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Motivation

A bright and sunny day in S3o Paulo....
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Motivation (cont.)

® Data: Respiratory deaths of children under five in the city of Sao
Paulo, 1994-1997.
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Motivation (cont.)

® Data: Respiratory deaths of children under five in the city of Sao
Paulo, 1994-1997 with nonparametric smoother.
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Motivation (cont.)

One observes that the effect of the pollutant on the infant
mortality decreases for high pollutant concentration — a result
which has no biological plausibility.

The smooth curve is pulled down by two observations near the right
boundary. Hence, the problem is due to outliers in the design space.

Horizontal outliers have attracted far less attention in the
(nonparametric) statistical literature than vertical outliers.

Nonparametric smoothers robustifying against outlying response
will not necessarily robustify against outlying predictors!
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Motivation (cont.)

® Horizontal outliers correspond to sparse boundary regions, i.e. to
regions close to the boundary with small design density:
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® These regions with sparse design density may give unreliable
information, and this even when the data associated to those
regions are not outlying in y— direction.
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Design-weighted local smoothing

® The idea is to use the estimated design density as a weight
function in the local linear regression problem.

® This will reduce the influence of outliers in the design space.
® Concretely, let m(-) denote the true underlying function, then a
design-weighted local smoother is obtained as m(z) = By(x),

where By(z) and (1 (z) minimize

S (Y Bole) — ra)(o — X)Xk (S5 ) @

1=1

with respect to Byg(x) and 31 (x).

® In order to robustify against outliers in the design space, we choose

o(z) = f(z) = iiK<Xi_$).

g
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Design-weighted local smoothing (cont.)

® Robustified curve in the respiratory data example (Einbeck, André,

& Singer, Environmetrics, 2004):

—— local linear smoother

—— robust
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® (Alternative: Smoothing with Monotonicity constraint:

Leitenstorfer & Tutz, Biostatistics, 2007 )
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Design-weighted local smoothing (cont.)

® Next, we investigate theoretically a generalized version of ([1I),
namely the design-weighted least squares problem

2

n o P .
Sk (M et (w- Y a@@ -] o
i=1 J=0

with some general, continuously differentiable function a.

® From the vector (fy(z), ..., By(x)) minimizing (2), one gets
estimators of

® the regression function m: m(z) = By(x).
o its derivatives m\9), j =1,...,p: mU)(z) = j!Bj(x).
® Note that there are two kinds of weights involved here

» kernel weights K (-) (depend on distance of x; and x)
» design weights a(-) (depend only on location of x;)
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Asymptotics

® Theorem. Leth — 0and nh3 — oo, and X = (z1,.
we get for p — 7 odd

.. acn) Under regularity assumptions

. /! . .
BiaS(’ﬁ’L(J)(:B)‘X) = €?+1S_1cp J: m(p+1)(ac)hp+1_3 t op(hPT27)

(p+1)! )
and for p — J even
: ~ () . T J! o' (z)  f(x) (p+1)
Bias(m'/ (z)|X) = ej;1q TESN (a(aj) + ) spm\PTH (x) +
(p+2) . .
#571e, T W op ).

where s, = (S71¢, — S71SS71¢p), S, S, ¢p, &p are matrix/vector- valued constants consisting
of kernel moments.

® Interestingly, (3)) is the same as for usual (unweighted) local
polynomial smoothing, while (4)) is not.
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Asymptotics (cont.)

The more interesting of the two expressions above is the second
one, because it shows that in this case the leading term is not
independent of «(-). This gives the chance to reduce the bias.

The first term in the squared bracket in (4) vanishes for
o' (2)/afx) + f'(2)/f(x) =0,

This differential equation is solved for

(5)

Qopt () = ¢

f(x)’
with ¢ € R\ {0},

This seems to be in conflict with the “robust” weights suggested
beforehand!
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Comparison

® Fit a local quadratic smoother (p = 2) to respiratory data:
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® Apparently, the bias-minimizing smoother
worse.

makes things rather
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L everages

® The hat matrix S (“smoothing matrix”) of a smoother m is defined
as

(m(z1), ..., m(zn))" = Sy.

® The leverage values values are the diagonal elements s;(x;) of S
and measure the sensitivity of the fitted curve m(x;) to the i—th
data point.

® | everage values for respiratory data with local quadratic smoothers:
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Dilemma?
The weights a ~ %

At the same time, they increase the leverages near the boundary,
and therefore the sensibility of the fitted curve to outliers in the
predictor space.

On the other hand, the robust weights o ~ f reduce the variance
of the fit in boundary regions:

Var(1m(z;)) < si(x;)

(Loader, 1999).

So, which to choose?
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Simulation study

® We consider each 1000 replicates of functions
s mi(x) =/, v ~ Beta(0.5,2), y ~ N(0,0.3%).
» ma(x) =+ 2exp(—x?),
r ~ 0.5-Beta(2,9) + 0.5 - Beta(9,2), y ~ N(0,0.2%).

and fit smoothers with weights o ~ f a~1, and a ~ 1/f to
each replicate.

m; m;

05 00 05 10 15 20
| |
1 0
| |
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Simulation study (cont.)

® Each plot gives the logarithms of the integrated average errors
IAE= [ |m(x) — m(z)|dx using the weights fo1,1/7.

mi(x) = /x mao(x) = x + 2exp(—x~)
n=50 n=1000 n=50 n=1000
S
7 - 2 _ i ° —_T _"’_
b ! : : 2 ° b - N

0 , 1 | | 1 \ | , N —_
i ) 1 1 1 ! 1 | | ! \

1 ! ! 2 - ! ! ! ! 1 ! | -1

) 1 1 | 1 ! ! | | , )
o | \ 1 ! o | ! \ 1 © , \
h ! h ! | | R 1

|

L ! 1 ;
T 1 ©w | @ — 1

| i X | ! R ] : : D ° |

o | | |
p : : : ¥ ! 1 1 : : 1 —_ 1
|
B o o . :
e} : | | ! ! ? : I ki
‘75 1 | : < - o —_
i e e
-

Smoothina. Samplina. and Basu’s elephants — p. 16/26



Simulation study (cont.)

® Each plot gives the logarithms of the integrated average errors
IAE= [ |m(x) — m(z)|dx using the weights 71,

mi(x) = /x mao(x) = x + 2exp(—x~)
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® Results do not suggest that “Selecting weights depending on the
sample size” is generally a useful strategy.
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The link to sampling theory

® Design-weighting is very common and has been intensively
discussed in sampling theory.

® One of the most important theoretical justifications for
design-weighting was given by Horvitz & Thompson (HT, 1952):

® For a sample of size n drawn from a population Y7,..., Yy, they
showed that among all linear estimators of the form

Y = Zf\il «;0;Y;, the HT estimator

Yo
Yo = Z —0;Y;

T
i=1 ¢

is the only unbiased estimator for the population total, Y.
(where 7; is the probability that the i-th element is drawn in any of the n draws and

d; is an indicator taking the value 1 if unit i is selected)
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Thelink to sampling theory (cont.)

® Note that this is a very similar result to that one obtained for
design-weighted local smoothing:

® In both cases, one uses a bias-minimizing criterion and derives
optimal weights inversely proportional to the selection probability /

design density.
® More clearly:

Estimator Bias minimized for | Interpretation

Horvitz-Thompson | o; = 1/7; m; = selection probability
of unit ¢

local smoothing, a(x;) ~ 1/f(x;) f(xz;) = design density at

p even point x;

® Similar conflict for HT weights??
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Basu's elephants

A circus owner plans to ship 50 adult elephants and therefore
needs a rough estimate of their total weight. As weighing ele-
phants is quite cumbersome, he intends to weigh only one ele-
phant and to multiply the result with 50. However, the circus
statistician insists in setting up a proper sampling plan, and to
use the Horvitz-Thompson estimator. They agree to assign a
selection probability of 99/100 to a previously determined ele-
phant (‘Samba’), which from a previous census is known to have
about the average weight of the herd. The probability for all
other elephants is 1/4900, including ‘Jumbo’, the biggest ele-
phant in the herd. Naturally, Samba is selected, and the statis-
tician estimates the total weight of the herd by 100/99 times
Samba’s weight according to Horvitz-Thompson. If Jumbo were
selected, his large weight would even have to be multiplied by
4900 to get the ‘best linear unbiased estimator’ of the total
weight! Certainly, after having given these advices, the circus

statistician was sacked.
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Basu’'s elephants (cont.)

Basu's fable provoked an at least 20-year-long discussion in the
statistical literature on the general applicability of the HT
estimator.

Where is actually the problem with Basu's fable? HT state that if

m; = nY;/Y, the estimator Y has zero variance and the sampling
will be optimal.

Obviously, the design used in the fable is far from optimality in this
sense. It is rather ‘about as poor a design imaginable’ (Overton &
Stehman, 1996).

Though HT's estimator can reduce the bias of an estimate given
the inclusion probabilities, it may produce useless estimates if they
are unfortunately chosen, i.e. if the m; are unrelated to the Y}’

(Rao, 1999).

The HT estimator is still useful e.g. when a second variable X; is
used to construct 7; which are correlated to the Y; (ratio
estimation).
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Basu’'s elephants (cont.)

Summarizing, Basu's paradox is solved: One has to get the
probabilities right.

However, Basu denied vehemently that the ‘unrealistic sampling
plan’ was responsible for the failure of the Horvitz-Thompson
estimator. Basu defended, in contrary, the circus statistician’s
sampling plan, as it ensures a representative sample.

Instead, he gives the responsibility for the useless result entirely to
the HT estimator itself, ‘being a method that contradicts itself by
alloting weights to the selected units that are inversely proportional
to their selection probabilities. The smaller the selection probability
of a unit, that is, the greater the desire to avoid selecting the unit, the
larger the weight that it carries when selected.’

Basu's refusal to adjust the 7; touches the problem that we have in
the smoothing context, with the “outliers in the design space”
corresponding to “Jumbo’.
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Optimal design?

® In the sampling context, the key to apply the HT estimator
successfully was to use design weights 7; which are related to the

values Y;,7=1,...,N.
® Can we find an analogous criterion for the smoothing context? In
other word, is there an optimal design density?

® | ook at variances:

Theorem. Leth — 0and nh — oco. Under regularity assumptions one gets

(11?0 (z) (
+ 0p

f(@)nhi+2;

Var(m\9) (z, @) |X)=el | [ST1S*S™ + AV} ()] ej41 —173 j) , (6)

where S, S and S* are constant matrices containing kernel moments, and

o (27@) @) F@)Y grgeg
i = (25 ) "
_ a'(x) f'(z) . —1&8a—1goxao—1 —1loxo—1&g—1

(a(m) + f(m)> (S §5~15*s—1 4 s—1g*s—155 )
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Optimal design? (cont.)

The first-order variance term is independent of «.

Using the bias-minimizing weights a = 1/f in the second-order
term V*(z), one observes that V(x) is minimized when

f(z) o o?(x). (8)
This is the analogon to the optimal HT selection probabilities
T, — TLY;/Y

It is questionable whether (8) is a realistic condition in practice:
The density in smoothing problems is in the very most cases
inherent to the data or driven by practical considerations.

Note that, trivially, when o%(x) = o2, then (8) tells us that
optimally f(x) o< 1 and hence app(x) o 1.
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Conclusion

For local smoothing, there seems to be no such thing as an
objective criterion for design weight selection!

If there is a good reason to distrust a particular region of the design
space, either because the observations themselves are unreliable in
some sense, or because there are simply very few observations, the

robust weights a oc f (or v oc f¥ k > 1) are a reasonable choice.

The asymptotic weights a oc 1/ f may perform well compared to
their competitors, particularly for interior sparse design, and if they
perform well, then their performance improves with the sample size.

However, they behave extraordinarily hazardous, and they still
might give very poor results for large sample sizes, as their success
depends dramatically on the existence and position of outlying
design points, the shape of the design density (and on the accuracy

of the density estimate, if unknown).

In doubt, better do not use weights at all!
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Conclusion (cont.)

® There exists an striking analogy between the theories of sampling
and smoothing, leading to similar theoretical results and practical
pitfalls.

® This could tell a more general lesson. Weighting is performed in
many statistical disciplines. A usual way of motivating such weights
is by theoretical, bias-minimizing criteria, which will often suggest
choosing weights inversely proportional to some kind of selection
probability (density). This makes the estimator very sensitive to
extreme observations (corresponding to Jumbo in Basu's fable and
the outlying predictors in the smoothing context).

® Hence, we advise to be careful with bias-minimizing estimators if
there are any observations which might be labelled by the terms
“extreme’, “undesired”, “outlying”, “weak”, and the like, and it is
likely that this holds beyond the scope of sampling and smoothing.
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