The fitting of multifunctions: an approach to
nonparametric multimodal regression

Jochen Einbeck! and Gerhard Tutz?

! Department of Mathematics, National University of Ireland,
Galway, Ireland.

2 Institut fir Statistik, Ludwig Maximilians Universitét,
80799 Miinchen, Germany.

Summary. In the last decades a lot of research has been devoted to smoothing in
the sense of nonparametric regression. However, this work has nearly exclusively con-
centrated on fitting regression functions. When the conditional distribution of y|z is
multimodal, the assumption of a functional relationship y = m(z) 4+ noise might be
too restrictive. We introduce a nonparametric approach to fit multifunctions, allow-
ing to assign a set of output values to a given x. The concept is based on conditional
mean shift, which is an easily implemented tool to detect the local maxima of a
conditional density function. The methodology is illustrated by environmental data
examples.
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1 Introduction

A typical definition of 'Nonparametric regression’ is the following [Hol03]: “Given
observations from an explanatory variable X and a response variable Y, construct
a function, a “smoother”, which at point x estimates the average value of Y given
that X =z. 7

Specifically, given a set of i.i.d. random variables (X1, Y1), ..., (Xn, Y») sampled
from a population (X,Y) € R? with joint density f(z,), one usually assumes a
model of the type Y = m(X) + ¢, with some noise €. Thereby m : R — R is
a smooth function relating X and Y in a suitable way, which may be generally
expressed as

m(z) = 2(Y|X = x). (1)

The choice of the operator £2(-) is quite crucial. The most popular settings are the
expectation 2(-) = E(-) or the median 2(-) = Med(:). Nonparametric regression
in the sense of mean or median smoothing has been maturely treated in the last
decades. However, as already indicated by the definition given above, these tech-
niques are restricted to the assumption of a functional relationship between pre-
dictor and response. When the conditional distribution of Y| X is multimodal, this
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simple functional model may not adequately capture the essential relation between
predictor and response, and the application of a mean or median smoother might
blur important features of the data.

Another candidate for (2(-) is the mode operator. Modal regression has been
proposed by Scott [Sco92] and others, but has yet not been elaborated to construct
a nonparametric multi-valued smoothing routine. It is the intention of this paper to
fill this gap.

The mode differs from the mean and the median in one important aspect. While
the conditional mean and median always represent a single value, a conditional
density function can have several conditional maxima, which may be interpreted as
local modes, being defined by

local Mode(Y|X = z) = arg max frix(al|z)

where U (in the unidimensional case) is a closed interval and the maximum is taken
from the interior of the interval. When the conditional distribution of the data is
multimodal, then the data cannot be described properly by a function. Therefore
it is assumed that the underlying relation R C R? decomposes into several (almost
everywhere smooth) branches, which are defined by the operators

2)() = jth local Mode(-),

where j = 1,...,p is a suitable enumeration of the branches (e.g. from bottom to
top). The underlying relation has the form

R={(z,23h(Y|X =2));zeR,j=1,...,p},

and the counterpart to model (1) is given by the multifunction

M(z) = {92 (Y[|X =2)[1 <j <p}.

The rest of this paper is organized as follows. Section 2 introduces our approach
to estimate conditional modes, which is based on a simple conditional mean shift
procedure. Section 3 gives some real data examples. Section 4 treats the evaluation
of the relevance of the estimated branches, and the paper finishes with a conclusion
in Section 5.

2 Conditional modes and densities

According to Samanta & Thavaneswaran [ST90], the conditional density f(y|z) =
f(z,y)/f(z) can be estimated by

flole) = 5 im(m)f@ (22).

where

wi(z) = K (X;;“)/i K (52). 2)
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For a given x, they show that the maximizer
ym(x) = argm;xx flylx),

called sample conditional mode, is a consistent and asymptotically normally dis-
tributed estimator for the conditional mode under some regularity conditions. How-
ever, it remains the problem of how to find the maxima of the conditional density
estimates. A grid search would be on principle possible, but is computationally de-
manding and is not straightforwardly implemented when all local conditional modes
(rather than the global one) are required. Thus, we will not pursue this idea further,
but use a simpler, faster, and more elegant procedure. Let us assume that K2 belongs
to a special class of radially symmetric kernel functions satisfying Ka(-) = cxk((+)?),
with ¢ being a strictly positive constant. The function k(-) is called the profile of
K>. By considering

df(ylz) _ 2k § A (Yi—v\
o™ =T e (( - ))(ym

and setting this expression to zero one obtains for the mode estimator y,, the equa-

tion
_ Bt (=) )

wi()k <(%)2>

Note that the dependence of ym = ym(x) on z is suppressed for notational ease.
Let g(-) = —k/(-) and consider g as a kernel profile belonging to a kernel function
G(") = cg9((")?). When K, is the Gaussian kernel, then G' is Gaussian as well. By
use of G and of the weight function (2) one obtains

£ ()0 ()
£ ()0 (o)

This equation cannot be solved analytically, but the solution y,, can be obtained
iteratively by calculating a series of local means. Let u(ym) denote the right side of
equation (3). An important tool is the so-called mean shift j1(y) —y, which for a mode
ym takes the value zero. For a given starting point yo, Comaniciu & Meer [CMO02]
show that the sequence (y¢)e=0,1,2,... defined by

sdysse.

®3)

Ym =

yerr = p(ye) (4)

converges to a nearby mode ym,, which is a fixed point of (4). To account for multi-
modal conditional distributions, one applies the mean shift procedure as follows:
Algorithm: Nonparametric multi-valued regression.

For a given z,

1. Choose a set of starting points y(()l)(x) << yép)(m).
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2. Forj=1,...,P:Set {=0. %@)erate 0
yezm(l’) = M(ye] (z))
until convergence is reached, resulting in estimates 7}5,1)(1:), ceey g)g)(x)
3. The estimator for M (z) is the random set
- N (P
M(z) = {gi’ (@), i (2)},

where the values g)ﬁ,{)(:c) are not necessarily distinct.

Note that the algorithm does not require do calculate the conditional densities
themselves. The set M(x) is ordered, i.e. Qﬁ)(x) < ... < g},(f)(x). This follows
immediately from the properties of the mean shift, as the series of local means
converges to a nearby conditional mode ( [CMO02], Theorem 1). This ordering makes
it easy to identify the branches.

The choice of the number P of starting points depends on the number p of
branches one expects. To be certain that all modes are discovered, one has to install
a sufficiently large number P > p of starting points. Each point gives an iteration
process, which will find a conditional mode within its basin of attraction. The choice
P > p certainly implies that some branches will be found more than once, but for
a sufficiently high number of iterations (usually, about 30 is enough) all estimates
belonging to the same branch will be approximately equal. If one may assume that
the data are bimodal, it is sufficient to start one mean shift procedure from the
bottom and one from the top of the data cloud.

3 Examples

Firstly, we consider a speed-flow diagram as frequently used in transportation en-
gineering (see e.g. [HHB92]) for a Californian uninterrupted highway (“freeway”)
having 4 lanes, where only the lane 2 is considered here (Fig. 1, data from Univer-
sity of Berkeley). The speed is measured in miles per hour, and the flow in vehicles
per lane per hour. Each point represents an average speed and hourly flow rate for
data collected over a 30-seconds interval. For uncongested traffic, there is no signif-
icant association between traffic flow and speed - this is the big cluster at the top.
When the traffic gets too dense, however, speed may be considerably diminished due
to congestion, yielding the less dense data points at the bottom.

Looking at Fig. 1, one notices that the speed v cannot be described as a function
v(q) of the flow ¢. Thus, any attempt on modelling data of this type has been based on
modelling the traffic flow as a function ¢(v). However, traffic speed prediction (which
is of interest e.g. to construct Intelligent Transportation Systems, ITS) would require
exactly the opposite setting, i.e. v = v(q). Fig. 1 (bottom) shows the results of a
multimodal regression according to the presented algorithm, using Gaussian kernels
with bandwidths h1 = 100 and he = 4. The starting points are chosen constant w.r.t.
z, i.e. yél)(:c) = y(()l) = min{Y,..., Y} and y((f)(x) = y((f) = max{Y1,...,Y,}. The
estimated curve is superior to the estimates based on a local mean or the local
median (Fig. 1 top), which do not take account for the data points in the bottom of
the plot, which obviously carry some information and cannot be discarded.

Secondly, we consider a data set which does not seem to be a candidate for
the presented procedure at the first glance. The Old Faithful Geyser data (data set
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Fig. 1. Speed-flow diagram for lane 2 with local smoothers based on the conditional
mean, median (top) and mode (bottom). In the bottom also the antiprediction curve
(see Section 4) is plotted.

faithful in R package datasets), describing the waiting time (in minutes) between
eruptions and the duration of the eruption for the Old Faithful geyser in Yellow-
stone National Park, Wyoming, USA, have been frequently used to illustrate the
performance of smoothers or density estimators; see e.g. [Loa99]. The data and a
local mean smoother (loess) are shown in Fig. 2.

Though the loess smoother seems to do a good job, it raises some problems,
as also observed by Hennig [Hen03] considering another version of the Old Faithful
data. For instance, given a waiting time of x = 68, the loess prediction would be
9y = 3.37. Regarding the plot in more depth, one notices that this value is in fact
very unlikely. There is hardly any observed eruption duration in the interval from
about 2.5 to 3.5 minutes. However, it seems to be appropriate to assume that there
are two regimes, one with low waiting times and low eruption durations, and other
one with higher ones, where a certain overlap between these regimes is likely. A
modal regression applying the presented procedure (h1 = 5,he = 0.27) yields the
solid lines in Fig. 2, which unveil the two-regime-structure of the data set.
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Fig. 2. Old Faithful Geyser data with loess smoother, modal regression and an-
tiprediction curve.

4 Relevance, Antiprediction and Classification

A crucial point is the evaluation of the relevance of a conditional mode. Intuitively,
the probability mass between the neighboring valleys surrounding the mode is a
useful measure for the relevance of a mode. Fig. 3 (left) illustrates this concept for
the speed-flow data given a flow of 1300 vehicles/hour. The area between the left
border and the valley contains an estimated probability of 0.072, and the second
mode corresponds to the probability 0.928. Thus, one would infer here

NI(1300) = 28.06  with estimated prob. 0.072
"1 59.44 with estimated prob. 0.928
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Fig. 3. Left: Estimated conditional density at a flow of 1300 vehicles/hour. Modes
and antimodes are indicated by short solid and dashed vertical lines, respectively.
Right: Probabilities of the branches of smooth multimodal regression curves in de-
pendence of flow.
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To estimate these probabilities, one has to find the lows of the valleys and to
integrate over the estimated conditional densities between them. Without too much
effort one can do the search for the minimum and the integration simultaneously.
For a given (local) mode y,, at x, one descends from the (local) maximum f(ym|z)
in small steps of length J, say, to the right (steps k =0, 1,2,...) as well as to the left
(steps k = —1,—2,...), and augments the integral in each step by 0 - f(ym + kd|z)
until the minimum is reached, i.e the sequence ( f(ym+kd|z))r stops to fall. Note that
the number of steps until the next minimum to the left and to the right do not need
to be the same. This integral is usually surprisingly accurate, as the approximation
errors on the left and on the right side of the maximum tend to cancel out. The choice
of § is not very crucial, because it is not a tuning parameter, but only influences the
accuracy of the approximation. Fig. 3 (right) shows the probabilities obtained in this
manner for the speed-flow data. At a flow of 1620 vehicles/hour, the dashed line rises
rapidly and merges with the solid one, as the components are no longer separated
beyond this point. This is certainly not a sign for a suddenly rising probability of
congested traffic.

If one stores, for a given value x, the positions of the minima found while calculat-
ing the above integrals, one obtains a vector of conditional antimodes. An antimode
can be seen as an antiprediction - a value that is likely not to be seen. Connecting
the conditional antimodes in z-direction, one obtains a nonparametric antiregression
or antiprediction curve, i.e. a curve describing where the data are not to be expected.

In the case of speed-flow data, one observes that this curve (Fig. 1 bottom) is
useful to classify the data into observations coming from the congested or uncon-
gested regime, as long as a division is possible. The antiprediction curve for the
Geyser data is plotted in Fig. 2 (dashed-dotted line) and classifies the data into
regimes with high and low eruption duration.

5 Conclusion

We showed that the consideration of the conditional mode rather than the condi-
tional mean or median is useful when the data can be assumed to be associated to
several, possibly in z- and y- direction overlapping, regimes. We demonstrated how
smooth modal regression curves can be calculated easily by means of a conditional
mean shift procedure. We also showed how modal regression may be used to identify
areas of transition between regimes.

Though being a simple 2-dimensional problem, the task of multi-valued regres-
sion has received little attention yet. However, it should be noted that there exist
approaches to parametric multi-valued [WK95] and cluster-wise [Hen03] regression,
and some related contributions from computer scientists in the context of inverse
mapping problems [CWO03]. Further, there exist nonparametric multi-valued regres-
sion methods for the simpler case that it is known a priori which point belongs to
which branch [SW87]. We remark finally that the extension of the presented method
to multivariate predictors is straightforward by employing multivariate kernels in (2).
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