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Principal curves

Principal Curves are smooth curves passing through the ‘middle’ of a
multivariate data cloud.

Example: Speed-Flow data from a Californian ‘freeway’.
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Types of principal curves

Today exist a variety of different notions of principal curves, which vary
essentially in how the “middle” of the data cloud is defined/found:

® Global (‘top-down’) algorithms start with an initial line (usually the
Ist PC line) and bend this line or concatenate other lines to it until
some convergence criterion iIs met (Hastie & Tibshirani (HS) 1989,
Tibshirani 1992, Kégl et al. 2002).

» Allows theoretical analysis (based on global optimization
criterion).

» Problems with strongly twisted, branched, or disconnected data
clouds.
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Types of principal curves

Today exist a variety of different notions of principal curves, which vary
essentially in how the “middle” of the data cloud is defined/found:

® Global (‘top-down’) algorithms start with an initial line (usually the

Ist PC line) and bend this line or concatenate other lines to it until
some convergence criterion iIs met (Hastie & Tibshirani (HS) 1989,
Tibshirani 1992, Kégl et al. 2002).

» Allows theoretical analysis (based on global optimization
criterion).

» Problems with strongly twisted, branched, or disconnected data
clouds.

® local (‘bottom-up’) algorithms estimate the principal curve locally

moving step by step through the data cloud (Delicado 2001, Einbeck et
al. 2005).

o More flexible, but far more variable.
o Extend straightforwardly to branched and disconnected data.
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Local principal curves (LPC)

® Calculate alternately a local mean and a first local principal
component, each within a certain bandwidth h.
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Local principal curves (LPC)

® Calculate alternately a local mean and a first local principal
component, each within a certain bandwidth h.
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® The LPC is the series of local means.
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Algorithm for LPCs

Given: A data cloud X = (X1,...,X,,), where X; € R%.

. Choose a starting point xg. Set t = 2.

. At z, calculate the local center of mass u® = Y | w; X;, where

w; — KH(X@ — ZE)X@/ Z?:l KH(X@ — ZE)

. Compute the 15¢ local eigenvector ¥ of

N =3 wi Xy — )X - pt)!
. Step from p* to x := u* + toy”*.

5. Repeat steps 2. to 4. until the ;* remain constant. Then set z = x¢, set

X

v* := —~%* and continue with 4.

The sequence of the local centers of mass y* makes up the local
principal curve (LPC).
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Algorithm for LPCs

Given: A data cloud X = (X1,...,X,,), where X; € R%.

. Choose a starting point xg. Set t = 2.

. At z, calculate the local center of mass u® = Y | w; X;, where

w; — KH(X@ — ZE)X@/ Z?:l KH(X@ — ZE)

. Compute the 15¢ local eigenvector ¥ of

N =3 wi Xy — )X - pt)!
. Step from p* to x := u* + toy”*.

5. Repeat steps 2. to 4. until the ;* remain constant. Then set z = x¢, set

X

v* := —~%* and continue with 4.

The sequence of the local centers of mass y* makes up the local
principal curve (LPC).

Need “signum flipping” of +* at every loop in order to maintain
direction of curve.
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Which feature do LPCs extract?

® A local principal curve approximates the density ridge.
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Some theory and simulation

® The LPC stops when

f(z) = F V@)l
® Special case: X ~ N(0,0°I). Then f(x) = c||Vf(x)]|| iff

|| = ¢o?.
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Some theory and simulation

The LPC stops when

r) = ||V f(x
Special case: X ~ N(0,0%I). Then f(z) = ||V f(z)|] iff

1.2

z]| = ¢

- =

1l
N -

Simulation: BVN with

o2 = 2.

20 LPCswith h=1,tg =1

started within circle of radius °

r=1. o

All of them converge to blue
circle r = 02 = 2.
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Some theory and simulation

The LPC stops when

r) = ||V f(x
Special case: X ~ N(0,0%I). Then f(z) = ||V f(z)|] iff

1.2

z]| = ¢

— r=1
2

Simulation: BVN with

o2 = 2.

20 LPCswith h=1,tg =1
started within circle of radius °
r=1.

All of them converge to blue
circle r = 2 = 2.

Can be exploited for boundary extension (Einbeck & Zayed, 2013).



Application on traffic data

® | PC (red curve, h = tg = 12) with local centers of mass u”* (black
squares). A HS curve is shown for comparison (black, dashed).
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Application on traffic data

® | PC (red curve, h = tg = 12) with local centers of mass u”* (black
squares). A HS curve is shown for comparison (black, dashed).
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® To make further use of this curve, we need to be able to project
data onto it.
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Parametrization and Projection

Unlike HS curves, LPCs do not have a natural parametrization, so
it has to be computed retrospectively.

Define a preliminary parametrization s € R based on Euclidean
distances between neighboring local means ;1 € R?.

For each component p;, 7 =1,...,d, use a to
construct functions p;(s), yielding together a function

(p1,-- -, pq)(s) representing the LPC (no smoothing involved
herel!).

Recalculate the parametrization, ¢, along the curve through the arc
length of the spline function.

Each point x; € R? is projected on the point of the curve nearest
to it, yielding the corresponding projection index ;.
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Original LPC, spline, and projections for speed-flow data:
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Interpreting the curve parametrization

® Plotted are traffic density (flow/speed) versus the curve
parametrization ¢.
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® A calibration curve can be used to link the parametrization to
physical variables.

(Einbeck & Dwyer, 2011)
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® Example from neuroscience: FMRI scan (3d coordinates) of the

From curves to surfaces

‘corpus callosum’ for a ‘healthy volunteer’
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From curves to surfaces

® Example from neuroscience: FMRI scan (3d coordinates) of the
‘corpus callosum’ for a ‘healthy volunteer’
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with associated intensities of ‘fractional anisotropy’ (red=high,
green=small).
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From curves to surfaces

® Example from neuroscience: FMRI scan (3d coordinates) of the
‘corpus callosum’ for a ‘healthy volunteer’
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with associated intensities of ‘fractional anisotropy’ (red=high,
green=small).

® Can we provide a ‘'map’ of intensities on the surface?
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Principal surfaces

® Idea for local principal surfaces:
» Build a mesh of “locally best fitting triangles”.
» Local PCA is (only) used to define the initial triangle.

Starting from the initial triangle, iteratively . ..
(1) glue further triangles at each of its sides.

(2) adjust free vertexes via a constrained mean
shift. Dismiss a new triangle if the new vertex |

o falls below a density threshold _
#® is too close to an existing one. _o""

... until all triangles have been considered.

(Einbeck, Evers & Powell, 2010)
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Principal surfaces (cont.)

® Local principal surface fitted to FMRI scan:
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Principal surfaces (cont.)

® Local principal surface fitted to FMRI scan:

® Then, how to use this for regression?
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Regression on principal surface

® Toy example: A principal surface -
for bivariate data.
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Regression on principal surface

principal surface with projections

® Toy example: A principal surface
for bivariate data. )

® |nitially, each data point x; is pro- _
jected onto the closest triangle
(or simplex), say ;.
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Regression on principal surface

® Toy example: A principal surface
for bivariate data.

® Initially, each data point x; is pro- el etiala]l o
. . o "o .Nu o 'ao v 5y ”cls » e
jected onto the closest triangle % °;.*.'ﬂ;.ﬁ,fﬂ:}q,’ﬁfa}ai’.° N
i O -0 “oi . 0" ‘g o o
(or simplex), say ;. );%j.#;’ S D’
-
%
® Next, consider a Vi

® Assume separate regression models for each triangle j
Yi = c(j)(xi)’ﬁ(j) + € for all ¢ with closest triangle t; = 7,

where cU)(x;) are the coordinates of the projected point using the
sides of the j—th triangle as basis functions.
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Penalized regression

N
® Fitting totally unrelated regres- j ‘_/
sions within each triangle is .
clearly unsatisfactory. gy
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Penalized regression

® Fitting totally unrelated regres-
sions within each triangle is
clearly unsatisfactory.

® Therefore, we apply an continu-
ity penalty which which penal-
izes differences between predic-
tions of neighboring triangles at
shared vertices.
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Penalized regression

® Fitting totally unrelated regres-
sions within each triangle is
clearly unsatisfactory.

® Therefore, we apply an continu-
ity penalty which which penal-
izes differences between predic-
tions of neighboring triangles at
shared vertices.

® Additionally, we apply a smooth-
ness penalty which penalizes dif-
ference in regressions at adjacent
triangles.
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Penalized regression (cont'd)

® Define
» the parameter vector 3’ = (6’(1),5’(2), . )

» the design matrix Z (which is a box product of (C(ti)(Xi))lgign
and an adjacency matrix);
® appropriate penalty matrices D and FE.

® Then the entire minimization problem can be written as

1ZB — y|I” + A[DB|* + ulEB|*. (1)

® Though the matrices Z, D and E can be very large, they are also
very sparse, which allows for quick computations.

® The solution is given by
B=(Z'7Z+)\D'D+uE'E )" 'Z'y.

(Evers & Einbeck, 2013)
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Regression on the corpus callosum

® Raw data (left), with estimated principal surface (right), shaded
according to fitted intensities:
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Regression on the corpus callosum

® Raw data (left), with estimated principal surface (right), shaded
according to fitted intensities:

® Future goal: Relate fitted (ideally flattened) surface to scalar
disability scores...
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Case study: Combustion

Combustion is a sequence of exothermic chemical
reactions between a fuel and an oxidant

accompanied by the production of heat (light, flames)

Most simple example: combustion of hydrogen and oxygen to

water vapor
2H9 + O9 — 2H50
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Case study: Combustion

Combustion is a sequence of exothermic chemical
reactions between a fuel and an oxidant

accompanied by the production of heat (light, flames)

Most simple example: combustion of hydrogen and oxygen to
water vapor

2Hy + Oy — 2H50

A combustion system involving p chemical species is described by
its thermochemical state

P = [21, e o ,Zp_l,T],
with p — 1 chemical mass fractions 21, ..., 2,_1, and temperature
T

The (space/time) behavior of ® is governed by a set of p highly
coupled transport equations.

For large p, this system of equations is usually intractable.
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Combustion data

® Simulated combustion system with 11 chemical species

Hsy, Os, O, OH, H,O, H, HO9, HyO49, CO, CO4, HCO
® First three principal components of state space ® (n = 4000):
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Combustion data

® Simulated combustion system with 11 chemical species

Hsy, Os, O, OH, H,O, H, HO9, HyO49, CO, CO4, HCO
® First three principal components of state space ® (n = 4000):

PC1

PC3

PC2

® It is well-known that the thermochemical state space of combustion
systems resides on low—dimensional manifolds.

® This is convenient, as the transport equations based on the reduced
system of, say, 3 principal components are tractable.
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Combustion data

® Complication: The rates of production (‘source terms’) of the
principal components are unknown.

® In practice, they have to be found by regression on the principal
components.
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Combustion data

® Complication: The rates of production (‘source terms’) of the
principal components are unknown.

® In practice, they have to be found by regression on the principal
components.

® Requires ‘high—fidelity’ data with tabulated source terms (Sutherland
& Parente, 2009):

o,
5oo
PP o

red=high
An g —low
; first PC source terms.

PC3
1

-10

-15

-20

-25

¥ -30

PC2

-p.21



Combustion data

® Complication: The rates of production (‘source terms’) of the
principal components are unknown.

® In practice, they have to be found by regression on the principal
components.

® Requires ‘high—fidelity’ data with tabulated source terms (Sutherland
& Parente, 2009):

o,
5oo
PP o

red=high
An g —low
; first PC source terms.

PC3
1
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¥ -30
-6 -4 -2 0 2 4 6 8

PC2

® C(learly, the position on the surface (=2D manifold) is informative
for the source terms.
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Principal component regression

® A simple approach is to use Principal component regression, where

the first three principal component scores serve as predictors, and
the source terms, s, as response:

s = Bo + B1PCy 4 B2PCa + B3PC3 + €

(Sutherland & Parente, 2009).

® Fitted versus true values (R? = 0.77):

PCR

fitted

true source terms

® .. turns out to be not good enough!
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Principal surface regression

Local principal surface, with data coloured by (true, tabulated) PC
source terms s; (left); after regression onto principal surface (right).
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Model validation

® Fitted versus true response for 4000 training data (top) and 4000
test data (bottom), using PC regression (left) and surface
regression (right):
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Model comparison

For comparison, we consider a wider range of regression methods:

® Traditional methods:
» Linear (principal component) regression:
si = Bo + B1PC1; + B2PCo ;i + B3PCs; + ¢
o Additive models:
s; = f1(PCiy) + f2(PCa) + f3(PCs) + €
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Model comparison

For comparison, we consider a wider range of regression methods:

® Traditional methods:
» Linear (principal component) regression:
si = PBo + B1PCyi; + B2PCo; + B3PC3; + ¢
o Additive models:
s; = f1(PCiy) + f2(PCa) + f3(PCs) + €

® Modern “black—box" methods:
» Multivariate adaptive regression splines (MARS);

» Support vector machine (SVM);
» Penalized principal-surface—based regression (as explained).
I

Localized principal-surface—based regression (Einbeck, Evers &
Powell, 2010).
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Model comparison (cont'd)

® Boxplots of test data residuals,

log((s; — 8;)%),

for all six regression techniques:

—_— ' —
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Model comparison (cont'd)

® Boxplots of test data residuals,

log((s; — 8;)%),

for all six regression techniques:
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® C(Clear evidence in favour of the manifold.
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Conclusion

Principal curves and surfaces form a powerful tool for compressing
high—dimensional non—linear data structures...

...which can be used as a building block for further statistical
procedures (such as, nonparametric regression).

Technique extends to manifolds of higher dimension by considering

tetrahedrons (d = 3) or simplices (d > 4).

Open problems:

» We don't have yet a (reliable) tool to determine the ‘right’
intrinsic dimension.

# In higher dimensions, it is hard to judge whether the fitted
surface or manifold is ‘good’.

» Automated smoothing parameter selection only available for
principal curves.

Software: R package LPCM for principal curves (on CRAN); and
Ipmforge for principal manifolds (L. Evers, unpublished).
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