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Principal curves

Principal Curves are smooth curves passing through the ‘middle’ of a
multivariate data cloud X = (X1,...,X,,), where X; € R%.

Example: Speed-Flow data from a Californian “freeway’.
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Principal curves: Original definition

Hastie & Stiitzle (HS, 1989) define each point on the principal curve m as
the average of all points which project there (‘self-consistency’), i.e.
m(t) = E(X|tm(X) =1)
where t,,(X) is the projection index of X onto the curve m.

® If the principal curve is linear, then it is a
principal component.

® If a curve m(t) is self-consistent, it is a
critical point of the distance function
A(m) = E (inf; || X — m(¢)|[*) .

® However, it was later shown that the
critical point is actually just a saddle point

of A(m).
® If X = g(T)+ e with T uniform and
e ~ N(0,0°I), then generally m # g!

(from: Hastie et al, 2001))
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Types of principal curves

Today exist a variety of different notions of principal curves, which vary
essentially in how the “middle” of the data cloud is defined/found:

® Global (‘top-down’) algorithms start with an initial line (usually the
1st PC) and bend this line or concatenate other lines to it until

some convergence criterion is met (HS, Tibshirani 1992, Kégl et al
2002, ...)

» Allows theoretical analysis.
» Goes wrong if initial oder of projection indices is not right.
» Extension to branched or disconnected data clouds difficult.
® |ocal (‘bottom-up’) algorithms estimate the principal curve locally

moving step by step through the data cloud (Delicado 2001,
Einbeck et al 2005)

o More flexible, but far more variable.
o Extend straightforwardly to branched and disconnected data.
» Theoretical investigations rather difficult.
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Delicado’s PCOPs

Delicado (2001) defines principal curves of oriented points (PCOPs) as a
sequence of fixed points of the function p*(x) = F(X|X € H),
where H is the hyperplane through & minimizing locally the
variance of the data points projected on it.

® Works fine for most (not
too complex) data sets.

® Mathematically elegant

® However, quite Fae g
complicated and
computationally e ¢ S\
demanding. S e il s

® Requires a cluster analysis |

at every point of the prin-
cipal curve.
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Local principal curves (LPCs)

Einbeck, Tutz & Evers (2005)
mass and a first local principal component.
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Algorithm for LPCs

Given: A data cloud X = (X1,...,X,), where X; = (X1, ..., X5q).

1.
2.

Choose a starting point xg. Set x = x.

At x, calculate the local center of mass u* = > " ; w; X;, where

w; — KH(Xz — ZU)XZ/ Z?:l KH(Xz — .CU)

Compute the 15! local eigenvector ¥ of X% = (05%) (1<j,k<d), Where
05, = D i Wi Xij — p ) (Xig — p).-

Step from p”* to x 1= p”* + oy

Repeat steps 2. to 4. until the ™ remain constant. Then set x = x, set
~v* := —~% and continue with 4.

The sequence of the local centers of mass y* makes up the local
principal curve (LPC).
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Application on trafhic data

® | PC (red curve, h=12) with local centers of mass u* (black
squares). For comparison, also a HS curve is shown (black,

dashed).
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Interpretation of LPCs

® A local principal curve approximates the density ridge. For

instance, speed-flow data:
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Kernel density estimate:

Comaniciu & Meer (2002):
‘Mean Shift’ p* — z ~ Vf(z)
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Technical Details

“Signum flipping™: Check in every cycle if

' r ._ A
Otherwise, set o = Vo
Angle penalization, to hamper the principle curve from bending off
at crossings.

Use multiple initializations if data cloud consists of several
branches.

Adaptive bandwidth reduction at boundary (M. Zayed).
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Another descriptive toy example

® | PC through European Coastal Resorts.
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Is this everything?

Most principal curve papers stop about here (after some analysis of
goodness of fit, theoretical properties, etc.)

Surprisingly, the literature has rarely proceeded with exploiting a
principal curve once it's there.

The value of their parametric counterpart, principal components,
also brings to bear only when they are used for data compression or
regression.

So, why not do the next step?
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Motivation: GAIA data

GAIA is an astrophysics mission of the European Space Agency
(ESA) which will undertake a detailed survey of over 10? stars in
our Galaxy and extragalactic objects.

Satellite to be launched in 2011.

Aims of the mission (among others)

» Classify objects (star, galaxy, quasar,...)

» Determine astrophysical parameters (“APs’: temperature,
metallicity, gravity) from spectroscopic data (photon counts at
certain wavelengths).

Work is led by the group “Astrophysical parameters” based at
MPIA Heidelberg, being part of the DPAC (Data Processing and

Analysis Consortium) which is responsible for the general handling
of data from the GAIA mission.

Yet, one has to work with simulated data generated through
complex computer models.
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GAITA data

= 8286) simulated from APs:
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GAITA data: Estimation of APs

® For the actual estimation problem, the photon counts form the
predictor space and the APs form the response space (this is opposite

to the direction of simulation!)

® Hence, the regression problem may be degenerate (i.e., one set of
photon counts may be associated to two different APs).

® Try linear model for the temperature, using training sample of size
n = 1000:
> Im(temperature™ specl +...+ specl6, data= gaia)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -14033286 21104764 -0.665 0.506
specl 14065842 21104812  0.666 0.505

specl6 13886697 21106076  0.658 0.511
Residual standard error: 1978 on 983 degrees of freedom

Does not seem to be a useful model for this data.
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Dimension reduction

® Usual remedies:

» Model/ variable selection procedures

# Dimension reduction techniques

® ook at scree plot:

> Im(temperature © Compl + Comp2 + Comp3, data = gaiapc)

g
g
Compi  Comp2 Comp3  Compé  Comps Comps  Comp? Comp8  Compd  Compo

® Three principal components appear to be sufficient.

Estimate Std. Error t value Pr(>|t|)

(Intercept)  10835.90 65.14 166.34

Comp1 -187339.39  1706.85 -109.76
Comp2 -173967.35  3157.61 -55.09
Comp3 -155314.86  6726.19 -23.09

Residual standard error: 2060 on 996 degrees of freedom

looks better than LM, but...

<2e-16

<2e-16
<2e-16
<2e-16
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Principal component scores

® We plot the

Comp.3
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Principal component scores (cont.)

® We plot the the first three principal component scores and shade
higher temperatures red.
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® Actually, we seem to need only one parameter if we were able to lay
a smooth curve through the data cloud.

® The parametrization along such a curve would be informative w.r.t.
to the target variable, temperature.
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GATA data and principal curves

® Hence, the following is to do:
(1) Estimate the smooth curve capturing the structure of the
(3-dim/16-dim) predictor space.
(2) Parametrize this curve.
(3) Project all data points onto it.

(4) Fit temperature (or other APs) against the (1-dim.)
projections.

® The actual new taks in the context of LPCs are (2) and (3).
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Parametrization and Projection

Unlike HS curves, LPCs do not have a natural parametrization, so
it has to be computed retrospectively.

Define a preliminary parametrization s € R based on Euclidean
distances between neighboring 1 € R

For each component p;, 7 =1,...,d, use a to
construct functions 1;(s), yielding together a function

(p1,-- -, pq)(s) representing the LPC (no smoothing involved
herel!).

Recalculate the parametrization along the curve through the arc
length of the spline function.

Each point x; € R? is projected on the point of the curve nearest
to it, yielding the corresponding projection index t;
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[llustration: trathic data

Original LPC, Spline, and projections for speed-flow data:
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® | PC through first three principal component scores of photon

counts

Back to GAIA data

> gaia.lpc <- Ipc(gaia.pc$scores)
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Back to GATA data (cont.)

® | PC (in spline representation) through PC scores, with vertical
projections:

> |pc.spline(gaia.lpc)
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Regression

® We want to predict stellar temperature from 16-d spectral data,
using the projection indices of the spectra as predictors.
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Regression (cont.)

® This is now a simple one-dimensional regression problem.
yi = m(t;) + &

® Using penalized smoothing splines:
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Shortcut

® | PC fitted directly through 16- dimensional space:
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Shortcut (cont.)

® 7oom into the the first three dimensions:

Data LPC

® Direct data compression with LPCs works in principle, but is
potentially “dangerous” as data gets sparse in high dimensions and
remote parts of the predictor space maye be missed.
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Prediction

® For a new observation x,., (i.e., here, a new set of spectra),

prediction proceeds as follows:
® Project x,eq onto the LPC, giving t,c0.

A

o Compute §new = M(tnew) from the fitted regression model.

® Comparison: We sample n’ = 1000 test data from the remaining
8286 — 1000 observations and observe the prediction error:

prediction error /103 LM  PC+LM PC+AM PC+LPC LPC (2nd run)
average(£?) 4'593 4'967 1'732 1'430 1’044 (2'025)
median(é?) 1'049 1'124 104 52 69 (71)

where &; is the difference between true and predicted temperature.
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Density estimation

® Having now a parametrization of the curve, this can be easily used
for other purposes such as “density estimation along the principal

curve':
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Limits of one-dimensional data

® Look at “metallicity”

Comp.3

® The relevant information seems to be orthogonal to the principal

curvel
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Local principal surfaces

® To handle this and more complex data, the extension to local
principal surfaces and manifolds should be considered.

® To this end, firstly observe that, from the two components of the
LPC algorithm, namely

(1) local center of mass (mean shift)
(2) localized first principal component
the more important is (rather surprisingly) (1).
® Instead of (2), any other movement "roughly in the direction of the

data cloud" can be made, and step (1) will shift it back to the data
cloud.

® We exploit this observation for the extension to local principal
surfaces.
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Local principal surfaces (cont.)

® |Instead of points x, we work with the “building block™ triangles A.
® |ocal PCA is only used to determine the initial triangle, say Ay.

® Then, the algorithm iterates

(1) For a given triangle A, we glue further triangles at each of its
sides 7 = 1,2, 3.

(2) For j =1,2,3, adjust the free triangle vertex via the mean
shift. We dismiss the new triangle if
s the new vertex falls into a region of small density, or
s the new vertex is too close to an existing one (Delaunay

triangulation).

until all sides of all triangles (including the new ones) have
been considered.
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Local principal surtace for GAIA data

® Local principal surface (LPS) for PC scores based on training data

set with n = 1000:
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Regression on the surtace

Then, how to use this surface for regression?

It seems hard to define a meaningful 2-dim. parametrization on the
surface.

Instead, we do some sort of kernel smoothing: For each triangle,
we can count the distance d to all other triangles through the
smallest number of triangle borders that have to be crossed to walk
from one to the other.

Local weights are assigned through a discrete distance-based kernel
k(d) = e

The smoothing parameter A\ € [0, o0) steers the degree of
smoothing on the manifold: the higher \, the smoother it is.
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Regression on the surface (cont.)

The entire fitting process is summarized as follows:

(1)

(1)
(1)

(IV)

(V)

Fit a LPS as explained above, leading to surface with, say, R
triangles.

Assign each data point X;,7 = 1,...,n to their nearest triangle.

For each triangle »r = 1,..., R, compute the mean ¢, over the
response values of all data points assigned to it.

Compute all pairwise distances d, s between all triangles on the
surface.

Use the discrete kernel k(-) to smooth over the manifold. The
smoothed response value m, on triangle r is given by

Zs K(ds,r )Ys
> klds )

which is at the same time the fitted value of all data points
assigned to triangle r.

My =
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Simulation study

Prediction errors for n’ = 1000 test data. The LPS is fitted with A = 1.

® Temperature
prediction error /103 LM PC+LM PC+AM  PC4LPC PC+ LPS

average(£?) 4'593 4'967 1'732 1'430 1'252
median(é2) 1'049 1'124 104 52 49
® Metallicity
prediction error LM  PC+LM PC+AM PC+LPC PC+ LPS
average(£?) 2.601 3.084 2.849 3.070 3.067

median(£2) 1.287 1.821 1.671 1.859 1.323
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The torus

® Simulate a torus:

t <- 0:60/30

t <- cbind(rep(t,each=Ilength(t)),rep(t,length(t)))

t<-t+ 001 * rnorm(length(t))

data <- chind(sin(pi «1[,1]) *(1-0.4 =*cos(pi
cos(pi *t[,1]) *(1-0.4 =cos(pi

data <- data + 0.05 =*rnorm(length(data))

*1,2])),
*1[,2])),0.4

* sin(pi

*1[,2]))
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The torus (cont.)

® Fit the LPS:
> |pm(data, h=25)

® | PS vertices (left), and triangle mesh (right):

® could be used for regression, etc...
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Manifolds of higher dimension?

® The techniques proposed earlier extend to local principal manifolds
(LPMs) of higher dimensions by using tetrahedrons instead of
triangles.

® Visualization of course tricky....

® Slightly contrived example: Approximate 3D-Torus through a 3D
manifold with a “too large” bandwidth:
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Conclusion

After parametrization through cubic splines, LPCs can be used for
dimension reduction provided that

» the intrinsic (topological) dimensionality of the data cloud is
close to 1, or, at least,

» the projections on the curve are informative for the target
variable.

Extension of LPCs to LPMs works by considering the building
block “triangles” or “tetrahedrons’.

Regression on surfaces/manifolds is (yet) done via a discrete kernel
approach (due to a lack of parametrization).

R package LPCM in development, available on request from authors.

Applications 777
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