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Abstract. Index number construction is an important and traditional subject in
both the statistical and the economical sciences. A novel technique based on lo-
calized principal components to compose a single summary index from a collection
of indexes is proposed, which is implemented by fitting a (local) principal curve
to the multivariate index data. We exploit the ability of principal curves to ex-
tract robust low-dimensional ‘features’ (corresponding to the summary index) from
high-dimensional data structures, yielding further useful analytic tools to study the
behaviour and composition of the summary index over time.
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1 Introduction

A standard problem in economics is the question of how to construct a sin-
gle (summary) index from a series of individual (sub-)indexes. For instance,
the main measure of inflation for national macro-economic purposes is the
Consumer Price Index (CPI), which covers essentially the monetary expen-
ditures on all goods and services by all households of a certain economy (for
instance, the UK). This index, say Xp, is usually computed from sub-indexes
X = (X1,...,X,) by weighted averaging of type

X() = U}1X1 + ...+ ’lUpo = ’LUIX (1)

where w = (w1,...,wp) is a set of weights relating to the composition of
expenditure, which is allowed to vary over time, i.e. w = w(t). Economists
have taken substantial efforts to derive formulas which give appropriate or
‘representative’ weights for a certain economy. The actual process of averaging
in (1) is rather crude from a statistical perspective. It is highly dependent
on outlying (potentially erroneous) data, it is not able to deal with missing
data, it does not allow an analysis of the relative contribution of the sub-
indexes over time, and does not take into account the differing variability
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(information) contained in the indexes at different time points (other than
through the weights, perhaps). A potential alternative addressing these issues
was already suggested by Tintner (1946) and Moser (1984) in the context
of production and price indexes, and labour market indicators, respectively.
They proposed to construct a linear summary index by finding that linear
combination 7' X of Xy,...,X, with maximal variance Var(y'X) among all
unit vectors . The solution to this problem is found via principal component
analysis (PCA), and is given by the first eigenvector 7 of the covariance
matrix X = Cov(X) of X. Assuming the existence of a ‘price line’ X =
aXo+e, with a € RP, Theil (1960) developed a variant of PCA to estimate a
and « simultaneously. Neither of these authors used any additional weighting,
though (external) weights w could be easily accommodated by considering
Xy = (1 X1,...,wpXp) instead of X itself.

If we have a set of variables, each can be represented as a mix of a sys-
tematic component and an error, applying PCA to these variables results in
constructing a number of independent factors, usually less in number than
data dimension, which capture most of the total variance in the data set. This
is done by finding some linear function of the variables in the data set, which
is least subject to errors. Principal components are of interest mainly in cases
where the variables under consideration, the values of which formulate the
data cloud, are considered to be symmetric, rather than one or more variable
being generated from the remaining ones.

PCA-based approaches have not yet found widespread application in the
context of economic index data. One reason for that is that PCA will find
that line through the multidimensional cloud of indexes which gives globally
the best fit in terms of squared orthogonal distances; in other words ‘one
line has to fit it all’. The approximation done this way may be good in some
parts of the data cloud but poor in others. As a consequence, the loadings
v = (y1,-..,7p) will reflect the contribution of the subindexes 1,...,p to-
wards the overall index not equally well over the full data range — actually,
the amount of information that individual indexes contribute towards the
overall index may vary greatly; an example for this is provided later in this
article. Hence, what would be needed is a tool to maximize the variance lo-
cally, providing at each point the best local approximation to the data cloud.
This implies that we need to fit a sequence of localized principal compo-
nents, rather than one global principal component. The statistical concept
corresponding to this viewpoint is a (local) principal curve.

2 Principal curves

The concept of principal curves was introduced in the Statistics literature
by Hastie and Stuetzle (1989) (hereafter: HS) as a nonparametric extension
of PCA. A principal curve is descriptively defined as a smooth curve f :
R — R? X\ — f()) that passes through the ‘middle’ of a p—variate data set,
providing a nonlinear summary of the data. For HS curves, the notion of the
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‘middle’ of the data cloud is implemented via the concept of self-consistency
(Tarpey & Flury, 1996), meaning that each point on the curve is the average
of all points that project there.

Principal curves have recently attracted interest particularly in the engi-
neering literature (Ming-Ming et al., 2010) due to their ability to extract low-
dimensional ‘features’ from high-dimensional data structures via the curve
parametrization A. In particular, for X € RP, one defines the projection in-
dex as the parameter of the closest point on the curve to X, i.e.

Ap(X) = sgp{A HIX = FI = inf [|X = f(n)l1}- (2)

In our context, the extracted feature \;(X) would be corresponding to the
summary index of X, as we will illustrate in the following section. However,
we are not only interested in this overall index, but also in the local contribu-
tions of the individual sub-indexes, for which we need to determine loadings
in terms of localized eigenvectors. The original algorithm by HS does not
compute these, neither explicitly nor implicitly, so it is of limited use for our
development. An alternative concept, which is explicitly based on localized
PCA, is the local principal curve (LPC) algorithm (Einbeck et al., 2005):

Given n replicates of X, forming a p—variate data cloud z;,i = 1,...,n,
where x; = (21, ..., Zip)’, & smooth curve which passes through the middle of
the data cloud is found as follows:

1. Choose a suitable starting point z(g) € RP, either by hand or at random
from the data cloud. Set x = ).

2. Calculate p*, a local mean around .

3. Perform a principal component analysis locally at x, yielding a localized
eigenvector y*.

4. Find a new value for x by following v* a predetermined step size, starting
at p”.

5. Repeat steps 2 to 4 until p* remains (approximately) constant.

The local principal curve is determined by the series of the p* values. The
actual localization in 2. and 3. is performed through multivariate kernel func-
tions, see Einbeck et al. (2005) for details on these steps. After termination
of the algorithm, the parametrization X is calculated retrospectively through
the Euclidean distances between neighboring p®, and interpolated between
the p* through linear segments or cubic splines (Einbeck et al., 2009), yield-
ing a fully parametrized one-dimensional curve f(A) through p-dimensional
space, which passes precisely through all the local means p*. Note that the
algorithm is robust to outlying data points due to the localized way of aver-
aging.

There is one important adjustment that is useful to be made for index
data: Normally, there is some reference date for which all sub-indexes take a
baseline value, say 100, and also the overall index takes this value. Hence, also
the parametrized principal curve has to reflect this property and this can be
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realized through an anchor: This is a point of predetermined coordinates, say
Ty = (100,...,100)’, and predetermined parameter value (‘index’) A = 100,
through which the curve is forced to pass. This is implemented by inverting
steps 2 and 3 above, and recalculating A by integrating over the arc length
of the curve starting with the anchor point. Of course, this method is only
feasible when the baseline time point is part of the time interval considered.
We illustrate this algorithm, and its functionality as a ‘feature extractor’ for
the summary index, in the subsequent section.

3 Analysis of CPI data

In the applied part of this work, two sets of consumer price indexes have been
used, the first, as an introductory example, is a two dimensional set, and the
second is a twelve dimensional set. All data are monthly UK data published
through ‘National Statistics Online’ covering the period from January 1988
until December 2008. Both sets of indexes are complemented subsets of the
same total summary index, which is the total CPI for ‘All Items’. The indexes
used for analysis are: (2005=100 for all indexes)

D7BT: CPI INDEX 00 : ALL ITEMS

D7BU: CPI INDEX 01 : FOOD AND NON-ALCOHOLIC BEVERAGES

D7BV: CPI INDEX 02 : ALCOHOLIC BEVERAGES,TOBACCO & NARCOTICS
D7BW: CPI INDEX 03 : CLOTHING AND FOOTWEAR

D7BX: CPI INDEX 04 : HOUSING, WATER AND FUELS

D7BY: CPI INDEX 05 : FURN, HH EQUIP & ROUTINE REPAIR OF HOUSE
D7BZ: CPI INDEX 06 : HEALTH

D7C2: CPI INDEX 07 : TRANSPORT

D7C3: CPI INDEX 08 : COMMUNICATION

D7C4: CPI INDEX 09 : RECREATION & CULTURE

D7C5: CPI INDEX 10 : EDUCATION

D7C6: CPI INDEX 11 : HOTELS, CAFES AND RESTAURANTS

D7C7: CPI INDEX 12 : MISCELLANEOUS GOODS AND SERVICES

D7F4: CPI INDEX: ALL GOODS

D7F5: CPI INDEX: ALL SERVICES

3.1 Index construction from two sub-indexes

We aim to reconstruct the overall index (CPI INDEX 00: ALL ITEMS) us-
ing two sub-indexes: the CPI INDEX: ALL GOODS and the CPI INDEX: ALL
SERVICES. We use the modified LPC algorithm using an anchor at z(y) =
(100,100)" and A = 100 (corresponding to the reference point January 2005),
as outlined in Section 2. For simplicity, a constant weight w = (547,453)" for
all years is used. Now, applying this adjusted LPC algorithm to fit a sum-
mary curve through the two weighted indexes, one obtains the fit produced
in Figure 1. It seems to give a reasonable summary for the two-dimensional
data set in the form of a one-dimensional curve.
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Fig.1. LPC fit for 2D CPI data.

A first property of interest when using this statistical approach in CPI
context could be: compared to the original overall index, how well is the
resulting fit capturing the overall index behavior? Figure 2 compares how
the projection indexes A;(X) and the original CPI INDEX 00 change over
time. Figure 2 suggests that the statistically fitted overall index captures
most movements in the true index, which is a desirable situation. Also, it can
be seen that the fitted index looks smoother than the original index, due to
the underlying smoothing properties implied by using the LPC algorithm.

The other useful informative tool accompanying the use of LPCs is related
to the total variance explained by the curve and how each variable (sub-
index) contributes to the fitted overall index. This is statistically measured
through ‘loadings’, i.e. the entries of the (local) eigenvectors. At every point
on the curve, the sum of squared loadings of the first eigenvector should be
equal to one. This ‘unity’ property of eigenvectors provides a good tool to
indicate how the sub-indexes influence the fitted overall index at each point
(time). Figure 3 shows the cumulative squared loadings of first eigenvectors
for our example. Useful interpretations could be derived from such a figure,
for instance, around the fitted curve’s parameter values of 80 and 100, the
second sub-index has a dominating effect on the fitted overall index.

3.2 Index construction from twelve sub-indexes

Adopting the same techniques used in the previous example, the LPC algo-
rithm was applied to fit the overall consumer price index from the twelve
sub-indexes (INDEX 01, INDEX 02, ..., INDEX 12). Main indicators from
the resulting fit are shown in Figure 4. We can study the index behaviour
and the dominating underlying factors affecting it over time.
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Fig. 2. LPC-based (top) and average-based (bottom) CPI behavior over time.
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Fig. 3. Cumulative squared loadings of first eigenvectors - 2D fit.

The bottom part of Figure 4 allows to assess the contributions of the 12
sub-indexes over time. For example, it can be seen that the third index has
the largest effect on the fitted overall index around the LPC parameter value
50 (which corresponds to some time point near 150), and the same can be said
about index four around parameter values of 120 and 178 (times: 19 and 249)
and that the first index alone contributes by 30% in the fitted index around
parameter value of 169 (time near 246), and so on. All such interpretations
can have useful meanings in the econometrics context.
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Fig. 4. A 12-D example. Top: reconstructed summary index (LPC parametrisation
over time); bottom: cumulative squared loadings (first eigenvector) over time.

One remaining important feature of the proposed technique is the abil-
ity to predict missing data points at any given time (discrete or contin-
uous) within the data range. This is achieved, technically, through ‘cali-
bration’ of time and the LPC parametrisation (by plotting them against
each other and using a nonparametric smoother to find the functional re-
lationship). Having done this, if we assume that we want to predict the
data point that corresponds to, say, time = 220.5, we plug this value in
the calibrated object which gives a parameter value of 126.3425, then we
get the corresponding estimated 12-dimensional weighted point on the fitted
curve, and applying a simple adverse-weight formula to each index (cpi =
weighted.cpi * average.weight /current.index.weight), we get the real time
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estimated sub-indexes’ values (101.78, 102.53, 96.37, 108.04, 99.48, 102.38,
102.93, 100.1, 98.87, 104.82, 102.84, 103.38). This could be useful in handling
missing data as well as predicting any assumed in-between data points (for
instance, holidays).

4 Conclusion

The work presented in this paper is merely a statistically-based approach to
fit and analyse main economic indexes. The computed index using the LPC
algorithm has the ability to capture the basic trend of the original corre-
sponding index over time. Being based upon principal component analysis,
it allows to detect the influence of all variables (sub-indexes) on the fitted
index at all points (time), and would furthermore allow to assess the degree
of ‘local linearity’ of the index, in terms of total local variance explained,
at each point in time by looking at the localized first eigenvalues. The main
novel feature of the proposed technique is that it is nonlinear and even non-
parametric, while the traditional PCA-based methods are linear, which may
be of limited accuracy in particular if the time range considered is quite large.

It should be noted that the proposed technique, just as PCA itself and
the modified version by Theil (1960), is an ‘ex-post’ algorithm, i.e. one needs
to have the full data available in order to reconstruct the indexes retrospec-
tively. However, unlike other principal curve algorithms, the LPC methodol-
ogy would in principle allow for an updating algorithm, which would enable
to extend the previously fitted curve and the associated statistics once new
data have come in. This is a matter of future research.
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