Data visualization (and beyond) with local principal curves and manifolds

Jochen Einbeck

Department of Mathematical Sciences, Durham University

jochen.einbeck@durham.ac.uk

joint work with Ludger Evers (University of Glasgow),

London, 15 December 2013

Motivation

- Consider oceanographic data recorded by the German vessel "Gauss" in May 2000 southwest of Ireland.
- Arr N=643 Measurements on water temperature (response), salinity, water depth, oxygen content.

Motivation (cont.)

■ This is a 3-variate regression problem, with the predictor space given by salinity, water depth, and oxygen:

Motivation (cont.)

This is a 3-variate regression problem, with the predictor space given by salinity, water depth, and oxygen:

- We shade higher water temperatures red.
- Can we make use of the one-(?) dimensional inner structure?
- This is a task for principal curves.

Principal curves

Principal curves are 'smooth curves through the middle of a data cloud'. Different principal curve algorithms vary in how the 'middle' of the data cloud is defined/found:

- Traditional: Global ('top-down') techniques.
 - Hastie & Stuetzle 1989: HS principal curves (R packages pcurve and princurve)
 - Tibshirani 1992: Probabilistic principal curves (no public implementation)
 - Kégl et al. 2002: Polygonal line algorithm (available as Java applet)
- Alternative: Local ('bottom up') methods.
 - Delicado 2001: Principal curves of oriented points (C++ programme)
 - **■** Einbeck et al. 2005: Local principal curves (R package LPCM)
 - Ozertem & Erdogmus 2011: 'Locally defined principal curves' (no public implementation?)

Local principal curves (LPC)

Calculate alternately a local mean and a first local principal component, each within a certain bandwidth h.

Local principal curves (LPC)

Calculate alternately a local mean and a first local principal component, each within a certain bandwidth h.

The LPC is the series of local means.

Fitting the LPC

▶ LPC through oceanographic data set, with local centers of mass:

```
> require(LPCM)
> ocean.lpc <- lpc(ocean, h=0.12)
> plot(ocean.lpc, type=c("curve", "mass"))
```


Parametrizing the LPC

We parametrize the LPC through the arc length of a cubic spline through the local centers of mass (Einbeck, Evers & Hinchliff, 2010).

```
> ocean.spline <- lpc.spline(ocean.lpc)</pre>
```


Projecting onto the LPC

m extstyle extstyle

> plot(ocean.spline, type=c("spline", "project"))

Bandwidth selection

- Self-coverage: Proportion of data points within tubes around the curve of the same radius as the bandwidth used to fitted the curve (Einbeck, 2011).
- > ocean.self<- lpc.self.coverage(ocean)</pre>

 \bullet gives h = 0.12

Regression based on the LPC

▶ Back to initial problem: With y = temperature as response, it remains a univariate nonparametric regression problem $y_i = g(p_i) + \varepsilon_i$.

```
> pi <- lpc.spline(ocean.lpc, project=TRUE)</pre>
```

> plot(pi, temperature, ...)

Regression based on the LPC (cont.)

- This can be fitted by any nonparametric smoother; for instance, a local linear smoother.
- Could be considered as a single-index model with nonparametrically constructed index.

```
> require(KernSmooth)
> fit<- locpoly(pi[order(pi), temperature[order(pi)],...))
> lines(fit)
```


Principal surfaces

- Idea for local principal surfaces:
 - Build a mesh of "locally best fitting triangles".
 - Local PCA is (only) used to define the initial triangle.

Starting from the initial triangle, iteratively . . .

- (1) glue further triangles at each of its sides.
- (2) adjust free vertexes via a constrained mean shift. Dismiss a new triangle if the new vertex
 - falls below a density threshold
 - is too close to an existing one.
- ... until all triangles have been considered.

(Einbeck, Evers & Powell, 2010)

Principal surfaces (cont.)

Local principal surface fitted to oceanographic data:

```
> library(lpmforge) # by L. Evers, under construction
> ocean.lpm <- lpm(ocean, h=120)
> plot3d(ocean.lpm)
```


Principal surfaces (cont.)

Postprocessing via elastic net (Gorban and Zonovyev, 2005)

```
> ocean2.lpm<- postprocess.lpm(ocean.lpm)</pre>
```

> plot3d(ocean2.lpm)

Regression on principal surface

■ Toy example: A principal surface for bivariate data.

Regression on principal surface

- Toy example: A principal surface for bivariate data.
- Initially, each data point x_i is projected onto the closest triangle (or simplex), say t_i .

Regression on principal surface

- Toy example: A principal surface for bivariate data.
- Initially, each data point x_i is projected onto the closest triangle (or simplex), say t_i .

- ullet Next, consider a response y_i .
- ullet We can fit separate regression models for each triangle j

$$y_i = \mathbf{c}^{(j)}(\mathbf{x}_i)'\boldsymbol{\beta}_{(j)} + \epsilon_i$$
 for all i with closest triangle $t_i = j$,

where $\mathbf{c}^{(j)}(\mathbf{x}_i)$ are the coordinates of the projected point using the sides of the j-th triangle as basis functions.

Penalized regression

▶ Fitting totally unrelated regressions within each triangle is clearly unsatisfactory.

Penalized regression

- Fitting totally unrelated regressions within each triangle is clearly unsatisfactory.
- Therefore, we apply an continuity penalty which which penalizes differences between predictions of neighboring triangles at shared vertices.

Penalized regression

- Fitting totally unrelated regressions within each triangle is clearly unsatisfactory.
- Therefore, we apply an continuity penalty which which penalizes differences between predictions of neighboring triangles at shared vertices.
- Additionally, we apply a smoothness penalty which penalizes difference in regressions at adjacent triangles.

Penalized regression (cont'd)

- Define
 - ullet the parameter vector $oldsymbol{eta}' = \left(oldsymbol{eta}'_{(1)}, oldsymbol{eta}'_{(2)}, \ldots
 ight)$,
 - the design matrix Z (which is a box product of $(\mathbf{c}^{(t_i)}(\mathbf{x}_i))_{1 \leq i \leq n}$ and an adjacency matrix);
 - ullet appropriate penalty matrices $oldsymbol{D}$ and $oldsymbol{E}$.
- Then the entire minimization problem can be written as

$$\|\mathbf{Z}\boldsymbol{\beta} - \mathbf{y}\|^2 + \lambda \|\mathbf{D}\boldsymbol{\beta}\|^2 + \mu \|\mathbf{E}\boldsymbol{\beta}\|^2. \tag{1}$$

The solution is given by

$$\hat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z} + \lambda \mathbf{D}'\mathbf{D} + \mu \mathbf{E}'\mathbf{E})^{-1}\mathbf{Z}'\mathbf{y}.$$

(Einbeck, Isaac, Evers & Parente, 2012)

Back to oceanographic data

Penalized regression of water temperature on principal surface

Conclusion

- Principal curves and surfaces can be used as a building block for further statistical procedures (such as, nonparametric regression).
- Techniques are only suitable for data with very high inter-variable correlations.
- R package LPCM (on CRAN)
 - Principal curve fitting (incl. parametrization and projection)
 - Bandwith selection
 - Measuring goodness-of-fit
 - Mean shift (clustering) tools
- R package Ipmforge (in development, L. Evers)
 - Fitting principal surfaces and manifolfs of higher dimension
 - Includes functionalities for post-processing (elastic net), projection, and regression.
 - No automated smoothing parameter selection yet.
 - Finding the 'right' dimension of the manifold is another issue...

References

- **Delicado** (2001): Another Look at Principal Curves and Surfaces, Journal of Multivariate Analysis 77, 84–116.
- **Gorban & Zinovyev** (2005): Elastic principal graphs and manifolds and their practical application. *Computing* **75**, 359–399.
- **Hastie & Stuetzle** (1989): Principal Curves. *JASA* **84**, 502–516.
- **Kégl, Krzyzak, Linder, & Zeger** (2000): Learning and Design of Principal Curves. *IEEE Transactions Patt. Anal. Mach. Intell.* **24**, 59–74.
- **Ozertem & Erdogmus** (2011): Locally defined principal curves, *Journal* of Machine Learning Research 12, 1249–1286.
- **Tibshirani** (1992): Principal Curves Revisited. *Statistics and Computing* **2**, 183–190.

References (cont.)

- **Einbeck, Tutz & Evers** (2005): Local principal curves. *Statistics and Computing* **15**, 301–313.
- **Einbeck, Evers & Hinchliff** (2010): Data compression and regression based on local principal curves. In Fink et al. (Eds): Advances in Data Analysis, Data Handling, and Business Intelligence, Heidelberg, pp. 701–712, Springer.
- **Einbeck, Evers & Powell** (2010): Data compression and regression through local principal curves and surfaces. *International Journal of Neural Systems* **20**, 177–192.
- **Einbeck** (2011). Bandwidth selection for mean-shift based unsupervised learning techniques a unified approach via self-coverage, *Journal of Pattern Recognition Research* **6**, 175–192.
- **Einbeck, Isaac, Evers & Parente** (2012): Penalized regression on principal manifolds with application to combustion modelling. *Proc' of the 27th International Workshop on Statistical Modelling*, University of Economics, Prague.