Too many zeros? Not enough zeros? How to

 assess through inferential and graphical methods Part II: A graphical tool for assessing the suitability of a count regression modelJochen Einbeck ${ }^{1} \quad$ Paul Wilson ${ }^{2}$
${ }^{1}$ Durham University
${ }^{2}$ University of Wolverhampton

Wolverhampton, 9 May 2023

Problem

- Given: univariate count data y_{1}, \ldots, y_{n}.
- Is it plausible to assume that y_{1}, \ldots, y_{n} are generated from a given (hypothesized) count distribution F?

Problem

- Given: univariate count data y_{1}, \ldots, y_{n}.
- Is it plausible to assume that y_{1}, \ldots, y_{n} are generated from a given (hypothesized) count distribution F ?
- Specifically, denote $F=F\left(\mu_{i}, \theta_{i}\right)$, with both $\mu_{i}=E\left(Y_{i} \mid x_{i}\right)$ and θ_{i} (possibly) depending on covariates x_{i}.
- Assume that a routine to obtain estimates $\hat{\mu}_{i}=\hat{E}\left(Y_{i} \mid x_{i}\right)$ and $\hat{\theta}_{i}$ is readily available.

Problem

- Given: univariate count data y_{1}, \ldots, y_{n}.
- Is it plausible to assume that y_{1}, \ldots, y_{n} are generated from a given (hypothesized) count distribution F?
- Specifically, denote $F=F\left(\mu_{i}, \theta_{i}\right)$, with both $\mu_{i}=E\left(Y_{i} \mid x_{i}\right)$ and θ_{i} (possibly) depending on covariates x_{i}.
- Assume that a routine to obtain estimates $\hat{\mu}_{i}=\hat{E}\left(Y_{i} \mid x_{i}\right)$ and $\hat{\theta}_{i}$ is readily available.
- Denote $N(k)$, for $k=0,1,2, \ldots$, the number of observed counts k in y_{1}, \ldots, y_{n}.
- Idea: check whether, for each count $k=0,1,2, \ldots$, the number $N(k)$ is 'plausible' under the distribution $F\left(\hat{\mu}_{i}, \hat{\theta}_{i}\right)$.

Poisson-Binomial distribution

- The random variable $N(k)$ follows a Poisson-Binomial distribution with parameters $p_{1}(k), \ldots, p_{n}(k)$, where

$$
p_{i}(k)=P\left(k \mid \mu_{i}, \theta_{i}\right)
$$

is the probability of observing the count k under covariate x_{i} and model F (Chen and Liu, 1997).

- The $p_{i}(k)$ can be estimated by $\hat{p}_{i}(k)=P\left(k \mid \hat{\mu}_{i}, \hat{\theta}_{i}\right)$ from the fitted model.

Poisson-Binomial distribution

- The random variable $N(k)$ follows a Poisson-Binomial distribution with parameters $p_{1}(k), \ldots, p_{n}(k)$, where

$$
p_{i}(k)=P\left(k \mid \mu_{i}, \theta_{i}\right)
$$

is the probability of observing the count k under covariate x_{i} and model F (Chen and Liu, 1997).

- The $p_{i}(k)$ can be estimated by $\hat{p}_{i}(k)=P\left(k \mid \hat{\mu}_{i}, \hat{\theta}_{i}\right)$ from the fitted model.
- For instance, in the special case that $F\left(\mu_{i}, \theta_{i}\right)$ corresponds to $\operatorname{Pois}\left(\mu_{i}\right)$, one has $\hat{p}_{i}(k)=\exp \left(-\hat{\mu}_{i}\right) \hat{\mu}_{i}^{k} / k!$.
- This scenario was discussed in the previous talk with focus on the case $k=0$.
- This talk generalizes those ideas to general k and F and proposes a generic diagrammatic tool.

Plausibility intervals for $\mathrm{N}(\mathrm{k})$

- Knowing the distribution of $N(k)$, one can derive intervals of plausible values of $N(k)$ by considering appropriate quantiles from this distribution.
- For fixed k, appropriate lower and upper quantiles, say $q_{\alpha / 2}(k)$ and $q_{1-\alpha / 2}(k)$ of the Poisson-Binomial distribution can be computed using the R package poibin (Hong, 2013).
- Do this for a range of values of k, and plot intervals $\left(q_{\alpha / 2}(k), q_{1-\alpha / 2}(k)\right)$ alongside observed values $N(k)$ as a function of k.

Example: simulated data

- $n=100$ observations y_{1}, \ldots, y_{n} simulated from a Zero-inflated Poisson (ZIP) distribution with Poisson parameter $\mu=1.5$ and zero-inflation parameter $p=0.2$

k	$N(k)$
0	38
1	28
2	15
3	7
4	8
5	1
6	2
7	1

Example: simulated data

- Consider $F(\mu) \sim \operatorname{Pois}(\mu)$ with $\hat{\mu}=\bar{y}$, so $\hat{p}(k)=e^{-\bar{y} \frac{\bar{y}^{k}}{k!} .}$

Median-adjustment

- The previous graph can be difficult to read if the sample size is large, and so the bounds get very tight.
- We therefore adjust it by subtracting the medians $M(k)=\operatorname{med}(N(k))$ from all values, where the median is taken wrt to the Poisson-Binomial distribution of $N(k)$.

Median-adjustment

- The previous graph can be difficult to read if the sample size is large, and so the bounds get very tight.
- We therefore adjust it by subtracting the medians $M(k)=\operatorname{med}(N(k))$ from all values, where the median is taken wrt to the Poisson-Binomial distribution of $N(k)$.

k	$N(k)$	$M(k)$	$N(k)-M(k)$	$q_{0.05}(k)-M(k)$	$q_{0.95}(k)-M(k)$
0	38	26	12	-7	7
1	28	35	-7	-8	8
2	15	24	-9	-7	7
3	7	10	-3	-4	6
4	8	3	5	-2	4
5	1	1	0	-1	2
6	2	0	2	0	1
7	1	0	1	0	0

Median-adjusted bounds

- Diagnostic plot for the accuracy of the Poisson assumption.

Median-adjusted bounds: Variant

- Exchange horizontal and vertical axis:

Median-adjusted bounds: Variant

- Exchange horizontal and vertical axis:

- 'Christmas tree diagram'/ 'Quantile band plot' (Wilson \& Einbeck, 2021)

Median-adjusted bounds: Variant

- Exchange horizontal and vertical axis:

- 'Christmas tree diagram'/ 'Quantile band plot' (Wilson \& Einbeck, 2021)
- Adequate models have the 'decoration' inside the tree.

Example: Biodosimetry data

- Frequency of dicentric chromosomes in human lymphocytes after in vitro exposure to doses between 1 and 5 Gy of 200 kV X-rays. The irradiated blood was mixed with non-irradiated blood in a proportion 1:3 in order to mirror a partial body exposure scenario.

Frequency of counts

dose	0	1	2	3	4	5	6	7	8
1	2713	78	8	0	1	0	0	0	0
2	1302	71	22	5	0	0	0	0	0
3	1116	46	28	7	2	1	0	0	0
4	929	18	14	22	13	2	0	1	1
5	726	17	18	12	9	13	1	4	0

Example: Biodosimetry data

- Frequency of dicentric chromosomes in human lymphocytes after in vitro exposure to doses between 1 and 5 Gy of 200 kV X-rays. The irradiated blood was mixed with non-irradiated blood in a proportion 1:3 in order to mirror a partial body exposure scenario.

	k									
x	0	1	2	3	4	5	6	7	8	\# cells
1	2713	78	8	0	1	0	0	0	0	2800
2	1302	71	22	5	0	0	0	0	0	1400
3	1116	46	28	7	2	1	0	0	0	1200
4	929	18	14	22	13	2	0	1	1	1000
5	726	17	18	12	9	13	1	4	0	800
$N(k)$	6786	230	90	46	25	16	1	5	1	$n=7200$

Modelling of biodosimetry data

- These are $n=7200$ observations of the type (dose $_{i}, y_{i}$), with y_{i} being a count in $0, \ldots, 8$.
- X-rays are sparsely ionizing - the literature suggests a quadratic dose model in this case.

Modelling of biodosimetry data

- These are $n=7200$ observations of the type (dose $_{i}, y_{i}$), with y_{i} being a count in $0, \ldots, 8$.
- X-rays are sparsely ionizing - the literature suggests a quadratic dose model in this case.
- Link function:
- Cytogeneticists prefer identity link.
- Being among Statisticians (?), I will use the log link.
- Response (count) distribution:
- It is widely accepted that the number of dicentrics in irradiated blood samples is Poisson distributed.
- However, under partial body exposure, we would expect a deviation from this assumption...

Modelling of biodosimetry data

- These are $n=7200$ observations of the type (dose $_{i}, y_{i}$), with y_{i} being a count in $0, \ldots, 8$.
- X-rays are sparsely ionizing - the literature suggests a quadratic dose model in this case.
- Link function:
- Cytogeneticists prefer identity link.
- Being among Statisticians (?), I will use the log link.
- Response (count) distribution:
- It is widely accepted that the number of dicentrics in irradiated blood samples is Poisson distributed.
- However, under partial body exposure, we would expect a deviation from this assumption...

Modelling of biodosimetry data

- These are $n=7200$ observations of the type (dose $_{i}, y_{i}$), with y_{i} being a count in $0, \ldots, 8$.
- X-rays are sparsely ionizing - the literature suggests a quadratic dose model in this case.
- Link function:
- Cytogeneticists prefer identity link.
- Being among Statisticians (?), I will use the log link.
- Response (count) distribution:
- It is widely accepted that the number of dicentrics in irradiated blood samples is Poisson distributed.
- However, under partial body exposure, we would expect a deviation from this assumption...
- Consider the initial model $y_{i} \mid$ dose $_{i} \approx \operatorname{Pois}\left(\mu_{i}\right)$ with

$$
\mu_{i} \equiv E\left(y_{i} \mid \text { dose }_{i}\right)=\exp \left(\beta_{0}+\beta_{1} \text { dose }_{i}+\beta_{2} \text { dose }_{i}^{2}\right)
$$

Diagnostics for Biodosimetry data

Do the same as before. That is,

- estimate

k	$N(k)$	$q_{0.05}(k)$	$q_{0.95}(k)$
0	6786	6442	6524
1	230	622	700
2	90	41	64
3	46	1	7
4	25	0	1
5	16	0	0
6	1	0	0
7	5	0	0
8	1	0	0

Diagnostics for biodosimetry data

- ...without median- adjustment:

- does not look very useful since boundaries are very close.

Diagnostics for biodosimetry data

- ... with median-adjustment:

- much better!

Christmas tree diagram: Poisson hypothesis

Christmas tree diagram: Poisson hypothesis

- We clearly observe zero-inflation (and associated 1-deflation);

Christmas tree diagram: Poisson hypothesis

- We clearly observe zero-inflation (and associated 1-deflation);

Christmas tree diagram: ZIP hypothesis

- Do all the same as before, but now compute $\hat{\mu}_{i}, \hat{\theta}_{i}$, and $\hat{p}_{i}(k)$, using the zero-inflated Poisson (ZIP) model as the hypothesized model.

Christmas tree diagram: ZIP hypothesis

- Do all the same as before, but now compute $\hat{\mu}_{i}, \hat{\theta}_{i}$, and $\hat{p}_{i}(k)$, using the zero-inflated Poisson (ZIP) model as the hypothesized model.

- indicates a good fit.

Christmas tree diagram: NB hypothesis

- Repeat the procedure using the negative Binomial model as the hypothesized model.

Christmas tree diagram: NB hypothesis

- Repeat the procedure using the negative Binomial model as the hypothesized model.

- indicates that the NB model does not capture the data well.

Christmas tree diagram: PIG hypothesis

- Repeat the procedure using the Poisson inverse Gaussian (PIG) model as the hypothesized model.

Christmas tree diagram: PIG hypothesis

- Repeat the procedure using the Poisson inverse Gaussian (PIG) model as the hypothesized model.

- the PIG model does not capture the data well either.

Alternative data set: Whole body exposure

- Counts of dicentric chromosomes in 4400 blood cells after in vitro 'whole body' exposure with 200kV X-rays from 0 to 4.5Gy.

Alternative data set: Whole body exposure

- Counts of dicentric chromosomes in 4400 blood cells after in vitro 'whole body' exposure with 200kV X-rays from 0 to 4.5Gy.

- indicates that Poisson model is fairly reasonable.

Multiple testing ?

- If considered as a series of statistical tests over counts $k=0,1,2, \ldots$, one can argue that multiple testing issues arise.
- For instance, if the tree covers ten possible counts, at a significance level of 0.1 one would expect one piece of decoration to fall outside the tree purely by chance.

Multiple testing ?

- If considered as a series of statistical tests over counts $k=0,1,2, \ldots$, one can argue that multiple testing issues arise.
- For instance, if the tree covers ten possible counts, at a significance level of 0.1 one would expect one piece of decoration to fall outside the tree purely by chance.
- One could adjust this through a Bonferroni correction etc.
- However, we do believe that the corresponding inflated boundaries would be rather meaningless.

Multiple testing ?

- If considered as a series of statistical tests over counts $k=0,1,2, \ldots$, one can argue that multiple testing issues arise.
- For instance, if the tree covers ten possible counts, at a significance level of 0.1 one would expect one piece of decoration to fall outside the tree purely by chance.
- One could adjust this through a Bonferroni correction etc.
- However, we do believe that the corresponding inflated boundaries would be rather meaningless.
- Hence, we do not make such a correction, but explicitly do not advocate this procedure as a testing procedure.
- It should rather be seen as a diagnostic device, similar as a residual plot or a QQ-plot.

Comparison with score tests

- Alternatively, one can carry out traditional score tests.
- For instance, consider H_{0} : Poisson versus H_{1} : ZIP or H_{1} : NB.
- Score test statistic $T=S^{T} J^{-1} S$, where S and J are the score function and Fisher Information matrix (resp.) evaluated under the Poisson model. Asymptotically, $T \sim \chi^{2}(1)$.
- Resulting values of T, to be compared with $\chi_{1,0.95}^{2}=3.84$:

Test	Body exposure	
	Partial	Whole
Pois/ZIP	1996.30	1.00
Pois/NB	6009.35	0.90

- Confirms that Poisson is adequate for whole body exposure but inadequate for partial body exposure (Oliveira et al, 2016).

Comparison with score tests

- Alternatively, one can carry out traditional score tests.
- For instance, consider H_{0} : Poisson versus H_{1} : ZIP or H_{1} : NB.
- Score test statistic $T=S^{T} J^{-1} S$, where S and J are the score function and Fisher Information matrix (resp.) evaluated under the Poisson model. Asymptotically, $T \sim \chi^{2}(1)$.
- Resulting values of T, to be compared with $\chi_{1,0.95}^{2}=3.84$:

Test	Body exposure	
	Partial	Whole
Pois/ZIP	1996.30	1.00
Pois/NB	6009.35	0.90

- Confirms that Poisson is adequate for whole body exposure but inadequate for partial body exposure (Oliveira et al, 2016).
- ...but the score test does not tell us whether it's the zero's which cause the problem, nor whether the data are zero-inflated or -deflated!

Conclusion

- We have provided a simple diagrammatic tool to assess the adequacy of any given count data model.
- For each count k, bounds are constructed as quantiles of the Poisson-Binomial distribution.
- How exactly to compute the quantiles? Traditional quantiles, as produced by poibin, can behave infavorably for discrete distributions; we therefore advocate the use of 'mid-quantiles' (Wilson \& Einbeck, 2021).
- Estimation of model parameters when the model is inadequate can possibly be tricky!

Conclusion

- We have provided a simple diagrammatic tool to assess the adequacy of any given count data model.
- For each count k, bounds are constructed as quantiles of the Poisson-Binomial distribution.
- How exactly to compute the quantiles? Traditional quantiles, as produced by poibin, can behave infavorably for discrete distributions; we therefore advocate the use of 'mid-quantiles' (Wilson \& Einbeck, 2021).
- Estimation of model parameters when the model is inadequate can possibly be tricky!
- For the work carried out in this talk, all parameters have been estimated under the hypothesized model.
- In the special case of $F \sim$ Pois and $k=0$, an improved mean estimator $\hat{\mu}_{i}$ has been proposed in the previous talk.
- More work required for the more general case of an arbitrary count/distribution.

Find our code on ResearchGate...

References

Chen, S.X. and Liu, J.S. (1997). Statistical applications of the Poisson-binomial and conditional Bernoulli distributions. Statistica Sinica 7, 875-892.
Hong, Y. (2013). poibin: The Poisson Binomial Distribution. R package version 1.2.
https://CRAN.R-project.org/package=poibin
Oliveira, M. et al. (2016). Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative study. Biometrical Journal 58, 259-279.
Wilson P \& Einbeck J (2021). A graphical tool for assessing the suitability of a count regression model. Austrian Journal of Statistics 50, 1-23.

