Data compression and regression based on local principal curves and manifolds

Jochen Einbeck

Department of Mathematical Sciences, Durham University

jochen.einbeck@durham.ac.uk

joint work with Ludger Evers (University of Glasgow),

Durham, 14th of April 2010

Motivation: GAIA data

- GAIA is an astrophysics mission of the European Space Agency (ESA) which will undertake a detailed survey of over 10^9 stars in our Galaxy and extragalactic objects.
- Satellite to be launched in 2012.
- Aims of the mission
 - Classify objects (star, galaxy, quasar,...)
 - Determine astrophysical parameters ("APs": temperature, metallicity, gravity) from spectroscopic data (photon counts at certain wavelengths).
- Group "Astrophysical parameters" at MPIA Heidelberg is in charge of developing the necessary statistical toolbox.
- Yet, one has to work with simulated data generated through complex computer models.

GAIA data

• Photon counts (N=8286) simulated from APs:

GAIA data: Estimation of APs

Try linear model for the temperature, using training sample of size n=1000:

- Multicollinearity!
- Does not seem to be a useful model for this data.

Dimension reduction

- Usual remedies:
 - Model/ variable selection procedures
 - Dimension reduction techniques
- Look at scree plot:

Three principal components appear to be sufficient.

looks acceptable...

Principal component scores

We plot the the first three principal component scores

Principal component scores

We plot the the first three principal component scores and shade higher temperatures red.

- Actually, we seem to need only one parameter if we were able to lay a smooth curve through the data cloud, and parametrize it.
- This is a task for principal curves, "smooth curves through the middle of a data cloud" (Hastie & Stuetzle, 1989).

Local principal curves (LPCs)

Einbeck, Tutz & Evers (2005): Calculate alternately a local center of mass and a first local principal component.

0: starting point,
m: points of the LPC,
1,2,3: enumeration of steps.

Step 1: Fitting the LPC

ullet LPC through principal component scores of photon counts, with local centers of mass m (sky blue squares):

> gaia.lpc <- lpc(gaia.pc\$scores)</pre>

Step 2: Parametrization

- Unlike HS curves, LPCs do not have a natural parametrization, so it has to be computed retrospectively.
- $m{ ilde p}$ Define a preliminary parametrization $s\in\mathbb{R}$ based on Euclidean distances between neighboring $m{m}\in\mathbb{R}^d$.
- For each component m_j , $j=1,\ldots,d$, use a natural cubic spline to construct functions $m_j(s)$, yielding together a function $(m_1,\ldots,m_d)(s)$ representing the LPC (no smoothing involved here!).
- Recalculate the parametrization along the curve through the arc length of the spline function,

$$t = \int_0^s \sqrt{(m'_1(u))^2 + \ldots + (m'_p(u))^2} \, du$$

Step 2: Parametrization (cont.)

> lpc.spline(gaia.lpc)

■ The spline function (-) is almost indistinguishable from the original LPC (-).

Step 3: Projection

- Each point $x_i \in \mathbb{R}^d$ is projected on the point of the curve nearest to it, yielding the corresponding projection index t_i
 - > lpc.spline(gaia.lpc, project=TRUE)

Step 4: Regression

We want to predict stellar temperature from 16-d spectral data, using the projection indices of the spectra as predictors.

 $m{\mathcal{P}}$ This is now a simple one-dimensional regression problem, $y_i = g(t_i) + \varepsilon_i.$

Step 4: Regression

We want to predict stellar temperature from 16-d spectral data, using the projection indices of the spectra as predictors.

 $m{ extstyle extstyle$

Prediction

- $m{ ilde{\square}}$ For a new observation $m{x}_{new} \in \mathbb{R}^d$, prediction proceeds as follows:
 - Project x_{new} onto the LPC, giving t_{new} .
 - Compute $\hat{y}_{new} = \hat{g}(t_{new})$ from the fitted regression model.
- Comparison: We sample n' = 1000 test data from the remaining 8286 1000 observations and observe the prediction error:

prediction error $/10^3$	LM	PC+LM	PC+AM	PC+LPC
average $(\hat{arepsilon}_i^2)$	4593	4967	1732	1430
median $(\hat{arepsilon}_i^2)$	1049	1124	104	52

where $\hat{\varepsilon}_i$ is the difference between true and predicted temperature.

Density estimation

■ Having now the projection indexes t_i , i = 1, ..., n, this can be easily used for other purposes such as "density estimation along the principal curve":

$$\hat{f}(t) = \frac{1}{nh} K\left(\frac{t - t_i}{h}\right)$$

Limits of one-dimensional data summaries

Look at "metallicity"

- The relevant information seems to be orthogonal to the principal curve!
- Would a principal surface help?

Local principal surfaces

- Instead of points x, we work with the "building block" triangles Δ .
- Local PCA is only used to determine the initial triangle, say Δ_0 .
- Then, the algorithm iterates
 - (1) For a given triangle Δ , we glue further triangles at each of its sides j=1,2,3.
 - (2) For j=1,2,3, adjust the free triangle vertex via the mean shift. We dismiss the new triangle if
 - the new vertex falls into a region of small density, or
 - the new vertex is too close to an existing one (Delaunay triangulation).

until all sides of all triangles (including the new ones) have been considered.

Local principal surfaces (cont.)

Illustration: Constrained mean shift on a circle (enforcing equiliteral triangles):

Local principal surface for GAIA data

• Local principal surface (LPS) for PC scores based on training data set with n=1000:

Regression on the surface

- Then, how to use this surface for regression?
- It seems hard to define a meaningful 2-dim. parametrization on the surface.
- However, we may use distances instead: For each triangle, we can count the distance d to all other triangles through the smallest number of triangle borders that have to be crossed to walk from one to the other.
- Assign local weights via discrete distance-based kernel

$$\kappa(d) = e^{-d/\lambda}$$

The parameter $\lambda \in [0, \infty)$ steers the degree of smoothing on the manifold: the higher λ , the smoother.

Regression on the surface (cont.)

The entire fitting process is summarized as follows:

- (I) Fit a LPS as explained above, yielding a surface with, say, ${\cal R}$ triangles.
- (II) Assign each data point $x_i, i = 1, ..., n$ to their nearest triangle.
- (III) For each triangle $r=1,\ldots,R$, compute the mean \bar{y}_r over the response values of all data points assigned to it.
- (IV) Compute all pairwise distances $d_{r,s}$ between all triangles on the surface.
- (V) Use the discrete kernel $\kappa(\cdot)$ to smooth over the manifold. The smoothed response value g_r on triangle r is given by

$$g_r = \frac{\sum_s \kappa(d_{r,s})\bar{y}_s}{\sum_s \kappa(d_{r,s})}.$$

Simulation study

Prediction errors for n'=1000 test data. The LPS is fitted with $\lambda=1$.

Temperature

prediction error $/10^3$	LM	PC+LM	PC+AM	PC+LPC	PC+LPS
average $(\hat{arepsilon}_i^2)$	4593	4967	1732	1430	1252
$median(\hat{arepsilon}_i^2)$	1049	1124	104	52	49

Metallicity

prediction error	LM	PC+LM	PC+AM	PC+LPC	PC+LPS
average $(\hat{arepsilon}_i^2)$	2.601	3.084	2.849	3.070	3.067
$median(\hat{\varepsilon}_i^2)$	1.287	1.821	1.671	1.859	1.323

Manifolds of higher dimension?

- The techniques extend to local principal manifolds (LPMs) of higher dimensions by using tetrahedrons instead of triangles.
- Visualization of course tricky....
- Slightly contrived example: 3d-Torus

, with:

Conclusion

- Principal curves or surfaces can be used for dimension reduction provided that
 - the intrinsic (topological) dimensionality of the data cloud is close to 1 or 2, respectively,
 - or, at least, the projections are informative for the target variable.
- Regression on surfaces is (yet) done via a discrete kernel approach (due to a lack of parametrization).
- Direct LPC/ LPS regression (without preliminary PCA step) in principle possible.
- ullet Extendable to local principal manifolds (LPMs) of arbitrary dimension >2 by replacing "triangles" with suitable "tetrahedrons" or "simplices".

References

- **Hastie & Stuetzle** (1989): Principal Curves. *JASA* **84**, 502–516.
- **Einbeck, Tutz & Evers** (2005): Local principal curves. *Statistics and Computing* **15**, 301–313.
- **Einbeck, Evers & Bailer-Jones** (2008): Representing complex data using localized principal components with application to astronomical data. In Gorban et al. (Eds): Principal Manifolds for Data Visualization and Dimension Reduction; *Lecture Notes in Computational Science and Engineering* **58**, 180–204.
- **Einbeck, Evers & Hinchliff** (2010): Data compression and regression based on local principal curves. In Fink et al. (Eds): Advances in Data Analysis, Data Handling, and Business Intelligence, Heidelberg, pp. 701–712, Springer.
- **LPCM:** Local principal curves and manifolds. R package version 0.36-3, available on request from authors.