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Abstract: For multivariate data with a low–dimensional latent structure, a novel
approach to linear dimension reduction based on Gaussian mixture models is pro-
posed. A generative model is assumed for the data, where the mixture centres
(or ‘mass points’) are positioned along lines or planes spanned through the data
cloud. All involved parameters are estimated simultaneously through the EM al-
gorithm, requiring an additional iteration within each M-step. Data points can be
projected onto the low–dimensional space by taking the posterior mean over the
estimated mass points. The compressed data can then be used for further pro-
cessing, for instance as a low–dimensional predictor in a multivariate regression
problem.
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1 Introduction

Mixtures of exponential family distributions are often used to model com-
plex data structures, with finite Gaussian mixtures being the most common
representant of such models. In this article we are interested in situations
where a multivariate data set, xi ∈ R

m, i = 1, . . . , n, possesses a latent
structure of lower dimension d < m (these ‘data’ may play the role of a
‘predictor space’ in a multivariate regression problem, but this is not rel-
evant for the moment). The objective, for now, is to recover the latent
structure, and to compress the original data by projecting them (in some
form) onto the estimated latent space. As a first step towards a more gen-
eral handling of this problem, we consider a simplified scenario in which the
latent structure is thought to be a straight line, say α+βz, with α, β ∈ R

m,
z ∈ R, through an m-dimensional space. The variable z is considered as a
random effect, and represented by a discrete distribution with mass points
zk ∈ R and masses πk, k = 1, . . . ,K. The data are assumed to be generated
by adding Gaussian noise εi ∼ N(0,Σ) to mixture centres α + βzk ∈ R

m

positioned along this line, yielding the generative linear mixture model

xi = α+ βzk + εi. (1)
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The variance matrix Σ ∈ R
m×m is assumed to be of diagonal form

diag(σ2

j ){1≤j≤m}, and to be the same for all K components of the mix-
ture.

2 The EM Algorithm

As for univariate mixtures, the data likelihood, L, can be written in the
form

L =
∏n

i=1

∑K
k=1

fikπk

where, for model (1),

fik = f(xi|zk) =
1

|Σ|
1

2

1

(2π)m/2
exp

(

−
1

2
(xi − α− βzk)

TΣ−1(xi − α− βzk)

)

.

In order to setup an EM algorithm, we need to consider the complete
data likelihood, which is the likelihood of the data given that we know
the component each xi belongs to. However, the components each datum
belongs to are unobservable, so we must use the posterior probabilities that
xi belongs to component k, which are obtained as

ωik =
fikπk

∑K
l=1

filπl

.

The complete data likelihood therefore takes the form

L∗ =
∏n

i=1

∏K
k=1

(fikπk)
ωik ,

giving the complete log-likelihood

ℓ∗ = log(L∗) =
n
∑

i=1

K
∑

k=1

ωik log(πk) +
n
∑

i=1

K
∑

k=1

−
1

2
ωik log(|Σ|)

+

n
∑

i=1

K
∑

k=1

−ωik
m

2
log(2π)+

n
∑

i=1

K
∑

k=1

−
1

2
ωik(xi−α−βzk)

TΣ−1(xi−α−βzk)

Score equations were obtained by partially differentiating ℓ∗ with respect
to each of the variables. Although an analytical solution was not obtained
for α, β and zk, we were able to find an iteration process involving these
parameters. Solving the score equations for α and zk give

ẑk =
1

m

m
∑

j=1

(∑n
i=1

ωikxij
∑n

i=1
ωik

− α̂j

)

/β̂j
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(with the subscript j denoting the j−th component of the respective vec-
tor), and

α̂ =
1

n

(

n
∑

i=1

xi − β̂

n
∑

i=1

K
∑

k=1

ωikẑk

)

.

Substituting α̂ into the equation for β̂ and solving gives

β̂ =

∑n
i=1

∑K
k=1

ωikxiẑk −
1

n

(

∑n
i=1

xi

)(

∑n
i=1

∑K
k=1

ωikẑk

)

∑n
i=1

∑K
k=1

ωikẑ2k −
1

n

(

∑n
i=1

∑K
k=1

ωikẑk

)2
.

To implement this in the EM algorithm, at each M-step there will be an
internal iteration loop involving these parameters. First, the ẑk will be
calculated using the values of the previous internal iteration. Then β̂ will
be calculated using the newly calculated values of ẑk. Then finally α̂ will
be calculated using the new values of β̂ and ẑk. The initial β̂ and α̂ values
used will be those from the previous E-step.
Given the new values of α̂, β̂ and ẑk, the score equation for σ̂j solves very
easily to

σ̂j =

√

√

√

√

1

n

n
∑

i=1

K
∑

k=1

ωij(xij − α̂j − β̂j ẑk)2

Using a Lagrange multiplier, ℓ∗ − λ(
∑K

k=1
πk − 1), one obtains

π̂k = 1

n

∑n
i=1

ωik.

3 Results

Analysis was carried out on the mussels data set (Bura and Cook, 2001;
available from R package dr), considering intially the data frame consti-
tuted by the variables shell length, shell width, shell height, and shell
mass. Applying the above methodology, Table 1 shows how the dispar-
ity, −2 logL, of the model varies with number of components, K. The
disparity decreases considerably with each component added, until the 8th
component, where the disparity stabilizes at a value of 2608.088.
A bootstrapping method was required to test for a sensible number of com-
ponents. Testing a model with 5 components against one with 6 returned
a p-value of 0.31, and testing 4 components against 5 returned a p-value of
0.01, implying a 5 component model is a good representation of the data.
The iteration loop in the M-step converges very fast, with not more than
5 iterations initially, quickly falling to 3 iterations after a few EM cycles.
The number of EM iterations taken for the variables to convergence was
also observed and the σ̂j were generally the fastest to converge, with β̂

converging slower, α̂ and ẑk a little slower than β̂, and π̂k considerably
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TABLE 1. Table of measurements for a variety of components

K Disparity RSS R2 # Iterations for disparity
to converge

2 2881.936 7.057 0.6421 7
3 2804.671 5.574 0.7767 26
4 2676.017 5.222 0.8041 13
5 2645.342 5.073 0.8151 34
6 2630.438 5.010 0.8196 102
7 2623.526 4.783 0.8356 126
8 2608.088 4.759 0.8373 145
9 2608.088 4.759 0.8373 194

slower. The disparity of the models converge somewhat faster than any of
the components.
The next step taken in the analysis was projecting the data points onto
the fitted line. For each data point xi, projected (or compressed) data are
obtained as ‘posterior means’ (Aitkin, 1996)

xP
i =

K
∑

k=1

ωikẑk.

These ‘projections’ are not orthogonal, and hence are of fundamentally
different character as those in PCA, for instance. To verify the usefulness of
this type of compression, we considered now the additional variable mussel
mass as response variable, y, and fitted a simple linear regression model for
yi versus xP

i . The resultant line is shown along with (xP
i , yi), i = 1, . . . , n

in Figure 1 and appears to represent the data reasonably well. The RSS
and R2 values for the fitted linear model were recorded for each model
and are included in Table 1. It is clear that the model improves as number
of components is increased. Comparing these results to the ‘parametric
inverse regression’ method by Bura and Cook (2001), with RSS = 6.051
and R2 = 0.741, we find the proposed mixture–based approach to perform
considerably better.

4 Discussion

This article has reported on the results of a pilot study using the most sim-
ple of all latent model scenarios, namely a straight line spanned through the
data which carries the mixture centres. This research has been tentatively
extended in two directions: Firstly, the case of a bivariate latent structure
(i.e., a plane), and secondly, the case of a ‘staggered line’ which is allowed
to change its direction at each mass point. In both cases, the likelihood
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FIGURE 1. Graph of mussel mass (response) modelled by projection index (xP

i ).

equations were still tractable and the algorithms converged in reasonable
time, though the issue of starting point selection for the EM algorithm
requires more attention with increasing complexity of the model.
The presented work could be considered as a generalization of the (lin-
ear version of the) ‘Generative topographic mapping’ (Bishop et al, 1998),
where the zk form a fixed grid, and πk = 1/K. Using a grid to capture the
latent variable distribution may require a quite large value of K, especially
when considering multivariate latent structures. Since our method recovers
adaptively the latent variable distribution, the value K can be kept on a
far smaller level (say, 6 or 7) even for a bivariate latent space (i.e., a plane).
A further interesting aspect of the proposed technique is that, due to the
generative model structure, it would allow additionally for inclusion of co-
variates in model (1). This would be attractive, for instance, for the com-
putation of league tables from multivariate index data. This is a matter of
further research.
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