Too many zeros? Not enough zeros? How to assess through inferential and graphical methods Part II: A graphical tool for assessing the suitability of a count regression model

Jochen Einbeck¹ Paul Wilson²

¹Durham University

²University of Wolverhampton

Wolverhampton, 9 May 2023

《曰》 《聞》 《理》 《理》 三世

Problem

- Given: univariate count data y_1, \ldots, y_n .
- Is it plausible to assume that y₁,..., y_n are generated from a given (hypothesized) count distribution F?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Problem

- Given: univariate count data y_1, \ldots, y_n .
- Is it plausible to assume that y₁,..., y_n are generated from a given (hypothesized) count distribution F?
- Specifically, denote F = F(μ_i, θ_i), with both μ_i = E(Y_i|x_i) and θ_i (possibly) depending on covariates x_i.
- Assume that a routine to obtain estimates $\hat{\mu}_i = \hat{E}(Y_i|x_i)$ and $\hat{\theta}_i$ is readily available.

Problem

- ► Given: univariate count data *y*₁,..., *y*_n.
- Is it plausible to assume that y₁,..., y_n are generated from a given (hypothesized) count distribution F?
- Specifically, denote F = F(μ_i, θ_i), with both μ_i = E(Y_i|x_i) and θ_i (possibly) depending on covariates x_i.
- Assume that a routine to obtain estimates $\hat{\mu}_i = \hat{E}(Y_i|x_i)$ and $\hat{\theta}_i$ is readily available.
- Denote N(k), for k = 0, 1, 2, ..., the number of observed counts k in y₁, ..., y_n.
- Idea: check whether, for each count k = 0, 1, 2, ..., the number N(k) is 'plausible' under the distribution F(μ̂_i, θ̂_i).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Poisson-Binomial distribution

The random variable N(k) follows a Poisson-Binomial distribution with parameters p₁(k),..., p_n(k), where

$$p_i(k) = P(k|\mu_i, \theta_i)$$

is the probability of observing the count k under covariate x_i and model F (Chen and Liu, 1997).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• The $p_i(k)$ can be estimated by $\hat{p}_i(k) = P(k|\hat{\mu}_i, \hat{\theta}_i)$ from the fitted model.

Poisson-Binomial distribution

The random variable N(k) follows a Poisson-Binomial distribution with parameters p₁(k),..., p_n(k), where

$$p_i(k) = P(k|\mu_i, \theta_i)$$

is the probability of observing the count k under covariate x_i and model F (Chen and Liu, 1997).

- The p_i(k) can be estimated by p̂_i(k) = P(k|µ̂_i, θ̂_i) from the fitted model.
 - For instance, in the special case that F(μ_i, θ_i) corresponds to Pois(μ_i), one has p̂_i(k) = exp(-μ̂_i)μ̂^k_i/k!.
 - This scenario was discussed in the previous talk with focus on the case k = 0.
 - This talk generalizes those ideas to general k and F and proposes a generic diagrammatic tool.

Plausibility intervals for N(k)

- Knowing the distribution of N(k), one can derive intervals of plausible values of N(k) by considering appropriate quantiles from this distribution.
- For fixed k, appropriate lower and upper quantiles, say q_{α/2}(k) and q_{1−α/2}(k) of the Poisson-Binomial distribution can be computed using the R package poibin (Hong, 2013).
- ▶ Do this for a range of values of k, and plot intervals (q_{α/2}(k), q_{1-α/2}(k)) alongside observed values N(k) as a function of k.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example: simulated data

▶ n = 100 observations y₁,..., y_n simulated from a Zero-inflated Poisson (ZIP) distribution with Poisson parameter µ = 1.5 and zero-inflation parameter p = 0.2

イロト 不得 トイヨト イヨト

3

Example: simulated data

• Consider
$$F(\mu) \sim \text{Pois}(\mu)$$
 with $\hat{\mu} = \bar{y}$, so $\hat{p}(k) = e^{-\bar{y}} \frac{\bar{y}^k}{k!}$.

data value (k)

▶ ▲ 善 ▶ = • • • • • •

Median-adjustment

- The previous graph can be difficult to read if the sample size is large, and so the bounds get very tight.
- We therefore adjust it by subtracting the medians M(k) = med(N(k)) from all values, where the median is taken wrt to the Poisson-Binomial distribution of N(k).

Median-adjustment

- The previous graph can be difficult to read if the sample size is large, and so the bounds get very tight.
- We therefore adjust it by subtracting the medians M(k) = med(N(k)) from all values, where the median is taken wrt to the Poisson-Binomial distribution of N(k).

k	N(k)	M(k)	N(k)-M(k)	$q_{0.05}(k) - M(k)$	$q_{0.95}(k) - M(k)$
0	38	26	12	-7	7
1	28	35	-7	-8	8
2	15	24	-9	-7	7
3	7	10	-3	-4	6
4	8	3	5	-2	4
5	1	1	0	-1	2
6	2	0	2	0	1
7	1	0	1	0	0

Median-adjusted bounds

Diagnostic plot for the accuracy of the Poisson assumption.

▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▼ のへで

Median-adjusted bounds: Variant

Exchange horizontal and vertical axis:

Median-adjusted bounds: Variant

Exchange horizontal and vertical axis:

 'Christmas tree diagram'/ 'Quantile band plot' (Wilson & Einbeck, 2021)

< ロ > < 同 > < 回 > < 回 >

Median-adjusted bounds: Variant

Exchange horizontal and vertical axis:

 'Christmas tree diagram'/ 'Quantile band plot' (Wilson & Einbeck, 2021)

э.

Adequate models have the 'decoration' inside the tree.

Example: Biodosimetry data

Frequency of dicentric chromosomes in human lymphocytes after *in vitro* exposure to doses between 1 and 5Gy of 200kV X-rays. The irradiated blood was mixed with non-irradiated blood in a proportion 1:3 in order to mirror a partial body exposure scenario.

	Frequency of counts								
dose	0	1	2	3	4	5	6	7	8
1	2713	78	8	0	1	0	0	0	0
2	1302	71	22	5	0	0	0	0	0
3	1116	46	28	7	2	1	0	0	0
4	929	18	14	22	13	2	0	1	1
5	726	17	18	12	9	13	1	4	0
		0 1 2 3 4 5 6 7 2713 78 8 0 1 0 0 0 1302 71 22 5 0 0 0 0 1116 46 28 7 2 1 0 0 929 18 14 22 13 2 0 1 726 17 18 12 9 13 1 4							

Example: Biodosimetry data

Frequency of dicentric chromosomes in human lymphocytes after *in vitro* exposure to doses between 1 and 5Gy of 200kV X-rays. The irradiated blood was mixed with non-irradiated blood in a proportion 1:3 in order to mirror a partial body exposure scenario.

				K						
x	0	1	2	3	4	5	6	7	8	# cells
1	2713	78	8	0	1	0	0	0	0	2800
2	1302	71	22	5	0	0	0	0	0	1400
3	1116	46	28	7	2	1	0	0	0	1200
4	929	18	14	22	13	2	0	1	1	1000
5	726	17	18	12	9	13	1	4	0	800
N(k)	6786	230	90	46	25	16	1	5	1	<i>n</i> = 7200

1

▶ These are n = 7200 observations of the type (dose_i, y_i), with y_i being a count in 0, ..., 8.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 X-rays are sparsely ionizing — the literature suggests a quadratic dose model in this case.

- ▶ These are n = 7200 observations of the type (dose_i, y_i), with y_i being a count in 0, ..., 8.
- X-rays are sparsely ionizing the literature suggests a quadratic dose model in this case.
- Link function:
 - Cytogeneticists prefer identity link.
 - Being among Statisticians (?), I will use the log link.
- Response (count) distribution:
 - It is widely accepted that the number of dicentrics in irradiated blood samples is Poisson distributed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

However, under partial body exposure, we would expect a deviation from this assumption...

- ▶ These are n = 7200 observations of the type (dose_i, y_i), with y_i being a count in 0, ..., 8.
- X-rays are sparsely ionizing the literature suggests a quadratic dose model in this case.
- Link function:
 - Cytogeneticists prefer identity link.
 - Being among Statisticians (?), I will use the log link.
- Response (count) distribution:
 - It is widely accepted that the number of dicentrics in irradiated blood samples is Poisson distributed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, under partial body exposure, we would expect a deviation from this assumption...

- ▶ These are n = 7200 observations of the type (dose_i, y_i), with y_i being a count in 0, ..., 8.
- X-rays are sparsely ionizing the literature suggests a quadratic dose model in this case.
- Link function:
 - Cytogeneticists prefer identity link.
 - Being among Statisticians (?), I will use the log link.
- Response (count) distribution:
 - It is widely accepted that the number of dicentrics in irradiated blood samples is Poisson distributed.
 - However, under partial body exposure, we would expect a deviation from this assumption...
- Consider the initial model $y_i | \text{dose}_i \approx \text{Pois}(\mu_i)$ with

$$\mu_i \equiv E(y_i | \mathsf{dose}_i) = \exp\left(\beta_0 + \beta_1 \mathsf{dose}_i + \beta_2 \mathsf{dose}_i^2\right)$$

Diagnostics for Biodosimetry data

Do the same as before. That is,

- estimate $\hat{\mu}_i =$ $\exp{\{\hat{\beta}_0 + \hat{\beta}_1 \text{dose}_i + \hat{\beta}_2 \text{dose}_i^2\}};$
- build $\hat{p}_i(k) = \exp\{-\hat{\mu}_i\}\hat{\mu}_i^k/k!;$
- Use Poisson-Binomial distribution with parameters p̂_i(k).

k	N(k)	$q_{0.05}(k)$	$q_{0.95}(k)$
0	6786	6442	6524
1	230	622	700
2	90	41	64
3	46	1	7
4	25	0	1
5	16	0	0
6	1	0	0
7	5	0	0
8	1	0	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Diagnostics for biodosimetry data

...without median- adjustment:

does not look very useful since boundaries are very close.

Diagnostics for biodosimetry data

...with median- adjustment:

イロト イヨト イヨト

э

much better!

Christmas tree diagram: Poisson hypothesis

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Christmas tree diagram: Poisson hypothesis

We clearly observe zero-inflation (and associated 1-deflation);

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ ○へ⊙

Christmas tree diagram: Poisson hypothesis

We clearly observe zero-inflation (and associated 1-deflation);

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ ○へ⊙

Christmas tree diagram: ZIP hypothesis

Do all the same as before, but now compute \(\heta_i\), \(\heta_i\), and \(\heta_i(k)\), using the zero-inflated Poisson (ZIP) model as the hypothesized model.

Christmas tree diagram: ZIP hypothesis

Do all the same as before, but now compute \(\heta_i\), \(\heta_i\), and \(\heta_i(k)\), using the zero-inflated Poisson (ZIP) model as the hypothesized model.

indicates a good fit.

Christmas tree diagram: NB hypothesis

Repeat the procedure using the negative Binomial model as the hypothesized model.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Christmas tree diagram: NB hypothesis

Repeat the procedure using the negative Binomial model as the hypothesized model.

indicates that the NB model does not capture the data well.

Christmas tree diagram: PIG hypothesis

Repeat the procedure using the Poisson inverse Gaussian (PIG) model as the hypothesized model.

Christmas tree diagram: PIG hypothesis

 Repeat the procedure using the Poisson inverse Gaussian (PIG) model as the hypothesized model.

► the PIG model does not capture the data well either.

Alternative data set: Whole body exposure

Counts of dicentric chromosomes in 4400 blood cells after in vitro 'whole body' exposure with 200kV X-rays from 0 to 4.5Gy.

Alternative data set: Whole body exposure

Counts of dicentric chromosomes in 4400 blood cells after in vitro 'whole body' exposure with 200kV X-rays from 0 to 4.5Gy.

э

indicates that Poisson model is fairly reasonable.

Multiple testing ?

If considered as a series of statistical tests over counts k = 0, 1, 2, ..., one can argue that multiple testing issues arise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For instance, if the tree covers ten possible counts, at a significance level of 0.1 one would expect one piece of decoration to fall outside the tree purely by chance.

Multiple testing ?

- If considered as a series of statistical tests over counts k = 0, 1, 2, ..., one can argue that multiple testing issues arise.
- For instance, if the tree covers ten possible counts, at a significance level of 0.1 one would expect one piece of decoration to fall outside the tree purely by chance.
- One could adjust this through a Bonferroni correction etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, we do believe that the corresponding inflated boundaries would be rather meaningless.

Multiple testing ?

- If considered as a series of statistical tests over counts k = 0, 1, 2, ..., one can argue that multiple testing issues arise.
- For instance, if the tree covers ten possible counts, at a significance level of 0.1 one would expect one piece of decoration to fall outside the tree purely by chance.
- One could adjust this through a Bonferroni correction etc.
- However, we do believe that the corresponding inflated boundaries would be rather meaningless.
- Hence, we do not make such a correction, but explicitly do not advocate this procedure as a testing procedure.
- It should rather be seen as a diagnostic device, similar as a residual plot or a QQ-plot.

Comparison with score tests

- Alternatively, one can carry out traditional score tests.
- For instance, consider H_0 : Poisson versus H_1 : ZIP or H_1 : NB.
- Score test statistic T = S^TJ⁻¹S, where S and J are the score function and Fisher Information matrix (resp.) evaluated under the Poisson model. Asymptotically, T ~ χ²(1).
- ▶ Resulting values of *T*, to be compared with $\chi^2_{1,0.95} = 3.84$:

Test	Body ex	posure
	Partial	Whole
Pois/ZIP	1996.30	1.00
Pois/NB	6009.35	0.90

 Confirms that Poisson is adequate for whole body exposure but inadequate for partial body exposure (Oliveira et al, 2016).

Comparison with score tests

- Alternatively, one can carry out traditional score tests.
- For instance, consider H_0 : Poisson versus H_1 : ZIP or H_1 : NB.
- Score test statistic T = S^TJ⁻¹S, where S and J are the score function and Fisher Information matrix (resp.) evaluated under the Poisson model. Asymptotically, T ~ χ²(1).
- Resulting values of T, to be compared with $\chi^2_{1,0.95} = 3.84$:

Test	Body ex	posure
	Partial	Whole
Pois/ZIP	1996.30	1.00
Pois/NB	6009.35	0.90

- Confirms that Poisson is adequate for whole body exposure but inadequate for partial body exposure (Oliveira et al, 2016).
- ...but the score test does not tell us whether it's the zero's which cause the problem, nor whether the data are zero-inflated or -deflated!

Conclusion

- We have provided a simple diagrammatic tool to assess the adequacy of any given count data model.
- For each count k, bounds are constructed as quantiles of the Poisson-Binomial distribution.
- How exactly to compute the quantiles? Traditional quantiles, as produced by poibin, can behave infavorably for discrete distributions; we therefore advocate the use of 'mid-quantiles' (Wilson & Einbeck, 2021).
- Estimation of model parameters when the model is inadequate can possibly be tricky!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion

- We have provided a simple diagrammatic tool to assess the adequacy of any given count data model.
- For each count k, bounds are constructed as quantiles of the Poisson-Binomial distribution.
- How exactly to compute the quantiles? Traditional quantiles, as produced by poibin, can behave infavorably for discrete distributions; we therefore advocate the use of 'mid-quantiles' (Wilson & Einbeck, 2021).
- Estimation of model parameters when the model is inadequate can possibly be tricky!
 - For the work carried out in this talk, all parameters have been estimated under the hypothesized model.
 - ▶ In the special case of $F \sim$ Pois and k = 0, an improved mean estimator $\hat{\mu}_i$ has been proposed in the previous talk.
 - More work required for the more general case of an arbitrary count/distribution.

Find our code on ResearchGate...

Article Full-text availa A Graphical Too Regression Moo February 2021 - Austrian DOI: 10.17713/aja.v5011. License - CC#V3.00 Project: Inflation and deff Paul Wilson - 🕥 Joch	ible I For Assessing lel Journal of Statistics 50(221 atlon in count data mode en Einbeck	The Suital 1):1-23 - ⊊≣ Folko els	bilty Of A Count w journal	Research Interest () Citations Recommendations () () Reads () - () () () ()	De 3.9 0 0 rese 2 0 rese 57 See details	
Overview Stats	Comments (3)	Citations	References (19)	 Share Save 🗸	y Share on Twitter	
Linked Research (bandplot_exampl New Data Filt February 2021 @ Paul Wilson · 2 Reads	2) es.R gravailable Jochen Einbeck					
AJS_functions.R New Data File February 2021 Paul Wilson • 🕥 7 Reads	e available Jochen Einbeck					

References

Chen, S.X. and Liu, J.S. (1997). Statistical applications of the Poisson-binomial and conditional Bernoulli distributions. *Statistica Sinica* **7**, 875–892.

Hong, Y. (2013). poibin: The Poisson Binomial Distribution. R package version 1.2. https://CRAN.R-project.org/package=poibin

Oliveira, M. et al. (2016). Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative study. *Biometrical Journal* **58**, 259–279.

Wilson P & Einbeck J (2021). A graphical tool for assessing the suitability of a count regression model. *Austrian Journal of Statistics* **50**, 1–23.