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Abstract: Local polynomial fitting for univariate data has been widely stud-
ied and discussed, but up until now the multivariate equivalent has often been
deemed impractical, due to the so-called curse of dimensionality. Here, rather
than discounting it completely, we use density as a threshold to determine where
over a data range reliable multivariate smoothing is possible, whilst accepting
that in large areas it is not. An adapted version of generalized cross-validation
for multivariate bandwidth selection is also discussed.
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1 Introduction

We are given d-dimensional covariates Xi = (Xi1, ..., Xid)T and response
values Yi where i = 1, ..., n. Local polynomial regression is a nonparametric
way of estimating the mean function m(x) = E(Y |X = x). Assumed is that

Yi = m(Xi) + εi (1)

where εi are random variables with zero mean and variance σ2. We concen-
trate on local linear regression where hyperplanes of the form β0 + β1

Tx,
where β1 and x are both vectors, are fitted locally. For each point x in
d-dimensional space one minimizes

n∑
i=1

Yi − β0 −
d∑
j=1

β1j(Xij − xj)


2

KH(Xi − x) (2)

with respect to β = (β0, β11, ..., β1d)T , yielding the estimator of the mean
function m̂(x) = β̂0. Here, KH(x) = |H|−1/2

K(H−1/2x) where K is a mul-
tivariate kernel function and H is the bandwidth matrix. For K, we use
primarily a product of Gaussian kernels since this is the least temperamen-
tal kernel function in regions where data is sparse, which occur more often in
higher dimensions. H is crucial in determining the amount and direction of
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smoothing, and we choose to use a diagonal matrix,H = diag(h2
1, ..., h

2
d), for

computational ease. We have adjusted generalized cross-validation slightly
for use with multivariate data, and this is detailed in Section 3.
The problem primarily addressed here is the curse of dimensionality which
refers to the issues that arise when data becomes very sparse in higher
dimensions. If there is not sufficient data in a neighbourhood, then the
variance of the fit is too high, or with some kernel functions, such as the
popular Epanechnikov kernel, the calculations just break down completely.
Often, local polynomial fitting is abandoned as a result of these problems,
and other methods such as the additive models suggested in Hastie and
Tibshirani (1990), are favoured. Local polynomial fitting however has the
big advantage of being considerably more flexible. In Section 2, we pursue
a technique to avoid the curse of dimensionality, enabling us to achieve the
best possible estimate of m where sufficient information is available.

2 Density as a threshold

The method is one which essentially ignores all neighbourhoods which don’t
contain enough data, and so only performs smoothing over some region in
which estimation is considered reliable, where the bias and variance of m̂
can be kept reasonably low. In this way the curse of dimensionality is
avoided. This method is not universal in the sense that it doesn’t give
estimates over the whole data range, but it is satisfactory in the sense that
it gives estimates, with all the advantages of local polynomial regression, in
some areas. To find these areas, and to discover where there is enough data,
we examine the density f of X. The density estimate for a multivariate
point x is;

f̂(x) = n−1
n∑
i=1

KH(x−Xi) (3)

In calculating the density, again a bandwidth matrix is needed, and for
our purposes it is advisable to use the same parameters here as in the
regression, for reasons which will become clear. We seek a threshold T such
that, if at point x we have f(x)>T , then an estimate using local linear
regression can be considered somewhat reliable, and otherwise, care should
be taken and an alternative method sought, possibly local constant fitting.
According to Loader (1999), one has 1

σ2 Var(m̂(Xi)) ≤ infl(Xi) ≤ 1. Hence,
bounding the influence implies bounding the variance. Using the asymptotic
approximation of the influence function given in Loader (1999), a natural
choice of T is straightforwardly derived from the latter inequality;

T =
ρK(0)

n
∏d
i=1 hi

(4)
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where

ρ = eT1

(∫ ∞
a

K(v)A(v)A(v)T dv
)−1

e1, (5)

v = (v1, ..., vd)T and A(v) = (1,v)T . The position of the bandwidth pa-
rameters in the denominator is justified since with larger bandwidth pa-
rameters, in areas of relative high density, the density at x will be lower
than with smaller parameters, and so a lower threshold is needed.
The parameter a appearing in the lower integral limit reflects the distance
to the boundary of f for which the criterion is optimized. Based on exten-
sive testing in the local linear case we recommend the value a = −0.85,
corresponding to a point situated 0.85hi inside the boundary. This is quite
intuitive as this is just about the region where one would assume data
sparsity to become a problem.

3 Adapted GCV

The curse of dimensionality causes problems in the area of bandwidth
matrix selection too. We believe in the use of a classical method over a
plug-in one due to the reliance on asymptotics of the latter. The asymptotic
assumption of bandwidths tending to zero seems to be inappropriate in
order to select the relatively large bandwidths needed for multivariate local
smoothing.
One such classical method is generalized cross-validation which is less pre-
cise than other cross-validation, but computationally less demanding. We
propose an adaptation to this which, using the median and weighting, re-
moves the influence of data points in less dense areas which otherwise may
have a disproportionate effect on the procedure, and can cause extreme
values of hi being chosen. This effect is more likely to occur as d increases.
The minimization of the below has been trialled with some success;

AGCV (H) = n−1
n∑
i=1

{
Yi − m̂H(Xi)

1− ψ

}2

w(Xi) (6)

where ψ is the median of the diagonal elements of the smoother matrix after
excluding the elements contributed by the points for which w(Xi) = 0. We
set w(Xi) = 1 for all i except the r points at which f(Xi) are smallest, at
which it is 0. r is the number of points which could be considered isolated
i.e. where the density at that point is equal to the density of just one data
point. This is best examined using Epanechnikov kernels. The bandwidth
parameters to be used in the density estimation here should be the optimal
values calculated from an external source such as the np package in R.
Choosing r > 0 is both a matter of finetuning by focussing on the denser
region in which we are interested, and also removing any computational
constraint imposed by points in sparser regions.
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FIGURE 1. |m(Xi)− m̂(Xi)| v. f̂(Xi)

4 Simulation

We simulated 3-dimensional covariates through a t-distribution with 2 de-
grees of freedom centered at 15.5. The response values were generated
according to the model (1) with m(Xi) = −12 cos(Xi1) + 5 sin(5Xi2) +
10 log(Xi3) + 17 and εi ∼ N(0, 1), i = 1, ..., 500. 300 of these points were
used to estimate m while the remaining 200 were used to test the thresh-
old method. In this simulation, of the 200 points tested, the threshold of
0.00505 excluded 121 of them. The value of a = −0.85 consistently excluded
the poorest performing points, whilst deeming the better points, in terms
of the absolute error, |m(xi) − m̂(xi)|, apt for smoothing. This is shown
in Fig.1. AGCV was also successful with this simulation. The usual GCV
method suggested some hi greater than the data range which is clearly
unacceptable, but with r = 39, AGCV suggested a much more reasonable
H = diag(0.3472, 0.1292, 2.922). The density bandwidth parameters were
selected using the np package. Simulations were performed satisfactorily
with 1,3 and 16-dimensional covariates. The values of ρ calculated for use
in the simulations were 1.5, 3.12 and 147.3 respectively.
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