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Abstract: We consider nonparametric dimension reduction techniques for multi-
variate regression problems in which the variables constituting the predictor space
are strongly nonlinearly related. Specifically, the predictor space is approximated
via “local” principal manifolds, based on which a kernel regression is carried out.
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1 Introduction

This article deals with the problem of multivariate regression for situa-
tions where the (possibly high-dimensional) predictor space features com-
plex dependency patterns. As an example, consider oceanographic data
extracted from the World Ocean Database, which include measurements
on the water temperature (serving as the response variable, Y ), and the
three covariates X1=salinity, X2=water depth, and X3=oxygen content
(Fig. 1 left). Obviously, the three covariates are highly and nonlinearly
related and contain partially redundant information. Potential modelling
strategies include a full interaction model Y = m(X1, X2, X3) + ǫ, which
becomes the more difficult the more covariates are involved, or an additive
model Y = m(X1) + m(X2) + m(X3) + ǫ, which ignores the interaction
between the variables.
Neither of these methods exploits the fact that the covariates occupy a
space of lower intrinsic dimensionality than 3. Formulating the problem
more generally: We are given a regression problem with response Y and
predictor space X = (X1, . . . , Xp)

T . We aim for a two-step strategy which
would (1) approximate X nonparametrically by a curve, surface, or, more
generally, a low-dimensional manifold of dimension d < p, and (2) use the
compressed data as a d−dimensional predictor henceforth. In this sense,
this article provides an extension of principal component regression, being
nonparametric both in the compression and the regression step. We assume
that the intrinsic dimensionality of the manifold, d, is given, e.g. from visual
inspection of the data cloud. Dimensionality estimation is beyond the scope
of this paper; an overview on such methods is given in Camastra (2003).
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2 Methodology

2.1 The case d = 1

We are given independent replicates x1, . . . , xn ∈ R
p drawn from the ran-

dom vector X , i.e. xi = (xi1, . . . , xip)
T . For the compression step (1),

we use the local principal curve algorithm (LPC; Einbeck et al., 2005),
which can be summarized as follows. Let wx

i denote an appropriate (bell-
shaped) weight function centered at x ∈ R

p. Beginning at some starting
point x = x0 ∈ R

p, we calculate µx =
∑n

i=1 wx
i xi, and then iterate

(i) Compute the first local eigenvector γx of Σx = (σx
jk)(1≤j,k≤p), where

σx
jk =

∑n
i=1 wx

i (xij − µx
j )(xik −µx

k) and µx
j denotes the j−th compo-

nent of µx. Using a step size z, step from µx to x := µx + zγx;

(ii) Calculate the local center of mass µx;

until the distance between neighboring values of µx becomes negligible.
The resulting series of µx, which defines the local principal curve, is sub-
sequently connected through a cubic spline and parametrized by its arc
length. Each data point is then projected to its nearest point on the curve,
and the compressed data correspond to their projection index (PI). This is
illustrated in Fig. 1 (left). Details on the parametrization and projection
are found in Einbeck et al. (2010). In the regression step (2), we regress
the response versus the PIs, using any univariate nonparametric smoother
(e.g., local linear). This is illustrated in Fig. 1 (right).

2.2 The case d ≥ 2

The use of localized principal components in (i) is by no means the only
possible option. If we replaced γx by the direction of, say, the vector con-
necting the previous and the current local center of mass, then step (ii)
would adjust the principal curve again towards the “middle” of the (local)
data distribution. This slightly modified algorithm has, just like the origi-
nal LPC algorithm, line segments as geometric building blocks in step (i).
We exploit this idea for the extension of LPCs to local principal manifolds
(LPMs). As the basic building block we will now use a triangle (d = 2),
tetrahedron (d = 3), or simplex (d ≥ 4). Although the algorithm that we
are going to propose can in principle be applied using any 2 ≤ d < p, we
will describe it for ease of presentation for the special case d = 2, in which
case the resulting object is a local principal surface (LPS).
Given a triangle ∆ on the boundary, we extend the surface by attaching
new triangles to its “free” edges. The triangles are obtained by reflecting
∆ at the free edges. Suppose that the current triangle ∆ has the vertices
δ1, δ2, and δ3, and that the edge (δ2, δ3) is a free edge beyond which we
want to extend the surface:
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FIGURE 1. Left: 3d- scatterplot (grey circles) of salinity (measured on the ‘Prac-
tical Salinity Scale’), water depth (metres), and oxygen content (millilitre/litre
of water). Solid curve: cubic spline representation of local principal curve, with
orthogonal projections; right: water temperatures plotted vs. projection indices.

(i) A preliminary vertex δ̃4 is obtained by attaching an equilateral tri-
angle to the edge (δ2, δ3) such that δ1, δ2, δ3, and δ̃4 all lie on the
same plane. The bottom right point in Fig. 2 (left) illustrates this
preliminary vertex.

(ii) Compute δ4 from δ̃4 as a constrained local center of mass, which en-
forces that the triangle with vertices δ2, δ3, and δ4 is equilateral. Fig. 2
(left) shows the weights of the observations (darker grey corresponds
to higher weights), with the circle representing the constraint. The
new vertex δ4 is shown in the top right. The newly-created triangle
is dismissed if an already existing vertex lies in its circumsphere or
if the new vertex δ4 lies in the circumsphere of an existing triangle
(in the former case δ4 is replaced by the already existing offending
vertex), or if the new vertex falls into a region of small density.

The initial triangle is placed in the plane spanned by the first two local
principal components obtained at a (manually or randomly chosen) starting
value x0. Steps (i) and (ii) correspond to their counterparts in the LPC
algorithm. The checks for dismissal of vertices in (ii) ensure that branching
triangles “meet” again and do not form many parallel surfaces.
We now apply the LPS algorithm to the oceanographic data. The fitted
surface, which features 177 triangles with an average count of 3.63 data
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FIGURE 2. Left: Illustration of the LPS algorithm; right: Fitted LPS for oceano-
graphic data.

points per triangle, is shown in Fig. 2 (right): it nicely captures the shape
of the data cloud.
It is hard to find a full bivariate parametrization of the LPS. Therefore,
we use a simple kernel regression. For each pair of triangles we define the
(discrete) “distance” d as the smallest number of triangle borders that
need to be crossed to proceed from one triangle on the surface to the other
one. This distance can be obtained by applying Dijkstra’s algorithm to the
neighborhood graph, and is thus cheap to compute. In order to assign local
weights, we define the discrete distance-based kernel κ(d) = e−d/λ, where
λ is a smoothing parameter. Special cases are λ = 0, corresponding to no
smoothing at all, and λ −→ ∞, where the estimated response function is
constant. The smoothed response value ŷ∆ on triangle ∆ is then given by

ŷ∆ =

∑
∆′ κ(d∆,∆′)ȳ∆′

∑
∆′ κ(d∆,∆′)

,

where ȳ∆′ is the mean of all observations for which ∆′ is the closest tri-
angle, and d∆,∆′ is the discrete distance between the triangles ∆ and ∆′.
Though formulated here in the special case d = 2, both the estimation of the
manifold, as well as the kernel regression on it, extend straightforwardly
to higher intrinsic dimensions d > 2 by using the appropriate geometric
building block.
In order to study the performance of this technique, we split the n = 643
observations into a training set of size 500 and a test set of size 143. We
include in our study the additive model (AM) as well as localized regres-
sion on a local principal curve (LPC) or surface (LPS). The training data
are used to learn these nonparametric models. The smoothing parameters
for the smooth terms in the additive model and the local smoother on the
principal curve are calibrated so that a total of ≈ 16 degrees of freedom is
used in each model. For the regression on the surface, we compare three
different choices of the smoothing parameter λ. The results of this study
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AM LPC LPS
λ = 0.2 λ = 1 λ = 2

Training mean 0.08946 0.32606 0.04335 0.07380 0.14444
error median 0.01538 0.00650 0.00143 0.00655 0.01455

Test mean 0.15494 0.30962 0.11090 0.11569 0.17471
error median 0.02855 0.00877 0.00395 0.01009 0.02059

TABLE 1. Mean and median prediction errors for the training and test data;
using AM-, LPC- and LPS-based regression, respectively.

are displayed in Table 1. As expected, the LPC-based regression is inferior
to the additive model in terms of the mean prediction error (i.e., the mean
of squared distances between predicted and true temperature). The poor
performance of the LPC-based technique is due to the branched shape of
the response data seen in Fig. 1 (right). The LPS-based approach clearly
outperforms the additive model for λ ≤ 1, though for λ = 0.2 consider-
able overfitting (undersmoothing) appears to be present, which is reflected
in test errors that are about three times larger than the training errors.
The choice λ = 2 leads to larger prediction errors; here we have over-
smoothed. Considering the median instead of the mean prediction error,
the performance of all investigated methods improves drastically (relative
to the additive model), which can be explained with an increased robust-
ness of the median to very poor predictions, which can occasionally happen
for the LPC/LPM- based approaches especially in the boundary regions.

3 Conclusion

We have presented an entirely nonparametric approach to modelling data
which feature a low-dimensional non-linear latent structure. Just like the
local principal curves (LPC) algorithm, this local principal manifolds algo-
rithm (LPM) is based on the simple geometric idea of locally approximating
the data by connected simplices.
Of course, not every data set will have such a low-dimensional structure.
The majority of data sets probably does not, but there are still surprisingly
many datasets which do have such a structure. Once the algorithm has es-
tablished the low-dimensional latent structure, one can use it to define new,
data-dependent topologies, which often give a better representation of the
dynamics underlying the data than the standard Euclidean distance in the
original data space. This implied dimension reduction can, for example, be
exploited when studying regression problems, as illustrated in the example
shown in the preceding section. Other applications include classification or
density estimation on the manifold.
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