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Abstract: We investigate design-weighted local smoothing and show that the
optimal (bias-minimizing) weights have similar form and interpretation as the
optimal weights given by the Horvitz-Thompson theorem known from sampling
theory. We set forth that the hazards in using bias-minimizing weights apply to
kernel smoothing, too, suggesting to be cautious with the application of bias-
minimizing weights in general.
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1 Introduction

A circus owner plans to ship 50 adult elephants and therefore needs a rough
estimate of their total weight. As weighing elephants is quite cumbersome,
he intends to weigh only one elephant and to multiply the result with 50.
However, the circus statistician insists in setting up a proper sampling plan,
and to use the Horvitz-Thompson estimator. They agree to assign a selec-
tion probability of 99/100 to a previously determined elephant (‘Samba’),
which from a previous census is known to have about the average weight
of the herd. The probability for all other elephants is 1/4900, including
‘Jumbo’, the biggest elephant in the herd. Naturally, Samba is selected,
and the statistician estimates the total weight of the herd by 100/99 times
Samba’s weight according to Horvitz-Thompson. If Jumbo were selected,
his large weight would even have to be multiplied by 4900 to get the ‘best
linear unbiased estimator’ of the total weight! Certainly, after having given
these advices, the circus statistician was sacked.
This is a short version of a fable told by Basu (1971), illustrating his reser-
vations against the Horvitz-Thompson (HT) estimator: For a sample of
size n drawn from a population Y1, . . . , YN , Horvitz and Thompson (1952)
showed that among all linear estimators of the form Ŷ =

∑N
i=1 αiδiYi, the

HT estimator ŶHT =
∑N

i=1 δiYi/πi (where πi is the probability that the
i-th element is drawn in any of the n draws and δi is an indicator taking the
value 1 if unit i is selected) is the only unbiased estimator for the population
total, Y. Horvitz and Thompson state that if πi = nYi/Y, the estimator
ŶHT has zero variance and sampling will be optimal. Rao (1999) warns
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that the HT estimator ‘can lead to absurd results if the πi are unrelated
to the Yi’, and obviously the probabilities in the fable are far from optimal
in this sense. Though HT’s theorem can reduce the bias of an estimate
given the inclusion probabilities, it may produce useless estimates if they
are unfortunately chosen. Nevertheless, HT’s estimator proves to be useful
e.g. in the context of ratio estimation, when a second variable Xi is used to
construct selection probabilities which are correlated to the Yi. In Basu’s
example, a way out for the unfortunate circus statistician would have been
to take the known elephant weights Xi from the previous census, and to
set πi = nXi/X, where X was the total weight of the herd measured at
that time (Koop, 1971, in the discussion of Basu’s essay).

2 Design-weighted local smoothing

One of the statistical fields where weighting is quite common is that of
nonparametric smoothing. Given a sample (x1, y1), . . . , (xn, yn) drawn from
a bivariate population (X, Y ) ∈ R2 with mean function m(x) = E(Y |X =
x), we are interested in a smooth estimate m̂(·) of m(·). There are two
forms of weighting that have to be distinguished here. Firstly, there are
the kernel weights K((xi − x)/h), with a bandwidth h, and secondly, one
can use additional design weights, α(·), leading to the design-weighted least
squares problem

n∑

i=1

K

(
xi − x

h

)
α(xi)


yi −

p∑

j=0

βj(x)(xi − x)j




2

. (1)

From the vector (β̂0(x), . . . , β̂p(x)) minimizing (1), one easily gets estima-
tors of m and its derivatives, m̂(j)(x) = j!β̂j(x), and one has the following

Theorem. Let h −→ 0 and nh3 −→ ∞, and X = (x1, . . . xn). Under
regularity assumptions we get for p− j odd

Bias(m̂(j)(x)|X) = eT
j+1S

−1cp
j!

(p + 1)!
m(p+1)(x)hp+1−j + oP (hp+2−j)

and for p− j even

Bias(m̂(j)(x)|X) = eT
j+1

j!
(p + 1)!

[(
α′(x)
α(x)

+
f ′(x)
f(x)

)
spm

(p+1)(x) +

+ S−1c̃p
m(p+2)(x)

p + 2

]
hp+2−j + oP (hp+2−j), (2)

with sp = (S−1c̃p−S−1S̃S−1cp), and kernel moment matrices S, S̃, and vec-
tors cp, c̃p, for the detailed form of which we refer to Einbeck and Augustin
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(2005), as well as for the proof, regularity assumptions, and for the asymp-
totic variance. The more interesting of the two expressions above is the
second one, because it shows that in this case the leading term is not inde-
pendent of α(·). This gives the chance to reduce the bias. Note that the au-
gend in the squared bracket in (2) vanishes for α′(x)/α(x)+f ′(x)/f(x) = 0,
and this differential equation is solved for

αopt(x) = c
1

f(x)
, (3)

with c ∈ R \ {0}. Considering the design density as “selection probability
distribution”, this gives a very similar message to that of HT, where we
had optimal weights αi = 1/πi. In practice f(·) is mostly unknown, but it
may be substituted by a density estimate, f̂(·).

3 A surprising analogy

Formula (3) is exactly the opposite of the recommendation given by Ein-
beck, André and Singer (2004), who proposed the setting α(·) = f̂(·) in
order to robustify against outliers in the design space. It is well known that
points near the boundary can have a huge influence on the estimate of the
regression function (which is even more true for the derivative estimates,
see Newell and Einbeck, 2007). This effect will gain dramatically in power
if we even apply weights inversely proportional to the design density as
suggested by our bias-minimizing criterion above - just as Jumbo had a
tremendous influence when selected!
It is at this point worth to take a look into the rejoinder of Basu’s (1971)
essay, in which he vehemently denied that the ‘unrealistic sampling plan’
was responsible for the failure of the HT estimator. Basu defended, in con-
trary, the circus statistician’s sampling plan, as it ensures a representative
sample, and gave the responsibility for the useless result entirely to the HT
estimator itself, ‘being a method that contradicts itself by alloting weights
to the selected units that are inversely proportional to their selection prob-
abilities. The smaller the selection probability of a unit, that is, the greater
the desire to avoid selecting the unit, the larger the weight that it carries
when selected.’
Similarly, in the smoothing context, we have derived a bias-minimizing
criterion, which may prove useful for large and well-behaved data sets, but
may give desastrous results in the presence of outlying predictors. This
is exactly the dilemma that Basu was worried about: he did not conform
himself to the fact that one has to get the selection probabilites right, and
in some sense, he is right. What does one do, for instance, if no auxiliary
variable Xi is available to construct a ratio estimator, or if one gets a
sample, selected with ‘wrong’ selection probabilities, and has to work with
it (we are aware that there exist some techniques to adjust the probabilities
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ex post, e.g., the Keyfitz (1951) technique, which however have drawbacks
as they are actually based on deleting available data). In the smoothing
context, the selection probabilities correspond to the design density, which
is almost never designed to meet any optimality criterion, and hence there
is always a certain potential that things may go wrong.

4 Conclusion

The goal of this paper was to show that there exists an striking anal-
ogy between the theories of sampling and smoothing, leading to a similar
discrepance between theoretically optimal and practically useful weighting
schemes. We believe that this tells us an important lesson about statistical
methods in general: weighting is performed in virtually all statistical disci-
plines, and a usual way of motivating such weights is to look at theoretical,
bias-minimizing criteria. These criteria will often suggest to choose weights
inversely proportional to some kind of selection probability (density). This
however makes the estimator extremely sensitive to extreme observations
(which correspond to Jumbo in Section 1 and the outlying predictors in
Section 2). Hence, we advise to be careful with bias-minimizing estimators
if there are any observations which might be labelled by the terms “ex-
treme”, “undesired”, “outlying”, “weak” or “needy”, and the like, and it
is likely that this holds far beyond the scope of sampling and smoothing.
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