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Principal components

The first principal component provides the best fit to a multivariate
data cloud. It minimizes the sum of squared distances between the data
points and their orthogonal projections onto the line.
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Principal components

The first principal component provides the best fit to a multivariate
data cloud. It minimizes the sum of squared distances between the data
points and their orthogonal projections onto the line.

Example: Speed-Flow data from a Californian “freeway”.
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Localized principal components

Principal components can be computed over certain subregions ...
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Localized principal components

Principal components can be computed over certain subregions or local
neighborhoods.
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Localized principal component analysis

® Given: Data x1,...,x, sampled from a d—variate random vector
X with density f : R — R.

® At a target point x, we wish to find a line g(s) = m + s+ which
"locally gives the best fit".
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Localized principal component analysis

Given: Data x1,...,x, sampled from a d—variate random vector
X with density f : R — R.

At a target point x, we wish to find a line g(s) = m + s which
"locally gives the best fit".

This leads to the concept of locally weighted PCA, i.e., we wish to
minimize

n
Qim,y) =Y w®(@m:)||lz; — #|” = A(v"y — 1)
i=1
w.r.t. m and ~, where x/ is the projection of x; onto the line
through m with direction -, and with kernel weights
ww(mz) = KH (337, — a:)

centered at the target point .
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Kernel weights

® We use Kg(x) = Kg(a1,...2q) = [}, N(z;,h?) which implies
H = diag(h?,... h2).

® For instance, for estimation at « = (120, 115)T, with
h = h1 = hy = 20, one has the weight diagram
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Solving localized PCA

® Writing the projections as
z; =m+yy (& —m) = (I —yy")m+yv' z;,

the minimization problem takes the shape
Qim,y) =) w(@)(w;—m) (I —yy")(@;—m)—A(y"v-1)
i=1

® By taking partial derivatives of QQ(m, =), one finds
m =3 w (@) ) Y w ().

Ew'y — _)\’77

and

where $% = Y w®(2)(z; — m)(@i — m)T/ Y, w”(x;).
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Asymptotics for localized PCA

® We are interested in the behavior of localized PCA for large n and
small H = diag(hi,...,h3).

® Theory developed in another context (Ruppert and Wand, 1994) gives us
directly

m = @+ o (K)HV f(2)/ (@) + op(H1)
® Find v minimizing the expected minimization problem
E;Q(m, ) = nf(x)(z —m) (I —vy")(@ —m) - Av'v - 1),

yielding
a HVf(m)
- [[HV (=)

B
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Local principal curves (LPC)

® Goal: Find a smooth curve through the “middle of the data” (like a
“nonparametric principal component”)
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Local principal curves (LPC)

® Goal: Find a smooth curve through the “middle of the data” (like a
“nonparametric principal component”)

® Idea: Calculate alternately a local mean and a first local principal
component, each within a certain bandwidth h.
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Local principal curves (LPC)

® Goal: Find a smooth curve through the “middle of the data” (like a
“nonparametric principal component”)

® Idea: Calculate alternately a local mean and a first local principal
component, each within a certain bandwidth h.
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® At j-th iteration, ;1) = m;) E ty(

® The LPC is the series of local means, (m;));>0
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Local principal curves (cont.)

® |ocal principal curve (h =t = 12) through speed-flow data.
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Asymptotics for LPCs

The distance between two local centers of mass, say m ;) and
™M (i1, IS given by

Mgy — My = (My1) — 1)) — (XG4 — M)
a A% '
L u(K)H f(w(]+1)) 44 va(m)
f(@ ) |HV f(x)||

Using H = diag(h?),

1 1
M1y — M) = h? + t| Vf(x
G =0 [Ty Wigl'] V0

Hence, the LPC always turns in direction of the gradient.

The first term is the mean shift; the second term local PCA.
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LPC as ridge estimator

® In practice the LPC will follow the density ridge.
® Both terms have the same sign “uphill” and opposite sign

“downhill”.
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Convergence behavior of LPCs

® Secondly, we observe that the LPC stops when

f(z) = 2|V f(=)|]

® Special case: X ~ N(0,0°%I). Then f(x) = c||V f(z)]|| iff

r — l0'2.
c
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Convergence behavior of LPCs

Secondly, we observe that the LPC stops when
z) = ||V f(z)]

Special case: X ~ N(0,0%I). Then f(x) = c||V f(z)|| iff

r =102
C

Simulation: BVN with
o =2.

20 LPCswith h=1,t=1
started within circle of radius
r=1.

All of them converge to blue
circle r = o2 = 2.
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Conclusion

Using the ‘expected (localized and penalized) sum of squared
orthogonal distances’, one can derive the asymptotic shape of the
first localized PC, which turns out to be a unit vector turning into

the direction HV f(x).

That is, asymptotically, localized PCA is entirely determined by the
bandwidth matrix and the local topology of the data (in terms of
the density).

Localized principal components lead to powerful data
approximation algorithms in conjunction with the mean shift,
known as ‘local principal curves’ (LPC).

Using the asymptotic results, the convergence behavior of LPCs
can be established, and verified by simulation.

Can be exploited for boundary extension of principal curves (Zayed,
2011).
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Boundary extension

® Reduce h adaptively (compared to t) as principal curve approaches
boundary.

without bounday correction with boundary correction

Speed (km/h)
Speed (km/h)

T
200

T
200

® Especially useful for time series datal
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