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Principal curves

Principal Curves are smooth curves passing through the ‘middle’ of a
multivariate data cloud X = (X1,...,X,,), where X; € R%.

Example: Speed-Flow data from a Californian “freeway’.

120

Speed (km/h)
80 100

60

40

20

50 100 150 200

Flow (veh/5min)

—n. 2/~



Principal curves: Original definition

Hastie & Stiitzle (HS, 1989) define each point on the principal curve m as
the average of all points which project there (‘self-consistency’), i.e.
m(t) = E(X|tm(X) =1)
where t,,(X) is the projection index of X onto the curve m.

® If the principal curve is linear, then it is a
principal component.

® If a curve m(t) is self-consistent, it is a
critical point of the distance function
A(m) = E (inf; || X — m(¢)|[*) .

® However, it was later shown that the
critical point is actually just a saddle point

of A(m).

® If X = g(T)+ e with T uniform and
e ~ N(0,0°I), then generally m # g!

(from: Hastie et al, 2001))
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Types of principal curves

Today exist a variety of different notions of principal curves, which vary
essentially in how the “middle” of the data cloud is defined/found:

® Global (‘top-down’) algorithms start with an initial line (usually the

Ist PC line) and bend this line or concatenate other lines to it until
some convergence criterion iIs met (HS, Tibshirani 1992, Kégl et al. 2002).

» Allows theoretical analysis.
» Goes wrong if initial order of projection indices is not right.
» Extension to branched or disconnected data clouds difficult.

® local (‘bottom-up’) algorithms estimate the principal curve locally

moving step by step through the data cloud (Delicado 2001, Einbeck et
al. 2005).

o More flexible, but far more variable.
o Extend straightforwardly to branched and disconnected data.
» Theoretical investigations rather difficult.
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Delicado’'s PCOPs

Delicado (2001) defines principal curves of oriented points (PCOPs) as a
sequence of fixed points of the function p*(x) = F(X|X € H),
where H is the hyperplane through & minimizing locally the
variance of the data points projected on it.

® Works fine for most (not
too complex) data sets.

® Mathematically elegant

® However, quite Fae g
complicated and
computationally e ¢ S\
demanding. S e il s

® Requires a cluster analysis |

at every point of the prin-
cipal curve.
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Local principal curves (LPC)

Einbeck, Tutz & Evers (2005):  Calculate alternately a local mean and a
first local principal component, each within a certain bandwidth h.
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Local principal curves (LPC)

Einbeck, Tutz & Evers (2005):  Calculate alternately a local mean and a
first local principal component, each within a certain bandwidth h.
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® The LPC is the series of local means.
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Algorithm for LPCs

Given: A data cloud X = (X1,...,X,).

. Choose a starting point . Set x = xy.

. Atz, calculate the local center of mass u* = > " ; w; X;, where

w; = KH(X@ — ZE)X@/ Z?:l KH(XZ — .CU)

. Compute the 15¢ local eigenvector ¥ of

¥ =3 wi( X — pt) (X — )t
. Step from u* to x := pu* + toy”.

5. Repeat steps 2. to 4. until the ;¥ remain constant. Then set z = x¢, set

X

~v* := —~% and continue with 4.

The sequence of the local centers of mass y* makes up the local
principal curve (LPC).
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Algorithm for LPCs

Given: A data cloud X = (X1,...,X,).

. Choose a starting point . Set x = xy.

. Atz, calculate the local center of mass u* = > " ; w; X;, where

w; = KH(X@ — ZE)X@/ Z?:l KH(XZ — .CU)

. Compute the 15¢ local eigenvector ¥ of

¥ =3 wi( X — pt) (X — )t
. Step from u* to x := pu* + toy”.

5. Repeat steps 2. to 4. until the ;¥ remain constant. Then set z = x¢, set

X

~v* := —~% and continue with 4.

The sequence of the local centers of mass y* makes up the local
principal curve (LPC).

Need “signum flipping” of ~* at every loop in order to maintain
direction of curve.
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Application on traffic data

® | PC (red curve, h=12) with local centers of mass u* (black
squares). For comparison, also a HS curve is shown (black,

dashed).
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Some theory for LPCs

For the ‘mean shift’, u* — x, it is known that, asymptotically (i.e.,

n — oo and each entry of H — 0)

u® —a ~ HV f(x)/f(2).

For the local PCA step, one can show that

x & HVf(ZE)
T YT EY @)

Combining these, and using H = diag(h?), the distance between
two local centers of mass, say p* and u®i+t, is given by

a 1

M%’Jrl _ ,umj ~

1
h* + V f(z;
Flg) VG o)
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Some theory for LPCs (cont.

® Hence, the LPC always turns in direction of the gradient, which
implies that it attempts to follow the density ridge:
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Some theory for LPCs (cont.)

® Secondly, we observe that the LPC stops when

flz) =2V f(a)]]

® Special case: X ~ N(0,0°I). Then f(x) = c||Vf(x)]|| iff

X = l0'2.
C

—n. 11/~



ome theory for LPCs (cont.

Secondly, we observe that the LPC stops when

z) = HIVI@)I
Special case: X ~ N(0,0%I). Then f(z) = ||V f(z)|] iff

12
33—C :

TT
N -

Simulation: BVN with

g2 = 2.

20 LPCs with h =1, tg =1 ° o
started within circle of radius : .
r=1. O

All of them converge to blue
circle r = 02 = 2.
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ome theory for LPCs (cont.

Secondly, we observe that the LPC stops when

z) = HIVI@)I
Special case: X ~ N(0,0%I). Then f(z) = ||V f(z)|] iff

12
QZ—C :

— r=1
2

Simulation: BVN with

o2 = 9.

20 LPCswith h=1,tg =1
started within circle of radius °
r=1.

All of them converge to blue
circle r = 2 = 2.

Can be exploited for boundary extension (M. Zayed).
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® | PC through European Coastal Resorts (using multiple starting
points):
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Another descriptive toy example

® nice, but ...
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s this everything?

Most principal curve papers stop about here (after some analysis of
goodness of fit, theoretical properties, etc.)

Surprisingly, the literature has rarely proceeded with exploiting a
principal curve once it's there.

The value of their parametric counterpart, principal components,
also brings to bear only when they are used for data compression or
regression.

So, why not do the next step?
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Motivation: GAIA data

GAIA is an astrophysics mission of the European Space Agency
(ESA) which will undertake a detailed survey of over 10? stars in
our Galaxy and extragalactic objects.

Satellite to be launched in 2012.

Aims of the mission (among others)

» Classify objects (star, galaxy, quasar,...)

» Determine astrophysical parameters (“APs’: temperature,
metallicity, gravity) from spectroscopic data (photon counts at
certain wavelength bands).

Work is led by the group “Astrophysical parameters” based at
MPIA Heidelberg, being part of the DPAC (Data Processing and

Analysis Consortium) which is responsible for the general handling
of data from the GAIA mission.

Yet, one has to work with simulated data generated through
complex computer models.
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GAIA data

= 8286) simulated from APs:
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Dimension reduction

® \We observe that the 16 variables contribute very similar, partially
redundant information.

® In fact, when the satellite is up, even up to 80 wavelength bands
are going to be considered.

® Hence, there is a need for dimension reduction techniques.
® ook at scree plot:

® Three principal components appear to be sufficient.
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Principal component scores

® We plot the

Comp.3
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Principal component scores (cont.)

® We plot the the first three principal component scores and shade
higher temperatures red.
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® Actually, we seem to need only one parameter if we were able to lay
a smooth curve through the data cloud.

® We would need to be able to parametrize such a curve, and to
project the data onto it.
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Parametrization and Projection

Unlike HS curves, LPCs do not have a natural parametrization, so
it has to be computed retrospectively.

Define a preliminary parametrization s € R based on Euclidean
distances between neighboring local means 1 € R?.

For each component p;, 7 =1,...,d, use a to
construct functions 1;(s), yielding together a function

(p1,-- -, pq)(s) representing the LPC (no smoothing involved
herel!).

Recalculate the parametrization along the curve through the arc
length of the spline function.

Each point x; € R? is projected on the point of the curve nearest
to it, yielding the corresponding projection index ;.
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Original LPC, Spline, and projections for speed-flow data:
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® | PC through first three principal component scores of photon counts
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Back to GAIA data (cont.)

® | PC (in spline representation) through PC scores, with vertical
projections:
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Regression

® We want to predict stellar temperature from 16-d spectral data,
using the projection indices of the spectra as predictors.
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® This is now a simple one-dimensional regression problem,
yi = g(ti) + .
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Regression

® We want to predict stellar temperature from 16-d spectral data,
using the projection indices of the spectra as predictors.
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® This is now a simple one-dimensional regression problem,
yi = g(ti) + .
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Shortcut

® | PC fitted directly through 16- dimensional space:

S YN e )N N NN N R




Shortcut (cont.)

® 7oom into the the first three dimensions:

Data LPC

® Direct data compression with LPCs works in principle, but is
potentially “dangerous” as data gets sparse in high dimensions and
remote parts of the predictor space maye be missed.
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Prediction

® For a new observation x,¢,, (i.e., here, a new set of spectra),
prediction proceeds as follows:
® Project x,,eq onto the LPC, giving t,c.
o Compute §new = §(tnew) from the fitted regression model.

® Comparison: We sample n’ = 1000 test data from the remaining
8286 — 1000 observations and observe the prediction error:

prediction error /103 LM PC+LM  PC+AM  PCH+LPC  LPC
average(£?) 4593 4967 1732 1359 1320
median(é?) 1049 1124 104 43 69

where &; is the difference between true and predicted temperature.
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Prediction

® For a new observation x,¢,, (i.e., here, a new set of spectra),
prediction proceeds as follows:
® Project x,,eq onto the LPC, giving t,c.
o Compute §new = §(tnew) from the fitted regression model.

® Comparison: We sample n’ = 1000 test data from the remaining
8286 — 1000 observations and observe the prediction error:

prediction error /103 LM PC+LM  PC4+AM  PCH+LPC LPC
average(£?) 4593 4967 1732 1359 [91] 1320 [211]
median(é?) 1049 1124 104 43 [3] 69 [23]

where &; is the difference between true and predicted temperature.

® Note: For the LPC methods, the highest density point has been
used as starting point. The IQR of the prediction errors using 100
random starting points are given in [squared brackets].
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Density estimation

® Having now the projection indicies, ¢;, of the data, X, these can
be easily used for other purposes such as “density estimation along
the principal curve”

f<t>=$§;f<(“,jt)
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Density estimation (cont.)

® Can we reconstruct the full density, f(x), from f(t)?
/f x,t)dt = /f x|t)f
2 el f(t) ~ ¢<\\x—h< ) fe.

where ¢, € R is the Pl of x € R?, and ¢ ~ N (0, 1).
® For traffic data,




Density estimation (cont.)

® Can we reconstruct the full density, f(x), from f(t)?

f(z) = / F,t)dt = / Flelt) £ (t) dt

)

F(alta) f(te) ~ 36 (”x - Zz(t‘”)w f(t)

where t, € R is the Pl of z € R?, and ¢ ~ N(0, 1).
® For traffic data,

f(t) )
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Density estimation (cont.)

® Can we reconstruct the full density, f(x), from f(t)?

f(x) ZE/ﬂ%ﬂﬁsz@Wﬂﬂﬁ

)

flaltof(te) ~ 1o

|z —m(te)]]

h

where t, € R is the Pl of z € R?, and ¢ ~ N(0, 1).

® For traffic data,
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Limits of one-dimensional data

® Look at “metallicity”

Comp.3

® The relevant information seems to be orthogonal to the principal
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Local principal surtaces

® |Instead of points x, we work with the “building block™ triangles A.
® |ocal PCA is only used to determine the initial triangle, say Ay.

® Then, the algorithm iterates

(1) For a given triangle A, we glue further triangles at each of its
sides 7 = 1,2, 3.

(2) For j =1,2,3, adjust the free triangle vertex via the mean
shift. We dismiss the new triangle if
s the new vertex falls into a region of small density, or
s the new vertex is too close to an existing one (Delaunay

triangulation).

until all sides of all triangles (including the new ones) have
been considered.
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Local principal surfaces (cont.)

® |llustration: Constrained mean shift on a circle (enforcing
equiliteral triangles):
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Local principal surtace for GAIA data

® Local principal surface (LPS) for PC scores based on training data

set with n = 1000:

—pn. 32/



Regression on the surface

Then, how to use this surface for regression?

It seems hard to define a meaningful 2-dim. parametrization on the
surface.

However, we may use distances instead: For each triangle, we can
count the distance d to all other triangles through the smallest
number of triangle borders that have to be crossed to walk from
one to the other.

Assign local weights via discrete distance-based kernel
k(d) = e~/

The parameter A € [0, 00) steers the degree of smoothing on the
manifold: the higher \, the smoother.
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Regression on the surface (cont.)

The entire fitting process is summarized as follows:

(I) Fit a LPS as explained above, yielding a surface with, say, R

triangles.
(I1) Assign each data point @;,i = 1,...,n to their nearest triangle.
(II1) For each triangle r = 1,..., R, compute the mean g, over the

response values of all data points assigned to it.
(IV) Compute all pairwise distances d,. s between all triangles on the
surface.

(V) Use the discrete kernel (-) to smooth over the manifold. The
smoothed response value g, on triangle r is given by

g = Zs k(dr,s)Ys
' > k(drs) |
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Simulation study

Prediction errors for n’ = 1000 test data. The LPS is fitted with A = 1.

® Temperature
prediction error /103 LM PC+LM  PC+AM  PC+LPC PCH+LPS

average(£?) 4593 4967 1732 1320 1227
median(é2) 1049 1124 104 44 47
® Metallicity
prediction error LM  PC+LM PC+AM PC+LPC PC+LPS
average(£?) 2.601 3.084 2.849 3.070 3.067

median(£2) 1.287 1.821 1.671 1.859 1.323
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Conclusion

® Once the principal curve is parametrized, data may be compressed
by projecting onto the curve. Depending on the problem at hand,
the compressed data may be further processed, for instance via

» (nonparametric) regression (if response is continuous);
» classification (if response is discrete);
» density estimation.

® Extension to local principal surfaces (LPS) works by considering
the building block “triangles”. The approach considered here only
projects data “onto the nearest triangle” rather than “onto the

nearest point’. Work on the latter is in process, which would
enable to fit a continuous, rather than stepwise, regression surface.

® Extension to local principal manifolds (LPM) by considering
“tetrahedrons” or “simplices” instead of triangles.....
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