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The plot shows average speed and flow aggregated over
5-minute-intervals on freeway | 105-W in Los Angeles, California,
collected from 10th July 2007 (00.00) to 13th July 2007 (23.59).

The upper branch corresponds to uncongested traffic and the lower
branch to congested traffic.
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Collection of traffic data

Data are collected through loop detectors, i.e.
buried coils of wire, whose induction is
altered when a vehicle drives over it.

The flow is the number of vehicles that go
over the loop per unit time (usually, 30 sec). &

The occupancy is the fraction of time that

vehicles are over the detector. Occupancy is
approx. proportional to density, which is the
the fraction of the road covered by a vehicle.

The speed can only be calculated through
the time a vehicle of average length needs to
pass the detector completely and is the less
precise of all measurements.




Speed-Flow data modelling

Traffic speed prediction is of practical interest for topical issues as
road pricing, journey time prediction, navigation systems etc.

However, each value of traffic flow is associated to two different
speeds. Hence, speed cannot be modelled as a function of flow.

Hence, the literature has concentrated on descriptive analyses, and
on finding mathematical models for flow given speed.

Speed-flow data have scarcely been considered from a statistical
point of view.

They also require innovative approaches as

» usual (parametric or nonparametric) regression models fail.

® concepts on “switching regression” cannot be applied, as for a
given point it is unknown to which regime it belongs.

» speed-flow diagrams can differ strongly and there is no
agreement on a suitable parametric model for the branches. A
nonparametric modelling approach seems desirable.
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Two modelling approaches

® Consider speed and flow as

symmetric, and as a joint

function ( 38 ) of some

underlying parameter t.

— Principal curves.

® Consider flow as the independent

and speed as the dependent
variable, i.e. v = M (q) with
some multifunction M.

—> Multi-valued
nonparametric regression.
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Curve Fitting through Density Ridges

Principal curves

® Follow the ridge of a kernel

density estimate f(g,v)
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Multi-valued regresion

® Follow the ridge made up by the
conditional modes, i.e. the
maxima of the estimated
conditional densities
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Ridge Estimation: Mean shift

® The mean shift u(x) is the difference between a point x in

R%(d = 1,2) and the local center of mass m(z) of the points in its
neighborhood, i.e.

Z?:l Kp(X; — 2) X,
2?21 Kp(X; — x)

u(x) =m(x) —x = —

(Kp: kernel weights with bandwidth h).
® Comaniciu & Meer (2002) showed that

(A) p(z) ~ Vfu(z) where fi(z) is a kernel density estimate.
(B) The sequence m )y = x; m;41) = m(myy)) converges to a
neighboring maximum of fj,.

® Hence, iterating the local centre of mass m(-) leads us to the next
available mode.
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Curve Fitting Algorithms

Principal curves:
Starting from starting point
iterate between calculation of

1. a local centre of mass m

2. a localized first principal
component (1,2,3,...)
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Local principal curves, Statistics and Computing,
Einbeck, Tutz & Evers (2005)

Multi-valued regression:

® For each ¢, define two starting
points v; and vy. Then, for both
points, run the mean shift
conditional on ¢ until
convergence to a conditional
modes of v|q.

® One can show that this is
equivalent to setting

0f (vlq)
ov

=0

and solving w.r.t. v.

Multimodal regression, JRSSC,
Einbeck & Tutz (2006)
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What is the value of such curves?

For principal curves we observe that, for any parameterization ¢,
the traffic density d(¢) = q(t)/v(t) is a monotone function of the
parameter ¢.
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This implies that, using such a calibration curve, one can use a
principal curve to predict ¢ and v simultaneously given d.

However, one cannot use principal curves to predict v given ¢ -
here one needs the multi-valued regression approach.
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Other variables involved?

® Data from 12th (0.00) to 15th of July 2007 (23.59), Freeway
SR22-E, California.
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Obviously, there are some further (observed or unobserved)

variables involved, e.g. weather condition, road works, etc.

variables.

Hence, both concepts have to be extended to allow for additional
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For the time being....

® As most variables will have an approximately constant value over a
certain time span, they can be substituted by a time variable

® For example, divided into six 12-hour intervals, one obtains
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® Principal curves or regression curves can then be fitted separately.
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For the time being....

® As most variables will have an approximately constant value over a
certain time span, they can be substituted by a time variable

® For example, divided into six 12-hour intervals, one obtains
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® Principal curves or regression curves can then be fitted separately.
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For the time being....

As most variables will have an approximately constant value over a
certain time span, they can be substituted by a time variable

For example, devided into six 12-hour intervals, one obtains
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Software and Literature

® Principal Curves

» Hastie, T., & Stuetzle, W. (1989): Principal curves. JASA 84,
502-516.

.
» Einbeck, J., Tutz. G. & Evers, L. (2005): Local principal
curves. Statistics and Computing 15, 301-303.
o LPC Software at
http://ww. mat hs. dur. ac. uk/ ~dma0Oj e/ | pc/ | pc. ht m

® Multi-valued nonparametric regression

o Einbeck, J., & Tutz, G. (2006): Modelling beyond regression

functions: an application of multimodal regression to
speed-flow data. Journal of the Royal Statistical Society, Series C
(Applied Statistics) 55, 461-475.

# R function nodal r eg in R package hdrcde version 2.07
(Hyndman & Einbeck, 2007).
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