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Motivation: GAIA data

GAIA is an astrophysics mission of the European Space Agency
(ESA) which will undertake a detailed survey of over 10 stars in
our Galaxy and extragalactic objects.

Satellite to be launched in 2012.

Aims of the mission
» Classify objects (star, galaxy, quasar,...)

» Determine astrophysical parameters (“APs": temperature,
metallicity, gravity) from spectroscopic data (photon counts at
certain wavelengths).

Group “Astrophysical parameters’ at MPIA Heidelberg is in charge
of developing the necessary statistical toolbox.

Yet, one has to work with simulated data generated through
complex computer models.
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GAIA data

8286) simulated from APs:
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GAIA data: Estimation of APs

® Try linear model for the temperature, using training sample of size
n = 1000:

> Im(temperature™ specl +...+ specl6, data= gaia)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -14033286 21104764 -0.665 0.506

specl 14065842 21104812 0.666 0.505
spec2 14216977 21107526 0.674 0.501
specl6 13886697 21106076 0.658 0.511

Residual standard error: 1978 on 983 degrees of freedom

® Multicollinearity!

® Does not seem to be a useful model for this data.
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Dimension reduction

® Usual remedies:

» Model/ variable selection procedures

# Dimension reduction techniques

® ook at scree plot:

> Im(temperature © Compl + Comp2 + Comp3, data = gaiapc)

g
g
Compi  Comp2 Comp3  Compé  Comps Comps  Comp? Comp8  Compd  Compo

® Three principal components appear to be sufficient.

Estimate Std. Error t value Pr(>|t|)

(Intercept)  10835.90 65.14 166.34

Comp1 -187339.39  1706.85 -109.76
Comp2 -173967.35  3157.61 -55.09
Comp3 -155314.86  6726.19 -23.09

Residual standard error: 2060 on 996 degrees of freedom

looks acceptable...
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Principal component scores

® We plot the

Comp.3
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Principal component scores

® We plot the the first three principal component scores and shade
higher temperatures red.
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® Actually, we seem to need only one parameter if we were able to lay
a smooth curve through the data cloud, and parametrize it.

® This is a task for principal curves, “smooth curves through the
middle of a data cloud” (Hastie & Stuetzle, 1989).
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Local principal curves (LPCs)

Einbeck, Tutz & Evers (2005): Calculate alternately a local center of mass
and a first local principal component.
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Step 1: Fitting the LPC

® | PC through principal component scores of photon counts, with

local centers of mass m (sky blue squares):

> gaia.lpc <- Ipc(gaia.pc$scores)
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Step 2: Parametrization

Unlike HS curves, LPCs do not have a natural parametrization, so
it has to be computed retrospectively.

Define a preliminary parametrization s € R based on Euclidean
distances between neighboring m € R?.

For each component m;, j =1,...,d, use a to
construct functions m;(s), yielding together a function

(m1,...,mq)(s) representing the LPC (no smoothing involved
herel!).

Recalculate the parametrization along the curve through the arc
length of the spline function,

t = /O \/(m’l(u))2 Fo ot (i (w)? du
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Step 2: Parametrization (cont.)

> |pc.spline(gaia.lpc)
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® The spline function (—) is almost indistinguishable from the
original LPC (—).
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® FEach point ; € R? is projected on the point of the curve nearest
to it, yielding the corresponding projection index ¢;

> |pc.spline(gaia.lpc, project=TRUE)
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Step 3: Projection
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Step 4: Regression

® We want to predict stellar temperature from 16-d spectral data,
using the projection indices of the spectra as predictors.
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® This is now a simple one-dimensional regression problem,
yi = g(ti) + .
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Step 4: Regression

® We want to predict stellar temperature from 16-d spectral data,
using the projection indices of the spectra as predictors.
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Prediction

® For a new observation ., € R?, prediction proceeds as follows:
® Project x,eq onto the LPC, giving t,c0-
o Compute Jnew = §(tnew) from the fitted regression model.

® Comparison: We sample n’ = 1000 test data from the remaining
8286 — 1000 observations and observe the prediction error:

prediction error /103 LM PC+LM PC+AM  PC+LPC
average(&?) 4593 4967 1732 1430
median(£?) 1049 1124 104 52

where &; is the difference between true and predicted temperature.
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Density estimation

® Having now the projection indexes t;, i = 1,...,n, this can be
easily used for other purposes such as “density estimation along the

principal curve™
1 (t — tz-)
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Limits of one-dimensional data

® Look at “metallicity”

Comp.3

® The relevant information seems to be orthogonal to the principal
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® Would a principal surface help?
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Local principal surtaces

® |Instead of points x, we work with the “building block™ triangles A.
® |ocal PCA is only used to determine the initial triangle, say Ay.

® Then, the algorithm iterates

(1) For a given triangle A, we glue further triangles at each of its
sides 7 = 1,2, 3.

(2) For j =1,2,3, adjust the free triangle vertex via the mean
shift. We dismiss the new triangle if
s the new vertex falls into a region of small density, or
s the new vertex is too close to an existing one (Delaunay

triangulation).

until all sides of all triangles (including the new ones) have
been considered.
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Local principal surfaces (cont.)

® |llustration: Constrained mean shift on a circle (enforcing
equiliteral triangles):
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Local principal surtace for GAIA data

® Local principal surface (LPS) for PC scores based on training data

set with n = 1000:
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Regression on the surface

Then, how to use this surface for regression?

It seems hard to define a meaningful 2-dim. parametrization on the
surface.

However, we may use distances instead: For each triangle, we can
count the distance d to all other triangles through the smallest
number of triangle borders that have to be crossed to walk from
one to the other.

Assign local weights via discrete distance-based kernel
k(d) = e~/

The parameter A € [0, 00) steers the degree of smoothing on the
manifold: the higher \, the smoother.
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Regression on the surface (cont.)

The entire fitting process is summarized as follows:

(I) Fit a LPS as explained above, yielding a surface with, say, R

triangles.
(I1) Assign each data point @;,i = 1,...,n to their nearest triangle.
(II1) For each triangle r = 1,..., R, compute the mean g, over the

response values of all data points assigned to it.
(IV) Compute all pairwise distances d,. s between all triangles on the
surface.

(V) Use the discrete kernel (-) to smooth over the manifold. The
smoothed response value g, on triangle r is given by

g = Zs k(dr,s)Ys
' > k(drs) |
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Simulation study

Prediction errors for n’ = 1000 test data. The LPS is fitted with A = 1.

® Temperature
prediction error /103 LM PC+LM  PC+AM  PC+LPC PCH+LPS

average(£?) 4593 4967 1732 1430 1252
median(é2) 1049 1124 104 52 49
® Metallicity
prediction error LM PC+LM PC+AM PC+LPC PC+LPS
average(£?) 2.601 3.084 2.849 3.070 3.067

median(£2) 1.287 1.821 1.671 1.859 1.323
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Manifolds of higher dimension?

® The techniques extend to local principal manifolds (LPMs) of

higher dimensions by using tetrahedrons instead of triangles.
® Visualization of course tricky....

® Slightly contrived example: 3d-Torus , with:

2d surface

3d manifold
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Conclusion

Principal curves or surfaces can be used for dimension reduction
provided that

» the intrinsic (topological) dimensionality of the data cloud is
close to 1 or 2, respectively,

# or, at least, the projections are informative for the target
variable.

Regression on surfaces is (yet) done via a discrete kernel approach
(due to a lack of parametrization).

Direct LPC/ LPS regression (without preliminary PCA step) in
principle possible.

Extendable to local principal manifolds (LPMs) of arbitrary
dimension > 2 by replacing “triangles” with suitable “tetrahedrons”
or “simplices’.
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