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Abstract: In the analysis of morbidity and mortality data, variance component
models are commonly used to provide an improvement in the estimation of rates
for small regions which typically show large variability. This article investigates
Irish suicide data using Poisson mixed models. The random effect distributions
are estimated using Nonparametric Maximum likelihood which allows the cal-
culation of shrinkage estimates from the posterior probability estimates of the
EM algorithm, as well as the construction of ‘league tables’. As these models are
inefficient in the case of spatial dependency, we investigate the addition of spatial
autocorrelation terms based on neighboring average crude rates and standardized
mortality ratios, as well as gender-specific versions of these. We consider models
for the average crude rate as well as for the relative risk. A close correspondence
between fitted values from both types of models suggests that information con-
cerning within-region variability, incorporated in the parameters of the average
crude rate model, appears indirectly in the simpler relative risk model by means
of the expected values used in the offset term of the latter.

Keywords: Generalized linear models; random effects; nonparametric maximum
likelihood; spatial autocorrelation; suicide rates.

1 Introduction

The use of generalized linear models with random effects is already well
established in the analysis of morbidity and mortality data. Administra-
tive regions defined in geographical terms have reported counts of cause of
death or illness and the aim is to model the variation in these. Calculating
separate estimates of risk for each area may result in small regions having
estimates with large variability, leading to small-area estimation problems
(e.g., Longford, 2005). Variance component models enable the generation
of empirical Bayes shrinkage estimates to improve the estimation of local
risk (Aitkin, 1996b).
Assume we have a division of some region into m districts with popu-
lation sizes ni, i = 1, . . . , m and counts Yi, i = 1, . . . , m, and a further
division into subpopulations j = 1, . . . , J (e.g., certain gender/age groups)
with explanatory vectors xij , observed counts Yij , and sizes nij , such that
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∑
j Yij = Yi and

∑
j nij = ni. The observed mortality/morbidity counts

Yij are commonly assumed to follow a Poisson distribution with mean µij ,
which can be either specified using the rate λij , giving µij = nijλij , or the
relative risk θij , implying that µij = Eijθij , with Eij being the expected
number of cases obtained from some reference population (Ahlbom, 1993).
Alternatively, the models can be based on a binomial distribution as in
Aitkin (1996b). The Poisson distribution is the more natural choice if the
occurrence of the death/disease is a rather rare event.
If the number m of districts is quite high (say, more than six or seven),
modelling the regional heterogeneity as a fixed effect would require a quite
large number (m− 1) of additional model parameters. This can be avoided
by using random effects zi, i = 1, . . . , m. For the two cases mentioned above,
we use a log-linear model for the parameter of interest,

{
log(λij)
log(θij)

}
= β′xij + zi, (1)

yielding the generalized random effect models

log(µij) = offset + β′xij + zi, (2)

with offsets log(nij) or log(Eij), respectively. One observes from (2) that
both families of models actually only differ by the offset, and hence can
be represented within a larger family where the two offsets are present in
the linear predictor, each multiplied by an indicator variable to select the
relevant offset. Thus, although the autocorrelation terms and offsets being
compared may differ, the likelihoods will still be on the same scale and they
can be compared with each other using their disparities (i.e., −2 log L, with
L being the likelihood).
In this article we analyze Irish suicide data using both models specified
in (1). The rates λij correspond in our setting to death rates due to “sui-
cide or intentional self-harm”. The tool used for analysis of the data is
the Nonparametric Maximum Likelihood (Aitkin, 1996a). The paper can
be seen on the one hand as an methodological addition to the findings in
Aitkin(1996b), as we extend the idea of empirical Bayes shrinkage to situa-
tions where one or more covariates are present, and on the other hand as a
complement to the models introduced in Biggeri et al. (2000), as we explore
the ample ground between modelling a random spatial autocorrelation term
and not modelling spatial autocorrelation at all.

2 Irish suicide data

The data considered here describe the mortality due to suicide and inten-
tional self-harm in the Republic of Ireland from 1989–1998, obtained from
the All Ireland Mortality Database (Institute of Public Health in Ireland,
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1 Cork City

2 Dublin City

3 Galway City

4 Limerick City

5 Waterford City

6 EHB−Dublin

7 Mid WHB−Limerick

8 Midland HB

9 NEHB

10 NWHB

11 SEHB−Waterford

12 SHB−Cork

13 WHB−Galway

FIGURE 1. Map of Health Boards and Cities for the Republic of Ireland. The ex-
cluded regions of Northern Ireland are shown in dark grey. The ‘−’ sign indicates
that a city is excluded from its health board.

2005). This database divides the Republic of Ireland into 13 ‘health re-
gions’ (the 8 former health boards which existed during this period, and
the cities Cork, Dublin, Galway, Limerick, and Waterford extracted from
these health boards; see Fig. 1). The data are graphically displayed in Fig. 2
(left) and are part of the R package npmlreg (Einbeck et al., 2006). We will
use the explanatory variables gender, age, a suitable measure of regional
autocorrelation, and a cluster-level random effect to account for the re-
gional heterogeneity (e.g., arising from regions with big/small populations,
outliers etc.). This leads to a two-level model, also called a variance com-
ponent model, where the clustering variable is the health region ID. The
age variable is a factor with four categories from 0–29 (reference category),
30–39, 40–59, and 60+ years.
For each region i = 1, . . . , 13 and each subpopulation j = 1, . . . , 8 (defined
by a certain gender/age combination), we have a total count of suicides
Yij over the 10 years. Further, the subpopulation sizes nij are available,
as well as the standardized mortality ratios (SMR), i.e., the ratio ob-
served/expected number of deaths, from which the Eij are immediately
obtained.
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3 Modelling suicide rates

We firstly focus on the model for the rate λ. The ‘core’ model

log(λij) = α+β1 · sexij +β2 ·age2,ij +β3 ·age3,ij +β4 ·age4,ij ≡ α+ηij (3)

gives a disparity of −2 log L = 793.8, with all five estimated parameters
being highly significant. Next, we replace the constant intercept α by a
regional random effect zi, assuming that all individuals living within one
health region share a common intercept. The NPML approach approxi-
mates the unknown and unspecified distribution of the random effects by
a discrete mixture, yielding mass points z1, . . . , zk and masses π1, . . . , πk.
Fitting a model with k = 3 mass points, the disparity already drops to
697.2, and does not fall significantly when increasing k further.
To improve this result, we construct average ‘neighboring crude rates’
ri =

∑
`∈Si

Y`/
∑

`∈Si
n`, where Si is the set of regions adjacent to the i−th

region. Including this variable as a fixed effect, the model can be formulated
as

log(λij) = ηij + γ · ri + zi,

and the disparity drops to 691.3. Using a random instead of a fixed coeffi-
cient for the autocorrelation term, one achieves a slight additional decrease
in disparity down to 689.8. However, using gender-specific neighboring rates
rij and a fixed parameter γ, nearly the same reduction can be achieved,
yielding the disparity 690.1. Combining these ideas using a random gender-
specific autocorrelation term one gets a further slight improvement towards
688.8 (all models using k = 3). The addition of interaction terms between
age and sex as fixed effects yields a further improvement in the model,
with the deviance dropping to 646.8 for fixed γ, and to 645.1 for a random
coefficient γ. Summarizing, largely independent of the order of the inclu-
sion of the terms, we get a disparity reduction of about 95 points for the
regional random effect, of about 45 points for the interaction, and of about
10 points for the regional autocorrelation.
One nice feature of NPML estimation is that the posterior probability that
unit i stems from cluster k corresponds to the weights in the final iteration
of the EM algorithm. Firstly, this enables us to calculate empirical Bayes
predictions from posterior estimates of the random effects combined with
the fixed part of the linear predictor (Aitkin, 1996b, did this for the case
of posterior means from a binomial model without covariates), shrinking
the – highly variable – crude observations by ‘borrowing’ information from
similar regions. The results are shown in Fig. 2 (right) for the fixed gender-
specific autocorrelation model with age.gender interaction terms, which we
consider as our favorite model from the average crude rate family of models,
for this data. One observes that particularly the rates for the cities – based
on small population sizes compared to the health boards – are considerably
shrunk. Secondly, one can classify the regions into clusters according to the
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FIGURE 2. Irish Suicide Rates, crude (left) and shrunk (right), for men (4) and
women (◦), and for four groups of increasing age as outlined in Section 2

mass point with the highest posterior probability (for use in ‘league table’
type comparisons and performance monitoring). In the case of a random
intercept model with covariates we use the term posterior intercept for the
posterior estimate of the random effect term. We use a convention of as-
signing a cluster to a mass point component if p ≥ 0.90 and confidently
excluding it from a component if p < 0.01 (see Table 1). For a model which
incorporates relevant explanatory variables, these classifications are infor-
mative about clusters with either excess or exemplary rates of mortality,
conditional on the fitted model and the observed data. It turns out that
only the health region ‘EHB minus Dublin’ is assigned to mass point 1 (as
a region with very few suicides), the city Cork and the region ‘SEHB minus
Waterford’ are classified to mass point 3 as regions with a large number of
suicides, and all other regions are assigned to the intermediate mass point
2, except the cities of Waterford and Limerick of which we are limited to
inferences regarding the mass points that they can be excluded from (Lim-
erick is excluded from the low suicide rate and Waterford from the high
suicide rate).

4 Modelling relative risks

A similar analysis as in Section 3 is conducted using the relative risk pa-
rameter θ as model parameter. We make use of the simpler ‘core’ model
log(θij) = α, giving the disparity 754.4. One might wonder at this point
why we get a better disparity compared to model (3), using a model without
covariates. The reason for this is that the information about the explana-
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TABLE 1. Posterior probabilities for suicide data modelled with crude rate (left)
and relative risk (right) as model parameters.

Average crude rate Relative risk
Posterior Posterior
intercept Masspoints intercept Masspoints

Intercept −8.910 −8.533 −8.313 −0.576 −0.192 0.026
Proportion 0.118 0.703 0.179 0.121 0.702 0.178

SEHB − Waterford −8.31 1.00 0.03 1.00
Cork City −8.31 1.00 0.02 0.01 0.99

Limerick City −8.46 0.68 0.32 −0.12 0.69 0.31

NEHB −8.53 1.00 −0.19 1.00
Dublin City −8.53 1.00 −0.19 1.00

SHB − Cork −8.53 1.00 −0.19 1.00

Mid WHB − Limerick −8.53 1.00 −0.19 1.00
Midland HB −8.53 1.00 −0.19 1.00

NWHB −8.53 1.00 −0.19 1.00
WHB − Galway −8.53 1.00 −0.19 1.00

Galway City −8.56 0.07 0.92 0.01 −0.21 0.06 0.93 0.01

Waterford City −8.71 0.47 0.53 −0.38 0.50 0.50

EHB − Dublin −8.91 1.00 −0.58 1.00
Posterior probabilities: p ≥ 0.95, 0.90 ≤ p < 0.95, p < 0.90.

tory variables – including the interaction – is essentially contained in the
expected values Eij , which goes into the model as an offset according to
equation (2). Hence, the 40 points improvement compared to model (3)
stems from the indirect inclusion of main effects and an interaction term.
Carrying out an analysis along the same lines as in Section 3, our favorite
model,

log(θij) = γ · rij + zi,

again turns out to contain a random intercept zi for regions and a fixed
gender-specific autocorrelation term. Note that the rij are now computed
as average neighboring SMRs. The disparity 647.5 of this model is only
very slightly worse than in Section 3 (646.8), given that we save 7 degrees
of freedom, just by employing another offset!
The fitted values are very similar to those of the final average crude rate
model and show considerable shrinkage for the city regions. The strong
agreement between the fitted values of the models (Fig. 3), despite the
omission of the age and sex variables for the relative risk model, supports
our statement above that information concerning variation in rates within
a region is incorporated in the expected value offset used with the latter
family of models. Classifying the regions into mass point components based
on their posterior probabilities (shown in Table 1) again indicates that
Cork City and ‘SEHB minus Waterford’ are assigned to the high suicide
rate mass point 1, and ‘EHB minus Dublin’ is the only region assigned
to the low suicide rate mass point 3. The other regions are assigned to
the intermediate rate mass point 2, apart from Waterford City which is
excluded from the high rate and Limerick City which is excluded from the
low rate, but both of which have posterior probabilities spread across two
mass points.
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FIGURE 3. Empirical Bayes Predictions for the crude rate model (x-axis) and
relative risk model (y-axis).

5 Conclusion

In the context of the Irish suicide mortality dataset, a spatial autocorrela-
tion appears to be separately identifiable, in addition to the random-effect
for regional heterogeneity. Summarizing the present findings, we conclude
i) Modelling regional heterogeneity with spatial random effects improves
the model fits greatly. ii) Further improvements can be gained including
a spatial autocorrelation term. iii) Unlike Biggeri et al. (2000), we do not
observe much gain in using a random coefficient for the autocorrelation
term. iv) The relative-risk models incorporate information about variation
within regions through the expected values, rather than through the ad-
ditional covariate terms. The average crude rate modelling approach may
be preferable when there is interest in evaluating the effects of explanatory
variables, e.g., to inform our understanding of the data generating process.
Further the average crude rate approach allows continuous covariates and
finer groupings into factors, since the problem of counts with corresponding
SMR values of zero does not arise in that case.
Due to differences in administration and health policy, the bordering re-
gions of Northern Ireland were omitted in the calculation of the autocor-
relation terms for the adjacent regions in the Republic of Ireland. Further
development along the lines of the present analysis might incorporate the 6
regions of the North and examine whether autocorrelations which include
cross-border effects improve the fit of the model. National differences in
the rates across the two sets of counties could be allowed for by means of
additional interaction terms, though the number of regions in the North is
small.
We finish with a word of caution: though we did not observe computational
problems in fitting these models neither using a GLIM nor using an R im-
plementation of NPML, certain problems can arise in jointly modelling both
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heterogeneity and spatial dependence between regions, as noted by Aitkin
(1999), e.g., in some cases a joint distribution of spatial random effects for
each region may be singular given a very high intra-area correlation.

Acknowledgments: This work was partly supported by Science Founda-
tion Ireland Basic Research Grant 04/BR/ M0051.

References

Ahlbom, A. (1993). Biostatistics for Epidemiologists. Boca Raton: Lewis
Publishers.

Aitkin, M. (1996a). A general maximum likelihood analysis of overdisper-
sion in generalized linear models. Statistics and Computing, 6, 251–
262.

Aitkin, M. (1996b). Empirical Bayes shrinkage using posterior random ef-
fect means from nonparametric maximum likelihood estimation in
general random effect models. In: Proceedings of the 11th IWSM 1996.
87–94, Orvieto, Italy.

Aitkin, M. (1999). A general maximum likelihood analysis of variance com-
ponents in generalized linear models. Biometrics, 55, 117–128.

Biggeri, A., Marchi, M., Lagazio, C., Martuzzi, M. and Böhning, D.
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