
Multivariate regression smoothing through
the “falling net”

James Taylor1 and Jochen Einbeck1

1 Department of Mathematical Sciences, University of Durham, Durham, DH1
3LE, UK.

Abstract: We consider multivariate regression smoothing through a conditional
mean shift procedure. By computing local conditional means iteratively over a
set or grid of target points, at each iteration a “net” is formed which gently drifts
towards the data cloud, until it settles at the conditional modes of the response
distribution. The method is edge-preserving and allows for multi–valued response.
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1 Methodology

Given d-variate covariates Xi = (Xi1, ..., Xid)T and scalar response values
Yi where i = 1, ..., n, we find the regression surface via the conditional
modes of Y given X = x. These are determined by the conditional density
function, f(y|x), which can be estimated through

f̂(y|x) =
f̂(x, y)
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where G and K are univariate (e.g. Gaussian) kernels, and the subscript
j denotes the j−th component of the corresponding vector. The values b
and hj are bandwidth parameters to be selected. At each x there may be
more than one conditional mode since f̂(y|x) can have several maxima.
By setting ∂f̂(y|x)

∂y = 0, one obtains a conditional mode ym (argument x
omitted for ease of notation) as the solution to the estimation equation
ym = µ(ym), with
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Since this cannot be solved analytically, we solve it iteratively using the
result by Cheng (1995) that, starting from any y0 ∈ IR, the mean shift
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procedure y`+1 = µ(y`) converges to a nearby conditional mode. In order
to detect more than one mode for each x it is necessary to specify more than
one starting point for the mean shift, typically two. For bivariate predictors,
if y0 is (for all x) set greater than all Yi, the simultaneous iterative execution
of the mean shift resembles visually a net falling onto the data and forming
a surface. Of course, if y0 is below rather than above all Yi, we would talk
about a “rising” net. We emphasize that the techniques proposed in this
section do neither require the estimation of any density function, nor the
solution of any optimization problem (such as least squares) at any stage;
all computational work is carried out by the mean shift.

2 Examples

Figure 1 (left) shows data from a wheat yield trial, where latitude and lon-
gitude serve as covariates (the data are part of R package nlme, Pinheiro et
al. (2008)). Figure 1 (right) provides the surface formed after 30 iterations
of the mean shift process on the dataset. Here h1 = 3.18, h2 = 3.18 and
b = 5.61 after using the bandwidth selection methods described in Section
4.
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FIGURE 1. The procedure applied to the wheat yield dataset.

Figure 2 illustrates the characteristics of this smoothing technique through
simulated data sets of size n = 200. Data set A is simulated from the uni-
variate function y = sin(0.2x1) + cos(x2) and subjected to Gaussian error
with standard deviation 0.05. Data set B has a partially bimodal response,
which splits for x1 ≥ 0.5 into two branches. For x1 < 0.5 the response is
simulated from the univariate function y = 1.5 + 3x1 with Gaussian error
of standard deviation 0.4. For x1 ≥ 0.5, the upper plane is centered at
y = 3 and the lower plane at y = 1; the error standard deviation is 0.2
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each. One observes from Figure 2 how the estimated surfaces develop after
different numbers of iterations, `, with starting points positioned above (up-
per estimated surface) and below (lower estimated surface) all responses.
The right hand column of Figure 2 demonstrates clearly that the proce-
dure is edge-preserving, and able to identify multiple branches when the
underlying conditional distribution is multimodal, where other regression
techniques could not successfully describe it.

3 Relevance of a mode

When there exist more than one mode of the conditional response distribu-
tion for a given x, it is interesting to evaluate the relevance of the different
modes. To estimate the probability associated with a conditional mode, one
integrates numerically over the part of the estimated conditional density
which forms that modal peak. The search for the minimum and the inte-
gration can be done simultaneously by descending in small steps from the
modes and increasing the integral until either the boundary or the next dip
separating the modes is reached (Einbeck and Tutz, 2006). For the simu-
lated data from the right hand column of Figure 2, Figure 3 (left) shows
a surface of probabilities, calculated as described, showing the probability
of data being present in the mode captured by the “falling net”. Figure
3 (right) shows the same for the “rising net.” For this data set, the plots
show a probability of 1 for about half of all values of x; this is expected
since the response is unimodal for these x.

4 Bandwidth selection

In the case of multivariate predictors, the problem of bandwidth selec-
tion is more challenging than in the univariate case, since values must
be selected for all the hj as well as for b. For the selection of bandwidth
b, one can resort to univariate conditional density bandwidth selectors,
such as cde.bandwidths in the package hdrcde, Hyndman (2010), since
this bandwidth does not directly depend on d. Performing this for each
covariate separately and then taking the mean as b is effective here. Given
b, the hj are successfully selected by adapting Bashtannyk and Hyndman’s
(2001) univariate regression-based bandwidth selector for use with multi-
variate covariates, as the authors themselves suggest doing. Therefore we
standardize the covariates and search for an optimal h = h1 = ... = hd.
The extended regression-based bandwidth selector minimizes the penalized
average squared prediction error Q(h) with respect to h, for a fixed b, where
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∆
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where {y′1, ..., y′N} are equally spaced over the sample space Y with y′i+1 −
y′i = ∆ and where p(u) = (1 − u)−2 is a penalty function. This p(u) is
identical to that used in generalized cross-validation, but differs from the
one used typically in the univariate case for this technique, since this was
found to perform badly in the multivariate setting. Once h has been found,
it is unstandardized and the modal regression is then carried out with
unstandardized covariates and bandwidths. Following this procedure for
the wheat yield data gives the bandwidths stated in Section 2.

5 Discussion

This work constitutes essentially a multivariate extension of the multimodal
regression technique introduced in the context of traffic data modelling in
Einbeck and Tutz (2006). The problem of bandwidth selection has been
addressed by appropriately extending bandwidth selectors which were de-
veloped for conditional density estimation with univariate predictors by
Bashtannyk and Hyndman (2001).
Attractive features of the technique are the computational simplicity, the
edge-preserving property, and the visual appeal. Moreover, the method is
able to deal with multi–valued response, though it should be admitted
that data of this type are relatively rare, and that multiple modes in the
response distribution may be an indicator that important covariates have
been omitted from the model. Nevertheless, the presented approach may
still serve to detect and visualize situations of this type.
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FIGURE 2. The left column displays the surfaces for simulation A, for
` = 1, 2, 3, 15 (from top to bottom). The right column shows the same for simu-
lation B.
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FIGURE 3. Left: Bivariate probability plot for the “falling net” (left) and the
“rising net” (right); each for the fitted surface from Figure 2 (bottom right).
Note that the orientation is rotated in order to allow for a better view of the
probability surfaces.
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