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Motivation

A bright and sunny day in São Paulo....
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Motivation (cont.)

Data: Respiratory deaths of hildren under �ve in the ity of SãoPaulo, 1994�1997.
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Motivation (cont.)

Data: Respiratory deaths of hildren under �ve in the ity of SãoPaulo, 1994�1997 with nonparametri smoother.
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Motivation (cont.)

One observes that the e�et of the pollutant on the infantmortality dereases for high pollutant onentration � a resultwhih has no biologial plausibility.The smooth urve is pulled down by two observations near the rightboundary. Hene, the problem is due to outliers in the design spae.Horizontal outliers have attrated far less attention in the(nonparametri) statistial literature than vertial outliers.Nonparametri smoothers robustifying against outlying responsewill not neessarily robustify against outlying preditors!
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Motivation (cont.)

Horizontal outliers orrespond to sparse boundary regions, i.e. toregions lose to the boundary with small design density:
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These regions with sparse design density may give unreliableinformation, and this even when the data assoiated to thoseregions are not outlying in y− diretion.
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Design-weighted local smoothing

The idea is to use the estimated design density as a weightfuntion in the loal linear regression problem.This will redue the in�uene of outliers in the design spae.Conretely, let m(·) denote the true underlying funtion, then adesign-weighted loal smoother is obtained as m̂(x) = β̂0(x),where β̂0(x) and β̂1(x) minimize
n

∑

i=1

(Yi − β0(x) − β1(x)(x − Xi))
2 α(Xi)K

(

x − Xi

h

)

(1)

with respet to β0(x) and β1(x).In order to robustify against outliers in the design spae, we hoose

α(x) = f̂(x) =
1

ng

n
∑

i=1

K

(

Xi − x

g

)

.
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Design-weighted local smoothing (cont.)

Robusti�ed urve in the respiratory data example (Einbek, André,& Singer, Environmetris, 2004):
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(Alternative: Smoothing with Monotoniity onstraint:Leitenstorfer & Tutz, Biostatistis, 2007)
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Design-weighted local smoothing (cont.)

Next, we investigate theoretially a generalized version of (1),namely the design-weighted least squares problem
n

∑

i=1

K

(

xi − x

h

)

α(xi)



yi −
p

∑

j=0

βj(x)(xi − x)j





2

(2)

with some general, ontinuously di�erentiable funtion α.From the vetor (β̂0(x), . . . , β̂p(x)) minimizing (2), one getsestimators ofthe regression funtion m: m̂(x) = β̂0(x).its derivatives m(j), j = 1, . . . , p: m̂(j)(x) = j!β̂j(x).Note that there are two kinds of weights involved herekernel weights K(·) (depend on distane of xi and x)design weights α(·) (depend only on loation of xi)
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Asymptotics

Theorem. Let h −→ 0 and nh3 −→ ∞, and X = (x1, . . . xn). Under regularity assumptions

we get for p − j odd

Bias(m̂(j)(x)|X) = eT
j+1S−1cp

j!

(p + 1)!
m(p+1)(x)hp+1−j + oP (hp+2−j) (3)

and for p − j even

Bias(m̂(j)(x)|X) = eT
j+1

j!

(p + 1)!

[(

α′(x)

α(x)
+

f ′(x)

f(x)

)

spm(p+1)(x) +

+ S−1c̃p
m(p+2)(x)

p + 2

]

hp+2−j + oP (hp+2−j). (4)

where sp = (S−1c̃p − S−1S̃S−1cp), S, S̃, cp, c̃p are matrix/vector- valued constants consisting

of kernel moments.Interestingly, (3) is the same as for usual (unweighted) loalpolynomial smoothing, while (4) is not.
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Asymptotics (cont.)

The more interesting of the two expressions above is the seondone, beause it shows that in this ase the leading term is notindependent of α(·). This gives the hane to redue the bias.The �rst term in the squared braket in (4) vanishes for
α′(x)/α(x) + f ′(x)/f(x) = 0,This di�erential equation is solved for

αopt(x) = c
1

f(x)
, (5)

with c ∈ R \ {0}.This seems to be in on�it with the �robust� weights suggestedbeforehand!
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Comparison

Fit a loal quadrati smoother (p = 2) to respiratory data:
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Apparently, the bias-minimizing smoother makes things ratherworse.
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Leverages

The hat matrix S (�smoothing matrix�) of a smoother m̂ is de�nedas

(m̂(x1), . . . , m̂(xn))T = Sy.The leverage values values are the diagonal elements si(xi) of Sand measure the sensitivity of the �tted urve m̂(xi) to the i−thdata point.Leverage values for respiratory data with loal quadrati smoothers:
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Dilemma?

The weights α ∼ 1
f redue the bias.At the same time, they inrease the leverages near the boundary,and therefore the sensibility of the �tted urve to outliers in thepreditor spae.On the other hand, the robust weights α ∼ f redue the varianeof the �t in boundary regions:Var(m̂(xi)) ≤ si(xi)(Loader, 1999).So, whih to hoose?
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Simulation study

We onsider eah 1000 repliates of funtions
m1(x) =

√
x, x ∼ Beta(0.5, 2), y ∼ N(0, 0.32).

m2(x) = x + 2 exp(−x2),

x ∼ 0.5 · Beta(2, 9) + 0.5 · Beta(9, 2), y ∼ N(0, 0.22).and �t smoothers with weights α ∼ f̂ , α ∼ 1, and α ∼ 1/f̂ , toeah repliate.
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Simulation study (cont.)

Eah plot gives the logarithms of the integrated average errors
IAE= ∫

|m̂(x) − m(x)| dx using the weights f̂ , 1, 1/f̂ .
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√
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Results do not suggest that �Seleting weights depending on thesample size� is generally a useful strategy.undsoweiter
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Simulation study (cont.)
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The link to sampling theory

Design-weighting is very ommon and has been intensivelydisussed in sampling theory.One of the most important theoretial justi�ations fordesign-weighting was given by Horvitz & Thompson (HT, 1952):For a sample of size n drawn from a population Y1, . . . , YN , theyshowed that among all linear estimators of the form
Ŷ =

∑N
i=1 αiδiYi, the HT estimator

ŶHT =

N
∑

i=1

1

πi
δiYi

is the only unbiased estimator for the population total, Y.(where πi is the probability that the i-th element is drawn in any of the n draws and

δi is an indiator taking the value 1 if unit i is seleted)
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The link to sampling theory (cont.)

Note that this is a very similar result to that one obtained fordesign-weighted loal smoothing:In both ases, one uses a bias-minimizing riterion and derivesoptimal weights inversely proportional to the seletion probability /design density.More learly:Estimator Bias minimized for InterpretationHorvitz-Thompson αi = 1/πi πi = seletion probabilityof unit iloal smoothing, α(xi) ∼ 1/f(xi) f(xi) = design density at

p even point xi

Similar on�it for HT weights??
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Basu’s elephants

A irus owner plans to ship 50 adult elephants and thereforeneeds a rough estimate of their total weight. As weighing ele-phants is quite umbersome, he intends to weigh only one ele-phant and to multiply the result with 50. However, the irusstatistiian insists in setting up a proper sampling plan, and touse the Horvitz-Thompson estimator. They agree to assign aseletion probability of 99/100 to a previously determined ele-phant (`Samba'), whih from a previous ensus is known to haveabout the average weight of the herd. The probability for allother elephants is 1/4900, inluding `Jumbo', the biggest ele-phant in the herd. Naturally, Samba is seleted, and the statis-tiian estimates the total weight of the herd by 100/99 timesSamba's weight aording to Horvitz-Thompson. If Jumbo wereseleted, his large weight would even have to be multiplied by

4900 to get the `best linear unbiased estimator' of the totalweight! Certainly, after having given these advies, the irusstatistiian was saked.
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Basu’s elephants (cont.)

Basu's fable provoked an at least 20-year-long disussion in thestatistial literature on the general appliability of the HTestimator.Where is atually the problem with Basu's fable? HT state that if

πi = nYi/Y, the estimator Ŷ has zero variane and the samplingwill be optimal.Obviously, the design used in the fable is far from optimality in thissense. It is rather `about as poor a design imaginable' (Overton &Stehman, 1996).Though HT's estimator an redue the bias of an estimate giventhe inlusion probabilities, it may produe useless estimates if theyare unfortunately hosen, i.e. if the πi are unrelated to the Yi'(Rao, 1999).The HT estimator is still useful e.g. when a seond variable Xi isused to onstrut πi whih are orrelated to the Yi (ratioestimation).
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Basu’s elephants (cont.)

Summarizing, Basu's paradox is solved: One has to get theprobabilities right.However, Basu denied vehemently that the `unrealisti samplingplan' was responsible for the failure of the Horvitz-Thompsonestimator. Basu defended, in ontrary, the irus statistiian'ssampling plan, as it ensures a representative sample.Instead, he gives the responsibility for the useless result entirely tothe HT estimator itself, `being a method that ontradits itself byalloting weights to the seleted units that are inversely proportionalto their seletion probabilities. The smaller the seletion probabilityof a unit, that is, the greater the desire to avoid selecting the unit, thelarger the weight that it arries when seleted.'Basu's refusal to adjust the πi touhes the problem that we have inthe smoothing ontext, with the �outliers in the design spae�orresponding to �Jumbo�.
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Optimal design?

In the sampling ontext, the key to apply the HT estimatorsuessfully was to use design weights πi whih are related to thevalues Yi, i = 1, . . . , N .Can we �nd an analogous riterion for the smoothing ontext? Inother word, is there an optimal design density?Look at varianes:

Theorem. Let h −→ 0 and nh −→ ∞. Under regularity assumptions one gets

Var(m̂(j)(x, α)|X)=eT
j+1

[

S−1S∗S−1 + hV ∗

α (x)
]

ej+1
(j!)2σ2(x)

f(x)nh1+2j
+ op

(

1

nh1+2j

)

, (6)

where S, S̃ and S∗ are constant matrices containing kernel moments, and

V ∗

α (x) =

(

2
σ′(x)

σ(x)
+ 2

α′(x)

α(x)
+

f ′(x)

f(x)

)

S−1S̃∗S−1 (7)

−

(

α′(x)

α(x)
+

f ′(x)

f(x)

)

·
(

S−1S̃S−1S∗S−1 + S−1S∗S−1S̃S−1
)

.
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Optimal design? (cont.)

The �rst-order variane term is independent of α.Using the bias-minimizing weights α = 1/f in the seond-orderterm V ∗
α (x), one observes that V ∗

α (x) is minimized when
f(x) ∝ σ2(x). (8)This is the analogon to the optimal HT seletion probabilities

πi = nYi/Y .It is questionable whether (8) is a realisti ondition in pratie:The density in smoothing problems is in the very most asesinherent to the data or driven by pratial onsiderations.Note that, trivially, when σ2(x) ≡ σ2, then (8) tells us thatoptimally f(x) ∝ 1 and hene αopt(x) ∝ 1.
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Conclusion

For loal smoothing, there seems to be no suh thing as anobjetive riterion for design weight seletion!If there is a good reason to distrust a partiular region of the designspae, either beause the observations themselves are unreliable insome sense, or beause there are simply very few observations, therobust weights α ∝ f (or α ∝ fk, k ≥ 1) are a reasonable hoie.The asymptoti weights α ∝ 1/f may perform well ompared totheir ompetitors, partiularly for interior sparse design, and if they
perform well, then their performane improves with the sample size.However, they behave extraordinarily hazardous, and they stillmight give very poor results for large sample sizes, as their suessdepends dramatially on the existene and position of outlyingdesign points, the shape of the design density (and on the aurayof the density estimate, if unknown).In doubt, better do not use weights at all!
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Conclusion (cont.)

There exists an striking analogy between the theories of samplingand smoothing, leading to similar theoretial results and pratialpitfalls.This ould tell a more general lesson. Weighting is performed inmany statistial disiplines. A usual way of motivating suh weightsis by theoretial, bias-minimizing riteria, whih will often suggesthoosing weights inversely proportional to some kind of seletionprobability (density). This makes the estimator very sensitive toextreme observations (orresponding to Jumbo in Basu's fable andthe outlying preditors in the smoothing ontext).Hene, we advise to be areful with bias-minimizing estimators ifthere are any observations whih might be labelled by the terms�extreme�, �undesired�, �outlying�, �weak�, and the like, and it islikely that this holds beyond the sope of sampling and smoothing.
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