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Biodosimetry data (recall previous talk)
I Frequency of dicentric chromosomes in human lymphocytes

after in vitro exposure to doses between 1 and 5Gy of 200kV
X–rays. The irradiated blood was mixed with non–irradiated
blood in a proportion 1:3 in order to mirror a partial body
exposure scenario.

Frequency of counts
dose 0 1 2 3 4 5 6 7 8 # cells

1 2713 78 8 0 1 0 0 0 0 2800
2 1302 71 22 5 0 0 0 0 0 1400
3 1116 46 28 7 2 1 0 0 0 1200
4 929 18 14 22 13 2 0 1 1 1000
5 726 17 18 12 9 13 1 4 0 800

I Clearly, many 0’s! But too many for Poisson–model?
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General setup: Count data models

I Given: univariate count data y1, . . . , yn.

I Is it plausible to assume that y1, . . . , yn are generated from a
given (hypothesized) count distribution F?

I Specifically, denote F = F (µi , θi ), with both µi = E (Yi |xi )
and θi (possibly) depending on covariates xi .

I Assume that a routine to obtain estimates µ̂i = Ê (Yi |xi ) and
θ̂i is readily available.

I Denote N(k), for k = 0, 1, 2, . . ., the number of observed
counts k in y1, . . . , yn.

I We will develop a graphical tool which helps to decide
whether, for each count k = 0, 1, 2, . . ., the number N(k) is
‘plausible’ under the distribution F (µ̂i , θ̂i ).
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Distribution of N(k)

I What is the distribution of the number of counts, N(k), when
yi ∼ F (µi , θi )?

I Denoting the probability of observing the count k under
covariate xi and model F as

pi (k) = P(k |µi , θi ),

it is clear that N(k) is just the sum of Bernoulli r.v.’s with
success probability p1(k), . . . , pn(k).

I Consider firstly the case without covariates. Then
µ1 = . . . = µn ≡ µ, θ1 = . . . = θn ≡ θ, and hence

p1(k) = . . . = pn(k) ≡ p(k)

so that clearly
N(k) ∼ Bin(n, p(k))



Distribution of N(k) (cont’d)

I In the situation with covariates, the distribution of N(k) is a
bit more complicated, and is known as the Poisson–Binomial
distribution

P(N(k) = `) =

{
n∏

i=1

(1− pi (k))

} ∑
i1<···<i`

wi1 · · ·wi` (1)

with parameters p1(k), . . . , pn(k).

Here, wi ≡ wi (k) = pi (k)
1−pi (k) , i = 1, 2, . . . , n, and the

summation is over all possible combinations of distinct
i1, i2, . . . , i` from {1, 2, . . . , n} (Chen and Liu, 1997).

I R implementation available in R package poibin (Hong, 2013).

I Note this is different (and unrelatad) to the compound
Poisson Binomial distribution.
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Example: Poisson–Binomial distribution

I Nine urns are filled with black balls and white balls. Urn 1
contains 10% white balls, urn 2 contains 20% etc. A ball is
drawn from each urn.

I What is a 95% ‘fluctuation’ interval for the number of white
balls drawn?

I If 8 white balls where drawn, is this consistent with the
percentages stated above?

> probs <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)

> qpoibin(c(0.05,0.95), pp=probs)

[1] 2 7

> 1-(ppoibin(7, pp=probs))

[1] 0.00736272
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Estimating parameters

I The Poisson–Binomial distribution of the counts N(k)
depends on the parameters pi (k) = P(k |µi , θi ), i = 1, . . . , n.

I These parameters are unknown and have to be estimated from
the data.

I Candidate estimate: p̂i (k) = P(k |µ̂i , θ̂i ), where µ̂i and θ̂i
come from the fitted count data model F in question.

I For instance, in the special case that F (µi , θi ) corresponds to
Pois(µi ), one has p̂i (k) = exp(−µ̂i )µ̂

k
i /k!.

I Clearly, this raises the question of how to accurately estimate
µi when the model F is wrong. Put aside for now.
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Plausibility intervals for N(k)

I Knowing the distribution of N(k), one can derive intervals of
plausible values of N(k) by considering appropriate quantiles
from this distribution.

I For fixed k , appropriate lower and upper quantiles, say
qα/2(k) and q1−α/2(k) of the Poisson–Binomial distribution
can be computed using the R package poibin.

I Do this for a range of values of k, and plot intervals
(qα/2(k), q1−α/2(k)) alongside observed values N(k) as a
function of k .



Example: simulated data

I n = 100 observations y1, . . . , yn simulated from a
Zero–inflated Poisson (ZIP) distribution with Poisson
parameter λ = 1.5 and zero–inflation parameter p = 0.2

k N(k)

0 38
1 28
2 15
3 7
4 8
5 1
6 2
7 1

0 1 2 3 4 5 6 7

0
10

20
30

40

data value (k)

N
(k

)



Example: simulated data

I n = 100 observations y1, . . . , yn simulated from a
Zero–inflated Poisson (ZIP) distribution with Poisson
parameter λ = 1.5 and zero–inflation parameter p = 0.2

I Consider F (µ) ∼ Pois(µ) with µ̂ = ȳ , so p̂(k) = e−ȳ ȳk

k! .

k N(k) q0.05(k) q0.95(k)

0 38 19 33
1 28 27 43
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3 7 6 16
4 8 1 7
5 1 0 3
6 2 0 1
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Median-adjustment
I The previous graph can be difficult to read if the sample size

is large, and so the bounds get very tight.
I We therefore adjust it by subtracting the medians

M(k) = med(N(k)) from all values, where the median is
taken wrt to the Poisson-Binomial distribution of N(k).
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Median-adjustment

I The previous graph can be difficult to read if the sample size
is large, and so the bounds get very tight.

I We therefore adjust it by subtracting the medians
M(k) = med(N(k)) from all values, where the median is
taken wrt to the Poisson-Binomial distribution of N(k).

k N(k) M(k) N(k)–M(k) q0.05(k)–M(k) q0.95(k)– M(k)

0 38 26 12 -7 7
1 28 35 -7 -8 8
2 15 24 -9 -7 7
3 7 10 -3 -4 6
4 8 3 5 -2 4
5 1 1 0 -1 2
6 2 0 2 0 1
7 1 0 1 0 0



Median–adjusted bounds

I Diagnostic plot for the accuracy of the Poisson assumption.
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Median–adjusted bounds: Variant

I Exchange horizontal and vertical axis:

−5 0 5 10

0
1

2
3

4
5
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7

N(k)−M(k)

da
ta

 v
al

ue
 (

k)

I ‘Christmas tree diagram’.

I Adequate models have the ‘decoration’ inside the tree.
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Return to biodosimetry data

I Recall: These are data which resemble ‘partial body exposure’.

I Hence, we would expect inflation of zero’s in the response.

Frequency of counts
dose 0 1 2 3 4 5 6 7 8

1 2713 78 8 0 1 0 0 0 0
2 1302 71 22 5 0 0 0 0 0
3 1116 46 28 7 2 1 0 0 0
4 929 18 14 22 13 2 0 1 1
5 726 17 18 12 9 13 1 4 0

I Let’s check: Are these more zero’s than one would reasonably
expect under the Poisson assumption?



Diagnostics for biodosimetry data
Do the same as before. That is,

I estimate µ̂i = exp{β̂0 + β̂1dosei + β̂2dose2
i };

I build p̂i (k) = exp{−µ̂i}µ̂ki /k!;

I Use Poisson–Binomial distribution with parameters p̂i (k).

k N(k) q0.05(k) q0.95(k)

0 6786 6442 6524
1 230 622 700
2 90 41 64
3 46 1 7
4 25 0 1
5 16 0 0
6 1 0 0
7 5 0 0
8 1 0 0 0 2 4 6 8

0
10

00
30

00
50

00
70

00

data value (k)

N
(k

)

I does not look very useful since boundaries are very close...
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Diagnostics for biodosimetry data

I ... so apply median–adjustment
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)

I We clearly observe zero–inflation (and associated 1–deflation);
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Christmas tree diagram: ZIP hypothesis

I Do all the same as before, but now compute µ̂i , θ̂i , and p̂i (k),
using the zero–inflated Poisson (ZIP) model as the
hypothesized model.
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I indicates a good fit.
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Christmas tree diagram: NB hypothesis

I Repeat the procedure using the negative Binomial model as
the hypothesized model.
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I indicates that the NB model does not capture the data well.
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Christmas tree diagram: PIG hypothesis

I Repeat the procedure using the Poisson inverse Gaussian
(PIG) model as the hypothesized model.
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Alternative data set: Whole body exposure
I Counts of dicentric chromosomes in 4400 blood cells after in

vitro ‘whole body’ exposure with 200kV X-rays from 0 to
4.5Gy.
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Multiple testing ?

I If considered as a series of statistical tests over counts
k = 0, 1, 2, ..., one can argue that multiple testing issues arise.

I For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.

I One could adjust this through a Bonferroni correction etc.

I However, we do believe that the corresponding inflated
boundaries would be rather meaningless.

I Hence, we do not make such a correction, but explicitly do
not advocate this procedure as a testing procedure.

I It should rather be seen as a diagnostic device, similar as a
residual plot or a QQ-plot.

I That is, exceeding the boundary limits once or twice should
not necessarily be interpreted as rejection of the hypothesized
count distribution, as long as the ‘decoration’ is reasonably
consistent with the tree.



Multiple testing ?

I If considered as a series of statistical tests over counts
k = 0, 1, 2, ..., one can argue that multiple testing issues arise.

I For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.

I One could adjust this through a Bonferroni correction etc.

I However, we do believe that the corresponding inflated
boundaries would be rather meaningless.

I Hence, we do not make such a correction, but explicitly do
not advocate this procedure as a testing procedure.

I It should rather be seen as a diagnostic device, similar as a
residual plot or a QQ-plot.

I That is, exceeding the boundary limits once or twice should
not necessarily be interpreted as rejection of the hypothesized
count distribution, as long as the ‘decoration’ is reasonably
consistent with the tree.



Multiple testing ?

I If considered as a series of statistical tests over counts
k = 0, 1, 2, ..., one can argue that multiple testing issues arise.

I For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.

I One could adjust this through a Bonferroni correction etc.

I However, we do believe that the corresponding inflated
boundaries would be rather meaningless.

I Hence, we do not make such a correction, but explicitly do
not advocate this procedure as a testing procedure.

I It should rather be seen as a diagnostic device, similar as a
residual plot or a QQ-plot.

I That is, exceeding the boundary limits once or twice should
not necessarily be interpreted as rejection of the hypothesized
count distribution, as long as the ‘decoration’ is reasonably
consistent with the tree.



Multiple testing ?

I If considered as a series of statistical tests over counts
k = 0, 1, 2, ..., one can argue that multiple testing issues arise.

I For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.

I One could adjust this through a Bonferroni correction etc.

I However, we do believe that the corresponding inflated
boundaries would be rather meaningless.

I Hence, we do not make such a correction, but explicitly do
not advocate this procedure as a testing procedure.

I It should rather be seen as a diagnostic device, similar as a
residual plot or a QQ-plot.

I That is, exceeding the boundary limits once or twice should
not necessarily be interpreted as rejection of the hypothesized
count distribution, as long as the ‘decoration’ is reasonably
consistent with the tree.



Comparison with score tests
I Alternatively, one can carry out traditional score tests.
I For instance, consider H0: Poisson versus H1: ZIP or H1: NB.
I Score test statistic T = ST J−1S , where S and J are the score

function and Fisher Information matrix (resp.) evaluated
under the Poisson model. Asymptotically, T ∼ χ2(1).

I Resulting values of T , to be compared with χ2
1,0.95 = 3.84

(Oliveira et al, 2016):

Test Body exposure

Partial Whole
Pois/ZIP 1996.30 1.00
Pois/NB 6009.35 0.90

I Confirms that Poisson is adequate for whole body exposure
but inadequate for partial body exposure.

I ...but the score test does not tells us whether it’s at all the
zero’s which cause the problem, nor whether the data are
zero–inflated or –deflated!
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under the Poisson model. Asymptotically, T ∼ χ2(1).

I Resulting values of T , to be compared with χ2
1,0.95 = 3.84

(Oliveira et al, 2016):

Test Body exposure

Partial Whole
Pois/ZIP 1996.30 1.00
Pois/NB 6009.35 0.90

I Confirms that Poisson is adequate for whole body exposure
but inadequate for partial body exposure.

I ...but the score test does not tells us whether it’s at all the
zero’s which cause the problem, nor whether the data are
zero–inflated or –deflated!



Conclusion

I We have provided a simple diagrammatic tool to assess the
adequacy of any given count data model.

I Essentially, it is verified whether the frequency, N(k), of each
count, k, is plausible given the hyptothesized model.

I Can be used for with or without covariates.

I Only requires computation of fitted values, and the resulting
plausibility intervals via the Poisson–Binomial distribution.

I Estimation of model parameters when the model is inadequate
can possibly be tricky!

I In the case of zero–inflation in Poisson models, a ‘hybrid’
estimator (weighted mean of Poisson mean and zero–truncated
mean) has been proposed (Wilson & Einbeck, 2016).

I More work required for general case of an arbitrary
count/distribution.

I Note that the same problem applies to score tests too!!!

I Be aware of multiple testing: It is a diagram, not a test.
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