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Main steps in FDA

• Collect, clean, and organize the raw data.

• Convert the data to functional form.

• Explore the data through plots and summary statistics

• Register the data, if necessary, so that important features

occur at the same argument values.

• Carry out exploratory analysis, such as functional principal

components analysis

• Construct models, if appropriate

• Evaluate model performance
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Example: Weather data

• Daily average temperature computed forN = 365

consecutive days at each of 35 Canadian weather stations

• Are there common patterns of interest?

• Is there variation inamplitude (peakedness)?

• Is there variation inphase (timing of features)?
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Raw data: Daily mean temperatures at 35 Canadian

weather stations
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Averaged data: Monthly mean of daily mean tempera-

tures at 35 Canadian weather stations

2 4 6 8 10 12

−
30

−
20

−
10

0
10

20

Average monthly temperature
35 Canadian weather stations

Month

T
em

pe
ra

tu
re

FDA – p. 5/42



Summary of visual features

• Clear that temperatures rise in the summer, fall in the winter

• Differences in level: some very cold places in arctic Canada

• Strong differences in amplitude.

• Coastal stations display little amplitude: cool winters

and summers.

• Continental stations show high amplitude/peakedness:

cold winters and hot summers.

• Some variation in phase: peak for some (coastal?) stations

is after the peak for others (continental?)
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Basis construction

• Main idea is that we take each observed seriesxi(t) and

approximate it bŷxi(t) chosen from the same functional

family.

• We represent a functionx by a linear expansion

x(t) =
K

∑

k=1

ckφk(t)

in terms ofK known basis functionsφk(t).

• c1, . . . , cK are coefficients to be estimated.

• Let n be the sample size, i.e. the number of observations in

each series.
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Basis construction

• We hope that smallK leads to a reasonable fit and the

capture of essential characteristics, balanced by large

degrees of freedom to allow computation of CIs.

• Once we have the approximation, we have

x(t) = x̂(t) + ε(t),

and observed residual series

ε̂i(t) = xi(t) − x̂i(t),

from which we may obtain a standard measure of quality of

fit for an individual series:

s2

i =
1

n − K

n
∑

j=1

ε̂i(tj)
2.
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Basis choice

• Several possibilities: Bsplines, exponential, polynomial

(φk = tk). Bsplines mostly used for aperiodic data.

• Reasonable to assume that the weather data is periodic

• Reasonable choice is Fourier basis system:

x̂(t) = c1 + c2 sin ωt + c3 cos ωt + c4 sin 2ωt + c5 cos 2ωt + . . . ,

whereω = 2π/T , hereT = 11

• Here we chooseK = 5; for a Fourier basis system we

choose an odd number to capture variation inphase, i.e. we

requiresine, cosine pairs

• Various ways of estimatingc1, . . . , cK : the simplest is

ordinary least squares (used for this example), but other

approaches - e.g. roughness penalty - may be superior.
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The basis curves,̂x(t) for the weather data
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Residual plots,(x̂i(t) − xi(t)), i = 1, . . . , 35, for K = 5.
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Residual plots

• Estimated curves appear plausible

• Should also explore the fitted curves: plot raw residuals

ε̂i(t) = xi(t) − x̂i(t).

• Periodicity in the residuals is probably an artefact of the

basis representation.

• Do we get a better answer if we choose more basis

functions?
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Residual plots forK = 5 and K = 7
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Residual plots

• Raw residuals decrease as we increaseK (of course), but

the model is more complicated.

• Simple way of assessing the number of basis functions to

use is to examines2

i = 1

n−K

∑

(x̂i(t) − xi(t))
2

• For example, we can plot
∑

s2

i versusK - note thats2

i is

penalized by the number of basis functions used

• Analagous to the usual measure of variability in LS

regression, 1

n−p

∑n

i=1
(yi − ŷi)

2.
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Plots of
∑

s2

i versusK
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Number of basis functions

• The plot suggests that there is a big advantage in using

K = 5 rather thanK = 3

• Not much extra advantage in usingK = 7: we are starting

to lose degrees of freedom

• Pragmatic choice seems to beK = 5

• This is a black art!
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Exploring derivatives

• Derivatives of the fitted curves can be explored and can be

interpreted

• First derivative may suggest commonlandmarks

• Plots of derivatives may suggest certain models, eg the

differential equation

∆x = −α(x − b1)

is consistent with an exponential model,

x(t) = b1 + b2e
αt,

so a plot showing linear association betweenx(t) andx′(t)

suggests the exponential model.
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The basis curves,̂x′(t)
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The basis curves,̂x′′(t)
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Derivatives plots

• Plot of first derivative shows the locations of winter minima

and summer maxima at̂x′(t) = 0.

• These don’t quite align, indicating that the change points

differ according to location

• Plot of second derivative can highlight more subtle

differences - e.g. the July shape is peaked for most

locations, but troughed for others.

• We may need to be careful when interpreting such features,

they may simply be artefacts of the fitting process.

• Avoid post-hoc rationalization
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Plotting the mean curve,x̄(t) = 1

N

∑N

i=1
x̂i(t)

2 4 6 8 10 12

−
10

−
5

0
5

10
15

Average monthly temperature: Mean curve
Fourier basis,  K=5

Month

T
em

pe
ra

tu
re

FDA – p. 21/42



Superimposing the mean curve on the estimated curves
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The deviations from the mean curve: shows quite a lot

of variation beyond the mean
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Plotting the standard deviation curve,

sX(t) =
√

1

N−1

∑N

i=1
(x̂i(t) − x̄(t))2
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Mean curve with ad hoc SD envelope based on

x̄(t) ± 1√
N

sX(t)
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Interpretation

• Variation across the series is highest in the winter months,

and lowest in the summer

• Can plot an ad-hoc confidence envelope for the underlying

mean curve, assuming these 35 stations to be a random

sample from a superpopulation of weather stations.

• Prediction envelope for a new weather station would be

much wider.
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Principal components analysis for functional data

• To extract the first functional PC we seek a further function

ζ1(t) =
∫

β(s)x(s)ds which in some sense maximises

variation over the space of interest.

• This requires choosing weight functionsβ(s).

• This is analagous to standard PCA, in which we choose

weightsβ1, . . . , βn to maximise

var(
n

∑

i=1

βixi).

• Subsequent PCs areζ2, . . . , ζK , with the extraction

arranged so that the PCs are orthogonal:
∫

ζi(s)ζj(s)ds = 0, ∀i 6= j.
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Principal components estimation

• The estimation of the PCs is usually carried out on centred

data, and so the components may be considered as

perturbations of the mean curve.

• Estimation procedure is quite complicated: see Ramsay &

Silverman.

FDA – p. 28/42



Monthly data PCA, raw components shown as weights
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The first PC for the weather data

• ζ1(t) explains 89.1% of the variation. It contrasts winter

months (high variation) with summer months (low

variation), i.e. the weights placed on winter measurements

are higher than than the weights for summer measurements,

and so lead to higher variability.

• Scores can be computed for each data series (weather

station), asζ1i(t) =
∫

β(s)xi(s)ds.

• Weather stations with high positive values ofζ1i(t) will

have much warmer than average winters and warmer than

average summers.

• Weather stations with high negative values ofζ1i(t) will

have much colder than average winters and colder than

average summers.
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Subsequent PCs for the weather data

• ζ2(t) explains 8.5% of the variation. It contrasts warm

winter months with cool summer months.

• Weather stations with high positive values ofζ2i(t) will

have warmer than average winters and colder than average

summers.

• Weather stations with high negative values ofζ2i(t) will

have colder than average winters and warmer than average

summers (for example, for mid-continental stations).

• The remaining PCs appear consonant with random

variation and explain little of the variation.
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Re-adding the mean curve to the PCs

• An alternative visualization is obtained by plotting

x̄(t) ± γζj

for some appropriate value ofγ.

• That is, we add the average to the PCs and so can see the

implication of high positive and high negative values for

eachζ(t).

• γ can chosen by inspection, to distinguish sufficiently

between the curves; alternatively Ramsay et al suggest a

semi-automatic procedure for choosingγ.
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Monthly data PCA: plotting components as perturba-

tions of the mean
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Interpreting the remaining PCs

• Using this visualization, we might now interpretζ3(t) as a

slight time shift component: high values have slightly later

summers and winters, and vice-versa for low values.

• Still hard to interpretζ4(t), but might concern timing of

Autumn and Spring.

• It is also possible to carry out rotations of the PCs in order

to improve interpretability.

• These can be orthogonal or oblique, as desired.

• Oblique rotations lead to correlated components, which is

ok in my view, but. . . . . .

• . . . . . . rotation doesn’t give appreciably better answers for

this data.

FDA – p. 34/42



Daily data PCA, K = 65. We don’t seem to have lost

much by smoothing from daily to monthly data.
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Plot of PC scores of 35 weather stations. Neighbouring

stations have similar PC scores
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Registration

• The weather data have a natural starting and
ending position. This is not so for other data.

• After transforming to functional form, it may be
necessary toalign them prior to further
exploration.

• The process ofaligning curves according to their
principal features is calledlandmark registration.

• Example: 68 cross-sections of ends knee bones
were taken; each datum is a bitmap image.

• 12 landmarks were identified as capturing the
essential features

• A smooth curve is fitted through the landmarks
and standard fda methods applied

FDA – p. 37/42



Warp functions

• One way of aligning functional objects is via a warping

function.

• A warping function maps from(0, T ) to (0, T ) in thex

direction, but compresses part of the range whilst stretching

the remainder.

• An example with warping parameterα is:

h(x, α) =
eαx − 1

eα − 1
, α 6= 0.

• α < 0 deforms to the right andα > 0 deforms to the left.

We havelimα→0 h(x, α) = x, so that a value ofα = 0

implies no warping.

• Each data object requires the warping parameter to be

estimated. FDA – p. 38/42



Warping applied to height in order to align oil reservoir

porosities,h(x, α) = (eαx − 1)/(eα − 1)
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Other techniques

• Canonical correlation: which modes of variability intwo

sets of curvesare most closely associated?

• Discriminant analysis: determination of a function which

separatestwo sets of curves

• Functional linear models:

• The response variablex(t) is a function

• At least one explanatory variable is a function

• both the above

• Functional analysis of variance

• Linear differential equations: principal differential analysis
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Summary

• Data treated as functions, with functional summaries and

functional analogues to classical methods.

• Methods extend to more complicated objects such as

shapes in many dimensions.

• Tend to work with smoothed versions of the data and not

the raw data: understates actual variability

• Powerful methods with much elegant theory

• Needs some experience to make interpretations, may be a

danger in post-hoc rationalization

• Useful exploratory tool. If the voice of the data is strong,

can also be a useful inferential tool.

• Used R and fda package for computation and plots
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References and resources

• J.O. Ramsay & B.W. Silverman (2002) Applied functional

data analysis: methods and case studies. New York:

Springer.Contains a lot of examples, but little theory.

• http://www.stats.ox.ac.uk/ silverma/fdacasebook/Data and

some (Matlab, R, S+) code for the case studies book.

• J.O. Ramsay & B.W. Silverman (2005) Functional data

analysis. New York: Springer.Second edition, much

expanded

• http://ego.psych.mcgill.ca/misc/fda/Main FDA website,

containing R library package and data sets.

• J.O. Ramsay & B.W. Silverman (2009) Functional data

analysis with R and Matlab. New York: Springer.
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