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Radiation

I Radiation is energy in the form of waves or particles that
travels through space or some material (includes heat, radio
waves, light,...)

I When we talk about radiation, we often mean ionizing
radiation (α and β particles, γ–rays, X–rays, neutrons...),
which carries enough energy to ionize atoms or molecules.
Ionizing radiation can cause serious damage to cells, tissues,
and DNA.
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Biodosimetry

I Dosimetry is the measurement of the absorbed dose delivered
by ionizing radiation. The absorbed dose is measured in Gy
(Joules per kg).

I A biomarker (short for: “biological marker”) is “any
substance, structure, or process that can be measured in the
body or its products and influence or predict the incidence of
outcome or disease” (WHO).

I Biodosimetry is a dosimetry technique which exploits the
information provided by radiation–sensitive biomarkers
(usually, radiation–induced damage inside the cell nucleus) to
infer the radiation dose.

I Statistics comes into play when establishing the link between
the biomarker and the absorbed dose.
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Radiation biodosimetry

I Radiation accident or incident leading to irradiated blood
lymphocytes.

I Need rapid and reliable procedures to determine the radiation
dose contracted by individuals.

I Members of the public do not usually wear radiation
dosimeters...

I Hence, triage and clinical decision making needs to rely on
biomarkers to estimate the contracted radiation dose.

I Most commonly used biomarker: Chromosome aberrations,
such as dicentric chromosomes:
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Cytogenetic biomarkers

I Example: Frequencies of dicentrics (= aberrant chromosome
having two centromeres) in n = 4400 lymphocytes after in
vitro ‘whole body’ exposure with 200 kV X-rays.

yij
xi 0 1 2 3 4 5 6 7 ni
1 1715 268 15 2 0 0 0 0 2000
2 638 298 56 8 0 0 0 0 1000
3 247 225 85 37 6 0 0 0 600
4 99 129 92 52 21 5 2 0 400
5 48 88 97 99 36 25 5 2 400

I xi : dose (in Gy) used to irradiate blood sample i , i = 1, . . . 5.

I yij : counts of dicentric aberrations in j-th cell of blood sample
i , j = 1, . . . ni .



Dose–response modelling
I These are count data, so a natural choice for the response

distribution is Poisson, that is

f (yij |xi ) = e−λi
λ
yij
i

yij !

I There is agreement in the biodosimetry literature that the
Poisson means λi can be described by a parametric model

λi = E (yij |xi ) = β0 + β1xi + β2x
2
i

I For parameter estimation, firstly set up the likelihood function:

L =
∏
i ,j

f (yij |xi ) =
∏
i ,j

e−λi
λ
yij
i

yij !
∝
∏
i

e−niλiλ
∑

j yij
i

I One can conveniently work at the aggregated data level, with
data (xi , yi ) = (xi ,

∑ni
j=1 yij).
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Aggregated data

I Let yi =
∑

j yij . Then the
aggregated data are

xi ni yi
1.0 2000 304
2.0 1000 434
3.0 600 530
4.0 400 590
5.0 400 892

I Graphically,
with circle size ∝ ni .
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I ‘Empirical dose-response
curve’



Poisson regression

I Model in terms of aggregated data:

λi ≡ E (yi |xi )/ni = β0 + β1xi + β2x
2
i

where yi ∼ Pois(niλi ).
I Poisson regression model fitted via ML

I special case of generalized linear models

I Fitted dose–response curve, λ̂i = β̂0 + β̂1xi + β̂2x
2
i :
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I serves as calibration curve for the dose–estimation problem.
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Inverse regression
I Dose estimation is an inverse regression problem:

I We have a model for the dicentric count, yi , given dose xi .
I In practice, we want to estimate xi given yi !

I For instance, assume a patient has been admitted to hospital
due to potential radiation exposure. A sample of n0 = 200
lymphocytes was analyzed, yielding y0 = 150 dicentrics.
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Dose estimation from calibration curve

I Mathematically, this is not a big problem. Assume the
observed ratio of dicentrics is R = y0

n0
. Then we have

R = β̂0 + β̂1x + β̂2x
2

which can be solved wrt x as

x̂ =
−β̂1 +

√
β̂21 − 4β̂2(β̂0 − R)

2β̂2

I With R = 150
200 = 0.75, this gives

x̂ = 2.745.



Uncertainty

I Of course, this estimation is not exact.

I Can one specify the uncertainty in this process?

I Two sources of uncertainty:
I Uncertainty due to the estimation of the curve (randomness of

the calibration data).

I Uncertainty due to random variation of y0, given x0.
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Uncertainty bounds

I Combine the two sources of uncertainty (‘Merkle’s method’,
1983):
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I Here, a 95% confidence interval for the ‘true’ dose, x0, is
given as [2.04, 3.33].

I Official uncertainty assessment routine suggested by the
International Atomic Energy Agency [IAEA].
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A (semi–)Bayesian approach to uncertainty assessment
I Estimate in vitro dose-response curve λ̂i as before.

I For the (potentially) exposed patient, count dicentrics, y0, in
a sample of n0 cells, yielding ‘test data likelihood’

L(y0|λ, n0) ∝ e−n0λλy0

where λ = β0 + β1x + β2x
2, and x the (true, unknown) dose.

I Assume a prior density p(x , λ) = φ(λ|x)p(x), where
φ(λ|x) ∼ N(λ̂,Var(λ̂)).

I Use Bayes’s theorem to obtain posterior density for (λ, x):

p(λ, x |y0) ∝ L(y0|λ, n0)p(x , λ)

I Integration over λ gives calibrative density of x :

p(x |y0) ∝ p(x)

∫
L(y0|λ, n0)φ(λ|x) dλ

I Integral has explicit solution via Hermite distribution (Higueras

et al, 2015)
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A (semi–)Bayesian approach to uncertainty assessment

I Consider again the example before: Patient sample with
n0 = 200, y0 = 150.

I Use the same estimated dose–response curve,
λ̂i = β̂0 + β̂1xi + β̂2x

2
i , as before:
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A (semi–)Bayesian approach to uncertainty assessment

I Calibrative density for ‘true’ dose x , using R package radir:
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A (semi–)Bayesian approach to uncertainty assessment

I Dose estimate: Mode of calibrative density:
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I x̂ = 2.75.



A (semi–)Bayesian approach to uncertainty assessment

I Uncertainty assessment: 95% Credible intervals
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I CI = [2.48, 3.01]

∈ [2.04, 3.33]
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It’s not as easy...

I NIHR–funded project (2014): Identification of appropriate
response models for chromosomal aberration counts.

I Initially, carried out an extensive analysis of 11 in vitro
calibration data sets.

I In turned out that the data set shown initially in this talk was
the only one for which the Poisson assumption is
(approximately) adequate.

I In most occasions, things are not quite as nice...
I There is overdispersion (variance >> mean)
I There is zero–inflation (more zero counts than one would

expect under the Poisson model)
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Example: Cobalt–60 γ– rays
yij

xi 0 1 2 3 4 5 ni yi
0.00 2591 1 0 0 0 0 2592 1
0.25 2185 8 0 0 0 0 2193 8
0.75 2550 44 1 0 0 0 2595 46
1.00 2231 54 2 0 0 0 2287 58
1.50 1712 96 3 0 0 0 1811 102
2.50 1196 123 7 1 0 0 1327 140
3.00 1070 320 41 6 1 0 1438 424
4.50 895 360 110 25 5 1 1396 680
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Alternative models?

I If the response distribution is incorrectly specified, the
uncertainty assessment will be incorrect.

I Alternative models include
I Zero–inflated regression model (ZIP)

P(Yij = yij) =

{
p + (1− p) exp(−λi ), yij = 0,
(1− p) exp(−λi )λyii /yi !, yij > 0,

I Negative Binomial model (NB)
I Zero–inflated Negative Binomial model (ZINB)
I ...

I However, the presence/type of violation of the Poisson model
will often not be obvious (from the fitted calibration curve).

I Tools which can be used to assist in this question:
I Model selection criteria, e.g AIC, BIC
I Statistical tests, e.g. LR tests, Score tests
I Diagnostic plot
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Model selection

I Assume we we need to decide between one of the response
distributions Poisson, ZIP, NB, ZINB.

I Use Akaike Information Criterion: Find model which minimizes
AIC = −2 log L + 2p (Goodness–of-fit/ complexity trade-off).

I For instance, for the two data sets displayed so far,

AIC for... X–rays γ–rays

Poisson 7622.55 7504.73
Zero–inflated Poisson (ZIP) 7623.57 7490.36
Negative Binomial (NB) 7624.56 7489.10
ZINB 7626.39 7491.44

I For the X–rays, the Poisson model well supported.
I For the γ–rays, evidence for NB or perhaps ZIP model.

I Model selection methods...
I give a useful indication of a suitable model;
I are easily implemented;
I do not tell whether one model is significantly better than

another.
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Score test

I Say H0 = Po(λi ), H1 = ZIP(p, λi ),
I in other words, H0 : p = 0.

I Score test statistic:

T = S(0, β̂)T J(0, β̂)−1S(0, β̂)

where S = ∂L/∂β and J = ∂L/∂ββT are the score function
and Fisher information of model H1, evaluated under the
model fit β under H0.

I Critical value for α = 0.05 is χ2
1,0.95 = 3.84.

I Results for 8 data sets (Oliveira et al, 2016):

Homogenous exposure Partial exposure
LET low high low high

id 0.92 18.17 87.72 61.32 2007.39 1418.28 416.20 387.91

I (the first two ones are the data sets discussed previously)
I All data sets except the first one (X–rays) are zero–inflated!!
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Homogenous exposure Partial exposure
LET low high low high

id 0.92 18.17 87.72 61.32 2007.39 1418.28 416.20 387.91

I (the first two ones are the data sets discussed previously)
I All data sets except the first one (X–rays) are zero–inflated!!



New graphical device
I We developed a new graphical tool to detect zero–inflation

(and in fact, any–number–inflation).
I Effectively, it is demonstrated whether the number of counts,

for k = 0, 1, 2, ..., is consistent with the specified count
distribution.

I For the X–ray calibration data (first data set),
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Christmas tree plot for γ–ray data

I using Poisson model
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Christmas tree plot for γ–ray data

I using Poisson model
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Summary: Model choices

I It can be concluded (Oliveira et al, 2016):
I Zero–inflation is driven by partial (body) exposure;
I Overdispersion is driven by densely ionizing radiation, i.e.

radiation with high linear energy transfer (LET);

I the absence of partial exposure/ densely ionizing radiation does
not guarantee the absence of zero–inflation/overdispersion.

I Recommended model choices
exposure whole body partial

LET low Poisson/NB ZIP
high NB/Neyman A ZINB

I Some work has been done to extend dose (uncertainty)
estimation routines to NB/ZIP models; further research
required (Higueras et al, 2015)
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Strength and limitations of dicentric assay

I Strength:
I very little inter–individual (and inter–laboratory) variation;
I dicentric chromosome aberrations can be identified still several

weeks after exposure;
I internationally accepted ‘gold–standard’.

I Limitations:
I needs 3–4 days after irradiation before dicentric chromosomes

become visible (need to reach metaphase);
I relatively work–intensive and expensive methodology;
I not viable for large–scale radiation accidents.

I Hence, alternative biomarkers have recently been considered.



γ– H2AX data

I Relatively new technology: Protein biomarker

I Double strand breaks lead to ‘phosphorylation’ of
the H2AX protein, yielding γ–H2AX foci.

I γ–H2AX foci are counted using flow cytometers or
immunofluorescence microscopy.

I Quicker, cheaper, less invasive than dicentric array.

I Problems:
I only visible up to 24 hours after exposure;
I large inter–individual variation, hence requires further

calibration steps, or models which can capture this variation.

I Some ad–hoc dose estimation methods available (Ainsbury et

al, 2016).

I Critical gap remains: Fast (< 24h) dose assessment with
samples that taken > 24h after the radiation incident.
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Microarray–based biomarkers

I Recently, it has been demonstrated that certain
genes respond to ionizing radiation with a change
in their gene expression level.

I Genes are expressed by production of mRNAs from
DNA, and protein from mRNAs.

I mRNA is a linear molecule which carries a copy of
the gene to be expressed from the nucleus.

I Expressions can be measured using
I Hybridization based methods (e.g.

microarrays, usually continuous data);

I Sequencing techniques (usually count
data).

I Several radiation–responsive genes are known.

I Again, substantial inter–individual variation.

I No reliable statistical methodology for dose estimation yet.
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