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Combustion

Combustion is a sequene of exothermi hemialreations between a fuel and an oxidantaompanied by the prodution of heat (light, �ames)Most simple example: ombustion of hydrogen and oxygen towater vapor

2H2 +O2 −→ 2H20

A ombustion system involving hemial speies is desribed byits thermohemial statewith hemial mass frations , and temperature.The (spae/time) behavior of is governed by a set of highlyoupled transport equations.For large , this system of equations is usually intratable.
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Combustion is a sequene of exothermi hemialreations between a fuel and an oxidantaompanied by the prodution of heat (light, �ames)Most simple example: ombustion of hydrogen and oxygen towater vapor

2H2 +O2 −→ 2H20A ombustion system involving p hemial speies is desribed byits thermohemial state
Φ = [z1, . . . , zp−1, T ],with p− 1 hemial mass frations z1, . . . , zp−1, and temperature

T .The (spae/time) behavior of Φ is governed by a set of p highlyoupled transport equations.For large p, this system of equations is usually intratable.
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Combustion data

Simulated ombustion system with 11 hemial speies
H2, O2, O, OH, H2O, H, HO2, H2O2, CO, CO2, HCOFirst three prinipal omponents of state spae Φ (n = 4000):
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It is well-known that the thermohemial state spae of ombustionsystems resides on low�dimensional manifolds.This is onvenient, as the transport equations based on the reduedsystem of, say, 3 prinipal omponents tratable.
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Combustion data

Compliation: The rates of prodution (`soure terms') of theprinipal omponents are unknown.In pratie, they have to be found by regression on the prinipalomponents.

Requires `high��delity' data with tabulated soure terms (Sutherland& Parente, 2009):

red=highgreen=low�rst PC soure terms.

Clearly, the position on the manifold is informative for the soureterms.
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Clearly, the position on the manifold is informative for the soureterms.
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Prinipal omponent regression

A simple approah is to use Prinipal omponent regression, wherethe �rst three prinipal omponent sores serve as preditors, andthe soure terms, s, as response:

s = β0 + β1PC1 + β2PC2 + β3PC3 + ǫ(Sutherland & Parente, 2009).Fitted versus true values (R2 = 0.77):
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... turns out to be not good enough!
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Prinipal manifolds

Can we make use of the manifold struture more expliitly?Requires data approximation via prinipal manifolds (in 2D:prinipal surfaes).

Loal prinipal surfaes, using triangles as building bloks (Einbek &Evers, 2010):Starting from an initial triangle, iteratively . . .(1) glue further triangles at eah of its sides.(2) adjust free vertexes via the mean shift.Dismiss a new triangle if the new vertexfalls below a density thesholdis too lose to an existing one.. . . until all triangles have been onsidered.Extends to prinipal manifolds of any dimension when replaingtriangles (2D) by tetrahedrons (3D) or simplies (>3D).
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Prinipal manifolds (ont'd)
Neat . . .. . . but the atual hallengeis to regress the soureterms onto the surfae.

Fitted loal prinipal surfae to ombustion data, with dataouloured by (true, tabulated) PC soure terms:
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Regression on prinipal manifolds

Toy example: A prinipal surfaefor bivariate data.
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principal surface from 2D data

Next, onsider a response .Assume separate regression models for eah triangle

where be the oordinates of the projeted point using thesides of the th triangle as basis funtions.

– p. 8



Regression on prinipal manifolds

Toy example: A prinipal surfaefor bivariate data.Initially, eah data point xi is pro-jeted onto the losest triangle(or simplex), say ti.
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Next, onsider a response .Assume separate regression models for eah triangle

where be the oordinates of the projeted point using thesides of the th triangle as basis funtions.
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Regression on prinipal manifolds

Toy example: A prinipal surfaefor bivariate data.Initially, eah data point xi is pro-jeted onto the losest triangle(or simplex), say ti.

Next, onsider a response yi.Assume separate regression models for eah triangle j

yi = c(j)(xi)
′β(j) + ǫi for all i with closest triangle ti = j,where c(j)(xi) be the oordinates of the projeted point using thesides of the j−th triangle as basis funtions.
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Penalized regression

Fitting totally unrelated regres-sions within eah triangle islearly unsatisfatory.
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Fitting totally unrelated regres-sions within eah triangle islearly unsatisfatory.Therefore, we apply an ontinu-ity penalty whih whih penal-izes di�erenes between predi-tions of neighboring triangles atshared verties.
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Penalized regression

Fitting totally unrelated regres-sions within eah triangle islearly unsatisfatory.Therefore, we apply an ontinu-ity penalty whih whih penal-izes di�erenes between predi-tions of neighboring triangles atshared verties.Additionally, we apply a smooth-ness penalty whih penalizes dif-ferene in regressions at adjaenttriangles.
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Penalized regression (ont'd)

De�nethe parameter vetor β′ =
(

β′
(1),β

′
(2), . . .

),the design matrix Z (whih is a box produt of (c(ti)(xi))1≤i≤nand an adjaeny matrix);appropriate penalty matries D and E.Then the entire minimization problem an be written as

‖Zβ − y‖2 + λ‖Dβ‖2 + µ‖Eβ‖2. (1)Though the matries Z, D and E an be very large, they are alsovery sparse, whih allows for quik omputations.The solution is given by
β̂ = (Z′Z+ λD′D+ µE′E )−1Z′y.
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Bak to ombustion problem

Using this tehnique, the soure terms si, i = 1, . . . , n areregressed onto the prinipal surfae.
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Simulation study

Fitted versus true response for 4000 training data (top) and 4000test data (bottom), using PC regression (left) and manifoldregression (right):
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Simulation study (ont'd)

For omparison, we onsider a wider range of regression methods:Traditional methods:Linear (prinipal omponent) regression:
si = β0 + β1PC1,i + β2PC2,i + β3PC3,i + ǫiAdditive models:

si = f1(PC1,i) + f2(PC2,i) + f3(PC3,i) + ǫi

Modern �blak�box� methods:Multivariate adaptive regression splines (MARS);Support vetor mahine (SVM);Penalized prinipal�manifold�based regression (as explained).Loalized prinipal�manifold�based regression (Einbek & Evers,2010).

– p. 13



Simulation study (ont'd)

For omparison, we onsider a wider range of regression methods:Traditional methods:Linear (prinipal omponent) regression:
si = β0 + β1PC1,i + β2PC2,i + β3PC3,i + ǫiAdditive models:

si = f1(PC1,i) + f2(PC2,i) + f3(PC3,i) + ǫiModern �blak�box� methods:Multivariate adaptive regression splines (MARS);Support vetor mahine (SVM);Penalized prinipal�manifold�based regression (as explained).Loalized prinipal�manifold�based regression (Einbek & Evers,2010).
– p. 13



Simulation study (ont'd)

Boxplots of test data residuals,

log((si − ŝi)
2),for all six regression tehniques:

LM AM MARS SVM Man−Pen Man−Loc
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Clear evidene in favour of the manifold.
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Conlusion

For the ombustion problem, the estimation of soure terms is oneof a series of steps towards the onstrution of a pratialombustion model (for Diret Numerial Simulation, et).The next step is the numerial solution of the redued set oftransport equations.Results depend on type of saling before PCA (Isaa et al, 2012).Our preditions tend to give exellent results for most of thepreditor spae, but quite `bad' results for a few small subregions(usually at manifold tails and boundaries). In our appliation, those`bad' preditions ould be traed bak to the burn�in�proess.Other appliations of prinipal manifolds in: astrophysis,neuroimaging, partile physis, oeanography, . . .Working paper (Evers & Einbek, 2012) and R pakage (lpmforge)available on request.
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