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Motivation

® Consider oceanographic data recorded by the German vessel
“Gauss’ in May 2000 southwest of Ireland.

® N = 643 Measurements on water temperature (response), salinity,
water depth, oxygen content.




Motivation (cont.)

® This is a 3-variate regression problem, with the predictor space
given by salinity, water depth, and oxygen:
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Motivation (cont.)

® This is a 3-variate regression problem, with the predictor space
given by salinity, water depth, and oxygen:
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® \We shade higher water temperatures red.
® Can we make use of the one-(?) dimensional inner structure?

® This is a task for principal curves.
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Principal curves

Principal curves are ‘smooth curves through the middle of a data cloud’.

Different principal curve algorithms vary in how the ‘middle’ of the data

cloud is defined/found:

® Traditional: Global (‘top-down’) techniques.
» Hastie & Stuetzle 1989: HS principal curves (R packages pcurve and

princurve )

® Tibshirani 1992: Probabilistic principal curves (no public

implementation)

» Kég' et al. 2002: Polygonal line algorithm (available as Java applet)

® Alternative: Local (‘bottom up’) methods.
® Delicado 2001: Principal curves of oriented points (C++

programme)
o Einbeck et al. 2005: Local principal curves (R package Lrcm)
» Ozertem & Erdogmus 2011: ‘Locally defined principal curves’

(no public implementation 7)
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Local principal curves (LPC)

® Calculate alternately a local mean and a first local principal
component, each within a certain bandwidth h.
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Local principal curves (LPC)

® Calculate alternately a local mean and a first local principal
component, each within a certain bandwidth h.
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® The LPC is the series of local means.
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Fitting the LPC

® | PC through oceanographic data set, with local centers of mass:

> require(LPCM
> ocean. | pc <- | pc(ocean, h=0.12)
> plot(ocean. | pc, type=c("curve", "nass"))
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Parametrizing the LPC

® We parametrize the LPC through the arc length of a cubic spline
through the local centers of mass (Einbeck, Evers & Hinchliff, 2010).

> ocean.spline <- |pc.spline(ocean.| pc)
> pl ot (ocean. spline, type=c("curve", "mass", "spline"))
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Projecting onto the LPC

® \We project each data point x; € R? onto the nearest point on the
curve, yielding a one-dimensional projection index p; € R

> pl ot (ocean. spline, type=c("spline", "project"))
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Bandwidth selection

® Self-coverage: Proportion of data points within tubes around the
curve of the same radius as the bandwidth used to fitted the curve
(Einbeck, 2011).

> ocean. sel f<- | pc.self.coverage(ocean)
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® Back to initial problem: With y = temperature as response, it
remains a univariate nonparametric regression problem

Regression based on the LPC

yi = 9(pi) +&i-

> pi <- | pc.spline(ocean. | pc,

> plot(pi,

t enper at ur e,

-)

pr oj ect =TRUE)
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Regression based on the LPC (cont.)

® This can be fitted by any nonparametric smoother; for instance, a
local linear smoother.

® Could be considered as a single-index model with nonparametrically
constructed index.

> require( Ker nSnoot h)
> fit<- locpoly(pi[order(pi), tenperature[order(pi)],...))
> lines(fit)

temperature
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Principal surfaces

® Idea for local principal surfaces:
» Build a mesh of “locally best fitting triangles”.
» Local PCA is (only) used to define the initial triangle.

Starting from the initial triangle, iteratively . ..
(1) glue further triangles at each of its sides.

(2) adjust free vertexes via a constrained mean
shift. Dismiss a new triangle if the new vertex |

o falls below a density threshold _
#® is too close to an existing one. _o""

... until all triangles have been considered.

(Einbeck, Evers & Powell, 2010)
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Principal surfaces (cont.)

® |ocal principal surface fitted to oceanographic data:

> |ibrary(l pnforge) # by L. Evers, under construction
> ocean. | pm <- | pm(ocean, h=120)
> pl ot 3d(ocean. | pm
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Principal surfaces (cont.)

® Postprocessing via elastic net (Gorban and Zonovyev, 2005)

> ocean2.| pnx- postprocess. | pn(ocean. | pm
> pl ot 3d(ocean2. | pm
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Regression on principal surface

® Toy example: A principal surface -
for bivariate data.
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Regression on principal surface

principal surface with projections

® Toy example: A principal surface
for bivariate data. )

® |nitially, each data point x; is pro- _
jected onto the closest triangle
(or simplex), say ;.

-p.15



Regression on principal surface

Toy example: A principal surface
for bivariate data.

Initially, each data point x; is pro- ‘ﬁ,;, ,,,,,
. . o o p''e lrn'ao Py l!m b
jected onto the closest triangle % °;.*.'ﬂ;.ﬁ,fﬂ:}q,’ﬁfa}ai’.° N
. o6 “'Qu."%g“"';o, o 9
(or simplex), say ;. );0';"“9;0 o e
-
%
Next, consider a Vi

We can fit separate regression models for each triangle 5
Yi = c(j)(xi)’ﬁ(j) + € for all ¢ with closest triangle t; = 7,

where cU)(x;) are the coordinates of the projected point using the
sides of the j—th triangle as basis functions.
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Penalized regression

N
® Fitting totally unrelated regres- j ‘_/
sions within each triangle is .
clearly unsatisfactory. gy
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Penalized regression

® Fitting totally unrelated regres-
sions within each triangle is
clearly unsatisfactory.

® Therefore, we apply an continu-
ity penalty which which penal-
izes differences between predic-
tions of neighboring triangles at
shared vertices.
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Penalized regression

® Fitting totally unrelated regres-
sions within each triangle is
clearly unsatisfactory.

® Therefore, we apply an continu-
ity penalty which which penal-
izes differences between predic-
tions of neighboring triangles at
shared vertices.

® Additionally, we apply a smooth-
ness penalty which penalizes dif-
ference in regressions at adjacent
triangles.
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Penalized regression (cont'd)

® Define
» the parameter vector 3’ = (6’(1),5’(2), . )

» the design matrix Z (which is a box product of (C(ti)(Xi))lgign
and an adjacency matrix);

® appropriate penalty matrices D and FE.

® Then the entire minimization problem can be written as

1ZB — y|I” + A[DB|* + ulEB|*. (1)

® The solution is given by
B=(Z'Z+)\D'D+  E'E )" 'Z'y.

(Einbeck, Isaac, Evers & Parente, 2012)
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Back to oceanographic data

® Penalized regression of water temperature on principal surface

> ocean.reg <- regression.|lpmocean2.l pm tenperature,
penal ty. continuity=1, penalty.snpbot hness=1)
> pl ot (ocean. req)
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Conclusion

Principal curves and surfaces can be used as a building block for
further statistical procedures (such as, nonparametric regression).

Techniques are only suitable for data with very high inter—variable
correlations.

R package LPCM (on CRAN)

» Principal curve fitting (incl. parametrization and projection)
o Bandwith selection

® Measuring goodness—of—fit

» Mean shift (clustering) tools

R package Ipmforge (in development, L. Evers)
o Fitting principal surfaces and manifolfs of higher dimension

# Includes functionalities for post-processing (elastic net),
projection, and regression.

# No automated smoothing parameter selection yet.
# Finding the ‘right’ dimension of the manifold is another issue...
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