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Motivation

A bright and sunny day in São Paulo....
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Motivation (cont.)

Data: Respiratory deaths of 
hildren under �ve in the 
ity of SãoPaulo, 1994�1997.
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Motivation (cont.)

Data: Respiratory deaths of 
hildren under �ve in the 
ity of SãoPaulo, 1994�1997 with nonparametri
 smoother.
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Motivation (cont.)

One observes that the e�e
t of the pollutant on the infantmortality de
reases for high pollutant 
on
entration � a resultwhi
h has no biologi
al plausibility.The smooth 
urve is pulled down by two observations near the rightboundary. Hen
e, the problem is due to outliers in the design spa
e.Horizontal outliers have attra
ted far less attention in the(nonparametri
) statisti
al literature than verti
al outliers.Nonparametri
 smoothers robustifying against outlying responsewill not ne
essarily robustify against outlying predi
tors!
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Motivation (cont.)

Horizontal outliers 
orrespond to sparse boundary regions, i.e. toregions 
lose to the boundary with small design density:
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These regions with sparse design density may give unreliableinformation, and this even when the data asso
iated to thoseregions are not outlying in y− dire
tion.
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Design-weighted local smoothing

The idea is to use the estimated design density as a weightfun
tion in the lo
al linear regression problem.This will redu
e the in�uen
e of outliers in the design spa
e.Con
retely, let m(·) denote the true underlying fun
tion, then adesign-weighted lo
al smoother is obtained as m̂(x) = β̂0(x),where β̂0(x) and β̂1(x) minimize
n

∑

i=1

(Yi − β0(x) − β1(x)(x − Xi))
2 α(Xi)K

(

x − Xi

h

)

(1)

with respe
t to β0(x) and β1(x).In order to robustify against outliers in the design spa
e, we 
hoose

α(x) = f̂(x) =
1

ng

n
∑

i=1

K

(

Xi − x

g

)

.
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Design-weighted local smoothing (cont.)

Robusti�ed 
urve in the respiratory data example (Einbe
k, André,& Singer, Environmetri
s, 2004):
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(Alternative: Smoothing with Monotoni
ity 
onstraint:Leitenstorfer & Tutz, Biostatisti
s, 2007)
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Design-weighted local smoothing (cont.)

Next, we investigate theoreti
ally a generalized version of (1),namely the design-weighted least squares problem
n

∑

i=1

K

(

xi − x

h

)

α(xi)



yi −
p

∑

j=0

βj(x)(xi − x)j





2

(2)

with some general, 
ontinuously di�erentiable fun
tion α.From the ve
tor (β̂0(x), . . . , β̂p(x)) minimizing (2), one getsestimators ofthe regression fun
tion m: m̂(x) = β̂0(x).its derivatives m(j), j = 1, . . . , p: m̂(j)(x) = j!β̂j(x).Note that there are two kinds of weights involved herekernel weights K(·) (depend on distan
e of xi and x)design weights α(·) (depend only on lo
ation of xi)
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Asymptotics

Theorem. Let h −→ 0 and nh3 −→ ∞, and X = (x1, . . . xn). Under regularity assumptions

we get for p − j odd

Bias(m̂(j)(x)|X) = eT
j+1S−1cp

j!

(p + 1)!
m(p+1)(x)hp+1−j + oP (hp+2−j) (3)

and for p − j even

Bias(m̂(j)(x)|X) = eT
j+1

j!

(p + 1)!

[(

α′(x)

α(x)
+

f ′(x)

f(x)

)

spm(p+1)(x) +

+ S−1c̃p
m(p+2)(x)

p + 2

]

hp+2−j + oP (hp+2−j). (4)

where sp = (S−1c̃p − S−1S̃S−1cp), S, S̃, cp, c̃p are matrix/vector- valued constants consisting

of kernel moments.Interestingly, (3) is the same as for usual (unweighted) lo
alpolynomial smoothing, while (4) is not.
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Asymptotics (cont.)

The more interesting of the two expressions above is the se
ondone, be
ause it shows that in this 
ase the leading term is notindependent of α(·). This gives the 
han
e to redu
e the bias.The �rst term in the squared bra
ket in (4) vanishes for
α′(x)/α(x) + f ′(x)/f(x) = 0,This di�erential equation is solved for

αopt(x) = c
1

f(x)
, (5)

with c ∈ R \ {0}.This seems to be in 
on�i
t with the �robust� weights suggestedbeforehand!
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Comparison

Fit a lo
al quadrati
 smoother (p = 2) to respiratory data:
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Apparently, the bias-minimizing smoother makes things ratherworse.
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Leverages

The hat matrix S (�smoothing matrix�) of a smoother m̂ is de�nedas

(m̂(x1), . . . , m̂(xn))T = Sy.The leverage values values are the diagonal elements si(xi) of Sand measure the sensitivity of the �tted 
urve m̂(xi) to the i−thdata point.Leverage values for respiratory data with lo
al quadrati
 smoothers:
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Dilemma?

The weights α ∼ 1
f redu
e the bias.At the same time, they in
rease the leverages near the boundary,and therefore the sensibility of the �tted 
urve to outliers in thepredi
tor spa
e.On the other hand, the robust weights α ∼ f redu
e the varian
eof the �t in boundary regions:Var(m̂(xi)) ≤ si(xi)(Loader, 1999).So, whi
h to 
hoose?
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Simulation study

We 
onsider ea
h 1000 repli
ates of fun
tions
m1(x) =

√
x, x ∼ Beta(0.5, 2), y ∼ N(0, 0.32).

m2(x) = x + 2 exp(−x2),

x ∼ 0.5 · Beta(2, 9) + 0.5 · Beta(9, 2), y ∼ N(0, 0.22).and �t smoothers with weights α ∼ f̂ , α ∼ 1, and α ∼ 1/f̂ , toea
h repli
ate.
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Simulation study (cont.)

Ea
h plot gives the logarithms of the integrated average errors
IAE= ∫

|m̂(x) − m(x)| dx using the weights f̂ , 1, 1/f̂ .
m1(x) =

√
x m2(x) = x + 2 exp(−x2)
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Results do not suggest that �Sele
ting weights depending on thesample size� is generally a useful strategy.undsoweiter
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Simulation study (cont.)
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The link to sampling theory

Design-weighting is very 
ommon and has been intensivelydis
ussed in sampling theory.One of the most important theoreti
al justi�
ations fordesign-weighting was given by Horvitz & Thompson (HT, 1952):For a sample of size n drawn from a population Y1, . . . , YN , theyshowed that among all linear estimators of the form
Ŷ =

∑N
i=1 αiδiYi, the HT estimator

ŶHT =

N
∑

i=1

1

πi
δiYi

is the only unbiased estimator for the population total, Y.(where πi is the probability that the i-th element is drawn in any of the n draws and

δi is an indi
ator taking the value 1 if unit i is sele
ted)
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The link to sampling theory (cont.)

Note that this is a very similar result to that one obtained fordesign-weighted lo
al smoothing:In both 
ases, one uses a bias-minimizing 
riterion and derivesoptimal weights inversely proportional to the sele
tion probability /design density.More 
learly:Estimator Bias minimized for InterpretationHorvitz-Thompson αi = 1/πi πi = sele
tion probabilityof unit ilo
al smoothing, α(xi) ∼ 1/f(xi) f(xi) = design density at

p even point xi

Similar 
on�i
t for HT weights??
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Basu’s elephants

A 
ir
us owner plans to ship 50 adult elephants and thereforeneeds a rough estimate of their total weight. As weighing ele-phants is quite 
umbersome, he intends to weigh only one ele-phant and to multiply the result with 50. However, the 
ir
usstatisti
ian insists in setting up a proper sampling plan, and touse the Horvitz-Thompson estimator. They agree to assign asele
tion probability of 99/100 to a previously determined ele-phant (`Samba'), whi
h from a previous 
ensus is known to haveabout the average weight of the herd. The probability for allother elephants is 1/4900, in
luding `Jumbo', the biggest ele-phant in the herd. Naturally, Samba is sele
ted, and the statis-ti
ian estimates the total weight of the herd by 100/99 timesSamba's weight a

ording to Horvitz-Thompson. If Jumbo weresele
ted, his large weight would even have to be multiplied by

4900 to get the `best linear unbiased estimator' of the totalweight! Certainly, after having given these advi
es, the 
ir
usstatisti
ian was sa
ked.
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Basu’s elephants (cont.)

Basu's fable provoked an at least 20-year-long dis
ussion in thestatisti
al literature on the general appli
ability of the HTestimator.Where is a
tually the problem with Basu's fable? HT state that if

πi = nYi/Y, the estimator Ŷ has zero varian
e and the samplingwill be optimal.Obviously, the design used in the fable is far from optimality in thissense. It is rather `about as poor a design imaginable' (Overton &Stehman, 1996).Though HT's estimator 
an redu
e the bias of an estimate giventhe in
lusion probabilities, it may produ
e useless estimates if theyare unfortunately 
hosen, i.e. if the πi are unrelated to the Yi'(Rao, 1999).The HT estimator is still useful e.g. when a se
ond variable Xi isused to 
onstru
t πi whi
h are 
orrelated to the Yi (ratioestimation).
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Basu’s elephants (cont.)

Summarizing, Basu's paradox is solved: One has to get theprobabilities right.However, Basu denied vehemently that the `unrealisti
 samplingplan' was responsible for the failure of the Horvitz-Thompsonestimator. Basu defended, in 
ontrary, the 
ir
us statisti
ian'ssampling plan, as it ensures a representative sample.Instead, he gives the responsibility for the useless result entirely tothe HT estimator itself, `being a method that 
ontradi
ts itself byalloting weights to the sele
ted units that are inversely proportionalto their sele
tion probabilities. The smaller the sele
tion probabilityof a unit, that is, the greater the desire to avoid selecting the unit, thelarger the weight that it 
arries when sele
ted.'Basu's refusal to adjust the πi tou
hes the problem that we have inthe smoothing 
ontext, with the �outliers in the design spa
e�
orresponding to �Jumbo�.
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Optimal design?

In the sampling 
ontext, the key to apply the HT estimatorsu

essfully was to use design weights πi whi
h are related to thevalues Yi, i = 1, . . . , N .Can we �nd an analogous 
riterion for the smoothing 
ontext? Inother word, is there an optimal design density?Look at varian
es:

Theorem. Let h −→ 0 and nh −→ ∞. Under regularity assumptions one gets

Var(m̂(j)(x, α)|X)=eT
j+1

[

S−1S∗S−1 + hV ∗

α (x)
]

ej+1
(j!)2σ2(x)

f(x)nh1+2j
+ op

(

1

nh1+2j

)

, (6)

where S, S̃ and S∗ are constant matrices containing kernel moments, and

V ∗

α (x) =

(

2
σ′(x)

σ(x)
+ 2

α′(x)

α(x)
+

f ′(x)

f(x)

)

S−1S̃∗S−1 (7)

−

(

α′(x)

α(x)
+

f ′(x)

f(x)

)

·
(

S−1S̃S−1S∗S−1 + S−1S∗S−1S̃S−1
)

.

Smoothing, Sampling, and Basu’s elephants – p. 22/26



Optimal design? (cont.)

The �rst-order varian
e term is independent of α.Using the bias-minimizing weights α = 1/f in the se
ond-orderterm V ∗
α (x), one observes that V ∗

α (x) is minimized when
f(x) ∝ σ2(x). (8)This is the analogon to the optimal HT sele
tion probabilities

πi = nYi/Y .It is questionable whether (8) is a realisti
 
ondition in pra
ti
e:The density in smoothing problems is in the very most 
asesinherent to the data or driven by pra
ti
al 
onsiderations.Note that, trivially, when σ2(x) ≡ σ2, then (8) tells us thatoptimally f(x) ∝ 1 and hen
e αopt(x) ∝ 1.
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Conclusion

For lo
al smoothing, there seems to be no su
h thing as anobje
tive 
riterion for design weight sele
tion!If there is a good reason to distrust a parti
ular region of the designspa
e, either be
ause the observations themselves are unreliable insome sense, or be
ause there are simply very few observations, therobust weights α ∝ f (or α ∝ fk, k ≥ 1) are a reasonable 
hoi
e.The asymptoti
 weights α ∝ 1/f may perform well 
ompared totheir 
ompetitors, parti
ularly for interior sparse design, and if they
perform well, then their performan
e improves with the sample size.However, they behave extraordinarily hazardous, and they stillmight give very poor results for large sample sizes, as their su

essdepends dramati
ally on the existen
e and position of outlyingdesign points, the shape of the design density (and on the a

ura
yof the density estimate, if unknown).In doubt, better do not use weights at all!
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Conclusion (cont.)

There exists an striking analogy between the theories of samplingand smoothing, leading to similar theoreti
al results and pra
ti
alpitfalls.This 
ould tell a more general lesson. Weighting is performed inmany statisti
al dis
iplines. A usual way of motivating su
h weightsis by theoreti
al, bias-minimizing 
riteria, whi
h will often suggest
hoosing weights inversely proportional to some kind of sele
tionprobability (density). This makes the estimator very sensitive toextreme observations (
orresponding to Jumbo in Basu's fable andthe outlying predi
tors in the smoothing 
ontext).Hen
e, we advise to be 
areful with bias-minimizing estimators ifthere are any observations whi
h might be labelled by the terms�extreme�, �undesired�, �outlying�, �weak�, and the like, and it islikely that this holds beyond the s
ope of sampling and smoothing.
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