean interpolation (i.e., strong undersmoothing) of
the datal

What has gone wrong here is that the same data are used to
construct the estimate and to validate it.
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Cross-validation

® One possible solution would be to divide the data at random into a
training set (e.g. 75% of the data) and a validation set. The
training set is used for model fitting, and the validation set for
model selection.

® This is often not feasible, as data are scarce.

® This leads to the idea of cross-validation: Divide the data set into
K =5o0r 10 subsets k = 1,..., K. For each i = 1,...,n, denote

(1) the subset to which it belongs. Then minimize

n

Ve = -3 (¥ - 0 (x))
1=1

where m;"“) (X;) is the estimate of m(X;) using all data except
subset (7).

® An extreme, but the most popular, case of this is leave-one-out
cross-validation, in which K = n.
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| eave-one out cross-validation

® Again, the leave-one out cross-validation criterion takes the form

V) =3 (Y (X))

=1

where 1, (X;) means that all data except X; are used to estimate

® For linear smoothers 7 (X;) = ), £i;Y;, with smoother matrix

L) = (4ij)1<i<n,1<j<n, this criterion can (after some simple steps
[FT, p. 161]) be written as

cvor=13 (15 ?2&”)2 -

1=1
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| eave-one out cross-validation

® Fossil data.

® (CV(A) for a local linear fit (left), with bandwidth selected at
h = 0.9, and the corresponding fitted curve (right):

cv(h)
strontium.ratio

&

O
oo
o
]

o

0.70720  0.70725 070730  0.70735  0.70740  0.70745  0.70750
|

7.0e-10 7.5e-10 8.0e-10 85e-10 9.0e-10 9.5e-10 1.0e-09
|

T T T T T T T T T T
0.5 1.0 1.5 2.0 95 100 105 110 115 120

h age

® The fitted curve is partly undersmoothed, which is quite typical for
cross-validation.
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Generalized cross-validation

The leave-one-out CV criterion can be computationally
burdensome.

A simplified version is obtained by substituting the leverage values
l;; through their average, £ = L >°" | £;; = +tr(Ly).

This leads to the so-called generalized cross-validation criterion

GCV()) = 1 Z (Yz — m)\(Xi)> _ ASR(_)\ 5)

_ Y
n 1—/ (1—12)

which is implemented in many smoothing software packages (e.g.
locfit , pspline ).

Normally, the curves C'V'(\) and GCV () are very close.
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Other model selection tools

Another important criterion is Mallows™ C,,
Cp(A) = ASR(N) + 26°dfg (V) /n

using any estimate of 0.

It can be shown through an Taylor expansion of (5) [RWC, p. 120]
that

GCV(X) = ASR(N) + 267 (N)dfg (\)/n
with 62(A) = ASR()) [Recall that dfg;, (A) = tr(Ly)].
Further, for Gaussian and known error o2, the AIC criterion

AIC(N) = —2log L + 2dfg. (\)

is exactly Z5Cp(N).

The three criteria differ essentially in the type of variance estimator
used, and one should get similar results using either of them.
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Plug-in bandwidth selection

® For kernel smoothers, one has convenient access to optimal
bandwidths through asymptotic expressions.

® Basic idea: Find the bandwidth A minimizing the integrated
asymptotic mean squared error MISE(h) = [ MSE(m(z)|X) dz,
with

MSE(m(x)|X) = Bias?(m(z)X) + Var(m(z)|X) =

We set MISE'(h) =0 and get

h = const - (ff( ({u];)mm ) B n—1/5

® Here, f 2 dz is unknown. It has to be estimated and
“plugged in” to the formula above.
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Plug-in bandwidth selection (cont.)

® A plug-in bandwidth selector for local linear regression is
implemented in R function dpill  (KernSmooth )

® The smoothness of the estimate of the (integrated) m” is
controlled through Mallows™ C),.

® Example: Fossil data:

> library(KernSmooth)
> dpill(age,strontium.ratio)
[1] 0.7875148

— CV
= = Plug-in

trontium.rat
0.70720 0.70725 0.70730 0.70735 0.70740 0.70745 0.70750

95 100 105 110 115 120
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Variable bandwidth selection

We have so far considered constant bandwiths h.

In practice, the regression curve m might exhibit different degrees
of smoothness in different parts of the predictor domain, so that a
variable bandwidth h(x) is more adequate.

In locpoly , one can specify a variable bandwidth by providing a
vector hq,..., hy,,, where m is the size of the grid z1,...,x,, on
which the estimated regression function is estimated.

In principle, a variable bandwidth h(x) is immediately obtained by
calculating M SE'(h) = 0, yielding

) — V002(37) 1o n—1/5
hie) = (f(:v)(m”(x))2u%)

for the local linear smoother — but no implementation known.

The function lokerns in package lokern features variable plug-in
bandwidth selection for local constant kernel smoothers.
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Bandwidth selection - Classical vs. plugin

In the nineties, there was a clear tendency to move away from
“classical methods” as CV, as they “exhibit very inferior asymptotic and
practical performance” compared to plug-in methods (e.g. Ruppert,
Sheather & Wand, 1995)

Among several objections against CV, it was claimed that CV
bandwidth are ambiguous (several minima) or too variable, that
they undersmooth, and do not allow for variable bandwidths.

These views were questioned by Loader (1999), who argued that

“plug-in methods are heavily dependent on arbitrary specification of pilot
bandwidths and fail when this specification is wrong. The often quoted
variability and undersmoothing of CV reflects the uncertainty of bandwidth

selection .
This insight leads to the resolution interpretation of the bandwidth.
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Family plots

® Study simultaneously a wide range of bandwidths

® The philosophy behind this is that different useful information can
be available at different degrees of smoothing.

® Family plot for fossil data with emphasized bandwith at h = 1.2:

trontium.rat
0.70720 0.70725 0.70730 0.70735 0.70740 0.70745 0.70750

95 100 105 110 115 120

age

® A question naturally arising from this is, for instance: Is the dip at
age =~ 98 “really there™?

—n. 80/1¢€



Feature extraction with SiZer plots

A bump or a dip corresponds to a location where the first
derivative crosses the zero line.

Hence, look at the first derivative and assess if it “significantly
Crosses zero’

This is the Sizer ( Significant Zero crossings of derivatives)
technique.

Illustration for fossil data, with confidence bands
m} (z) £ q - SD(m}, (z)) [RWC, p. 157]

5 . i = Inﬂlhﬂ

\_  —Decling

—= g Neither
e = Sparse x

First derivative
-5*1005 0 5"10n5
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Feature extraction with SiZer plots (cont.)

® Full Sizer plot of Fossil data (black =T, yellow=]).

> require(SiZer); fossil.sizer <- SiZer(age, strontium.r atio)
> plot(fossil.sizer, colorlist=c("yellow", "grey50", "b lack™))

@
—

© _
—

<
—

N
—

logso(h)

0.8 1.0

0.6

s
o

95 100 105 110 115 120

® The bump at age 115 is signifi€dht for all bandwidths considered.

® There is no level of smoothing at which the dip at age =98 is
significant. Hence, it is “not really there".
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Robust smoothing

® Most smoothing methods are relatively sensitive to outliers due to
the use of a quadratic error criterion.
® Among the approaches to robust smoothing, the following tools

have been suggested
» lIterative downweighting of observations associated to large

residuals (Cleveland, 1979):
s R functions lowess (scatterplot smoothing)

s and loess (surface fitting).
» Estimate Med(Y'|X = z) instead of E(Y|X = x). This entails
to minimize the sum of absolute instead of sum of squared

residuals:
s Implementation wmat the course home page.

® More by Roland Fried on Wednesday!
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Robust smoothing (cont.)

® Fossil data with two artificial outliers:

> fossil.0 <- lowess(fossil2$age, fossil2$str, f=0.2,ite

# not robust

> fossil.1 <- lowess(fossil2$age, fossil2$str, f=0.2) #

> fossil.2 <- wm(fossil2$age, fossil2$str, h=2) #

strontiym.ratio

0.70725  0.70730 0.70735  0.70740  0.70745  0.70750

0.70720

median

reweighted

= = notrobust
- =+ reweighted
—— median o /o'o

95

age
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Multivariate Smoothing

® Local regression can also be used if the space of explanatory

variables is multivariate, i.e. if a smooth function m : R — R is
to be estimated from observations

(XF,v),i=1,...,n}, withX; = (X,...,Xia)".

® letx = (x1,...,24) a point in R%. A multivariate version of (3) is
given by
n d ) °
Z< Yz'—ﬁo—Zﬁj(X?;j—ﬂ?j) » Ku(X; —x), (6)
i=1 | j=1 )

where K1(-) is now a multivariate kernel function as defined before
for kernel density estimation.
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Multivariate Smoothing (cont.)

® In matrix notation, 3 = (6o, 01, ...,04), W = diag{ K(X; — )},
I Xy1—x1 - Xig—2g
X=1: : : , and the solution takes
1 Xp1—x1 -+ Xpg— T4
the same form as (4).
® According to the multivariate Taylor expansion, the coefficents

_8m

= — =1,...
ﬁ] axj<x)7.] Y 7d

play the role of partial derivatives, and Bj are their estimates.
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Bivariate kernel smoothing

® R functions npreg (see Example 3) or loess (using “nearest
neighbors” instead of bandwidths).

® |et's do the local linear fit ourselves:
> fitus <- matrix(0,25,55)
> for (i in 1:25) {
> for (j in 1:55) {
>  bi <- ustemp$latitude-xlat[i]
> Dbj <- ustemp$longitude-xlong]j]

> fitus.Im <- Im(min.temp ~Dbi+bj, weights = dnorm(latitude,
xlat[i],h1) * dnorm(longitude, xlonglj],h2), data = ustemp)
> fitus[i,j]<-fitus.Im[[1]][1]
>}
>}
® Remarks:

» For the local constant fit, remove the lines for bi and bj and
just write 1 after the ~ symbol.

& dnorm(latitude xlat[i],h1) — hil K (latltudzl—xlat[l])_
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The curse of dimensionality

Attention: With localized multivariate smoothing happens what
statisticians call the “curse of dimensionality".

Thought experiment: Assume the bandwidth vector
h = (hi,...,hq) is constructed in way such that the h; cover each

a half of the observations of their associated variable. For some
interior point x, which fraction p of the data X;,i=1,...,nis
actually contained in our local window @ + h?

e It d=1, then p=1/2 (clearly).
e Ifd=2, thenp=1/4.
s If d =10, then p = (1/2)!Y =~ 0.001.

Hence, in high dimensions local neighborhoods tend to be empty
even for large bandwidths! [HTF, p. 22ff]

This problem can in tendency already be observed in the local
linear fit to the US Temp data.
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The curse of dimensionality (cont.)

This phenomenon makes kernel smoothing for higher dimensions

difficult.
Poor results can particular be expected in the boundary regions.

For d > 2, local constant smoothing, i.e. 51 =... = 65 =0, may
be the safer option than local linear smoothing.

The usual way to circumvent the curse of dimensionality is to
replace the full interaction model m(x1,x2) by an additive
representation m(xz1) + m(xs). This leads to additive models and
we look at this later.

Also, it useful to look at alternative smoothing methods which do
not suffer from these problems (to this extent). One such family of
methods are the spline based methods.
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Section 2: Spline based methods

Scope of this section:

°

The broken stick model;
The linear spline basis;
Knot selection:
Penalization:
Smoothing splines;
Basis function systems;
B- and P-Splines;

Additive and semiparametric models;

© oo o o0 b0

Generalized additive models:
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An alternative approach

® Reconsider our piecewise linear model for the fossil data:

strontium.ratio

0.70720 0.70725  0.70730  0.70735  0.70740  0.70745  0.70750

95 100 105 110 115 120

® not too bad, but discontinuous, and uses 6 degrees of freedom
® we can save 2df by “joining the sticks at the knots”

® this leads to a continuous curve
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The broken stick model

® The “Broken Stick model” for the fossil data:
strontium.ratio = Gy + J1age+ (B2(age —105) 1 4+ B3(age—115)1 +€

where ay = a if a > 0 and 0 otherwise.

0.70725 0.70730 0.70735 0.70740 0.70745 0.70750

Ll | I L LUl I [ A
95 100 105 110 115 120

> library(SemiPar)

> fossil.spmfit <- spm(strontium.ratio ~f(age,knots = ¢(105,115),
basis = "trunc.poly", spar=0.001, degree=1))

> plot(fossil.spmfit, se=FALSE, col=2)
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The linear spline basis

® This idea can be further exploited. Assume we use a large number
of such broken sticks, with split points (knots) at locations
K1i,...,Kk. This leads to the truncated linear spline basis

17377(3:_/4“1)%-7'-'7(33_/{]()—#

and the corresponding spline model for m:

K
m(x) = Bo + bz + Z br(T — ki) + (8)
k=1

® The crucial point is then the choice of the number and locations of
the knots.
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Knot selection for linear splines

® L|IDAR data [RWC p. 62-64].
® The horizontal bar at the bottom indicates the knot positions.
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Knot selection for linear splines (cont.)

The more knots we use, the more flexible is the fitted function and
the smaller is the bias.

However, a large number of knots leads to an increased variance
and to overfitting (meaning that the curve is following small,
apparently random, fluctuations).

A possible remedy: Pruning, i.e. selectively deleting the knots (not
very pleasant as a time-consuming trial-and error work)

Hence, there is need for automatic knot selection tools. Candidates
are here classical model selection criteria, as for example:

o Cross-validation
o Mallow's Cp

Note: To look for all possible submodels of a model using K knots,
one has to compare > i (%) = 2% submodels!

Computationally very cumbersome, though some stepwise search
algorithms exist.
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Knot selection for linear splines (cont.)

We are left with the following options:

9

9

We can painstakenly (“automatic” or by hand) try to find the right
knot positions ki, and the right number of knots K.

Or we do not care too much about the ki and K, but we try to
control in some way the influence of the knots (through the
parameters by).

There are two basic approaches to implement the latter idea:

» Through penalization;

® Through a mixed model or Bayesian approach.

Before we look closer at these approaches, we introduce matrix

notation, which enables us to work in a somewhat more general
framework.
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Linear splines in matrix notation

1 X1 (Xl—/il)_|_ (Xl—/ip)_|_
® X — . . . ) .

1 Xn (Xn — /{',1)_|_ .« o (Xn — /{',p)_|_

/3 — (607517b17"°7b/€)T1 y — (yla"'ayn)T°
® Fitting criterion is

minimize  |ly — Xg[|* = (y — X8) ' (y — XB) (9)

® Hence, we have usual least squares theory. Taking the derivative
with respect to 3 gives the normal equations

2XX1'3 - 2Xy =0
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Linear splines in matrix notation (cont.)

Parameter estimates are
B=X"X)"'X"y
Fitted values are
y=XX'X)"' X'y =Ly

The hat matrix is
L=XXTxX)"1x"T

Degrees of freedom used

dfﬁt =tr(L) = K + 2
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Penalization

® We want to control in some way the coefficients by, k=1..., K
of the truncated polynomials, such that they are kept as small as
possible (hence, virtually eleminating superfluous knots), but are
still able resolve the complexity of the underlying function m.

® The idea how to do this is via a roughness penalty on the sum of
squared coefficients b + ... b%: Instead of minimizing (9), we
minimize for some A > 0

ly = XB|[> + A(b7 + ... b%)
which can be written as
ly — X8|I” + \3"Dg

with D = diag(0,0, 1k)
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Penalization (cont.)

A plays the role of a smoothing parameter similar to the bandwidth
h in kernel regression:

® For A = 0, we have the usual unpenalized basis function
approximation of m (“no smoothing”)

o For A — o0, the by,...,bx will be shrunk to 0. Hence, we
remain with By and (3; (which are not penalized), and the
resulting fit will be a straight line (“maximal smoothing™).

Parameter estimates:
B=(XTX+ D) X"y (10)

Fitted values:
y=XX'X+ D) X'y (11)

Smoother (Hat) matrix:

L=XX'X+ D) 'x? (12)
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Smoothing splines

A special (but important) case of penalization-based smoothing
methods are smoothing splines.

Here, a knot k. is positioned at every observation X;, giving K = n
knots.

One tries to find a function m that minimizes

n

S = m(X))R 4 A [ (' () du

g=1

The penalization is clearly necessary here as otherwise m(z;) = Y;,
i =1,...n, which would mean that we had interpolated (most
seriously overfitted!) the data.

This form of penalization makes the interpretation as a roughness
penalty evident: We penalize large second derivatives, i.e. large
curvature, of the regression function.
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Smoothing splines (cont.)

® One can show theoretically ([GS], p. 15ff) that the solution to this
problem is a natural cubic spline, i.e. a string of polynomials of
third degree such that the second derivatives are continuous at the

knot locations, and the second and third derivatives are zero at the
boundary knots.

® Then, in the notation used before,
s B=(m(X1),....,m(X,)) =m,
s X=1,,
® D is a rather complex penalty matrix that we do not display
here (e.g., [FT, p. 154]).

® Hence, we have from (10), (11)

m=y=0=1,+AD)" 'y

—n. 103/1¢



Smoothing splines (cont.)

® Fossil data with smoothing splines:
> library(pspline)
> fossil.ssp<- smooth.spline(age, strontium.ratio)
> fossil.ssp
Smoothing Parameter spar= 0.8190292 lambda= 5.905486e-05 (13
iterations)
Equivalent Degrees of Freedom (Df): 13.10510
Penalized Criterion: 5.782872e-08
GCV: 7.10339e-10
> plot(age, strontium.ratio)
> lines(fossil.ssp$x, fossil.sspBy, col=2)

—n. 104/1¢€



Basis function systems

Smoothing splines become computationally infeasible if the sample
size n is large (as B € R").

Hence, for large n, we really need to use a basis, with a relatively
small number of knots.

We have seen already the linear spline basis

Lx,(x —Ki)s,. ., (T — KK )+

This can, in principle, be replaced by any general basis
¢1(x),...,op(x) (often ¢p1(x) = 1) such that we have the model

D
m(z) = 3 Bi6y(x).

The n x D design matrix X then consists of the entries
¢ (Xi)1<i<n,1<j<D]-
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Basis function systems (cont.)

Examples for alternative basis function systems are
® Truncated power series
m(x) = B0+ fix+ ... BpxP + Zi{zl bi.(x — lik)ﬁ
® Radial basis functions (“thin plate splines”):
m(x) = 310 Biad + S uklr — mpPm T m = 1,2,3....
Polynomial ¢;(z) = (# — w)’ and exponential ¢;(x) = e*® bases.
The Fourier series 1, sin(wx), cos(wx), sin(2wx), cos(2wx), . . ..

Wavelets
Others ... See [RS], p. 43ff.

B-Splines.

© oo 0o @

—n. 106/1¢€



B-Splines

A B-Spline of degree d is constructed as follows :

e o 0 o

°

It consists of d + 1 polynomial pieces, each of degree d.

The polynomial pieces join at d inner knots.

At the joining points, derivatives up to order d — 1 are continuous.

The B-Spline is positive on a domain spanned by d + 2 knots;
elsewehere it is zero.

Except at the boundaries, it overlaps with 2d polynomial pieces of
its neighbors.

At a given z, d + 1 B-Splines are nonzero.

2 5= ] i3 i s 1 1
x1 x3 % X‘ID

I I
x2 x4

| R R SPAEs IEEER e, Rl | A
X 2 ¥ x4 x5 % X B ® xi0

b:

Illustrations of one isolated B-spline and several overlapping ones (a) degree 1; (b) degree 2.
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B-Splines (cont.)

® An example for a B-Spline basis constructed of B-Splines of degree
3 is given below [RS, p. 50]

e
@

o
(]

B-spline basis functions B(t)
o
s

o
()

00 % 10

Figure 3.5. The thirteen basis functions d efining an order four spline with nine
interior knots, shown as vertical dashed lines.

® A B-spline of degree three is also called an order four spline - order
is the number of parameters of one B-spline.
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B-Splines (cont.)

Technically, a B-Spline basis is constructed as follows:

9

9o
9

Devide the domain |51, Tmaz] iInto m” intervals using m” + 1
knots.

Each interval will then be covered by d + 1 B-Splines of degree d.

Add additional knots to the outermost left and right knots such
that the condition above is also fulfilled near the boundaries, this
implies that a total number of knots is m’ + 2d + 1 (Remark: Any
point where any B-Spline begins or end is a knot. If two B-Splines
begin at the same z, then there are two knots at x.)

The number of B-Splines in the regression is then m = m’ + d.

For a given d, denote B;(x) the value of the j — th B-spline,
7=1,...,m+d.

A B-Spline basis can be generated automatically e.g. by using
function bs in package splines .
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B-Splines (cont.)

® Given a set of n data points (X1,Y7),..., (X, Y,), the function
m(x) relating predictor and response is estimated as

where & = (G1,...,a&m)"

function

S = zn: [Y; - B(X;)) a}”

is obtained by minimizing the objective

(y —Ba)'(y —Ba) =

ly — Bal’

with B = Bg(X¢)1§7;§n,1§egm-
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P-Splines

® Now again, let the number of knots be large (to capture all
relevant features of the curve). Similarly as for smoothing splines,
one could penalize the second derivative (O'Sullivan, 1986)

S = Z {Y; — Zongg(a:i)} + )\/ {Z ongé’(az)} dz,
i=1 =1

® Minimization of that leads to rather complex mathematics

® Eilers and Marx (1996) proposed a simple alternative penalization.
Idea: The resulting curve will be smooth, if adjacent coefficents
ay_1, oy do not differ greatly. This could be controlled by
penalizing their differences Aoy = ap — ay_q1, or — resembling
second derivatives — second differences:

AO&% = Nay — Nay_1 = ap — 201 + ap_o
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P-Splines (cont.)

® This leads to the minimization problem

n m 2 m
S = ) {Y7; -y ozeBe(:m)} +A) (APay)
i=1 /=1 =3

= |ly — aB(2)|]° + Ao’ D; Dacx

with Dy = diag(A?) € RM—2xm=2

® According to (11), parameter estimates are then given by
&= (B'B+\D.iD,) 'Bly
® Other orders of differences are possible. Generally: Smaller

difference orders lead to easy computations, but large difference
orders give smoother fits. The order 2 is a good compromise.
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P-Splines (cont.)

® P-spline fit for fossil data:

strontium.ratio
| | | !

0.70720  0.70725  0.70730  0.70735  0.70740  0.70745  0.70750
1

95 100 105 110 115 120

age

> source("http://www.stat.Isu.edu/faculty/marx/pspli ne.txt")

> fossil.pspline <- pspline.fit(strontium.ratio, age,

X.predicted=age, degree=3, order=2, lambda=0.15)

> plot(fossil); lines(age[order(age)],
fossil.pspline$summary.predicted[,("Predicted")][or der(age)], col=2)
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P-Spline Software

Attention: R function names are here quite confusing:

® The function smooth.Pspline in package pspline does
actually not use B-Splines, but penalized smoothing splines.
® The function smooth.spline in package stats does use

B-Splines if the number of knots specified is smaller than n,
and it also features penalization. However, it uses second
derivatives instead of differences.

P-Splines (in the Eilers/Marx sense) do not exist as an invokable
function within an R package.

However, they have been frequently employed as building blocks for
other purposes (mgcy, survival )

Further useful implementations of P-Splines do exist in conjunction
with (partially) Bayesian methods, and we look at this later.
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Multiple predictors

® Consider data on athmospheric ozone concentration in the Los
Angeles basin (Breiman and Friedman, 1985)

® We are having n = 345 observations on the following four variables:

» daggett.pressure.gradient = ¢: pressure gradient at
Daggett, California, in mmHg,

# inversion.base.height = h: inversion base height, in
feet.

# inversion.base.temp = ¢: inversion base temperature, in
degrees Fahrenheit.

o ozone.level = y: daily ozone concentration (response), in
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Multiple predictors (cont.)

® We attempt to visualize the data (red= high ozone level):

> data(calif.air.poll, package="SemiPar"); require(lat

> attach(callf.air.poll)

> ozone.col<- ozone.level/max(ozone.level)
> cloud(inversion.base.temp
daggett.pressure.gradient, data=calif.air.poll,

col=rgb(ozone.col,0,1-0z

~inversion.base.height +

pne.col))

ersion.base.hejg

daggett.pressure.gradient
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Additive Models

Due to the curse of dimensionality, fitting a full interaction model
y=m(g,h,t) +¢
is difficult!

A useful simplification is the additive model
y = a+mi(g) +ma(h) +ms(t) +¢

The intercept « could in principle be absorbed into any of the
y
m;'s, but then they are not uniquely defined any more).

We have to estimate the three functions mq, ms, and msy
simultaneously, using smoothers with associated smoother matrices,

say, L1, Lo, and Ls (for instance, penalized smoothing splines).

The idea is simple: Note that y — a — m1(g) — ma(h) = ms(t) + €,
so given «, m1 and msy, we can fit the left hand side of this
equation versus t, yielding an estimate of mg. This process, called
backfitting, is iterated until convergence.

—n. 117/1¢€



Backfitting

® Formally, assume we are having p predictors X;, 7 =1,...,p, and
corresponding observations X;;,7 = 1,...,n. Consider a a model
of type y = a + Y5 m;(x;), and let us denote
m; = (m;(X1;),...,m;j(Xn;))’. Then the backfitting algorithm

[HT, p. 91; FG, p. 266] proceeds as follows:

: T = L 0
() Initialize: o =y, m; = m;

(i) Cycle: For 3 =1,....p,1,...,p,...

m; =Lj(y —a— ) m,)

b

(i) Continue (ii) until the individual functions don’t change.
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Additive model for ozone data

> library(gam)

> 0zone.gam<- gam(ozone.level ~s(inversion.base.temp)+
s(inversion.base.height) + s(daggett.pressure.gradien t),
data=calif.air.poll)

> par(mfrow=c(1,3)); plot(ozone.gam)
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Additive model for ozone data (cont.)

> summary(ozone.gam)

(Dispersion Parameter for gaussian family taken to be 18.61 55)
Null Deviance: 21854.51 on 344 degrees of freedom

Residual Deviance: 6180.345 on 332.0003 degrees of freedom

AIC: 2002.594

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)
(Intercept) 1
s(inversion.base.temp) 1 3 10.8124 8.528e-07 ko
s(inversion.base.height) 1 3 9.0253 9.231e-06 ok

s(daggett.pressure.gradient) 1 3 16.6828 4.055e-10 Hokk
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Simple semiparametric models

® Onions data: contains 84 observations from an experiment
involving the production of white Spanish onions in two South
Australian locations ("4 and “e").

® Plotted is log(onion yield ) in grammes per plant vs. areal
dens ity of plants (plants per square metre):

55
+

5.0

log(yield)
45
+
+
#
+

4.0

35

50 100 150

dens

> data(onions, package="“SemiPar”); attach(onions)
> plot(dens,log(yield), pch=ifelse(location==1, 3,20))
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Simple semiparametric Models (cont.)

We try firstly a parametric additive model:
log(yield ;) = By + Bilocation ; 4 (G.dens;
where

. 0 if 7th measuremeant from Virginia
location ; =

1 if sth measuremeant from Purnong Landing

> onions.Im<- Im(log(yield) ~
dens+location)
> print(onions.Im)
Coefficients:
(Intercept) dens location

5.61383 -0.01053 -0.31543
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Simple semiparametric Models (cont.)

® At the first glance, a good fit, but close inspection reveals that
there seems to be some curvature.

® This suggests to fit a semiparametric model
log(yield ;) = Gp + Bilocation ; + m(dens ;)

® Standard gam output with pointwise confidence bands:

N
1=

partial for location

location

> onionsl.gam<- gam(log(yield) ~location +m(dens))
> plot(onionsl.gam, se=TRUE)
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Fitting Semiparametric Models

® Model: Yi:t;-rﬁ—l—m(Xi)—l—ei, t, e RP, X, €eR,1=1,...,n.

® With design matrix T = (t1,...,t,)’ for the parametric part, this
can be seen as a model with two “smoothers”
s L; =T(TTT)~'T? (this is just the usual hat matrix for the

linear model!)
» L5 (smoother matrix for m(X))

® |terative estimation:

B = (T'T)"'X'(y —m)
m = L(y—Tpg)

Plugging the latter into the former, this has an explicit solution
B={TT(I—-Ly)T} 'TT(I - Ly)y.

implying that no backfitting is needed here! (Green, Jennison, &

Seheult, 1985)
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Generalized additive models

® A generalized additive model is a model of type
q
p=EY)=hn)=h|B+t"B+> miX;)
j=1

where the density f(Y') is a member of the exponential family (the

expectation and the density have to be seen conditional on
t, Xq1,...,X,).

® h(-) is called the response function and h=1(-) the link function.

® Model fitting happens iteratively using weighting least squares
(Fisher-Scoring), either in conjunction with backfitting or using a
mixed model approach (later today).

® In the important special case ¢ = 0 we have a generalized linear
model.
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Generalized additive models (cont.)

® For the choice of the exponential family and link function, the
following general (but not obligatory) rules apply:

Response type Exp. family  h(n)

continuous Normal n

cont., positive ~Gamma n~! or exp(n)

count data Poisson exp(n)

0-1 data Bernoulli exp(n)/(1 + exp(n))

proportions Binomial exp(n)/(1 +exp(n))

® The link function printed in red corresponds to the so-called
natural link, which leads to models with convenient mathematical
and statistical properties [FT, p. 20].
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(Generalized) additive model software

® A wide range of alternative response distributions are supported by
the R function gamin package gam. This function uses backfitting,
and either local polynomials (of degree 1 or 2) or smoothing splines
as smoothers.

® There exists an alternative gam implementation in R package mgcv
using a penalized basis function approach, which features automatic
smoothing parameter selection via generalized cross-validation.

® SemiPar supports Gaussian, Poisson, and Binomial response
distributions.
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Example: Respiratory deaths

Respiratory Deaths in S3o Paulo, Brazil, 1994-1997:

The response variable is the number of daily respiratory deaths of
children under five in the city of Sdo Paulo.

As explanatory variables we have daily measurements of humidity,
temperature, number of deaths due to other reasons, and a variety
of pollutant concentrations.

Sample size excluding observations with missing values: n = 1128.
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TEMPO

Example: Respiratory deaths (cont.)

Enumeration of days

SEGUNDA Indicator for Monday

TERCA
QUARTA
QUINTA
SEXTA
SABADO
OTHRES5
TMIN.2
UMID
PMME.2
SO2ME.2
COME.2
O3ME.2
RES5

Analogous indicators for

Number of other death causes than
Two-day-lag of minimum temperature
Relative humidity
Two-day-lag of concentration of
Two-day-lag of of SO
Two-day-lag of concentration of
Two-day-lag of concentration of
Number of respiratory deaths.

1 : Monday

0 :
Tuesday,

not Monday

Wednesday,

Thursday,

Friday,

Saturday

respiratory.

in
in %.

PMio in

°C

pg/m?
pg/m?.
pug/m?.
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Example: Respiratory deaths (cont.)

® The response is count data — usually this is modelled by a Poisson

model.

® For explanatory purposes we look closer at the number of deaths

over time:

RES5

> library(gam)

> gam.resp2<- gam(RES5 ~s(TEMPO,df=10),

12

10
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family="poisson"(link=log),data=spdata)
> plot(TEMPO,RESS); lines(TEMPO,gam.resp2%$fitted,col= 2)

T T
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Example: Respiratory deaths (cont.)

® There is a clear seasonal trend which we model nonparametrically

® We are fitting now the so-called ‘Core-Model”, as e.g. in Singer et
al. (2002):

n = Bo+ f1(TEMPO) + fo(TMIN.2) + f3(UMID) +
+ (1 -SEGUNDA + ...+ 36 - SABADO + 37 - OTHRESSH
> gam.resp3<- gam(RES5 ~ s(TEMPO,df=10)+ SEGUNDA + TERCA + QUARTA +
QUINTA + SEXTA + SABADO + s(TMIN.2)+ s(UMID) + OTHRESS,

family="poisson"(link=log))
> plot(gam.resp3)
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Example: Respiratory deaths (cont.)

® The usual stategy is then to add subsequently the pollutants to this
model and see if they lead to a substantial decrease in deviance

(= —2log L + const).

® For model comparion, one way is to look at
AIC = —2log L + 2dff; (the smaller, the better!)

® For example, adding a smooth term for SO2ME.2 decreases the
deviance and AIC from

Residual Deviance: 1325.020 on 1099.000 degrees of freedom
AIC: 4053.545

to
Residual Deviance: 1303.354 on 1095.000 degrees of freedom

AIC: 4039.879
which can be checked using the summary function.
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Example: Respiratory deaths (cont.)

Assume we have decided for the following model:

> gam.resp5 <- gam(RES5 ~s(TEMPO) + SEGUNDA + TERCA + QUARTA + QUINTA
+ SEXTA + SABADO + s(TMIN.2) + UMID + OTHRES5 + s(SO2ME.2) +
s(O3ME.2), family=poisson(link=log))

We predict the number of respiratory deaths on Monday, the 3rd Jan
1994, with 16 deaths from other sources, min. temperature of 16.7 C,
humidity 86.78%, and two-day-lag SO5 and O3 concentrations of 5.9

and 101.9 ;g/m?, respectively, through

> predict(gam.resp5, newdata=data.frame(TEMPO=3, SEGUN DA=1, TERCA=0,
QUARTA = 0, QUINTA=0, SEXTA=0, SABADO=0, OTHRES5=16, TMIN.2=16.7,
UMID=86.78, SO2ME.2= 5.9, O3ME.2= 101.9))

0.9532295

That is, the predicted value is exp(0.9532295) = 2.594074 (compared
to the observed value 2).
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Section 3: (Partially) Bayesian smoothing methods

Scope of this section:

® Mixed model approach to smoothing;
Geoadditive models,
Random effect models:

Parametric and nonparametric Bayesian inference;
Bayesian nonparametric density estimation;

Bayesian P-Splines;

© oo o0 0

Geoadditive models based on maps.
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Mixed model representation of linear splines

Consider the model formula
K
Y; =80+ 51 Xi + > up(Xi — kg + € (21)
k=0

The idea is to make a distributional assumption about
u = (u1,...,ur)’, which is often taken to be

u~ N(0,0°1)
Thus, the coefficients are hampered from taking arbitrary values,

which will ensure an increased smoothness compared to the
unrestricted model.
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Mixed model representation of linear splines (cont.)

® Denoting B = (80, 51)",

1 Xy (X1 —k1)+ - (X1—kK)+
S | | |

X = ; ; ; i ;
1 Xy (Xn —k1)+ - (Xn—KK)+

the model (21) can be written as a mixed model

u 2T 0
— — u 22
y=X0G+7Zu+ e, Cov[€] [ 0 J?I] (22)

® A mixed model can be seen as a partially Bayesian model - one

parameter vector (u) carries a distributional assumption, but the
other one (3) doesn't.
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Parameter estimation in mixed models

Rewrite (22) as
y = X3+ €', where € =Zu+e
This is just a linear model with correlated errors, since
Cov(e*) =V = 02ZZ" + 021

The estimator 3 for 3 is then obtained by weighted least squares. We
obtain the so-called BLUPs (best linear unbiased predictors) for 3

B=X'VIX)"'X'vly (23)
and u (via best prediction, [RWC], p. 98ff),

a= E(uly) =0,2"V'(y - XB). (24)
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Mixed models and penalized smoothing

® With ylu ~ N(X8 + Zu, 02I) and u ~ N(0,021), the
log-likelihood of (y,u) is given by

log(f(y,u)) = log f(y|u) + log f(u) =
1

2
O¢

1
202

— c—nlogag—Klogau— Hy—Xﬂ—ZuHQ— HU’HQ

® This shows how the concepts of random effects relates to that of
penalization: The actual smoothing effect is achieved through
penalizing high values of the uy, k=1,... K.

® Set \2 = 02/02. We arrive at the simple minimization problem
(after multiplication with 202)

|y —XB — Zu||* + N*|[u]* (25)
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On-the-fly estimation of smoothing parameters

9

9

9o

The higher lambda, the more the coefficients of the linear spline
basis are shrunk, and the smoother the fit will be.

A = 0 corresponds to the case “no smoothing’, i.e. to the fixed

effect model (8).

In contrast to “classical’ smoothing, where the smoothing
parameter has to be selected, it can be estimated here as

within the mixed model framework — no need for smoothing
parameter selection routines! This is a crucial advantage over the —
otherwise equivalent — formulation as penalized splines.
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Estimating the variance components

2

We remain with the task of estimating the variance components o

2
and 0.

This is possible via Maximum Likelihood (ML). As y ~ N(X3,V),
the log-likelihood of y under this model is given by

(8. V) = — {nlog(2m) +log [V] + (y — XB)"V~'(y ~ X1}

Substituting the formula (23) for 3 into the log-likelihood, one
obtains the profile likelihood ¢p(V'), which is a function only of V,

which in turn only depends on ¢Z and 2. Maximization of the

profile-likelihood with respect to o2 and o2 gives the ML-estimates
62 and 52 [RWC, p 111].

Alternative: Bias-corrected version REML (REstricted Maximum
Likelihood [RWC, p. 101]) ¢ = ¢ — 3 log | X1 V1X].
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9

9o

Knot selection in mixed models

Note again that this methodology does not do the choice of the
number of knots K and the choice of the knot locations k. for us.

However, due to the implicit penalization of knot parameters, the
problem of knot choice/selection is now less relevant. The point is
that one needs enough knots to resolve the underlying structure.
Coefficients corresponding to superfluous knots will automatically
be shrunk to small values. In fact, SemiPar uses

mn
K — (—, 20)
INax 4

Kl = (’“H ) th sample quantile of the unique X;, k=1... K.
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Smoothing with SemiPar

® Fitting Fossil data using a linear spline basis with SemiPar:

[ g‘sl Il 1‘80‘ [ i ! | \11\\5\\ [ HHl\z‘lH (NI
> library(SemiPar)
> fossil.fitl<- spm(strontium.ratio ~ f(age,basis="trunc.poly",

degree=1))
> summary(fossil.fitl)
Summary for non-linear components:

df Spar knots
flage) 12.76 1.324 25

® looks okay, but still quite wiggly!
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Smoothing with SemiPar (cont.)

® Truncated polynomial splines: Normally a degree p = 2 is sufficient
to get a smooth fit.

® Attention: The default setting in SemiPar is p = 1.
® Fossil data:

0.70750
|

0.70745
|

0.70740  0.70745
0.70740

0.70730  0.70735
|

0.70735
|

|
0.70730
|

0.70725
|
0.70725
|

| II Il \I [ 111 IHHI\ I 11 HHHHHUJIIHHHHH\HH \IHH L1 \IHH N | II Il \I [ 111 IIH\I\ L HHH\MUMHHHI\H \IIH LU L \IHH T

95 100 105 110 115 120 95 100 105 110 115 120

age age

df spar knots df Spar knots
flage) 10.06 2.243 25 flage) 8.867 3.419 25
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Multiple, additive, and semiparametric regression

® We have learned how to fit models of type Y; = m(X;) + ¢;

® All such extensions can be conveniently handled in a mixed model
framework by simply adding columns to X and Z.

® For instance, for a semiparametric model
Y; = 8115 + m(X;) + e
in linear spline representation for m, one has

1 177 X4 Bo
X=1: B=1 b

1 T, X, 52

(X1 —r1)+ -0 (X1 —kK)+ w1
Z = : : ,u =

(Xn — K1)+ - (Xn—KK)+ Uk

® Model fitting as before — no backfitting necessary!
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Model comparison

> onionsl.spm <-
spm(log(yield) ~location+
f(dens, basis="trunc.poly"))

> summary(onionsl.spm)
Summary for non-linear
components:

df spar knots

f(dens) 4.463 37.92 17

We spend 4.463df instead of 1df to reveal a rather small curvature.
s this worth the effort?

This would require a statistical test
Hy : podens versus H;p:m(dens)
which means in a mixed model context to test

Hy:02=0 versus Hy:02>0
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Model comparison (cont.)

Ruppert et al. [RWC, p. 147] recommend to use a (restricted)
likehood ratio test with test statistics

T = —2{(r(0,62;y) — (r(64;62;y)} = ... = 35.90

The asymptotic distribution of 1" under Hy is rather complicated
(roughly, it results in a mixture of x? distributions [RWC, p. 106,
168].)

p— values are obtained by simulating from this mixture and
counting the number (i.e. proportion) of times that the value

T = 35.90 is exceeded. For these data, this gives p = 7 x 10719,
which is a surprisingly strong result. Hence, the nonparametric term
is clearly significant!

not implemented in SemiPar.
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Geoadditive models

Geoadditive offer the possibility to include spatial information into
an additive model.

There are two types of geoadditive models:

1. Models using geographical information in terms of coordinates,
e.g. longitude and latitude.

2. Models using maps, wich are divided into certain districts.

The extension of additive to geoadditive models of type 1. is
straightforward in a mixed model framework and is implemented in
SemiPar

Geoadditive models of type 2 are supported in BayesX.

We have already seen a very primitive form of a geoadditive model
of type 1.: The bivariate local constant/ local linear fit to the model

min.temp = m(longitude, latitude)

for the US temperature data.
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Geoadditive models (cont.)

® The essential idea is to use a bivariate grid of knots kj, € R?,
k=1,...,K “covering’ the space of the X;, i =1,...,n.

® Application on US temperature data:
> library(SemiPar)
> spm.us2 <- spm(min.temp  ~f(-longitude, latitude))

> plot(spm.us?2)
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Random Effect models

® |ook at pig weight data: Growth curves for 48 pigs.

® For each pig, we have 9 repeated measurements. Hence, we have
“within-pig-correlation” and the data are not iid.

® A possible solution would be to install an intercept for each pig,
which would add 47 parameters!
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Random Effect models (cont.)

® The better idea is to use random effects U; ~ N (0, 0%)
(which need only one parameter), and to model
weight,; = fBo + U; + m(week;) + €;;
for pig 7 in week j.

® Again, easily done by including the U; into u and adding the
corresponding columns to Z.

> data(pig.weights)

> names(pig.weights)

[1] "id.num” "num.weeks" "weight"
> plot(spm(num.weeks  ~f(weight),
random= 1, group=id.num))

wwwwww

® Only a tiny trend to non-linearity here.
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Bayesian Smoothing

® Back to our original classification of smoothing methods:
1. Nonparametric (kernel) density estimation,

2. Nonparametric regression, including additive, semiparametric,
and spatial models,

3. Principal curves (and the like).

® Bayesian versions exist to concepts 1. and 2. There are no Bayesian
principal curves yet.

® Generally, one has to distinguish between Bayesian parametric and
inference.
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Parametric and nonparametric Bayesian inference

® Given:

o Data D = X;,...,X,, sampled from a population P, the

distribution of which is modelled depending on a parameter
vector 0 € ©.

» Some prior belief p(8) about 6.

® Then Bayesian inference is based on analyzing the posterior

p(D|0)p(0)
p(D)

p(0|D) =

® If dim(®) < ¢ < oo then one speaks of parametric Bayesian
inference.

® If dim(®) =00 or dim(®) = O(n), then we are in the world of
inference. © is then a function space.
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Bayesian nonparametric density estimation

Quite well studied, using methods from Bayesian nonparametrics.

Suppose we have iid data X; ~ F(z;),i = 1,...,n with unknown
distribution function F'.

Under a Bayesian nonparametric perspective we need a prior
probability model p(F") for F' in some infinite dimensional function
space. This requires to define probability measures on collections of

distribution functions, so-called random probability measures
(RPM).

Ferguson (1973) showed that the Dirichlet process is a possible
RPM.
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Bayesian nonparametric density estimation (cont.)

® The Dirichlet process has a simple update rule [Ghosh &

Ramamoorthi, p. 96], and one can show that the posterior
distribution is given by

E(tlzi,...,20) = pnFo(t) + (1 — pu)Fn(t| X1, ..., Xn),

where Fy(t) is a “prior’ distribution function, F,(t|...) the
empirical distribution function, and p,, € [0, 1] a sequence of form

C
- for some ¢ > 0.

® Such estimates are not "smooth”. A smoothing effect enters solely
through the prior, which is then "roughened” through the data.

® Bayesian nonparametric density estimation based on mixtures of

Dirichlet Process priors is implemented in the new R package
DPpackage
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Bayesian nonparametric density estimation (cont.)

® Attempt for the CD rates:
> library(DPpackage)
> saveDP1 <- DPdensity(CDrates, prior=priorl, mcmc=mcmc,
status=TRUE)

® Note that in priorl  and mcmcabout 10 tuning- and hyper-
parameters have to be specified, and computation takes ~ 20 sec.

= //
<
L1
e
o
2 J
T T 1
7.5 8.0 8.5
values
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Bayesian nonparametric regression

® This can be read in two ways:
o Bayesian nonparametric regression
» Bayesian nonparametric regression

What's the difference?

® Bayesian nonparametric regression uses the theory of Bayesian
nonparametrics, constructing probability measures on density or
function spaces, which then act as prior distributions for a Bayesian
analysis.

® object of intensive current research
# not object of this course!
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Bayesian nonparametric regression (cont.)

Within this course, we constrain ourselves to

Bayesian nonparametric regression,

meaning parametric Bayesian versions of usual nonparametric
regression methods.

Also, this is quite new and no “textbook material".

Current approaches:

» Bayesian P-Splines (Lang & Brezger, JCGS, 2005)

» Bayesian Regression Splines (Smith & Kohn, Journal of
Econometrics, 1996)

» Bayesian Smoothing Splines (Hastie & Tibshirani, Statistical
Science, 2000)

» Bayesian piecewise polynomials (Denison, Mallick, & Smith,
JRSSB, 1998)

e 7
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Towards Bayesian P-Splines

P-Splines work generally quite well.

The problem of smoothing parameter selection remains. Typically, it
is estimated via cross-validation or by minimizing the AIC criterion.

This often tends to fail, especially when several smoothing
parameters have to be selected simultaneously within an additive
model.

A Bayesian version overcomes these problems, as it estimates the
smoothing parameter(s) as a by-product, similar as in the mixed
model approach.

The Bayesian approach is very powerful (thanks to MCMC) and
adopts to very complex models, including (generalized) additive,
semiparametric, and spatial, models.
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Towards Bayesian P-Splines (cont.)

® We work directly within the framwork of the additive model, which
we write in short form as

Y7;:t;-r,3—|—m1(X7;)—1—...—1—mq(X7;q)—|—57; i1 =1,...,n. (26)

where t; is a vector containing all components which are modelled
parametrically, 3 contains the corresonding parameters, and

m;,7 =1,...,q are unknown functions of metric covariates. ¢; is

iid error with Var(g;) = o°.

® Modelling each function m;(x;) through an appropriate B-Spline

basis such that m;(z) = Y )*, aeBje(x;) = B;j(z)! atj, model
(26) can be written as

y=Bia;+...Bja, + TG +€

With, as before, Bj = Bjﬁ(Xi)lgiSn,lgﬁgm-
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Bayesian P-Splines

® The penalized likelihood can then be written as

L(y;B,o1,...,04) — A\ Z(A2a1g)2 — .= Z(AQQ(J@)Q
(=3 (=3
which has to be maximized with respect to 3, vy, ..., .

® |n a Bayesian approach these parameter vectors are random and
have to be supplemented with appropriate prior distributions.

® For the fixed effect 3 = (B1,...,3,)!, one simply uses diffuse
priors, I.e.
B; o< const, j=1,...,p.
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Bayesian P-Spines (cont.)

The prior for o has to account for the penalization

To this end, note that from Aa?e = iy — 20501 + a9 follows
2
Ozjg = 20&j,g_1 — Ozj,g_g + /\ Ozjg

The idea is to construct from this a second order random walk prior
for a4, by setting

Qjp = 20501 — Qi p—9 + Ujy,

with
Ujg ~ N(O, 7']»2).

The variance parameter 73-2 controls the amount of smoothing,

corresponding to the \; in the classical approach. Note the analogy
to the mixed model approach!
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Bayesian P-Spines (cont.)

® Summarizing, we work with the hierarchical model
[1]B;xconst, j=1,...,p.
o o< const, g =1,2.

Qjp = 2091 — Qjg—9+ Ujyy, J=3,...,m,
2 uje ~ N(0,77),
[ 3 ] 73-2 ~ IG(aj,b-); o2 ~ IG(ag, bo)
4 =1, b; = 0.005

® The choice of hyperparameters in [4] makes the hyperpriors in [3]
almost diffuse. It must not be completely diffuse, as otherwise the
posterior for the a¢; is improper.

® The actual parameters of interest are (5;)1<j<p, (0r)1<j<q,1<i<m.
(7-].2)]':1,,“,(1, and 0%. We sumarize all these parameters in one
vector 6.
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Bayesian P-Splines (cont.)
Then the posterior of the model is given by
q
p(0ly) < L(y;a,...,ay,8,0° H (|7} )p(73)] p(B)p(0?)

This posterior is is analytically intractable.

Therefore, inference is carried out by Markov Chain Monte Carlo
simulation techniques (i.e., algorithms for sampling from probability
distributions based on constructing a Markov chain that has the
desired distribution as its stationary distribution. The state of the
chain after a large number of steps is then used as a sample from
the desired distribution.)

The drawings happen for blocks of parameters given the other
parameters and the data.

No more datails here! See Lang & Brezger, JCGS, 2005.
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Example

® We fit the Fossil data using BayesX:

1.1E-4

4.7E-5

-2.1E-5

-9.0E-5

-1.6E-4

T T T T T
91.8 99.6 107 115 123

® The central line is is the actual fitted curve.

® The outermost variability bands are 95% pointwise credible
intervals.

® The inner variability bands are 80% pointwise credible intervals.
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Example (cont.)

® How to arrive at this plot?

® First, need to get the data set from R into BayesX:
o IinR:
> library(SemiPar); data(fossil)
> write(t(as.matrix(fossil)), file="J:/Data/fossil.da t")

® In BayesX:
> dataset fossil
> fossil.infile age strontium using J: \Data \fossil.dat

® Then, fit the model strontium; = m(age;) + &;:
> bayesreg b
> b.regress strontium=age(psplinerw2), family= gaussian using
fossil
> b.plothonp 1
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Example for additive (semiparametric) model

Reconsider Onions data.

data(onions, package=‘SemiPar’)

write(t(as.matrix(onions)), file='J:/Data/onions.da t")

dataset onions

onions.infile dens vyield location using J: \Data \onions.dat
bayesreg c

c.regress yield= location + dens(psplinerw2), family=ga ussian
using onions

> c.plothonp 1

vV V. V V V V

Effect of dens

172

110

-13.94

-75.9 -

T T T T T
18.8 60.3 102 143 185
dens

—D. 168/1¢€



Geoadditive models based on maps

® BayesX also offers the possibility to model spatial effects directly,
when one has a categorization of the observations into districts.

® For instance, Zambian map of districts stored in a boundary file

(*.bnd) :
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Geoadditive models based on maps (cont.)

® Given a map with, say, S districts, it is reasonable to assume that
responses depend on the spatial location where they have been
observed (for instance, due to similar geographical, regional, or
political conditions).

® This can be addressed through a spatial effect f5;, = Xsp7y, which
is added as an extra term to the linear predictor.

» X, is an xS incidence matrix whose (7, s)-th entry is one if
observation 7 corresponds to district s

® ~v=(v1,...,75)" is equipped with a Markov random field
prior which injects the spatial correlation into the model:

2
75|7U7U753 ~ N (Zu|neighbors of s CTus €T )

® This prior suggests that similar regions should have similar
parameters. Effectively, this means to do spatial smoothing!
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Example: Undernutrition in Zambia

® Data on undernutrition of children in Zambia.

® Undernutrition on children is measured through a stunting score
(“Z-score”) Z— score which is defined as

AL — MAI

O

Z;

where AT refers to the childs anthropologic indicator (here, height
at a certain age), M Al refers to the median of the reference
population and o refers to its standard deviation.

® The main interest is on modelling the dependence of undernutrition
on covariates including the age of the child, the body mass index of
the child’'s mother, the district the child lives in, among others.
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Example: Undernutrition in Zambia (cont.)

List and description of variables:

Variable Description

hazstd standardized stunting Z-score (Z;)

bmi mother’'s body mass index

district district where the child lives

rcw mother’'s employment status with categories “working” (= 1)

and “not working” (= —1)

edul/2 mother's educational status with edul = 1 and edu2 = 1 for complete primary
and secondary education, respectively (and -1 otherwise).

tpr locality of domicile with categories “urban” (= 1) and “rural” (= —1)

sex child's gender: male = 1, female = —1.
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Example: Undernutrition in Zambia (cont.)

® A model of tupe
hazstd = rcw+edul + edu2+tpr+sex+m(bmi)+m(age)+ fsp

is fitted, leading to the following posterior mean for the spatial
effect:

55555

® You will create this map in the practical!
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Section 4: Principal curves

Scope of this section:

® Principal component analysis;
Nonlinear PCA:

Hastie & Stuetzle principal curves;
Self-consistency;

3D principal curves;

Alternative approaches;

© oo o0 b

Principal manifolds.
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Principal curves - Introduction

® Principal Curves are smooth curves passing through the ‘middle’ of
a multidimensional data cloud X = (X1,...,X,), where X; ¢ R

® Examples:
d=2 d=3
Simulated “C" Price index/ employment

in the US 95-05

(]
14C £

infl

oOX®

8.0

Xi,1)

450 160 170 180 190 200

rate

20

0
.5 40 45 50 55 6.0 65

60
40

120 +

100
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Principal components

® Principal curves are nonparametric extensions of principal
components.

® Principal components provide a sequence of best linear orthogonal
approximations to a data cloud

X = (X4,...,X,), where X; € R?.

® For example, first and second principal component for a simulated
data set [HTF]:

Largest Frincipal o
Comporent

g © Smallest Principal
Comporent
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Principal component analysis (PCA)

® Given a random variable X in R? with covariance matrix X, the
eigen decomposition is given by

> =TATY, (19)
where A is a diagonal matrix containing the ordered eigenvalues
Aj = Var('ny) of 3, 5=1,....d.
® The columns of
I'=(v,---57g)

are the eigenvectors of X.

® The first eigenvector ~v; maximizes the variance of v/’ X (among
all v € R with ||v|| = 1 ); the second eigenvector v, maximizes

the variance of v/’ X over all v € R? with ||| = 1 which are
orthogonal to ~, and so on.
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Linear and Nonlinear PCA

® The process of finding the first principal component line can be
dissected into two steps (w.l.o.g. . = 0):

Projection: Find a linear mapping
fx):RY —R,x—~vlx(=1).
Reconstruction: Map back to the data space
g(t) : R — Rt — ~,t.

.. such that
n
> IXi — gt = Z 1X; — (g o f)(X)| (20)
i=1
IS minimized.
® Substituting f and/or g by nonlinear functions leads to nonlinear
principal component analysis (NLPCA) [G, Chapter 2]
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Principal curves

® Principal curves go one step further: They aim for a fully
nonparametric estimation of the curve.

® Formally, a one-dimensional curve in a d—dimensional space is a
vector-valued function

g(t) : R — RY.

Its 7—th component, 7 = 1,...,d, are called coordinate functions.

® Defining a model of type

X =gl(ti) + e,

the task is to find “the best” g.
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Principal curves (cont.)

Parametric and Principal components
nonparametric regesssion and curves
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Principal curve parametrization

® A common parametrization ¢ for (principal) curves g(t) : R — R?
is the unid-speed-parametrization:

» Recall that the arc length of a curve g from a parameter ¢ to
ty is given by £ = [ ||g'(t)]| dt.

o Thatis, if ||g'(t)|| =1, then £ = t; — tg. This means that
distances in parameter space correspond to the arc length in
data space, which is intuitively desirable.

» Every curve with ||g’|| > 0 can be reparametrized to make it
unit-speed.

» The vector g'(t) is called the velocity at ¢t and g”(¢) the

acceleration. For a unit-speed curve, the acceleration is
orthogonal to the velocity.

® Other choices of the parametrization are possible as long as it is
monotone, i.e. maintains the order of the data points projected
onto It.
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HS Principal curves

The first and groundbreaking work on principal curves is from
Hastie & Stuetzle (HS), JASA 84, 1989.

HS principal curves generalize linear principal components in a very
natural and direct way: The idea is to minimize the distance

property (20) over all “smooth” functions g : R — R?.

Let X € R? be a random vector with density f, E(X) = 0 and
Var(X) finite.

Let g: T — R? , T C R be a non-intersecting unit-speed curve
g: T —RY TCR.

The projection index tg : RY — R is defined as

tg(x) = supt  [|x — g(t)|| = mf ||jx — g(€)]]}

In words, tg(x) is the value of ¢ for which g(¢) is closest to x.
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HS Principal curves (cont.)

® Definition: The curve g is a principal curve of f when it is
self-consistent, i.e.

E(X|tg(X) =1) = g(t)

forallt e T.

® Self-consistency means that each
point on the principal curve is
the average of all points which
project there [HTF].

® |[f a straight line is self-consistent,
then it is a principal component.
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HS Principal curve estimation

® Start with the first linear principal component line.

® Then, iterate between

» Projection: Project all data points onto this line.

» Reconstruction: Use a nonparametric scatterplot smoother (like
kernels, splines) to fit each component of X against the
projection indices t.

. until the change in the distance function gets negligible.
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HS Principal curve estimation (cont.)

® |lustration: Circle in 4 steps.
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HS Principal curve software

® HS principal curves are implemented in the R functions

# principal.curve in R package princurve offering
s Splines
s Robust local linear smoothers (“lowess™)
in the reconstruction step.
# pcurve in R package pcurve offering
s B-Splines
in the reconstruction step.

® pcurve is more powerful and it seems to have a somewhat better

smoothing parameter selection, while princurve is somewhat more
compact to use.

—D. 186/1¢



HS Principal curves in practice

Example: Letter recognition

® Simulate “C":
> t <- seq(pi/2+0.2,3 *pi/2-0.2, length=60) # Parametriziation
> cX <- cos(t); cy <-sin(t) # gives a circular arg segment
> cx2 <- ¢cx + rnorm(60,0,0.1); cy2 <- cy + rnorm(60,0,0.1)

# adds noise
> c2 <- chind(cx2,cy2) # creates a data matrix

® Fit principal curve

# using smoothing splines in the reconstruction step
> library(princurve)
> c2prin <- principal.curve(c2)

» using kernels in the reconstruction step
> c2prinl <- principal.curve(c2,smoother="lowess")
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HS Principal curves in practice (cont.

® Fitted curves:

splines
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® One can also extract directly the coordinate functions z(t), y(t),

HS Principal curves in practice (cont.)

e.g. for the spline based version:

> plot(c2prin$lambda, c2prin$s[,1], xlab="t", ylab="x(t
> plot(c2prin$lambda, c2prin$s[,2], xlab="t", ylab="y(t
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HS Principal curve estimation (cont.)

3D-Example: Phillips curves.
® Data on Inflation and Unemployment in the US 1995-2005

® \We have three variables:
® Price index: Infl
» Unemployment: rate

® Time (in months): time .

® One colour corresponds to one year:
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HS Principal curves in practice (cont.)

® Read data:
> phil.rate <- read.table("UNRATE.txt", header=T) # 1948- 2005
> philinfl <- read.table("CPIAUCNS.txt", header=T) # 192 1-2005

> rate <- phil.rate[565:692,2] # 01/1995-08/2005
> infl <- phil.infl[889:1016,2] # 01/1995-08/2005

® Fit principal curves:
> library(pcurve); library(princurve)
> phil.hs <- principal.curve(cbind(rate,time,infl)) # Sm oothing
Splines
> phil.hsl <- principal.curve(cbind(rate,time,infl),
smoother="lowess") # LOWESS
> phil.hs2 <- pcurve(cbind(rate,time,infl)) # B-Splines
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HS Principal curves in

> phil.scat <- scatterplot3d(rate, time, infl, color=...
> hil.scat$points3d(phil.hs$s[,1],phil.hs$s[,2],phil

type="I",col=2) #

> phil.scat$points3d(phil.hs1$s[,1],phil.hs1$s[,2],p

type="I",col=3) #

> phil.scat$points3d(phil.hs2$s[,1],phil.hs2$s[,2],p

type="I",col=4) #
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Limits of HS curves

® Noisy spiral:

Noisy spiral

1.0

- true curve

0.5

HS

0.0
|
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I I I I
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® Most of the curve passes through regions with no data at all!
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Limits of HS curves (cont.)

HS principal curves work quite nice for simple data structures. For
more complex structures they often fail, for several reasons:

# The dependance on an initial line leads to a lack of flexibility, as
an initial unsuitable assignment of projection indices can often
not be correct in the further run of the algorithm.

# |t has been shown that that HS principal curves as defined
above find only saddle points, and not minimizers, of the
distance function (Duchamps and Stuetzle, 1996) (though their
originial motivation was to minimize it!).

When HS fails, one can resort to other principal curve algorithms.

They all attempt to identify “the middle of the data cloud”, but
differ in what they understand of this “middle”.
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Alternative principal curve algorithms

Polygonal line algorithms.  Kégl et al. (2000) define a principal curve as
the curve minimizing the average squared distance over all curves
with bounded length L, and construct a polygon to estimate it.

Software (JAVA Applet) at

http://www.iro.umontreal.ca/ ~kegl/research/pcurves/

Generative model. ~ Tibshirani (1992) defines principal curves such that
for data generated as

X=g(AN)+e with FE(e)=0

curve g is also principal curve of the data cloud X.

Local approaches. Instead of starting with a straight line, the curve is
successively built up while proceeding through the data cloud (see

talk by M. Zayed).

R source code for local principal curves at
http://www.maths.dur.ac.uk/ ~dmaoje/lpc/ipc.htm
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Principal manifolds

® The idea of principal curves can be extended towards
higher-dimensional smooth objects, known as principal surfaces or
principal manifolds.

® Already (conceptually) introduced by HS, though a public
implementation was never provided:

® The image [HTF] suggests a possible application: Classification.
® has been used for gene classification [G, Chapter 4].
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Principal manifolds (cont.)

® Alternative to HS approach: Local principal surfaces are constructed
through a grid of triangles.

® LPS for Calif. Air Pollution data:

® suggests a second application: Regression.
o work in progress!
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