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Introduction

Mixtures of exponential family distributions are often used to model complex
data structures, with finite Gaussian mixtures being the most common
representant of such models. We are interested in situations where a
multivariate data set, xi ∈ Rm, i = 1, . . . , n, possesses a latent structure of
lower dimension d < m (these ‘data’ may play the role of a ‘predictor space’
in a multivariate regression problem, but this is not relevant for the moment).
The objective, for now, is to recover the latent structure, and to compress
the original data by projecting them (in some form) onto the estimated latent
space. As a first step towards a more general handling of this problem, we
consider a simplified scenario in which the latent structure is thought to be a
straight line, say α+ βz, with α, β ∈ Rm, z ∈ R, through an m-dimensional
space. The parameter z is considered as a random effect, and represented
by a discrete distribution with mass points zk ∈ R and masses
πk , k = 1, . . . ,K . The data are assumed to be generated by adding
Gaussian noise εi ∼ N(0,Σ) to mixture centres α + βzk ∈ Rm positioned
along this line, yielding the generative linear mixture model (GLMM)

xi = α + βzk + εi. (1)
The variance matrix Σ ∈ Rm×m is assumed to be of diagonal form
diag(σ2

j ){1≤j≤m}, and to be the same for all K components of the mixture

The EM Algorithm

As for a mixed exponential family distribution, the GLMM we propose in (1)
is fitted using an EM algorithm. The EM algorithm is an iterative procedure
used to acquire maximum likelihood estimates of model parameters.
As for univariate mixtures, the data likelihood, L, can be written in the form

L =
∏n

i=1
∑K

k=1 fikπk

where, for model (1),

fik = f (xi|zk) =
1

|Σ|12
1

(2π)m/2
exp

(
−

1
2

(xi − α− βzk)T Σ−1(xi − α− βzk)

)
In order to setup an EM algorithm, we need to consider the complete data
likelihood, which is the likelihood of the data given that we know the
component each xi belongs to. However, the components each datum
belongs to are unobservable, so we must use the posterior probabilities that
xi belongs to component k , which are obtained as

ωik =
fikπk∑K
l=1 filπl

.

The complete data likelihood therefore takes the form

L∗ =
∏n

i=1
∏K

k=1(fikπk)ωik ,

giving the complete log-likelihood

`∗ = log(L∗) =
n∑

i=1

K∑
k=1

ωik log(πk) +
n∑

i=1

K∑
k=1

−
1
2
ωik log(|Σ|)

+
n∑

i=1

K∑
k=1

−ωik
m
2

log(2π) +
n∑

i=1

K∑
k=1

−
1
2
ωik(xi − α− βzk)T Σ−1(xi − α− βzk)

When using the EM algorithm, some initialization of values is used. Then, in
the M-step the model parameters (here the zk , σj, α, β and πk ) are
estimated using the ωik . Then, in the E-step the ωik are updated using the
parameters estimated in the previous M-step. E-steps and M-steps are
looped iteratively until some convergence criterion is met.

Implementing the EM Algorithm

Score equations were obtained by partially differentiating `∗

with respect to each of the variables. Although an analytical
solution was not obtained for α, β and zk , we were able to
find an iteration process involving the three variables.
Solving the score equations for α and zk give

ẑk =
1
m

m∑
j=1

(∑n
i=1ωikxij∑n

i=1ωik
− α̂j

)
/β̂j

(with the subscript j denoting the j−th component of the
respective vector), and

α̂ =
1
n
( n∑

i=1

xi − β̂
n∑

i=1

K∑
k=1

ωik ẑk
)
.

Substituting α̂ into the equation for β̂ and solving gives

β̂ =

∑n
i=1
∑K

k=1ωikxi ẑk − 1
n

(∑n
i=1 xi

)(∑n
i=1
∑K

k=1ωik ẑk

)
∑n

i=1
∑K

k=1ωik ẑ2
k −

1
n

(∑n
i=1
∑K

k=1ωik ẑk

)2 .

To implement this in the EM algorithm, at each M-step there
will be an internal iteration loop involving these variables.
First, the ẑk will be calculated using the values of the
previous internal iteration. Then β̂ will be calculated using
the newly calculated values of ẑk . Then finally α̂ will be
calculated using the new values of β̂ and ẑk . The initial β̂
and α̂ values used will be those from the previous E-step.
Given the new values of α̂, β̂ and ẑk , the score equation for
σ̂j solves very easily to

σ̂j =

√√√√1
n

n∑
i=1

K∑
k=1

ωij(xij − α̂j − β̂j ẑk)2

Using a Lagrange multiplier, `∗ − λ(
∑K

k=1 πk − 1), one
obtains

π̂k = 1
n

∑n
i=1ωik .

Figure 1 : Application of Our GLMM
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Table 1
Table of measurements for a variety of components

K Disparity RSS R2 # Iterations for dis-
parity to converge

2 2881.936 7.057 0.6421 7
3 2804.671 5.574 0.7767 26
4 2676.017 5.222 0.8041 13
5 2645.342 5.073 0.8151 34
6 2630.438 5.010 0.8196 102
7 2623.526 4.783 0.8356 126
8 2608.088 4.759 0.8373 145
9 2608.088 4.759 0.8373 194

Results 1

Analysis was carried out on the mussels data set (Bura and Cook,
2001; available from R package dr), considering intially the data
frame constituted by the variables shell length, shell width, shell
height, and shell mass. Applying the above methodology, Table 1
shows how the disparity, −2 log L, of the model varies with number
of components, K . The disparity decreases considerably with each
component added, until the 8th component, where the disparity
stabilizes at a value of 2608.088.
A bootstrapping method was required to test for a sensible number of
components. Testing a model with 5 components against one with 6
returned a p-value of 0.31, and testing 4 components against 5
returned a p-value of 0.01, implying a 5 component model is a good
representation of the data.
The iteration loop in the M-step converges very fast, with not more
than 5 iterations initially, quickly falling to 3 iterations after a few EM
cycles. The number of EM iterations taken for the variables to
converge was also observed and the σ̂j were generally the fastest to
converge, with β̂ converging slower, α̂ and ẑk a little slower than β̂,
and π̂k considerably slower. The disparity of the models converge
somewhat faster than any of the components.
The next step taken in the analysis was projecting the data points
onto the fitted line. For each data point xi, projected (or compressed)
data are obtained as ‘posterior means’ (Aitkin, 1996)

xP
i =

K∑
k=1

ωik ẑk .

These ‘projections’ are not orthogonal, and hence are of
fundamentally different character as those in PCA, for instance. To
verify the usefulness of this type of compression, we considered now
the additional variable mussel mass as response variable, y , and
fitted a simple linear regression model for yi versus xP

i . The resultant
line is shown along with (xP

i , yi), i = 1, . . . , n in Figure 1 and
appears to represent the data reasonably well. The RSS and R2

values for the fitted linear model were recorded for each model and
are included in Table 1. It is clear that the model improves as number
of components is increased. Comparing these results to the
‘parametric inverse regression’ method by Bura and Cook (2001),
with RSS = 6.051 and R2 = 0.741, we find the proposed
mixture–based approach to perform considerably better.

Extending the Methodology to Planes

Given the success of our GLMM for modelling data whose latent structure is
a straight line, it seemed natural to extend the methodology to data whose
latent structure is 2-dimensional (i.e. a plane). This is achieved by now
assuming the mixture centres to be α + βzk + γuk ∈ Rm, with
α, β, γ ∈ Rm; zk , uk ∈ R. The GLMM now has the form

xi = α + βzk + γuk + εi. (2)
We again assume the variance matrix to be diagonal and the same for each
component.
The resultant complete data log-likelihood equation is

`∗ =
n∑

i=1

K∑
k=1

ωik log(πk) +
n∑

i=1

K∑
k=1

−
1
2
ωik log(|Σ|) +

n∑
i=1

K∑
k=1

−ωik
m
2

log(2π)

+
n∑

i=1

K∑
k=1

−
1
2
ωik(xi − α− βzk − γuk)T Σ−1(xi − α− βzk − γuk)

Again, we were unable to find an analytical solution to the resulting score
equations, but an iterative procedure could be implemented using the
following results:

I ẑk =
∑m

j=1

(∑n
i=1 ωik xi∑n

i=1 ωik
− α̂j − γ̂jûk

)
/
∑m

j=1 β̂j

I ûk =
∑m

j=1

(∑n
i=1 ωik xi∑n

i=1 ωik
− α̂j − β̂j ẑk

)
/
∑m

j=1 γ̂j

I α̂ = 1
n

(∑n
i=1 xi − β̂

∑n
i=1
∑K

k=1 ωik ẑk − γ̂
∑n

i=1
∑K

k=1 ωik ûk

)

I β̂ =

∑n
i=1
∑K

k=1 ωik xi ẑk−γ̂
∑n

i=1
∑K

k=1 ωik ûk ẑk− 1
n

(∑n
i=1 xi

)(∑n
i=1
∑K

k=1 ωik ẑk

)
+ γ̂

n

(∑n
i=1
∑K

k=1 ωik ẑk

)(∑n
i=1
∑K

k=1 ωik ûk

)
∑n

i=1
∑K

k=1 ωik ẑ2
k−

1
n

(∑n
i=1
∑K

k=1 ωik ẑk

)2

I γ̂ =

∑n
i=1
∑K

k=1 ωik xi ûk−β̂
∑n

i=1
∑K

k=1 ωik ûk ẑk− 1
n

(∑n
i=1 xi

)(∑n
i=1
∑K

k=1 ωik ûk

)
+ β̂

n

(∑n
i=1
∑K

k=1 ωik ẑk

)(∑n
i=1
∑K

k=1 ωik ûk

)
∑n

i=1
∑K

k=1 ωik û2
k−

1
n

(∑n
i=1
∑K

k=1 ωik ûk

)2

I σ̂j =
√

1
n

∑n
i=1
∑K

k=1 ωij(yij − α̂j − β̂j ẑk − γ̂jûk)2

I π̂k =
∑n

i=1 ωik
n

It was found using a loop which solved in the variables in the order
ẑk , β̂, ûk , γ̂, α̂ left the ûk unchanged (possibly because ẑk and ûk use
essentially the same score equation). This largely restricted the mass
points, so the EM algorithm was changed such that one EM loop would use
an M-step which solves in the order ẑk , β̂, ûk , γ̂, α̂ and the next used an
M-step which solves in the order ûk , γ̂, ẑk , β̂, α̂. This vastly improved
results and allowed us to give the data a much better fit.
We will consider in detail the example of fitting the GLMM of Equation (2) to
the airquality dataset in the R package datasets, using Solar.R, Wind and
Temp as 3 predictor covariates.

Figure 2 : A 2-Dimensional GLMM
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Graph of our fitted model to the airquality dataset. Mass points are represented by blue
triangles and the plane spanned by these mass points is also shown.

Selecting Appropriate Starting Values

Selecting appropriating starting values was a rather troublesome
process. Initially a grid of mass points was used, but the resulting
algorithm was very slow to converge and the mass points tended
to cluster. Some alternative methods were proposed and we will
concentrate on explaining what we called the ‘k-means method’.
Here, a k-means sample was taken of the data space, then the
starting values set ẑk to values of the k-means sample
corresponding to the Solar.R and ûk to values of the k-means
sample corresponding to the Wind. A linear model was fitted
modelling the values of the k-means sample corresponding to
Temp value by the values of the k-means sample corresponding
to Solar.R and Wind values and this initialized α̂ to (0,0,intercept
of linear model), β̂ to (1,0,gradient associated with Solar.R), γ̂ to
(0,1,gradient associated with Wind).
A small problem with this method is results were not entirely
consistent and the mass points and resulting disparity may vary
slightly each time the algorithm is run. This effect is, however,
very small when the data is truly clustered.
Another idea considered was to use the plane spanned by the
first two principal components as a starting plane, and this
method produced very similar results to the k-means method.

Results 2
Figure 2 shows a fitted GLMM to the air quality dataset using 6
mass points. The plane seems to be a good fit of the data, and
the mass points seem to identify the clustering of the data well.
Bootstrapping methods were again necessary to test for a
reasonable number of components, and 6 mass points seems to
be an appropriate choice.

Discussion
We have conducted a pilot study using simple latent model
scenarios, namely a straight line and a plane spanned through
the data which carry the mixture centres. This research has also
been tentatively extended in the case of a ‘staggered line’ which
is an extension of the straight line scenario where the line
allowed to change its direction at each mass point. The likelihood
equation was still tractable and the resultant algorithm converged
in reasonable time with very promising results, as the resulting
‘curve’ allowed for a more accurate fits to data.
The presented work could be considered as a generalization of
the (linear version of the) ‘Generative topographic mapping’
(Bishop et al, 1998), where the zk form a fixed grid, and
πk = 1/K . Using a grid to capture the latent variable distribution
may require a quite large value of K , especially when
considering multivariate latent structures. Since our method
recovers adaptively the latent variable distribution, the value K
can be kept on a far smaller level (say, 6 or 7) even for a bivariate
latent space (i.e., a plane).
A further interesting aspect of the proposed technique is that,
due to the generative model structure, it would allow additionally
for inclusion of covariates in model (1). This would be attractive,
for instance, for the computation of league tables from
multivariate index data. This is a matter of further research.
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