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Speed-Flow data
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(data from:PemS)

The plot shows average speed and �ow aggregated over5-minute-intervals on freeway I105-W in Los Angeles, California,
olle
ted from 10th July 2007 (00.00) to 13th July 2007 (23.59).The upper bran
h 
orresponds to un
ongested tra�
 and the lowerbran
h to 
ongested tra�
.
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Colle
tion of tra�
 data

Data are 
olle
ted through loop detectors, i.e.buried 
oils of wire, whose indu
tion isaltered when a vehi
le drives over it.The �ow is the number of vehi
les that goover the loop per unit time (usually, 30 se
).The o

upan
y is the fra
tion of time thatvehi
les are over the dete
tor. O

upan
y isapprox. proportional to density, whi
h is thethe fra
tion of the road 
overed by a vehi
le.The speed 
an only be 
al
ulated throughthe time a vehi
le of average length needs topass the dete
tor 
ompletely and is the lesspre
ise of all measurements.
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Speed-Flow data modelling

Tra�
 speed predi
tion is of pra
ti
al interest for topi
al issues asroad pri
ing, journey time predi
tion, navigation systems et
.However, ea
h value of tra�
 �ow is asso
iated to two di�erentspeeds. Hen
e, speed 
annot be modelled as a function of �ow.Hen
e, the literature has 
on
entrated on des
riptive analyses, andon �nding mathemati
al models for flow given speed.Speed-�ow data have s
ar
ely been 
onsidered from a statisti
alpoint of view.They also require innovative approa
hes asusual (parametri
 or nonparametri
) regression models fail.
on
epts on �swit
hing regression� 
annot be applied, as for agiven point it is unknown to whi
h regime it belongs.speed-�ow diagrams 
an di�er strongly and there is noagreement on a suitable parametri
 model for the bran
hes. Anonparametri
 modelling approa
h seems desirable.
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Two modelling approa
hes

Consider speed and �ow assymmetri
, and as a jointfun
tion (

q(t)

v(t)

) of someunderlying parameter t.

=⇒ Prin
ipal 
urves.
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Consider �ow as the independentand speed as the dependentvariable, i.e. v = M(q) withsome multifun
tion M .
=⇒ Multi-valuednonparametri
 regression.
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Curve Fitting through Density Ridges

Prin
ipal 
urvesFollow the ridge of a kerneldensity estimate f̂(q, v)
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Multi-valued regresionFollow the ridge made up by the
onditional modes, i.e. themaxima of the estimated
conditional densities
f̂(v|q) = f̂(q,v)

f̂(q)

:
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Ridge Estimation: Mean shift

The mean shift µ(x) is the di�eren
e between a point x in
R

d(d = 1, 2) and the lo
al 
enter of mass m(x) of the points in itsneighborhood, i.e.

µ(x) = m(x) − x ≡

∑n
i=1 Kh(Xi − x)Xi

∑n
i=1 Kh(Xi − x)

− x(Kh: kernel weights with bandwidth h).Comani
iu & Meer (2002) showed that(A) µ(x) ∼ ∇f̂h(x) where f̂h(x) is a kernel density estimate.(B) The sequen
e m(0) = x; m(k+1) = m(m(k)) 
onverges to aneighboring maximum of f̂h.Hen
e, iterating the lo
al 
entre of mass m(·) leads us to the nextavailable mode.
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Curve Fitting Algorithms

Prin
ipal 
urves:Starting from starting point (q0, v0),iterate between 
al
ulation of1. a lo
al 
entre of mass m2. a lo
alized �rst prin
ipal
omponent (1,2,3,. . . )
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Local principal curves, Statistics and Computing,

Einbeck, Tutz & Evers (2005)

Multi-valued regression:For ea
h q, de�ne two startingpoints v1 and v2. Then, for bothpoints, run the mean shift
onditional on q until
onvergen
e to a 
onditionalmodes of v|q.One 
an show that this isequivalent to setting

∂f̂(v|q)

∂v
= 0and solving w.r.t. v.

Multimodal regression, JRSSC,

Einbeck & Tutz (2006)
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What is the value of su
h 
urves?

For prin
ipal 
urves we observe that, for any parameterization t,the tra�
 density d(t) = q(t)/v(t) is a monotone fun
tion of theparameter t.
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This implies that, using su
h a 
alibration 
urve, one 
an use aprin
ipal 
urve to predi
t q and v simultaneously given d.However, one 
annot use prin
ipal 
urves to predi
t v given q -here one needs the multi-valued regression approa
h.
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Other variables involved?

Data from 12th (0.00) to 15th of July 2007 (23.59), FreewaySR22-E, California.
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Obviously, there are some further (observed or unobserved)variables involved, e.g. weather 
ondition, road works, et
.Hen
e, both 
on
epts have to be extended to allow for additionalvariables.
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For the time being....

As most variables will have an approximately 
onstant value over a
ertain time span, they 
an be substituted by a time variableFor example, divided into six 12-hour intervals, one obtains
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Prin
ipal 
urves or regression 
urves 
an then be �tted separately.

For example, divided into six 12-hour intervals, one obtains
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Software and Literature

Prin
ipal CurvesHastie, T., & Stuetzle, W. (1989): Prin
ipal 
urves. JASA 84,502�516....Einbe
k, J., Tutz. G. & Evers, L. (2005): Lo
al prin
ipal
urves. Statistics and Computing 15, 301-303.LPC Software at

http://www.maths.dur.ac.uk/∼dma0je/lpc/lpc.htm.Multi-valued nonparametri
 regressionEinbe
k, J., & Tutz, G. (2006): Modelling beyond regressionfun
tions: an appli
ation of multimodal regression tospeed-�ow data. Journal of the Royal Statistical Society, Series C
(Applied Statistics) 55, 461-475.
R fun
tion modalreg in R pa
kage hdrcde version 2.07(Hyndman & Einbe
k, 2007).
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