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Abstract: For multivariate regression problems featuring strong and non–linear
dependency patterns between the involved predictors, it is attractive to reduce
the dimension of the estimation problem by approximating the predictor space
through a principal surface (or manifold). In this work, a new approach for non-
parametric regression onto the fitted manifold is provided. The proposed penal-
ized regression technique is applied onto data from a simulated combustion sys-
tem, and is shown, in this application, to compare well with competing regression
routines.
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1 Chemical Background

Combustion systems constitute a particular challenge for numerical mod-
elling due to their high-dimensional and non–linear character. Typically,
such systems involve a set of variables Φ = [T, Z1, . . . , Zns−1] where T is the
temperature, and Zj, j = 1, . . . , ns − 1 are the chemical species mass frac-
tions of ns chemical species. For instance, for simple fuels such as methane,
the transport equations form a system of more than 50 highly coupled
PDEs, of type

ρ
DΦ

Dt
= −∇ · (jΦ) + sΦ (1)

where D
Dt

is the material–derivative operator, jΦ is the mass-diffusive flux of
Φ, and sΦ is the “source term”, that is the volumetric rate of production of
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FIGURE 1. PC scores for a combustion system. Dark (green) color corresponds
to small values of the first PC source term.

Φ. Increasingly complex fuels lead to an increase in the number of chemical
species and reactions, and, hence, in the number of coupled PDEs as well as
the computational costs. Moreover, large chemical mechanisms are usually
stiff, i.e. a broad range of chemical time-scales exist, thus complicating the
numerical simulations including detailed chemistry. Recognizing that the
thermodynamic state of a reacting system relaxes onto a low-dimensional,
strongly attracting manifold, Sutherland and Parente (2009) suggested the
substitution of Φ in (1) by a subset of its principal components, say η,
leaving a more tractable system of 2 or 3 transport equations,

ρ
Dη

Dt
= −∇ · (jη) + sη. (2)

However, now the PC source terms sη are unknown, and have to be found
by regression onto the principal component scores. This tends to lead to
unsatisfactory results, due to the nonlinear shape of the manifold. The
ability to obtain precise regressions of the source terms is crucial to cor-
rectly solve the convection diffusion equation (2) that would describe the
variation of the principal component during a numerical simulation. This
paper addresses this problem by modelling the state space structure ex-
plicitly through local principal manifolds. A novel approach for penalized
regression on the manifold surface is provided, and is shown to compare
favourably with competing multivariate regression techniques. Of course,
the applicability of the proposed method is not restricted to the chemical
context considered in here.

2 Data and initial analysis

The data that we had available for this study was a “high-fidelity” data
set (i.e., with tabulated source terms) provided by the University of Utah.
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FIGURE 2. Principal surface (red vertices), with (training) data colored accord-
ing to fitted response (see Sec. 4).

The data were obtained through an ODT (one-dimensional turbulence)
model (Punati et al., 2011) and comprised a total of 11 variables, that is,
10 species mass fractions plus temperature.
Initially, PCA was applied onto (a scaled version of) a training data set of
size n = 4000. Fig. 1 provides a plot of the first three principal component
scores (η). Dark (green) colors correspond to low first PC source terms. The
manifold structure is evident here, as is the relevance of the position on the
manifold for the first principal component source term. We proceeded with
approximating the structure by a ‘local principal surface’ (Fig. 2), which
effectively approximates the data by a mesh of tiny connected triangles
(Einbeck and Evers, 2010).
The next, and most challenging step, is the regression of the PC source
terms on the manifold. We explain the necessary methodology in the fol-
lowing section, and return to the combustion problem in Section 4.

3 Penalized regression on principal manifolds

For regression on principal surfaces (i.e., 2D manifolds), Einbeck and Evers
(2010) suggested an algorithm which, in step 1, computes average responses
within triangles, and in step 2, provides the fitted response in each triangle
as the kernel-weighted average over the responses obtained in step 1. Here,
we improve this (rather crude) method considerably by fitting piecewise
linear functions on each triangle, “glued” together by a second order penalty
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penalizing differences in the fitted responses at the triangle edges.
More precisely, the regression algorithm starts with projecting the data
onto the manifold. Each data point xi is projected onto the closest simplex
of the principal manifold (which in our case is a triangle). Denote this
simplex by si. The projection of xi onto this triangle can then be expressed
using the sides of the simplex as basis functions. Denote this coordinate
vector of the projection of xi onto the j-th simplex by c(j)(xi).
The method now assumes different regression models for each simplex, i.e.
for simplex j

yi = c(j)(xi)
′β(j) + ǫi for all i such that the closest simplex si = j.

Clearly, without additional penalty this model would be too parsimonious:
neighbouring simplices would be allowed to have completely different re-
gression functions. Thus a quadratic penalty is introduced which penalises
the differences between predictions of neighbouring simplices at shared ver-
tices. Denote by K the set of vertices (with coordinates vk) and by Sk the
set of all simplices which contain the vertex k. Then the first quadratic
penalty is

∑

k∈K

∑

j∈Sk

(

ŷ
(j)
k − ¯̂yk

)2

,

where ¯̂yk = 1
|Sk|

∑

j∈Sk
ŷ
(j)
k and ŷ

(j)
k = c(j)(vk)′β(j). This penalty however

only shrinks the solution towards a continuous regression function. In order
to obtain shrinkage towards a smooth regression function a second penalty
is required. This penalty is based on the differences between the regression
functions of neighbouring simplices. Define the opposite simplex o(j, k) of
simplex j w.r.t. vertex k as the simplex which shares all vertices with
j, except k and one further vertex. Then the smoothness penalty can be
written as

∑

k∈K

∑

j∈Sk

(

ŷ
(j)
k − ŷ

(o(j,k))
k

)2

The problem can now be solved using one large penalised regression fit using
Z = J�C as design matrix, with Jij = 1 if si = j and Jij = 0 otherwise,

and C =
(

c(s1)(x1)
′, . . . , c(sn)(xn)′

)′
. The symbol � denotes the row-wise

Kronecker product (“box product”), i.e. the i-th row of Z is the Kronecker

product of the i-th row of J and the i-th row of C. Using β =







β(1)

β(2)

...







and rewriting the quadratic penalties from above as β′D′Dβ and β′E′Eβ,
the corresponding optimisation problem can be written as

‖Zβ − y‖2 + λ‖Dβ‖2 + µ‖Eβ‖2.

Though the matrices Z, D and E can be very large, they are also very
sparse, which allows for quick computations.
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FIGURE 3. True versus fitted (predicted) responses, for training (left) and test
data (right); each using linear PC regression (top), and manifold-based regression
(bottom). The color scheme is the same as used in Fig. 1.

4 Results

The above technique, using λ = µ = 10−3, is now applied onto the sys-
tem η, with the first component of sη serving as response, y. The fitted
regression output is visualized by color in Fig. 2. A test data set of size
4000 was used to benchmark the performance of this regression technique
against competing methods. Fig. 3 compares plots of true versus fitted
(predicted) values for manifold-based and linear ‘principal component’ re-
gression (PCR), which indicate that the manifold is able to produce good
predictions for both training and test data.
In this study, we also consider the nonparametric additive model (AM),
multivariate adaptive regression splines (MARS), and the support vector
machine (SVM), each of them using the first three PC scores as predic-
tors. Results are provided in Fig. 4, which also includes a comparison with
the localized manifold regression technique proposed by Einbeck & Evers
(2010), using smoothing parameter λ = 0.1.
The clear improvement, in particular of the median prediction error, com-
pared to all other techniques is evident. The two manifold–based regression
approaches perform similarly, but the penalized version appears superior
since it enables regression within the triangle, enabling extremely precise
predictions especially at parts of the flame where variability is low. It should
be noted that the SVM did actually win the comparison in terms of mean

(rather than median) prediction error, since it produces less ‘very bad’
predictions, but, in turn, performs (by construction) not very well where
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FIGURE 4. Log of squared prediction errors for a test data sample from the
combustion data set, using, from left to right, PCR (LM), AM, MARS, SVM,
penalized and localized regression on the manifold.

the information is very precise. We investigated this issue further and it
appeared that those ‘very bad’ predictions for the penalized manifold re-
gression relate to relatively ‘unimportant’ parts of the flame (burn-in pro-
cess). Further improvement appears possible by refining the selection of
smoothing parameters for the manifold estimation and regression, or by
modifying the scaling used in the PCA step. Such issues are currently still
under investigation.
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