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Prinipal omponents

The �rst prinipal omponent provides the best �t to a multivariatedata loud. It minimizes the sum of squared distanes between the datapoints and their orthogonal projetions onto the line.

Example: Speed-Flow data from a Californian �freeway�.
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Loalized prinipal omponents

Prinipal omponents an be omputed over ertain subregions ...
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Loalized prinipal omponents

Prinipal omponents an be omputed over ertain subregions or loalneighborhoods.
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Loalized prinipal omponent analysis

Given: Data x1, . . . ,xn sampled from a d�variate random vetor
X with density f : Rd −→ R.At a target point x, we wish to �nd a line g(s) = m+ sγ whih"loally gives the best �t".

This leads to the onept of , i.e., we wish tominimize
w.r.t. and , where is the projetion of onto the linethrough with diretion , and with kernel weights

entered at the target point .
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Loalized prinipal omponent analysis

Given: Data x1, . . . ,xn sampled from a d�variate random vetor
X with density f : Rd −→ R.At a target point x, we wish to �nd a line g(s) = m+ sγ whih"loally gives the best �t".This leads to the onept of locally weighted PCA, i.e., we wish tominimize

Q(m,γ) =

n
∑

i=1

wx(xi)||xi − x′
i||

2 − λ(γTγ − 1)

w.r.t. m and γ, where x′
i is the projetion of xi onto the linethrough m with diretion γ, and with kernel weights

wx(xi) = KH (xi − x)entered at the target point x.
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Kernel weights

We use KH(x) ≡ KH(x1, . . . xd) =
∏d

j=1 N(xj , h
2
j ) whih implies

H = diag(h21, . . . h2d).For instane, for estimation at x = (120, 115)T , with
h ≡ h1 = h2 = 20, one has the weight diagram
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Solving loalized PCA

Writing the projetions as

x′
i = m+ γγT (xi −m) = (I − γγT )m+ γγTxi,the minimization problem takes the shape

Q(m,γ) =

n
∑

i=1

wx(xi)(xi−m)T (I−γγT )(xi−m)−λ(γTγ−1)

By taking partial derivatives of Q(m,γ), one �nds

m =
∑n

i=1w
x(xi)xi/

∑n
i=1w

x(xi).and

Σ
xγ = −λγ,

where Σ
x =

∑n
i=1w

x(xi)(xi −m)(xi −m)T /
∑n

i=1w
x(xi).
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Asymptotis for loalized PCA

We are interested in the behavior of loalized PCA for large n andsmall H = diag(h21, . . . , h2d).Theory developed in another ontext (Ruppert and Wand, 1994) gives usdiretly

m = x+ µ2(K)H∇f(x)/f(x) + op(H1)Find γ minimizing the expeted minimization problem

EfQ(m,γ) = nf(x)(x−m)T (I − γγT )(x−m)− λ(γTγ − 1),yielding

γ
a
= −

H∇f(x)

||H∇f(x)||
.
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Loal prinipal urves (LPC)

Goal: Find a smooth urve through the �middle of the data� (like a�nonparametri prinipal omponent�)

Idea: Calulate alternately a loal mean and a �rst loal prinipalomponent, eah within a ertain bandwidth h.

At �th iteration,The LPC is the series of loal means,
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Loal prinipal urves (LPC)

Goal: Find a smooth urve through the �middle of the data� (like a�nonparametri prinipal omponent�)Idea: Calulate alternately a loal mean and a �rst loal prinipalomponent, eah within a ertain bandwidth h.
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At j�th iteration, x(j+1) = m(j) ± tγ(j)The LPC is the series of loal means, (m(j))j≥0
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Loal prinipal urves (ont.)

Loal prinipal urve (h = t = 12) through speed-�ow data.
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Asymptotis for LPCs

The distane between two loal enters of mass, say m(j) and
m(j+1), is given by

m(j+1) −m(j) = (m(j+1) − x(j+1))− (x(j+1) −m(j))

a
= µ2(K)H

∇f(x(j+1))

f(x(j+1))
± t

H∇f(x)

||H∇f(x)||Using H = diag(h2),
m(j+1) −m(j)

a
=

[

1

f(x(j))
h2 ±

1

||∇f(x(j))||
t

]

∇f(x(j))

Hene, the LPC always turns in diretion of the gradient.The �rst term is the mean shift; the seond term loal PCA.
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LPC as ridge estimator

In pratie the LPC will follow the density ridge.Both terms have the same sign �uphill� and opposite sign�downhill�.
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Convergene behavior of LPCs

Seondly, we observe that the LPC stops when
f(x) = h2

t
||∇f(x)||Speial ase: X ∼ N(0, σ2I). Then f(x) = c||∇f(x)|| i�

x = 1
c
σ2.

Simulation: BVN with.20 LPCs with ,started within irle of radius.All of them onverge to blueirle .
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Convergene behavior of LPCs

Seondly, we observe that the LPC stops when
f(x) = h2

t
||∇f(x)||Speial ase: X ∼ N(0, σ2I). Then f(x) = c||∇f(x)|| i�

x = 1
c
σ2.

Simulation: BVN with
σ2 = 2.20 LPCs with h = 1, t = 1started within irle of radius
r = 1.All of them onverge to blueirle r = σ2 = 2.

r=1
r=2
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Conlusion

Using the `expeted (loalized and penalized) sum of squaredorthogonal distanes', one an derive the asymptoti shape of the�rst loalized PC, whih turns out to be a unit vetor turning intothe diretion H∇f(x).That is, asymptotially, loalized PCA is entirely determined by thebandwidth matrix and the loal topology of the data (in terms ofthe density).Loalized prinipal omponents lead to powerful dataapproximation algorithms in onjuntion with the mean shift,known as `loal prinipal urves' (LPC).Using the asymptoti results, the onvergene behavior of LPCsan be established, and veri�ed by simulation.Can be exploited for boundary extension of prinipal urves (Zayed,2011).
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Boundary extension

Redue h adaptively (ompared to t) as prinipal urve approahesboundary.without bounday orretion with boundary orretion

50 100 150 200

20
40

60
80

10
0

12
0

 Flow (veh/5min)

S
pe

ed
 (

km
/h

)

local means
LPC

50 100 150 200
20

40
60

80
10

0
12

0

 Flow (veh/5min)

S
pe

ed
 (

km
/h

)

Espeially useful for time series data!
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