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Intrinsic dimension (ID)

Given data set Q = (x1,...,x,)’, with z; € RP.

Interested in the number of parameters, say d < D, required to
describe the data without loss of information.

Standard concept: Principal component analysis.

However, this may not be adequate if the data do not reside on
linear subspace of R”:
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For instance, does a bivariate spiral have d =1 or d = 27
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Correlation dimension

® “Correlation integral” proposed by Grassberger—Procaccia (1983)

C(r) = lim S‘ S‘ I (|| — ]| <) (1)

n—>oonn—1
1=1 g=14+1

® Correlation dimension:
. In(C
d.or = lim,_g %
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Is this plausible? If ID = d, we would expect C(r) ~ r¢.

Then,

=d
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In(C(r)) — i In(c) + dIn(r)
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Is this plausible? If ID = d, we would expect C(r) ~ r¢.

Then,
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Problem: Correlation integral needs to be computed for a ball with
radius tending to 0!



Three solutions

® Slope method: Estimate d., as slope, b, of regression line
In(C'(r)) = bln(r) + a;

(Camastra, 2003).
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In(C'(r)) = bln(r) + a;
(Camastra, 2003).

® Intercept method: Let ¢(r) = InC'(r)/Inr. Estimate d.,, as
intercept, a, of regression line

c(r) =a+ cr.
® Polynomial method: Assume polynomial shape
C(r) = apr? 4 - - - + asr® + a1r + ag subject to C(0) = 0;
Then simple proof via L'Hé6pital shows that

If a, #0 and ap—1 = -+ = a2 = a1 =0, then deor = p.



Simulation

® Simulate r = 100 data sets of size n = 200 from
(i) a long noisy ‘cigar’ in 4D space (i.e., D =4, d = 1)

(ii) 4—variate Gaussian noise (i.e., D = d = 4)
® The resulting ID’s are [left: (i), middle: (ii), right: polynomial (ii)]

Boxplot of Intrinsic Dimension Boxplot of Intrinsic Dimension Histograme of IDs using Poly method
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® For simulation (i), the polynomial method produced the correct
ID=1 in 100% of the cases.



Industrial glass melter data

® 21-dim data from an industrial melter: 15 temperature sensors, 4
induction coils, viscosity, voltage.

® (Scaled) PCA suggests small ID:




Industrial glass melter data (cont'd)

® Intercept method and slope method

Plot of Correlation dimension versus r log-log plot
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® Polynomial method

Estimate Std.Error  t-value Pr(>|t|)
re 0.013943 0.001576 8.845 2.56e-09 Hkk
I(re”2) -0.071003 0.016837 -4.217 0.000265 Kk
I(re”3) 0.161690 0.056048 2.885 0.007769 ok
I(re"4) -0.030528 0.058397 -0.523 0.605558

® OQverall, some evidence for ID=1 as well as ID=2.




Some remarks

Compared to the (previously existing) “slope method”, the intercept
method produces comparable or favorable results.

The polynomial method is theoretically appealing, but difficult to
use for high data dimension D, since a polynomial degree
d < p < D needs to be chosen.

The correlation dimension occupies some middle ground between
purely linear methods (such as PCA) and purely topological
methods (which average over localized IDs representing the
dimension of the tangent space along the manifold). Indeed, the
IDs obtained via the correlation dimension are generally equal or
larger than what a scree plot (broken stick, etc...) would suggest,
but smaller than the estimates obtained through local (topological)
techniques, such as Brand's (2003) algorithm.

Note: All this is non-causal! The value d may underestimate the
number of variables needed for applications such as regression.
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