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Motivation: GAIA data

GAIA is an astrophysics mission of the European Space Agency
(ESA) which will undertake a detailed survey of over 10? stars in
our Galaxy and extragalactic objects.

Satellite to be launched in 2011.

Aims of the mission (among others)

» Classify objects (star, galaxy, quasar,...)

» Determine astrophysical parameters (“APs’: temperature,
metallicity, gravity) from spectroscopic data (photon counts at
certain wavelengths).

Work is led by the group “Astrophysical parameters” based at
MPIA Heidelberg, being part of the DPAC (Data Processing and

Analysis Consortium) which is responsible for the general handling
of data from the GAIA mission.

Yet, one has to work with simulated data generated through
complex computer models.
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GAITA data

® Photon counts (n = 8286) simulated from APs:
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GAITA data: Estimation of APs

® For the actual estimation problem, the photon counts form the
predictor space and the AP’s form the response space (this is
opposite to the direction of simulation!)

® Hence, the regression problem may be degenerate (i.e., one set of
photon counts may be associated to two different APs).

® Try linear model for the temperature, using training sample of size
n = 1000:
> Im(temperature™ specl +...+ specl6, data= gaia)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -14033286 21104764 -0.665 0.506
specl 14065842 21104812  0.666 0.505

specl6 13886697 21106076  0.658 0.511
Residual standard error: 1978 on 983 degrees of freedom

Does not seem to be a useful model for this data.
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Dimension reduction

® Usual remedies:

» Model/ variable selection procedures

® Dimension reduction techniques

® ook at scree plot:

> |Im(temperature © Compl + Comp2 + Comp3, data = gaiapc)

g
g
Compi  Comp2 Comp3  Comp4  Comps Comps  Comp? Comp8  Compd  Compio

® Three principal components appear to be sufficient.

Estimate Std. Error t value Pr(>|t|)

(Intercept) ~ 10835.90 65.14 166.34

Comp1 -187339.39  1706.85 -109.76
Comp2 -173967.35  3157.61 -55.09
Comp3 -155314.86  6726.19 -23.09

Residual standard error: 2060 on 996 degrees of freedom

looks better than LM, but...
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Principal component scores

® We plot the

Comp.3
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Principal component scores (cont.)

® We plot the the first three principal component scores and shade
higher temperatures red.
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® Actually, we seem to need only one parameter if we were able to lay
a smooth curve through the data cloud.

® The parametrization along such a curve would be informative w.r.t.
to the target variable, temperature.
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GAITA data and principal curves

® Hence, the following is to do:
(1) Estimate the smooth curve capturing the structure of the
(3-dim/16-dim) predictor space.
(2) Parametrize this curve.
(3) Project all data points onto it.
(4) Fit temperature (or other APs) against the (1-dim.)
projections.

® Step (1) is a task for principal curves. There are a couple of

principal curve algorithms available, but not all of them are suitable
for tasks (2)-(4).

® \We concentrate here on local principal curves (LPC, Einbeck, Tutz
& Evers, 2005).
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Step 1: Fitting the LPC

® Idea: Beginning at some starting point, calculate alternately a local
center of mass and a first local principal component.
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. starting point,
m: points of the LPC,
1,2,3 : enumeration of
steps.
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® | PC through principal component scores of photon counts, with

Step 1: Fitting the LPC (cont.)

local centers of mass p (w) :

> gaia.lpc <- Ipc(gaia.pc$scores)
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Step 2: Parametrization

Unlike HS curves, LPCs do not have a natural parametrization, so
it has to be computed retrospectively.

Define a preliminary parametrization s € R based on Euclidean
distances between neighboring 1 € R?.

For each component p;, 7 =1,...,d, use a to
construct functions p;(s), yielding together a function

(1, -+, pq)(s) representing the LPC (no smoothing involved
herel!).

Recalculate the parametrization along the curve through the arc
length of the spline function.
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Step 2: Parametrization (cont.)

> |pc.spline(gaia.lpc)
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® The spline function (—) is almost indistinguishable from the
original LPC (—).
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® FEach point z; € R? is projected on the point of the curve nearest
to it, yielding the corresponding projection index ¢;

> |pc.spline(gaia.lpc, project=TRUE)
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Step 3: Projection
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® We want to predict stellar temperature from 16-d spectral data,
using the projection indices of the spectra as predictors.

Temperature
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Step 4: Regression
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® This is now a simple one-dimensional regression problem.

Step 4: Regression (cont.)

Yi = m

® Using penalized smoothing splines:

Temperature
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Shortcut

® | PC fitted directly through 16- dimensional space:
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Direct data compression with LPCs

® 7oom into the the first three dimensions:
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Prediction

® For a new observation x,., (i.e., here, a new set of spectra),

prediction proceeds as follows:
® Project x,eq onto the LPC, giving t,c0.

A

o Compute §new = M(tnew) from the fitted regression model.

® Comparison: We sample n’ = 1000 test data from the remaining
8286 — 1000 observations and observe the prediction error:

LM  PC+LM PC+AM  PC4+LPC LPC (2nd run)
average(¢?) 4’593 4'967 1'732 1'447 1’044 (2'025)
median(é%?)  1'049 1'124 104 51 69 (71)

where &; is the difference between true and predicted temperature.
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Limits of one-dimensional data summaries

® Look at “metallicity”

Comp.3

® The relevant information seems to be orthogonal to the principal
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Local principal surtaces and manifolds

® To handle this and more complex data, the extension to local
principal surfaces and manifolds should be considered.

® To this end, firstly observe that, from the two components of the
LPC algorithm, namely

(1) local center of mass (mean shift)
(2) localized first principal component
the more important is (rather surprisingly) (1).
® Instead of (2), any other movement "roughly in the direction of the

data cloud" can be made, and step (1) will shift it back to the data
cloud.

® We exploit this observation for the extension to local principal
surfaces.
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Local principal surfaces and manifolds (cont.)

® |Instead of points x, we work with the “building block™ triangles A.
® |ocal PCA is only used to determine the initial triangle, say Ay.

® Then, the algorithm iterates

(1) For a given triangle A, we glue further triangles at each of its
sides 7 = 1,2, 3.

(2) For j =1,2,3, adjust the free triangle vertex via the mean
shift. We dismiss the new triangle if
s the new vertex falls into a region of small density, or
s the new vertex is too close to an existing one (Delaunay

triangulation).

until all sides of all triangles (including the new ones) have
been considered.

® Straightforward extension to local principal manifolds (LPMs) of
higher dimensions by using tetrahedrons instead of triangles.
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Local principal surtace for GAIA data

® |ocal principal surface for PC scores based on training data set

with n = 1000:
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Regression with LPMs

® The next question is how to parametrize the manifold in order to
use it for regression.

® Actually, we do not need a full parametrization, just distances.

® What is the distance between the green and the blue point?

s MDS/ISOMAP ?
» Local regression ?

® work in progress....

—n. 23/30



LLPMs and the elastic net

Gorban & Zinovyev (2005) developed the elastic net algorithm,
based on a physical analogy with elastic membranes.

Roughly, a graph structure is defined consisting of nodes, edges,
and ribs, and an elastic energy is assigned to the graph depending
on its complexity.

The elastic net is that graph minimizing the sum of energy and
approximation error.

The elastic net algorithm requires to define some sort of “proposal
net” of type:

A N A A A P [

VAVAVAVAVAVAVA
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LLPMs and the elastic net (cont.)

® This is where LPMs may be useful:

® The elastic net gives a very smooth and stable estimate, which
is, however, based on some initial proposal net which may be
difficult to specify if the structure of the data could is unknown.

® LPMs, in turn, are very flexible, do not need prior knowledge,
but can be quite unsmooth and unstable (in the sense that they
depend on some initial starting point/ triangle).

® Idea: Why not use the LPC/LPM as the proposal net for the
elastic net?
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® For illustration: Oceanographic data taken by the German research

oxygen

LLPMs and the elastic net (cont.)

vessel “Gauss” in May 2000 southwest of Ireland:
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LLPMs and the elastic net (cont.)

® Fit a local principal manifold:

® |ooks a little bit unsmooth....



LLPMs and the elastic net (cont.)

® Postprocess via elastic net:

® Final result neater than the LPM!
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Conclusion

After parametrization through cubic splines, LPCs can be used for
dimension reduction provided that

» the intrinsic (topological) dimensionality of the data cloud is
close to 1, or, at least,

# the projections on the curve are informative for the target
variable.

Extension of LPCs to LPMs works by considering the building
block “triangles’.

Regression against LPMs still to do!

LPMs may be useful as “proposal manifold” for the elastic net
algorithm.

R package “LPCM" in development, available on request from
authors.

—n. 29/30



Literature

Einbeck, Tutz & Evers (2005): Local principal curves. Statistics and
Computing 15, 301-313.

Einbeck, Evers & Bailer-Jones (2008): Representing complex data using
localized principal components with application to astronomical
data. In: Gorban, Kegl, Wunsch, & Zinovyev: Principal Manifolds

for Data Visualization and Dimension Reduction: Lecture Notes in
Computational Science and Engineering 58, 180—204.

Einbeck & Evers (2009): LPCM — Local principal curves and manifolds
(R package version 0.36, available from authors).

Gorban & Zinovyev (2005): Elastic principal graphs and manifolds and
their practical application. Computing 75, 359-399.

Powell (2009): An Introduction to Smoothers. 4H Project Report,
Durham University.

—n. 30/30



	Motivation: GAIA data
	GAIA data
	GAIA data: Estimation of APs
	Dimension reduction
	Principal component scores
	Principal component scores (cont.)
	GAIA data and principal curves
	Step 1: Fitting the LPC
	Step 1: Fitting the LPC (cont.)
	 Step 2: Parametrization
	 Step 2: Parametrization (cont.)
	Step 3: Projection
	Step 4: Regression
	Step 4: Regression (cont.)
	Shortcut
	 Direct data compression with LPCs
	Prediction
	Limits of one-dimensional data summaries
	Local principal surfaces and manifolds
	Local principal surfaces and manifolds (cont.)
	Local principal surface for GAIA data
	Regression with LPMs
	LPMs and the elastic net
	LPMs and the elastic net (cont.)
	LPMs and the elastic net (cont.)
	LPMs and the elastic net (cont.)
	LPMs and the elastic net (cont.)
	Conclusion
	Literature

