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Prinipal urves

Prinipal Curves are smooth urves passing through the `middle' of amultivariate data loud.Example: Speed-Flow data from a Californian `freeway'.
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Types of prinipal urves

Today exist a variety of di�erent notions of prinipal urves, whih varyessentially in how the �middle� of the data loud is de�ned/found:Global (`top-down') algorithms start with an initial line (usually the1st PC line) and bend this line or onatenate other lines to it untilsome onvergene riterion is met (Hastie & Tibshirani (HS) 1989,Tibshirani 1992, Kégl et al. 2002).Allows theoretial analysis (based on global optimizationriterion).Problems with strongly twisted, branhed, or disonneted datalouds.

Loal (`bottom-up') algorithms estimate the prinipal urve loallymoving step by step through the data loud (Deliado 2001, Einbek etal. 2005).More �exible, but far more variable.Extend straightforwardly to branhed and disonneted data.
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Loal prinipal urves (LPC)

Calulate alternately a loal mean and a �rst loal prinipalomponent, eah within a ertain bandwidth h.
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The LPC is the series of loal means.
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Algorithm for LPCs

Given: A data loud X = (X1, . . . ,Xn), where Xi ∈ R
d.

1. Choose a starting point x0. Set x = x0.

2. At x, calculate the local center of mass µx =
∑n

i=1wiXi, where

wi = KH(Xi − x)Xi/
∑n

i=1KH(Xi − x).

3. Compute the 1st local eigenvector γx of

Σx =
∑n

i=1wi(Xi − µx)(Xi − µx)T

4. Step from µx to x := µx + t0γ
x.

5. Repeat steps 2. to 4. until the µx remain constant. Then set x = x0, set
γx := −γx and continue with 4.The sequene of the loal enters of mass µx makes up the loalprinipal urve (LPC).

Need �signum �ipping� of at every loop in order to maintaindiretion of urve.
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Whih feature do LPCs extrat?

A loal prinipal urve approximates the density ridge.
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Some theory and simulation

The LPC stops when

f(x) = h2

t0
||∇f(x)||Speial ase: X ∼ N(0, σ2I). Then f(x) = c||∇f(x)|| i�

||x|| = 1
cσ

2.

Simulation: BVN with.20 LPCs with ,started within irle of radius.All of them onverge to blueirle .Can be exploited for boundary extension (Einbek & Zayed, 2013).

– p. 7



Some theory and simulation

The LPC stops when

f(x) = h2

t0
||∇f(x)||Speial ase: X ∼ N(0, σ2I). Then f(x) = c||∇f(x)|| i�

||x|| = 1
cσ

2.
Simulation: BVN with

σ2 = 2.20 LPCs with h = 1, t0 = 1started within irle of radius
r = 1.All of them onverge to blueirle r = σ2 = 2.

r=1
r=2

Can be exploited for boundary extension (Einbek & Zayed, 2013).

– p. 7



Some theory and simulation

The LPC stops when

f(x) = h2

t0
||∇f(x)||Speial ase: X ∼ N(0, σ2I). Then f(x) = c||∇f(x)|| i�

||x|| = 1
cσ

2.
Simulation: BVN with

σ2 = 2.20 LPCs with h = 1, t0 = 1started within irle of radius
r = 1.All of them onverge to blueirle r = σ2 = 2.

r=1
r=2

Can be exploited for boundary extension (Einbek & Zayed, 2013).

– p. 7



Appliation on tra� data

LPC (red urve, h = t0 = 12) with loal enters of mass µx (blaksquares). A HS urve is shown for omparison (blak, dashed).
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To make further use of this urve, we need to be able to projetdata onto it.
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Parametrization and Projetion

Unlike HS urves, LPCs do not have a natural parametrization, soit has to be omputed retrospetively.De�ne a preliminary parametrization s ∈ R based on Eulideandistanes between neighboring loal means µ ∈ R
d.For eah omponent µj , j = 1, . . . , d, use a natural ubi spline toonstrut funtions µj(s), yielding together a funtion

(µ1, . . . , µd)(s) representing the LPC (no smoothing involvedhere!).Realulate the parametrization, t, along the urve through the arlength of the spline funtion.Eah point xi ∈ R
d is projeted on the point of the urve nearestto it, yielding the orresponding projetion index ti.
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Illustration: tra� data

Original LPC, spline, and projetions for speed-�ow data:
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Interpreting the urve parametrization

Plotted are tra� density (�ow/speed) versus the urveparametrization t.
0 50 100 150 200 250

0
1

2
3

4
5

LPC parametrization

tr
af

fic
 d

en
si

ty

A alibration urve an be used to link the parametrization tophysial variables.(Einbek & Dwyer, 2011)
– p. 11



From urves to surfaes

Example from neurosiene: FMRI san (3d oordinates) of the`orpus allosum' for a `healthy volunteer'
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with assoiated intensities of `frational anisotropy' (red=high,green=small).Can we provide a `map' of intensities on the surfae?
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Prinipal surfaes

Idea for loal prinipal surfaes:Build a mesh of �loally best �tting triangles�.Loal PCA is (only) used to de�ne the initial triangle.Starting from the initial triangle, iteratively . . .(1) glue further triangles at eah of its sides.(2) adjust free vertexes via a onstrained meanshift. Dismiss a new triangle if the new vertexfalls below a density thresholdis too lose to an existing one.. . . until all triangles have been onsidered.(Einbek, Evers & Powell, 2010)
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Prinipal surfaes (ont.)

Loal prinipal surfae �tted to FMRI san:

Then, how to use this for regression?
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Regression on prinipal surfae

Toy example: A prinipal surfaefor bivariate data.
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Next, onsider a response .Assume separate regression models for eah triangle

where are the oordinates of the projeted point using thesides of the th triangle as basis funtions.

– p. 15



Regression on prinipal surfae

Toy example: A prinipal surfaefor bivariate data.Initially, eah data point xi is pro-jeted onto the losest triangle(or simplex), say ti.
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Regression on prinipal surfae

Toy example: A prinipal surfaefor bivariate data.Initially, eah data point xi is pro-jeted onto the losest triangle(or simplex), say ti.

Next, onsider a response yi.Assume separate regression models for eah triangle j

yi = c(j)(xi)
′β(j) + ǫi for all i with closest triangle ti = j,where c(j)(xi) are the oordinates of the projeted point using thesides of the j−th triangle as basis funtions.
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Penalized regression

Fitting totally unrelated regres-sions within eah triangle islearly unsatisfatory.
– p. 16
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Penalized regression

Fitting totally unrelated regres-sions within eah triangle islearly unsatisfatory.Therefore, we apply an ontinu-ity penalty whih whih penal-izes di�erenes between predi-tions of neighboring triangles atshared verties.Additionally, we apply a smooth-ness penalty whih penalizes dif-ferene in regressions at adjaenttriangles.
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Penalized regression (ont'd)

De�nethe parameter vetor β′ =
(

β′
(1),β

′
(2), . . .

),the design matrix Z (whih is a box produt of (c(ti)(xi))1≤i≤nand an adjaeny matrix);appropriate penalty matries D and E.Then the entire minimization problem an be written as

‖Zβ − y‖2 + λ‖Dβ‖2 + µ‖Eβ‖2. (1)Though the matries Z, D and E an be very large, they are alsovery sparse, whih allows for quik omputations.The solution is given by
β̂ = (Z′Z+ λD′D+ µE′E )−1Z′y.(Evers & Einbek, 2013)
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Regression on the orpus allosum

Raw data (left), with estimated prinipal surfae (right), shadedaording to �tted intensities:
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Future goal: Relate �tted (ideally �attened) surfae to salardisability sores...
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Case study: Combustion

Combustion is a sequene of exothermi hemialreations between a fuel and an oxidantaompanied by the prodution of heat (light, �ames)Most simple example: ombustion of hydrogen and oxygen towater vapor

2H2 +O2 −→ 2H20

A ombustion system involving hemial speies is desribed byits thermohemial statewith hemial mass frations , and temperature.The (spae/time) behavior of is governed by a set of highlyoupled transport equations.For large , this system of equations is usually intratable.
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Combustion data

Simulated ombustion system with 11 hemial speies
H2, O2, O, OH, H2O, H, HO2, H2O2, CO, CO2, HCOFirst three prinipal omponents of state spae Φ (n = 4000):
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It is well-known that the thermohemial state spae of ombustionsystems resides on low�dimensional manifolds.This is onvenient, as the transport equations based on the reduedsystem of, say, 3 prinipal omponents tratable.
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Combustion data

Compliation: The rates of prodution (`soure terms') of theprinipal omponents are unknown.In pratie, they have to be found by regression on the prinipalomponents.

Requires `high��delity' data with tabulated soure terms (Sutherland& Parente, 2009):

red=highgreen=low�rst PC soure terms.

Clearly, the position on the surfae (=2D manifold) is informativefor the soure terms.
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Prinipal omponent regression

A simple approah is to use Prinipal omponent regression, wherethe �rst three prinipal omponent sores serve as preditors, andthe soure terms, s, as response:

s = β0 + β1PC1 + β2PC2 + β3PC3 + ǫ(Sutherland & Parente, 2009).Fitted versus true values (R2 = 0.77):
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... turns out to be not good enough!
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Prinipal surfae regression

Loal prinipal surfae, with data oloured by (true, tabulated) PCsoure terms si (left); after regression onto prinipal surfae (right).
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Model validation

Fitted versus true response for 4000 training data (top) and 4000test data (bottom), using PC regression (left) and surfaeregression (right):
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Model omparison

For omparison, we onsider a wider range of regression methods:Traditional methods:Linear (prinipal omponent) regression:
si = β0 + β1PC1,i + β2PC2,i + β3PC3,i + ǫiAdditive models:

si = f1(PC1,i) + f2(PC2,i) + f3(PC3,i) + ǫi

Modern �blak�box� methods:Multivariate adaptive regression splines (MARS);Support vetor mahine (SVM);Penalized prinipal�surfae�based regression (as explained).Loalized prinipal�surfae�based regression (Einbek, Evers &Powell, 2010).
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Model omparison (ont'd)

Boxplots of test data residuals,

log((si − ŝi)
2),for all six regression tehniques:

LM AM MARS SVM Man−Pen Man−Loc

−
10

0
10

20

Clear evidene in favour of the manifold.
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Conlusion

Prinipal urves and surfaes form a powerful tool for ompressinghigh�dimensional non�linear data strutures......whih an be used as a building blok for further statistialproedures (suh as, nonparametri regression).Tehnique extends to manifolds of higher dimension by onsideringtetrahedrons (d = 3) or simplies (d ≥ 4).Open problems:We don't have yet a (reliable) tool to determine the `right'intrinsi dimension.In higher dimensions, it is hard to judge whether the �ttedsurfae or manifold is `good'.Automated smoothing parameter seletion only available forprinipal urves.Software: R pakage LPCM for prinipal urves (on CRAN); and

lpmforge for prinipal manifolds (L. Evers, unpublished).
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