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MotivationMotivation
Nonparametric estimation of derivatives is 

important in a variety of disciplines. 
Specifically, when considering a regression 
problem of type

one is often not interested in in m(·) itself, but 
rather in m′(·).  An important special case is 
when x represents time, in which the 1st

derivative of m has the interpretation of a 
speed, and the 2nd derivative of an acceleration, 
which is of interest in the analysis of growth 
curves.

The importance of estimating derivatives goes 
far beyond the end in itself. Often one relies on 
asymptotic approximations in order to obtain 
bias and variance estimates, confidence 
intervals, optimal bandwidths, etc., and these 
expressions usually involve derivatives of m(·), 
which are normally unknown and have to be 
estimated. 

Nonparametric Derivative EstimationNonparametric Derivative Estimation
There are two main approaches to 
nonparametric derivative estimation. 

Local polynomials of degree p. 
The estimator of the jth derivative m(j)(x) (where 
0 < j ≤ p) at point x is given by                               
according to Taylor’s Theorem, where       is 
obtained by minimising

in terms of the vector (β0(x), …, βp(x)) where K
is a kernel function and h the bandwidth 
controlling the degree of smoothing.  

Spline smoothing.  
If      ) is a spline estimate of m(x) one 
considers             as an estimator of                 
Different authors have pursued this idea, using 
splines with (Heckman & Ramsay, 2000) or 
without penalisation.  

Papers originating from the local polynomial 
smoothing community gave the impression that 
the entire issue of nonparametric derivative 
estimation is solved, and as a result the research 
activity about this topic stalled to some extent. 
This is unfortunate, as most problems are 
treated rather cursorily in the literature and 
many open questions remain.  

Ramsay (1998) for example noted that  
`typically one sees derivatives go wild at the 
extremes, and the higher the derivative,  the 
wilder the behavior', and that further problems 
arise when it comes to smoothing parameter 
(bandwidth) selection, where CV and GCV can 
be `poor guides'.

Comparison of Available RoutinesComparison of Available Routines
There are several R packages available for  

derivative estimation and a summary of their 
features is as follows:

For illustration, we consider data generated by 
contaminating the function m(x)=x+2exp(-16x²), 
x ∈[-2,2], with very small Gaussian noise (σ= 
0.1). A moderate outlier at the left boundary with 
coordinates (-1.97, -1.75) and a further outlier at 
(0.95,0) were added by hand, giving a total 
sample size n=60 (Figure 1).   A small simulation 
study was carried out to compare a selection of 
the routines in terms of their ability to recover the 
first two derivatives from the contaminated 
function (Figure 2).

Local Polynomial Methods
The packages considered were locfit (locfit)

and  locpoly (KernSmooth) with usual default 
setting p=j+1 (Fan & Gijbels, 1996). The 
bandwidths were chosen using the result of 
locfit's gcvplot for the 2nd derivative, but 
undersmoothed for the first. Both functions 
produce a considerable  bias which cannot be 
cured by modifying the bandwidth as otherwise  
the outlier and boundary effects get even worse. 

There is a systematic problem with this kind of 
estimator: note that the asymptotic bias of the 
derivative estimate based on a quadratic fit with 
bandwidth h is given by

(c>0 being a constant depending on kernel 
moments (Fan & Gijbels, 1996) ). This implies 
that, where m′(·) is concave,  the bias is negative, 
and where m′(·) is convex, the bias is positive,
i.e. a downward smoothing bias similar as 
observed by Stoker (1993) for density derivative 
estimation.  This bias (left panel of Figure 1) 
tends to increase with the derivative order j; one 
reason is that the necessary bandwidth h
(appearing in the bias generally as a factor hp+1-j)
increases with j. The smoothing bias diminishes 
when setting p=j+2 as suggested by Ruppert
(1997), at the expense of increased outlier and 
boundary effects (not shown).

Smoothing Splines
For comparison we considered two penalized 
smoothing packages only: smooth.Pspline

(pspline) and D1D2 (sfsmisc).  The latter is 
restricted to cubic splines, whereas we use for the 
former a quintic and septic spline for the 1st and 
2nd derivative, respectively (Ramsay, 1998). The 
smoothing parameter is selected for
smooth.Pspline using the built-in GCV 
routine, and for D1D2 such that the fits pass 
equally well through the central part. Both fits are 
much less biased than the local polynomial 
estimators, and more stable at the left boundary 
(Figure 1).

ExamplesExamples
The change in bird populations is considered a 

good environmental indicator.  The Grey Plover 
for example is a used as an indicator  of water 
quality.  A scatterplot and a SiZer (Significance 
Zero Crossings of Derivatives) plot (Chaudhuri
and Marron, 1999) suggest that a possible 
significant decrease in Plover number from 2000 
onwards (Figure 3).

When analysing blood lactate data of elite 
athletes, a useful marker has been identified 
(Newell et al., 2005) which is the workload 
corresponding to the maximum of the 2nd

derivative of the underlying lactate curve (Figure 
4).

OutlookOutlook
There is a general lack of robust derivative 

estimators. Smoothing parameter selection tools 
are based on optimising the estimate of the 
regression function and not of the derivative, 
which can lead to serious undersmoothing
(Jarrow et al., 2004).
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Package (Version) function j(max) Smooth.Par 
locfit (1.5-3) locfit 2 GCV 
KernSmooth (2.22-19) locpoly No limit — 
lokern (1.0-4) glkerns 4* plug-in** 
lpridge (1.0-3) lpridge 9 — 
pspline (1.0-10) smooth.Pspline 4** CV/GCV 
sfsmisc (0.95-9) D1D2 2 GCV 
SemiPar (1.0-2) spm 7*** RE(ML) 
 

*if bandwidth selected automatically, then j(max) =2.  **a variant lokerns featuring a 
variable bandwidth is also implemented.   ***no formal requirement, but from our 
experience it breaks down computationally for higher orders.
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Figure 1.
Behavior of derivative estimators for a random simulation
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PP--SplineSpline ((PPenalized Benalized B-- SplineSpline) Software Note) Software Note

R function names are quite confusing:
• smooth.Pspline does not actually use B-Splines, but penalized smoothing splines.
• smooth.spline does use B-Splines if the number of knots specified is smaller than n, and it 

also features penalisation.. 
• There seems to be no simple immediate tool in R to fit P-Splines (in the above sense)  

directly.
• However, the function smooth.construct (in package mgcv) offers a way to construct P Spline

smoothers for the use inside a generalized additive model.
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