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1. Introduction

The theory of theta series attached to integral lattices L in rational quadratic spaces with

bilinear form ( , ) of signature (p, q), pq > 0, has a long history including fundamental work

of Hecke, Siegel, Maass, and others. Siegel constructed theta series for such indefinite lattices

by using majorants and hence obtained functions depending on both an elliptic modular

variable τ and a point z ∈ D, the space of oriented negative q-planes in V = L⊗Z R. These

Siegel theta series have weight p−q
2 in τ , but, unlike the classical theta series for positive

definite lattices, they are non-holomorphic. In joint work of the second author and John

Millson, [13], [14], and [15], a family of theta series valued in closed differential forms on D

was constructed; we will refer to these as theta forms. The series obtained by passing to

classes in the cohomology of the locally symmetric space Γ\D, where Γ is a subgroup of finite

index in the isometry group of L, were shown to be holomorphic modular forms of weight
p+q

2 valued in Hq(Γ\D).

The resulting theory provides one analogue of the classical holomorphic theta series in the

indefinite case. However, it is still an attractive challenge to define theta series for indefinite

lattices more directly by restricting the summation to lattice vectors in suitable subsets W
of V where the quadratic form is positive so that the series

(1.1)
∑

x∈h+L

Φ(x;W) qQ(x), q = e(τ) = e2πiτ , Q(x) =
1

2
(x, x),

is termwise absolutely convergence and hence defines a holomorphic function of τ . Here

Φ(·,W) is supported on W, perhaps valued in ±1. Unfortunately, such series are typically

not modular.

In his thesis, Zwegers [24] introduced a series of this type for V of signature (m−1, 1), where

Φ(x;W) =
1

2
(sgn(x,C ′)− sgn(x,C) ),

for C and C ′ ∈ V negative vectors in the same component of the cone of negative vectors

in V . He showed that the resulting holomorphic series is not modular in general, but that

it can be competed to a (non-holomorphic) modular form of weight m
2 by adding a suitable

series constructed using the error function.

Recently, Alexandrov, Banerjee, Manschot and Pioline, [1], proposed a generalization of

Zwegers’ construction to the case of arbitrary signature (m− q, q) where Φ(x;W) = Φ�
q (x; C)

1
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is given by

(1.2) Φ�
q (x; C) = 2−q

q∏
j=1

( sgn(x,C ′j)− sgn(x,Cj) ),

for a collection

C = C� = {{C1, C
′
1}, {C2, C

′
2}, . . . , {Cq, C ′q}}

of pairs of negative vectors satisfying certain incidence relations. They introduced generalized

error functions and, in the case q = 2, used them to construct a (non-holomorphic) modular

completion of the series (1.1). Shortly thereafter, Nazaroglu [18] handled the case of general

signature along the lines suggested in [1]. In both [1] and [18], the modularity of the non-

holomorphic completion is established by using a result of Vignéras, [21], which asserts the

modularity of theta like series built from a certain class of functions. The essential step is to

show that suitable combinations of generalized error functions define functions in this class

and, at the same time, are suitably linked to the function Φ�
q (·, C). Sums of lattice vectors in

more general positive polyhedral cones were considered by Westerholt-Raum, [22]; he again

uses Vignéras criterion to deduce modularity and also discusses the degenerate case where

edges of the cone are allowed to be rational isotropic vectors.

In this paper, we show that the indefinite theta series of [24], [1] and [18] can be obtained by

integrating the theta forms for V of signature (p, q) over certain singular q-cubes determined

by a collection C which is in ‘good position’. As indicated by the title, this paper is a sequel to

[11] where such a result is proved for the case q = 2. We also consider the analogous integrals

over singular simplices, where the input data is now a collection C = C4 = {C0, C1, . . . , Cq}
of negative vectors in V in ‘good position’. In particular, any q of them span a negative q

plane in V and these q-planes give the vertices of a singular simplex in D.

To state the results more precisely, we need some notation. Let L be an even integral lattice

in V with dual lattice L∨. For τ = u + iv ∈ H and µ ∈ L∨/L, the theta form is the closed

ΓL-invariant q-form on D given by

θµ(τ, ϕKM ) =
∑

x∈µ+L

ϕKM (τ, x).

Here the Schwartz form

ϕKM (τ, x) = v−
p+q
4 (ω(g′τ )ϕKM )(x).

is obtained by the action ω(g′τ ) of the Weil representation on the basic Schwartz form ϕKM (x),

cf., section 2.2. A precise formula for ϕKM (x) is given in section 5.

First consider the ‘cubical’ case. For a collection C = C� of q pairs of negative vectors, we

can define a q-tuple of vectors

B(s) = [(1− s1)C1 + s1C
′
1, . . . , (1− sq)Cq + sqC

′
q] ∈ V q,

for each s = [s1, . . . , sq] ∈ [0, 1]q. We say that C is in good position if the collection B(s)

spans a negative q-plane for all s ∈ [0, 1]q. If C is in good position, we obtain an oriented

singular q-cube

φC : [0, 1]q −→ D, s 7→ span{B1(s1), . . . , Bq(sq)}p.o.,
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where the subscript ‘p.o.’ indicates that the given q-tuple defines the orientation. Let S�(C)
be the resulting singular q-cube.

Next consider the simplicial case. In this case, we suppose that the set of vectors C = C4 is

linearly independent over R and that any q of them span a negative q-plane. Their span U

is an oriented q + 1-plane of signature (1, q) and the dual basis C∨ = {C∨0 , . . . , C∨q } consists

of positive vectors. We say that C is in good position if, for all

s = [s0, . . . , sq] ∈ ∆q = { s ∈ [0, 1]q+1 |
q∑
i=0

si = 1 },

the vector

C∨(s) =
∑
i

siC
∨
i

is positive. For example, it suffices to require that all entries of the Gram matrix ((C∨i , C
∨
j ))

are non-negative1. For C in good position, we obtain a map

φC : ∆q −→ D, s 7→ C∨(s)⊥,

where the ⊥ is taken in U and the orientation of φC(s) is determined by the normal vector

C∨(s). We write S(C) for the resulting singular simplex. We also define

(1.3) Φ4q (x, C) = 2−q−1

( q∏
j=0

(1− sgn(x,Cj)) + (−1)q
q∏
j=0

(1 + sgn(x,Cj)

)
.

We consider the theta integrals

(1.4) Iµ(τ, C) =

∫
S(C)

θµ(τ, ϕKM ).

Note that, by construction, Iµ(τ, C) is a (typically non-holomorphic) modular form of weight
p+q

2 with transformation law inherited from that of the theta form.

For 1 ≤ r ≤ q and for a collection of vectors c = {c1, . . . , cr} spanning an oriented negative

r-plane, let Er(c, x), x ∈ V , be the generalized error function defined by (4.1). Finally, for

x ∈ V , x 6= 0, let

Dx = {z ∈ D | x ⊥ z },
and note that, if Q(x) > 0, then Dx is a totally geodesic subsymmetric space in D of

codimension q. Otherwise, Dx is empty.

Our main result is then the following.

Main Theorem. Assume that C is in good position and let Φq(x, C) be Φ�
q (x, C) (resp.

Φ4q (x, C)) is the cubical (resp. simplicial) case.

(i) The series

(1.5)
∑

x∈µ+L

Φq(x, C) qQ(x)

1This was pointed out to the second author by Sander Zwegers at the Dublin Conference in June, 2017.
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is termwise absolutely convergent.

(ii) If Φq(x, C) 6= 0, then

Dx ∩ S(C) = φC(s(x))

for a unique point s(x) ∈ [0, 1]q (resp. ∆q), the map φC is immersive at s(x), and

Φq(x, C) = I(S(C), Dx)

is the intersection number2 of S(C) and Dx at φC(s(x)).

(iii) In the cubical case, the theta integral is given explicitly by

(1.6) Iµ(τ, C) =
∑

x∈µ+L

(−1)q 2−q
∑
I

(−1)|I|Eq(C
I ;x
√

2v) qQ(x),

where for a subset I ⊂ {1, . . . , q}, CI is the q-tuple with CIj = Cj if j /∈ I and CIj = C ′j if

j ∈ I, ordered by the index j.

Moreover, Iµ(τ, C) is the modular completion of the series (1.5).

(iii) In the simplicial case, the theta integral is given by

(1.7) Iµ(τ, C) =
∑

x∈µ+L

(−1)q2−q
[q/2]∑
r=0

∑
I

|I|=2r+1

Eq−2r(C(I);x
√

2v) qQ(x).

where, for a subset I ⊂ {0, 1, . . . , q}, let C(I) be the collection of q + 1 − |I| elements where

the Ci with i ∈ I have been omitted. Here E0(. . . ) = 1.

Remark 1.1. (1) The series on the right side of (1.6) coincides with that in [1] and [18], at

least when the collection C satisfies their incidence conditions. The incidence conditions they

impose on C, i.e., conditions expressed as requirements on the entries of the Gram matrix of

C, imply that C is in good position. On the other hand, the ‘good position’ condition, which

is a condition on the Gram matrix of the collection B(s) for all s ∈ [0, 1]q, is sufficient for our

results. We leave aside the, perhaps subtle, problem of expressing this condition in terms of

incidence.

(2) Part (ii) of the theorem provides a geometric interpretation of the coefficients of the

holomorphic generating series as intersection numbers. It would be interesting to see if this

interpretation has any significance in the physics context which was the original motivation

for [1].

(3) The proof of (i) is already given in the general case in [11]. That the right side of (1.6) is

the modular completion of the series (1.5) is, of course, a main result of [24], [1], and [18].

(4) It is interesting that generalized error functions for negative r-planes with r < q occur in

the explicit formula in the simplicial case. This phenomenon was pointed out by Westerholt-

Raum for more general cones, [22]. The indefinite theta series associated to collections C4
were also discussed by Zwegers in his talk at the Dublin conference on Indefinite Theta

Functions in June 2017.

Since the theta integral (1.4) can be computed termwise, the formulas of parts (iii) and

(iv) follow immediately from the formulas for the integral of ϕKM (x) over S(C) given in

Theorem 4.1 and Theorem 9.3 respectively. These results are, in turn, proved by induction

2If s(x) is on the boundary of [0, 1]q, this quantity is defined in (11.1) in section 11.
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on q, where the case q = 1 is an elementary calculation. The key points are the following.

First note that both sides of the identities in Theorem 4.1 and Theorem 9.3 are smooth

functions of x and C, so that it suffices to consider the case where x is regular with respect

to C, i.e., where (x,C) 6= 0 for all C ∈ C. As already noted in [5], the Schwartz form ϕKM (x)

comes equipped with an explicit primitive Ψ(x), defined on the set D −Dx. Taking care of

the possible singularity, which under the regularity assumption occurs at most at a unique

interior point of S(C), we can apply Stokes’ theorem. The boundary of S(C) consists of

singular (q − 1)-cubes (resp. simplices) in totally geodesic subsymmetric spaces of the form

D′y = { z ∈ D | y ∈ z }

for y = Cj or C ′j in C. Note that D′y will then be isomorphic to the space of oriented negative

(q−1)-planes in the space Vy = y⊥, of signature (p, q−1). Now the crucial (and remarkable!)

fact is that the pullback of the primitive Ψ(x) to such a subspace D′y can be written as an

integral transform of the Schwartz (q − 1)-form ϕ
Vy
KM (prVyx) for Vy, cf. Proposition 6.2. By

induction, we obtain an expression for the boundary integral as a sum of the corresponding

signature (p, q − 1) theta integrals. Finally, we invoke an inductive identity for generalized

error functions from [18], Proposition 7.3, to conclude the proof.

Remark 1.2. (1) One can consider the theta integral I(τ, S) over any oriented q-chain S in

D, and, if S is compact, this can again be computed termwise. If, moreover, the boundary

of S consists of (q − 1) chains lying in D′y’s, one can proceed by induction. In particular,

our result gives an explicit formula for any q-chain written as a sum of simplices of the form

S(C4). Moreover, since the theta forms are ΓL-invariant, their integrals over ΓL equivalent

q-chains coincide.

(2) We can also consider the theta integral I(τ, C) in the degenerate case, when some of the

elements in C are rational isotropic vectors. Geometrically, this amounts to the q-chain S(C)
going out to some of the rational cusps (of the arithmetic quotient) of D. However, while the

theta integral over the non-compact region S(C) still is convergent by the results of [8] (for

signature (m−1, 1), see [6]), it is in general no longer termwise absolutely convergent (unless

one imposes a “non-singularity” condition as in [10], see also [22]). One interesting example

is signature (1, 2), where one can realize the fundamental domain for SL2(Z) as a surface

S(C) for a certain C, and the associated theta integral I(τ, C) gives Zagier’s non-holomorphic

Eisenstein series of weight 3/2, see [4, 3].

(3) In the companion paper [5], we consider the theta integral
∫
D η ∧ θµ(τ, ϕKM ) against

a compactly supported (p − 1)q differential form η on D. In particular, we establish the

properties of the primitive Ψ(x) as a current on D.

Our construction yields a formula for the image of the (typically non-holomorphic) modular

form Iµ(τ, C) under the lowering operator −2iv2 ∂
∂τ̄ or, alternatively, for its shadow given by

taking the complex conjugate of this. This formula implies the following, cf. section 8.

Corollary 1.3. Suppose that C is rational collection, i.e., that C ∈ L ⊗Z Q for all C ∈ C.

Then the shadow of Iµ(τ, C) is a linear combination of products of unary theta series of weight
3
2 and complex conjugates of indefinite theta series for the spaces VC = C⊥ for C ∈ C.
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Here is an outline of the contents of the various sections. Section 2 contains an overview of the

construction of theta forms, their modular transformation properties, and their relation to

geodesic cycles. There is considerable overlap with the material in [5], although our notation

and perspective here differs somewhat. Section 3 explains the singular q-cubes associated to

collections C in good position and their intersection with the cycles Dx in the regular case.

It should be noted that the role of the symmetric space D and the singular q-cubes is not so

evident in [1] and [18]. The use of the ‘good position’ condition streamlines the treatment,

although the important problem of finding equivalent incidence relations is left open. The

explicit formula for the ‘cubical’ integrals of ϕKM (x) is given in Theorem 4.1 of Section

4. In Section 5, we give a more detailed discussion of the Schwartz forms ϕKM and their

primitives. In Section 6 we prove the key formulas for the pullbacks of these forms to the

spaces D′y. Section 7 contains the proof of Theorem 4.1. Section 8 contains the computation

of the shadows. Section 9 contains the analogous computations in the simplicial case, where

the are several crucial and interesting differences. Some technical details are provided in the

Appendix.

1.1. Thanks. The second author benefited from the Banff workshop on Modular forms in

String Theory in September 2016, as well as from discussions with B. Pioline and S. Zwegers

at the conference, Indefinite Theta Functions and Applications in Physics and Geometry, at

Trinity College, Dublin in June of 2017.

1.2. Notation. For vectors x and y in a non-degenerate inner product space V , ( , ) with

Q(y) 6= 0, we write

x⊥y = x− (x, y)

(y, y)
y.

Note that

(x⊥y, x
′
⊥y) = (x, x′)− (x, y)(x′, y)

(y, y)
.

For a non-degenerate subspace z in V , we write prz for the orthogonal projection to z.

We write e(x) = e2πix.

2. Theta forms and their integrals

2.1. Preliminaries. We begin by reviewing some standard notation and constructions. A

good reference is [19]. Suppose that L, ( , ) is a lattice of rank m = p + q with an even

integral symmetric bilinear form of signature (p, q) with pq > 0. Let L∨ ⊃ L be the dual

lattice and set Q(x) = 1
2(x, x). Let G = O(L⊗Z R) be the orthogonal group and let

ΓL = { γ ∈ G | γL = L, γ|L∨/L = id }.

Let V = L⊗Z R and let

D = D(V ) = { z ∈ Grq(V ) | ( , )|z < 0, z oriented }
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be the space of oriented negative q-planes in V . For z ∈ D, the associated Gaussian is

ϕ0(x, z) = e−π(x,x)z ,

where

R(x, z) = −(prz(x), prz(x)),

and

(x, x)z = (x, x) + 2R(x, z)

is the majorant determined by z. For fixed z, ϕ0(·, z) = ϕ0(z) ∈ S(V ) is a Schwartz function

on V , while, for fixed x ∈ V , ϕ0(x, ·) = ϕ0(x) ∈ A0(D) is a smooth function on D satisfying

the equivariance

ϕ0(gx, gz) = ϕ0(x, z)

for g ∈ G, or equivalently

g∗ϕ0(x) = ϕ0(g−1x) =: ω(g)ϕ0(x),

where g∗ denotes the pullback of functions on D and ω(g) denotes the action of g on S(V ).

Thus

(2.1) ϕ0 ∈ [S(V )⊗A0(D) ]G.

The action ω of G on S(V ) commutes with the Weil representation action of the two-fold

cover G′ = Mp2(R) of SL2(R) on S(V ), and hence there is a representation of G × G′ on

this space, which we also denote by ω. Recall that for b ∈ R and a ∈ R×, there are elements

n′(b), m′(a), and w′ in G′ projecting to

n(b) =

(
1 u

1

)
, m(a) =

(
a

a−1

)
, and w =

(
1

−1

)
in SL2(R) whose Weil representation action is given by

ω(n′(b))ϕ(x) = e(uQ(x))ϕ(x)

ω(m′(a))ϕ(x) = |a|
m
2 ϕ(ax)

ω(w′)ϕ(x) = e( p−q
8

) ϕ̂(x) = e( p−q
8

)

∫
V
ϕ(y) e(−(x, y)) dy.

Then, for τ = u+ iv ∈ H and g′τ = n′(u)m′(v
1
2 ), we have

ω(g′τ )ϕ0(x, z) = v
p+q
4 e−2πvR(x,z) qQ(x), q = e(τ) = e2πiτ .

The following invariance property gives rise to the modularity of the theta series. Define a

vector valued tempered distribution

ΘL : S(V ) −→ C[L∨/L], ϕ 7→ Θ(ϕ;L) =
∑

µ∈L∨/L

θµ(ϕ) eµ,

where eµ ∈ C[L∨/L] is the characteristic function of the coset µ+ L and

θµ(ϕ) =
∑

x∈µ+L

ϕ(x).
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Let Γ′ be the inverse image of SL2(Z) in G′. Then there is a finite Weil representation ρL of

Γ′ acting on C[L∨/L], and the theta distribution ΘL satisfies

ΘL(ω(γ′)ϕ) = ρL(γ′)ΘL(ϕ).

Let K ′ be the inverse image of SO(2) in G′, and suppose that ϕ is eigenfunction of weight

` ∈ 1
2Z for the Weil representation action of K ′, i.e.,

ω(k′θ)ϕ = e(`θ)ϕ, kθ =

(
cos θ sin θ
− sin θ cos θ

)
,

for a suitable preimage k′θ of kθ in G′.

Then the invariance of the theta distribution together with a standard calculation, [19], pp.

90–98, implies that the C[L∨/L]-valued theta series∑
µ∈L∨/L

θµ(τ, z;ϕ) eµ = v−
`
2 ΘL(ω(g′τ )ϕ)

is a (non-holomorphic) vector-valued modular form of weight ` and type (ρL,C[L∨/L]).

The Gaussian ϕ0 is an eigenfunction of K ′ of weight p−q
2 so that the Siegel theta series

θµ(τ, z;ϕ0) are components of vector valued modular forms and, moreover, via equivariance

(2.1), are ΓL-invariant as functions of z, i.e.,

θµ(τ ;ϕ0) ∈ A0(D)ΓL .

For this semi-classical reformulation of Weil’s construction of theta functions we are following

Shintani [19], cf. also [2].

2.2. Theta forms. The basic idea is to replace equivariant families of Schwartz functions

by equivariant families of Schwartz forms, i.e., Schwartz functions valued in differential forms

on D. Let Ar(D) be the space of smooth r-forms on D. A main result of [13], [14] is the

explicit construction of a family of Schwartz forms

(2.2) ϕKM ∈ [S(V )⊗Aq(D) ]G.

Thus, for x ∈ V and g ∈ G,

g∗ϕKM (x) = ϕKM (g−1x) ∈ Aq(D).

In particular, for fixed x ∈ V , ϕKM (x) is a Gx-invariant q-form on D. For example: ϕKM (0)

is a G-invariant form. Under K ′,

ω(k′θ)ϕKM = e( p+q
2
θ)ϕKM .

Note the shift in weight! Moreover, the q-form ϕKM (x) is closed,

dϕKM = 0,

where d : Aq(D)→ Aq+1(D) is the exterior derivative.

Define the theta form

θµ(τ, ϕKM ) := v−
(p+q)

4 θµ(ω(g′τ )ϕKM ).
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Then, by construction, θµ(τ, ϕKM ) is a closed ΓL-invariant q-form on D and hence defines

a closed q-form on the (orbifold) quotient ML = [ΓL\D]. Moreover, as a function of τ ,

θµ(τ, ϕKM ) is a component of a (non-holomorphic) modular form of weight p+q
2 and type

(ρL,C[L∨/L]).

2.3. Relation to geodesic cycles. The theta forms define cohomology classes for the locally

symmetric space ML which are related to totally geodesic cycles. This was the original

motivation for their constuction. We recall briefly the basic facts. For x ∈ V with x 6= 0, let

Vx = x⊥, and let

Dx = {z ∈ D | R(x, z) = 0, i.e., z ⊂ Vx}.

In particular, Dx ' D(Vx) so that Dx is empty if Q(x) ≤ 0, and is a totally geodesic sub-

symmetic space of codimension q if Q(x) > 0.

Let prΓL : D → ΓL\D = ML, and, for x with Q(x) > 0, let

Z(x) = prΓL(Dx),

a totally geodesic codimension q-cycle in ML with an immersion

ix : Γx\Dx −→ Z(x) ⊂ Γ\D.

Notice that Z(x) depends only on the ΓL-orbit of x.

The following results are special cases of those obtained in [13], [14] and [15]:

(i) Suppose that η is a closed and compactly supported (p− 1)q-form on ML. Then∫
ML

η ∧ θµ(τ, ϕKM ) =

∫
ML

η ∧ ϕKM (0) +
∑

x∈µ+L
Q(x)>0
mod ΓL

(∫
Z(x)

η

)
qQ(x).

(ii) Suppose that S is a compact closed (i.e., ∂S = 0) oriented q-cycle on ML. Then∫
S
θµ(τ, ϕKM ) =

∫
S
ϕKM (0) +

∑
x∈µ+L
Q(x)>0
mod ΓL

I(S,Z(x)) qQ(x),

where I(S,Z(x)) is the intersection number of the cycles S and Z(x).

In particular, both series are termwise absolutely convergent and define holomorphic modular

forms of weight p+q
2 .

Note that these results exactly fit into the framework of (1.1). Additional discussion is given

in [5]. Many interesting variations are possible! For example, the case of certain non-compact

cycles S in ML is considered in joint work of the first author with John Millson, [6], [7], [9].
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2.4. Non-closed compact cycles. Suppose that S is a piecewise smooth oriented q-chain in

the symmetric space D. Then, from the general machinery sketched in the previous sections,

we obtain (non-holomorphic) modular forms, which we will refer to as indefinite theta series,

(2.3) Iµ(τ ;S) :=

∫
S
θµ(τ ;ϕKM )

of weight m
2 . Since S is compact, we can compute such integrals termwise. Define an operator

(2.4) IS : S(V )⊗Aq(D) −→ S(V ), ϕ 7→
∫
S
ϕ,

from Schwartz forms to Schwartz functions by integrating out the form part. This operator

commutes with the Weil representation action of G′. Thus, we have

Iµ(τ, S) =

∫
S
v−

(p+q)
4 Θµ(ω(g′τ )ϕKM )

= v−
(p+q)

4 Θµ(ω(g′τ )
(
IS(ϕKM )

)
,

so that the indefinite theta series (2.3) is just the theta series defined by the Schwartz function

IS(ϕKM ). We obtain explicit formulas for the modular forms Iµ(τ, S) whenever we can

compute the Schwartz function

(2.5) IS(ϕKM ) ∈ S(V )

for a given q-chain S.

The remainder of this paper is devoted to the computation in the case of the singular q-cubes

defined in the next section. The resulting indefinite theta series are those defined by Zwegers

[24] in the case of signature (m − 1, 1), by Alexandrov, Banerjee, Manschot, and Pioline [1]

in the case of signature (m− 2, 2) and by Nazaroglu, [18], completing the proposal in [1], in

the case of general signature.

3. Singular q-cubes

The data C, cf. (3.1), introduced in [1] section 6 determines a singular q-cube S(C) in D,

whose geometry we discuss in this section. We give an explicit formula in terms of generalized

error functions for the integral (2.5) in the case when S = S(C) for C in ‘good position’.

3.1. The singular q-cube S(C) and its faces. Let

(3.1) C = {{C1, C1′}, {C2, C2′}, . . . , {Cq, Cq′}}
be a collection of q pairs of negative vectors in V . For a subset I ⊂ {1, . . . , q}, let CI be the

ordered set {CI1 , . . . , CIq } of q vectors where we take CIj = Cj if j /∈ I and CIj = Cj′ if j ∈ I.

The vectors are ordered according to the index j. Thus, C∅ = {C1, . . . , Cq}, etc. We would

like to have the following ‘incidence relations’:

(Inc-1) Each collection CI spans an oriented negative q-plane

zI = span{CI}p.o..
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(Inc-2) The oriented negative q-planes zI all lie on the same component of D.

These relations, which can be achieved by imposing conditions on the determinants of minors

of Gram matrices, should allow us to construct a singular q-cube with the points zI as the

vertices. However, as already seen in [11], it will be more convenient to work with the

following formalism.

For s = [s1, . . . , sq] ∈ [0, 1]q, let

B(s) = [B1(s1), . . . , Bq(sq)],

where

Bj(sj) = (1− sj)Cj + sjCj′ .

Definition 3.1. A collection C is said to be in good position if for all s ∈ [0, 1]q,

span{B(s)}p.o. = span{B1(s1), . . . , Bq(sq)}p.o. ∈ D.

If C is in good position, then relations (Inc-1) and (Inc-2) hold, and we obtain an oriented

singular q-cube

(3.2) ρC : [0, 1]q −→ D, s = [s1, . . . , sq] 7→ span{B1(s1), . . . , Bq(sq)}p.o. ∈ D.
with the zI as its vertices. Let S(C) = ρC([0, 1]q) be its image in D. Note that the most

degenerate case, in which Cj = Cj′ for all j and S(C) is a point, is allowed.

From now on, unless stated otherwise, we assume that C is in good position, so that ρC and

S(C) are defined.

As in [17], we define the front j-face

αjρC : [0, 1]q−1 −→ D, αjρC(s1, . . . , sq−1) = ρC(s1, . . . , sj−1, 0, sj , . . . , sq−1),

and back j-face

βjρC : [0, 1]q−1 −→ D, βjρC(s1, . . . , sq−1) = ρC(s1, . . . , sj−1, 1, sj , . . . , sq−1).

We write ∂+
j S(C) (resp. ∂−j S(C)) for the image of αjρC (resp. βjρC), viewed as an oriented

(q − 1)-cube. With this convention, the boundary of the oriented q-cube S(C) is given by

(3.3) ∂S(C) =

q∑
j=1

(−1)j
(
∂+
j S(C)− ∂−j S(C)).

We define collections

(3.4) C[j] = {{C1⊥j , C1′⊥j}, . . . , ̂{Cj , Cj′}, . . . , {Cq⊥j , Cq′⊥j}}
and

(3.5) C[j′] = {{C1⊥j′ , C1′⊥j′}, . . . , ̂{Cj , Cj′}, . . . , {Cq⊥j′ , Cq′⊥j′}}
of (q − 1) pairs of negative vectors in Vj = C⊥j and Vj′ = C⊥j′ respectively.

Lemma 3.2. If the collection C is in good position for V and D, then the collections C[j]
and C[j′] are in good position for Vj, D(Vj) and Vj′, D(Vj′) respectively.
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Proof. Note that, if we set s′ = [s1, . . . , sq−1] ∈ [0, 1]q−1 and write αjs
′ = [s1, . . . , sj−1, 0, sj , . . . , sq−1],

then, since C is in good position,

αjρC(s
′) = ρC(αjs

′)

= span{B1(s′1), . . . , Bj−1(s′j−1), Cj , Bj+1(s′j), . . . , Bq(s
′
q−1)}p.o.

= span{B1(s′1)⊥j , . . . , Bj−1(s′j−1)⊥j , Cj , Bj+1(s′j)⊥j , . . . , Bq(s
′
q−1)⊥j}p.o. ∈ D,

which implies that C[j] is in good position for Vj and D(Vj). Similarly for C[j′]. �

We write S(C[j]) and S(C[j′]) for the corresponding oriented singular (q − 1)-cubes in D(Vj)

and D(Vj′) with parametrizations analogous to (3.2),

ρC[j] : [0, 1]q−1 −→ D(Vj)

and

ρC[j′] : [0, 1]q−1 −→ D(Vj′).

In the notation defined in (6.3), we let κj = κCj [j] and κj′ = κCj′ [j] so that

(3.6) κj ◦ ρC[j] = αjρC ,

and

(3.7) κj′ ◦ ρC[j′] = βjρC .

Here the key point to note is that

span{B1(s1), . . . , Bq(sq)}p.o.|sj=0

= span{B1⊥j(s1), . . . , B(j−1)⊥j(sj−1), Cj , B(j+1)⊥j(sj+1), . . . , Bq⊥j(sq)}p.o.

=κj ◦ ρC[j](s1, . . . , ŝj , . . . , sq),

where, for example,

B1⊥j(s1) = (1− s1)C1⊥j + s1C1′⊥j .

3.2. The regular case. Following (6.5) of [1], for a vector x ∈ V , let Φq(x, C) = Φ�
q (x, C)

be as in (1.2). Recall that sgn(0) = 0.

Recall from [11] that a vector x ∈ V is said to be regular with respect to C if (x,C) 6= 0 for

all C ∈ C. Parts (i) and (ii) of the following are an analogue of Lemma 4.2 in loc. cit. and

the proofs given there extend immediately to the general case. Part (iii) will be proved in

Appendix I, where the definition of the local intersection number will also be reviewed.

Lemma 3.3. Let C be a collection in good position.

(i) If x ∈ V is regular with respect to C, then Dx∩S(C) is non-empty if and only if Φq(x, C) 6=
0, and, in this case Dx ∩ S(C) = ρC(s(x)) for a unique point s(x) ∈ (0, 1)q given by

(3.8) s(x)j =
(x,Cj)

(x,Cj)− (x,Cj′)
.

(ii) If x ∈ V is any vector with Φq(x, C) 6= 0, then Dx∩S(C) consists of a single point ρC(s(x))

with s(x) ∈ [0, 1]q given by (3.8).
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(iii) If x ∈ V is any vector with Φq(x, C) 6= 0 and s(x) is as in (ii), then the map ρC is

immersive at s(x), and the quantity Φq(x) is the local intersection number of Dx and S(C)
at s(x). A precise definition of this quantity is given in (11.1) in section 11.

Again, as in [11], we say that C is in very good position if it is in good position and ρC is

an embedding, i.e., an injective immersion. The following is easily checked by the general

version of the calculation in section 6.3 of [11].

Lemma 3.4. If C is in good position and the 2q vectors in C are linearly independent, then

C is in very good position.

4. Cubical Integrals and generalized error functions

In this section, we state our main result, an explicit expression for the Schwartz function

(2.5) defined by the integral

I(x; C) :=

∫
S(C)

ϕKM (x)

of the q-form ϕKM (x) over the singular q-cube S(C) in D in terms of generalized error

functions, as suggested in section 5 of [11]. Recall, [1], (6.1), that, for a collection of vectors

negative C = {C1, . . . , Cq} spanning an oriented q-plane z ∈ D, and for x ∈ V , the generalized

error function is given by the integral

(4.1) Eq({C1, . . . , Cq};x) =

∫
z
eπ(y−prz(x),y−prz(x)) sgn(C1, y) sgn(C2, y) . . . sgn(Cq, y) dy,

where the measure dy is normalized so that∫
z
eπ(y,y) dy = 1.

We will frequently abbreviate this to Eq(C;x) and write

(4.2) sgn(C; y) = sgn(C1, y) sgn(C2, y) . . . sgn(Cq, y).

Our main result is the following explicit formula for I(x; C).

Theorem 4.1. Suppose that C is in good position. Then

(4.3) I(x; C) = (−1)q 2−q
∑
I

(−1)|I|Eq(C
I ;x
√

2) e−π(x,x),

where, as in section 3.1, for a subset I ⊂ {1, . . . , q}, CI is the q-tuple with CIj = Cj if j /∈ I
and CIj = Cj′ if j ∈ I, ordered by the index j.

The 2q terms in the sum on the right side of (4.3) are generalized error functions associated

to the vertices zI = span{CI}p.o. of S(C) of the singular q-cube evaluated on the projections

of x to those q-planes.
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Remark 4.2. In the case q = 2, the expression given in Theorem 4.1 is the negative of the

expression found in [11]. But there is a simple explanation, namely the orientation of S(C)
used there is defined by the ‘loop’ in (3.11), but this is the opposite of the orientation we use

here, defined by the singular square ρC .

The proof of Theorem 4.1 by induction on q is given in section 7.

5. Review of the Schwartz form ϕKM and its relatives

In this section, we review the basic facts about the Schwartz forms ϕKM (x) which we need.

5.1. Local formulas. We fix a base point z0 ∈ D and an orthonormal basis {e1, . . . , em},
m = p+ q, (er, es) = εrδrs, εr = +1 for 1 ≤ r ≤ p and εr = −1 for r > p, with

z0 = span{ep+1, . . . , em}p.o..

In particular V ' Rm, and the Gaussian is given by

(5.1) ϕ0(x) = ϕ0(x, z0) = e−π
∑
j x

2
j ∈ S(V ), x =

∑
i

xiei.

Let K be the stabilizer of z0 in G and write go = Lie(G) = ko + po where ko = Lie(K)

and po are the +1 and −1 eigenspace for the Cartan involution at z0. There is a canonical

isomorphism Tz0(D) ' p0. Under the idenitfication

V ⊗ V ∼−→ End(V ), (v1 ⊗ v2)(v) = (v2, v)v1,

a basis for p0 is given by

Xαµ = eα ⊗ eµ + eµ ⊗ eα, 1 ≤ α ≤ p < µ ≤ p+ q.

Let ωαµ be the dual basis for p∗o.

By the equivariance property (2.2), ϕKM (x) is determined by the element of the complex

[S(V )⊗
∧•(p∗o)]K

obtained by restriction to the point z0.

For 1 ≤ s, t ≤ q, let

ω(s) =

p∑
j=1

xj ωj,p+s ∈ p∗o,

and

Ω(s, t) =

p∑
j=1

ωj,p+s ∧ ωj,p+t ∈
∧2(p∗o).

For λ with 0 ≤ λ ≤ [q/2], we define q-forms

(5.2) AOλ(q) = A
[
ω(1) ∧ · · · ∧ ω(q − 2λ) ∧ Ω(q − 2λ+ 1, q − 2λ+ 2) ∧ · · · ∧ Ω(q − 1, q)

]
,
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where A is the alternation

(5.3) A
[
ω(1) ∧ · · · ∧ Ω(t− 1, t)

]
=

1

t!

∑
σ∈St

sgn(σ)ω(σ(1)) ∧ · · · ∧ Ω(σ(t− 1), σ(t)).

Note that these are homogeneous of degree q − 2λ in x, and it will sometimes be useful to

write AOλ(q)(x) to indicate this dependence. With this notation, we have the following

formula for the restriction of ϕKM (x) at the point z0, cf. [13] p. 371,

(5.4) ϕKM (x) = 2q/2
[q/2]∑
λ=0

C(q, λ) AOλ(q)(x)ϕ0(x),

where

(5.5) C(t, λ) = (− 1

4π
)λ

t!

2λλ!(t− 2λ)!
.

There are two auxiliary q−1 forms associated to ϕKM (x) which will play a fundamental role

in our calculations. We will recall their relation to ϕKM (x) in a moment. The first of these

is given by

(5.6) ψKM (x) = 2q/2−1

[(q−1)/2]∑
λ=0

q∑
s=1

(−1)sxp+sC(q − 1, λ) AOλ(q; s)(x)ϕ0(x),

where the (q−1)-form AOλ(q; s) is defined by the alternation analogous to AOλ(q−1) but for

the index set {1, . . . , ŝ, . . . , q} replacing {1, . . . , q−1}. For example, AOλ(q, q) = AOλ(q−1).

Now we include the parameter τ = u+ iv. Writing

ϕKM (x) = ϕ0
KM (x) e−π(x,x),

ψKM (x) = ψ0
KM (x) e−π(x,x),

we have, for q = e(τ) and Q(x) = 1
2(x, x),

ϕKM (τ, x) = ϕ0
KM (v

1
2x) qQ(x) = v−

p+q
4 ω(g′τ )ϕKM (x),(5.7)

and

ψKM (τ, x) = v ψ0
KM (v

1
2x) qQ(x).(5.8)

Note that

−2i
∂

∂τ̄
ϕKM (τ, x) =

∂

∂v

{
ϕ0
KM (v

1
2x)
}

qQ(x).

On the set of x such that R(x, z0) 6= 0, let

(5.9) Ψ0
KM (x) = −

∫ ∞
1

ψ0(t
1
2x) t−1 dt.

The point here is that

ψ0(t
1
2x) =

(
form valued polynomial in t

1
2x
)
· e−2πtR(x,z0),
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so that the integral only makes sense when R(x, z0) > 0. For x with R(x, z0) > 0, let

(5.10) ΨKM (τ, x) := Ψ0
KM (v

1
2x) qQ(x) = −

∫ ∞
v

ψ0(t
1
2x) t−1 dt qQ(x).

The following basic relations between the primitives ψKM (τ, x), ΨKM (τ, x) and the form

ϕKM (τ, x) are given in [5], Section 3, Proposition 3.2, cf. also, [15], section 8.

Lemma 5.1. (i)

−2iv2 ∂

∂τ̄
ϕKM (τ, x) = dψ(τ, x) = v dψ0

KM (v
1
2x) qQ(x).

(ii)

dΨKM (τ, x) = ϕKM (τ, x), R(x, z0) 6= 0,

and

dΨ0
KM (x) = ϕ0

KM (x), R(x, z0) 6= 0.

Taking homogeneity in x of various terms into account and writing R = R(x, z0), we have

the explicit formulas

ΨKM (τ, x) = 2
q
2
−1

[(q−1)/2]∑
λ=0

q∑
s=1

(−1)s−1xp+sC(q − 1, λ) AOλ(q; s)(5.11)

× (2πR)−
1
2

(q−2λ) Γ
(1

2
(q − 2λ), 2πRv

)
qQ(x).

and

(5.12) ϕKM (τ, x) = 2q/2
[q/2]∑
λ=0

C(q, λ) AOλ(q) v
1
2

(q−2λ) e−2πvR qQ(x).

5.2. Global formulas. We now explain how the formulas of the previous section define

global differential forms on D. We will use the notation and conventions explained in [11],

especially the Appendix, which we now briefly recall.

Let

FD = { ζ = [ζ1, . . . , ζq] ∈ V q | (ζ, ζ) := ((ζi, ζj)) < 0 },
be the bundle of oriented negative frames, and let

OFD = { ζ = [ζ1, . . . , ζq] ∈ V q | (ζ, ζ) = −1q },
be the bundle of oriented orthonormal negative frames. Let π : FD → D be the natural

projection, taking ζ to its oriented span. Then, for ζ ∈ OFD, we have an identification of

tangent spaces

V q ' Tζ(FD) ⊃ Tζ(OFD) = { η = [η1, . . . , ηq] ∈ V q | (η, ζ) + (ζ, η) = 0 }.
For z ∈ D, we let U(z) = z⊥. Then the ‘horizontal’ subspace U(z)q ⊂ Tζ(OFD) is identified

with Tz(D) under dπζ . Note that, while the space U(z)q depends only on z, the identification

with Tz(D) depends on ζ. The identifications for different choices of ζ differ by the action of

SO(q).
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A priori, the expressions given in (5.12) and (5.11) are elements of S(V )⊗
∧r(p∗o) with r = q

and q − 1 respectively, where po is identified with the tangent space to D at the base point

z0 = span{ep+1, . . . , ep+q}p.o. ∈ D

determined by our chosen orthonormal basis. They yield global formulas as follows. For any

ζ ∈ OFD, the function R(x, z) is defined by R(x, z) = (x, ζ)(ζ, x). For vectors η = [η1, . . . , ηq]

and µ = [µ1, . . . , µq] in U(z)q, define

(5.13) ω(s)(η) = (x, ηs), Ω(s, t)(η, µ) = (ηs, µt)− (ηt, µs).

Also note that, in the global version of (5.11),

(5.14) xp+s = −(x, ζs).

Lemma 5.2. With these definitions, the q-forms AOλ(q) and q − 1-forms AOλ(q; s) on

U(z)q are invariant under SO(q) and hence define forms on Tz(D).

Proof. We observe that for some non-zero constant c,

AOλ(q)(η1, . . . , ηq) = c det

(x, η1
1) . . . (x, η1

q−2λ) η1
q−2λ+1 . . . η1

q
...

...
...

...
(x, ηq1) . . . (x, ηqq−2λ) ηqq−2λ+1 . . . ηqq


where, in expanding the determinant, the product of vectors is taken using ( , ). �

Thus (5.12) (resp. (5.11)) defines a global q form ϕKM (τ, x) on D (resp. a global q− 1-form

ΨKM (τ, x) on D −Dx) and these forms satisfy

dΨKM (τ, x) = ϕKM (τ, x)

on D −Dx.

Remark 5.3. The formula for the pullback for these forms to OFD involves additional terms

determined by the requirement that the forms vanish if one of the input tangent vectors is

vertical, i.e., in the kernel of dπζ . We will not need these expressions.

6. The pullback to certain sub-symmetric spaces

Suppose that y ∈ V is a negative vector, and let

Vy = y⊥,

D′y = { z ∈ D | y ∈ z},
and

D(Vy) = {z = oriented neg. (q − 1)-plane in Vy}.
For the properly oriented orthogonal frame bundle OFD(Vy)→ D(Vy), there is an embedding

(6.1) κy : OFD(Vy) ↪→ OFD, ζ 7→ [y, ζ],
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where y = y|(y, y)|−
1
2 , and a resulting embedding

(6.2) κy : D(Vy)
∼−→ D′y ⊂ D.

A fundamental result is the following pullback formula, which we find rather striking.

Proposition 6.1. For x ∈ V , write x = −(x, y) y+ x⊥y, so that x⊥y is the Vy-component of

x. Then

(i)

κ∗yψ
0
KM (x) = 2−

1
2 (x, y) e−2π(x,y)2 ϕ

Vy ,0
KM (x⊥y).

(ii)

κ∗y(ψKM (τ, x)) = 2−
1
2 v

3
2 (x, y) e−2πv(x,y)2q−

1
2

(x,y)2 ϕ
Vy
KM (τ, x⊥y).

Here ϕ
Vy ,0
KM (τ, ·) is the ϕ0

KM Schwartz (q − 1)-form on D(Vy).

Proof. The map on tangent spaces is given by

dκy : Tζ(OFD(Vy)) −→ Tκy(ζ)(OFD), η = [η1, . . . , ηq−1] 7→ [0, η1, . . . , ηq−1],

and this map is compatible with the ‘horizontal’ subspaces. It follows that any term in

ψ0
KM (x) involving an index s = 1 in the differential form will vanish under pullback. Thus,

by (5.6), we have

κ∗yψ
0
KM (x) = 2

q
2
−1 (x, y) e−2π(x,y)2

[(q−1)/2]∑
λ=0

C(q − 1, λ) AOλ(q − 1)(x⊥y) e
−2πR(x⊥y ,ζ)

= 2−
1
2 (x, y) e−2π(x,y)2 ϕ

Vy ,0
KM (x⊥y).

Passing to ψKM (τ, x) via (5.8) and noting that

Q(x) = −(x, y)2 +Q(x⊥y),

we obtain the claimed formula. �

Next consider the (q − 1)-form Ψ0
KM (x). Using the expressions just found and Lemma 5.1,

we have the following.

Corollary 6.2. On the subset of D(Vy) for which κy(z) /∈ Dx,

κ∗yΨ
0
KM (x) = −2

1
2 (x, y)

∫ ∞
1

e−2πt2(x,y)2 ϕ
Vy ,0
KM (tx⊥y) dt.

In the next section, it will be useful to have the following variant, which involves a shift in

the orientations. For an index j, 1 ≤ j ≤ q, define

(6.3) κy[j] : OFD(Vy) ↪→ OFD, ζ 7→ [ζ1, . . . , ζj−1, y, ζj , . . . , ζq−1],

and write κy[j] : D(Vy) −→ D for the corresponding embedding of symmetric spaces. Of

course, κy = κy[1] and, the embeddings of symmetric spaces only depend on the parity of j.
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Corollary 6.3. (i) On the subset of D′y for which κj(z) /∈ Dx,

κy[j]
∗Ψ0

KM (x) = (−1)j 2
1
2 (x, y)

∫ ∞
1

e−2πt2(x,y)2 ϕ
Vy ,0
KM (tx⊥y) dt.

(ii) On D′y,

κ∗y(ψKM (τ, x)) = (−1)j−12−
1
2 v

3
2 (x, y) e−2πv(x,y)2q−

1
2

(x,y)2 ϕ
Vy
KM (τ, x⊥y).

7. Proof of Theorem 4.1

For convenience, we remove a factor independent of z and write

ϕKM (x) = ϕ0
KM (x) e−π(x,x).

In this section, we compute the cubical integrals

I0(x; C) =

∫
S(C)

ϕ0
KM (x).

7.1. The regular case. First suppose that x is regular with respect to C, so that, by

Lemma 3.3, the intersection Dx ∩ S(C) is either empty or consists of a single interior point

ρC(s(x)) depending on whether Φq(x, C) vanishes or not. If Φq(x, C) 6= 0 and for ε > 0

sufficiently small, define a collection

Cε(x) = {{B1(s(x)1 − ε), B1(s(x)1 + ε)}, . . . , {Bq(s(x)q − ε), Bq(s(x)q + ε)}}.

For simplicity, we will abbreviate this as

Cε = Cε(x) = {{Cε1, Cε1′}, . . . , {Cε1, Cεq′}}.

The following result illustrates the convenience of the ‘good position’ formulation.

Lemma 7.1. The collection Cε(x) is in good position.

Proof. We note that, for t ∈ [0, 1],

(1− t)Cεj + tCej′ = (1− s(x)j + ε− 2tε)Cj + (s(x)j − ε+ 2tε)Cj′

so that, for t ∈ [0, 1]q,

ρCε(x)(t) = ρC(s(x)− ε+ 2εt) ∈ D,
i.e., Cε(x) is in good position. �

By construction, the singular q-cube S(Cε(x)) contains the point Dx ∩ S(C). For x regular

with respect to C and Φq(x, C) = 0, we let S(Cε(x)) be the empty set. In general, we let

Sε(x; C) = S(C)− int S(Cε).

Then Stokes’ Theorem and the inductive relation of Corollary 6.2 imply the following induc-

tive formula.
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Proposition 7.2. Suppose that x is regular with respect to C. Then the set Dx does not meet

∂S(C), the integral

I00(x; C) :=

∫
∂S(C)

Ψ0
KM (x)

is well defined, and

I0(x; C) = I00(x; C)− lim
ε↓0

I00(x; Cε(x)).

Moreover,

I00(x; C) = 2
1
2

q∑
j=1

(x,Cj)

( ∫ ∞
1

e−2πt2(x,Cj)
2
I0(tx⊥j ; C[j]) dt

)
(7.1)

− (x,Cj′)

( ∫ ∞
1

e−2πt2(x,Cj′ )
2
I0(tx⊥j′ ; C[j′]) dt

)
.

where C[j] and C[j′] are given by (3.4) and (3.5).

Proof. Combining (3.3), (3.6), (3.7), and Corollary 6.3, we obtain

I00(x; C) =

q∑
j=1

(−1)j
(∫

∂+j S(C)
Ψ0
KM (x)−

∫
∂−j S(C)

Ψ0
KM (x)

)

=

q∑
j=1

(−1)j
(∫

S(C[j])
κ∗jΨ

0
KM (x)−

∫
S(C[j′])

κ∗j′Ψ
0
KM (x)

)

= 2
1
2

q∑
j=1

(x,Cj)

( ∫ ∞
1

e−2πt2(x,Cj)
2
I0(tx⊥j ; C[j]) dt

)

− (x,Cj′)

( ∫ ∞
1

e−2πt2(x,Cj′ )
2
I0(tx⊥j′ ; C[j′]) dt

)
,

as claimed. �

7.2. The case q = 1. As a basis for the inductive proof of Theorem 4.1, we first suppose

that q = 1, so that sig(V ) = (m− 1, 1). This case is discussed in several places, [12], [5], [16],

etc., but we give the calculation for convenient reference. We have

D ' {ζ ∈ V | Q(ζ) = −1}, z = span{ζ}p.o.,

and the tangent space at z ∈ D is

Tz(D) ' U(z) := z⊥.

For any x ∈ V the 1-form ω(1) on D is defined by

ω(1)z(η) = (x, η), η ∈ U(z) ' Tz(D),

and the Schwartz form is given by

ϕ0
KM (x) = 2

1
2 ω(1) e−2πR(x,z),
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with R(x, z) = (x, ζ)2. Take C, C ′ ∈ V such that

Q(C) < 0, Q(C ′) < 0, (C,C ′) < 0,

where the third condition insures that

{C}p.o. ' C = C |(C,C)|−
1
2 , {C ′}p.o. ' C ′

lie on the same component of D. For s ∈ [0, 1], we define

B(s) = (1− s)C + sC ′,

and note that

(B(s), B(s)) = (1− s)2(C,C) + 2s(1− s)(C,C ′) + s2(C ′, C ′) < 0,

so that the collection C = {{C,C ′}} is in good position. Writing

ζ = ζ(s) = B(s)|(B(s), B(s))|−
1
2 ,

we obtain a geodesic curve

φC : [0, 1] −→ D, s 7→ {B(s)}p.o. ' ζ(s)

joining C and C ′. The tangent vector to this curve will be ζ̇ = d
dsζ, and

I0(x; C) = 2
1
2

∫ 1

0
(x, ζ̇(s)) e−2π(x,ζ(s))2 ds

= 2
1
2

∫ 1

0

∂

∂s

(
−
∫ ∞

(x,ζ(s))
e−2πt2 dt

)
ds

= 2
1
2

(∫ ∞
(x,C)

e−2πt2 dt−
∫ ∞

(x,C′)
e−2πt2 dt

)
.

Since ∫ ∞
u

e−2πt2 dt = 2−
3
2 (1− E(u

√
2)),

for

E(u) = 2

∫ u

0
e−πt

2
dt = 2 sgn(u)

∫ |u|
0

e−πt
2
dt,

as in [23], we obtain the expression

I0(x; C) =
1

2

(
E((x,C ′)

√
2)− E((x,C)

√
2)
)

=
1

2

(
E1(C ′, x

√
2)− E1(C, x

√
2)
)
,

which is the q = 1 case of Theorem 4.1. Here we use the fact that, for C ∈ V with Q(C) < 0,

a simple calculation shows that E1(C;x) = E((x,C)). Note that in this calculation we have

not used the Stokes’ theorem argument. However, it is instructive to note that

ψ0
KM (x) = 2−

1
2 (x, ζ) e−2π(x,ζ)2 ,



22 JENS FUNKE AND STEPHEN KUDLA

so that, for z = span{C}p.o. ∈ D −Dx, the primitive is given by

Ψ0
KM (x) = −2−

1
2 (x,C)

∫ ∞
1

e−2πt(x,C)2 t−
1
2 dt

= −2
1
2 (x,C)

∫ ∞
1

e−2πt2(x,C)2 dt

= −sgn(x,C)

∫ ∞
√

2|(x,C)|
e−πt

2
dt

=
1

2
sgn(x,C)

(
2

∫ √2|(x,C)|

0
e−πt

2
dt− 1

)
=

1

2

(
E1(C;x

√
2)− sgn(x,C)

)
.

Thus the Stokes’ theorem calculation gives

I00(x; C) =

∫
∂S(C)

Ψ0
KM (x) =

1

2

(
E1(C1′ ;x

√
2)− sgn(x,C1′)− E1(C1;x

√
2) + sgn(x,C1)

)
,

so that the basis for Zwegers ‘completion’ construction emerges.

7.3. Induction. Next we consider the inductive step. Note that we are assuming that x is

regular with respect to C so that (7.1) holds, and we suppose that the identity (4.3) holds for

all q′ < q and all C′ in good position. Let I[j] and I[j′] be subsets of {1, . . . , ĵ, . . . , q} and let

C[j]I[j] (resp. C[j′]I[j
′]) be obtained by the recipe defining CI in Theorem 4.1, starting with

the set C[j] defined in (3.4) (resp. the set C[j′] defined in (3.5) ). Then (7.1) becomes

I00(x/
√

2; C) =

q∑
j=1

(x,Cj)

( ∫ ∞
1

e−πt
2(x,Cj)

2
I0(tx⊥j/

√
2; C[j]) dt

)

− (x,Cj′)

( ∫ ∞
1

e−πt
2(x,Cj′ )

2
I0(tx⊥j′/

√
2; C[j′]) dt

)

= (−1)q−121−q
q∑
j=1

( ∑
I[j]

(−1)|I[j]|
(

(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
Eq−1(C[j]I[j]; tx⊥j) dt

)
(7.2)

−
∑
I[j′]

(−1)|I[j
′]|
(

(x,Cj′)

∫ ∞
1

e−πt
2(x,Cj′ )

2
Eq−1(C[j′]I[j

′]; tx⊥j′) dt

) )
.

We want to compare this to the expression

−2−q
∑
I

(−1)|I|Eq(C
I ;x).

The key is to relate the individual quantities Eq(C
I ;x) in this sum and the terms on the right

side of (7.2) where I = I[j] or I = {j}∪I[j′]. Note that, if I = I[j] then the collection C[j]I[j]

spans a negative q−1-plane in Vj which maps to zI under κj . Similarly, if I = {j}∪I[j′], then

the collection C[j′]I[j
′] spans a negative q− 1-plane in Vj′ which maps to zI under κj′ . Thus,

we are collecting all of the terms which ‘correspond to’ a given vertex of the q-cube S(C).
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The required identities are all consequences of that for I = ∅, and thus the main identity

needed is the following.

Proposition 7.3. Suppose that x is regular with respect to C. Then

(7.3) Eq(C;x)− sgn(C;x) = −2

q∑
j=1

(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
Eq−1(C[j]; tx⊥j) dt,

where C = {C1, . . . , Cq}, C[j] = {C1⊥j , . . . , Ĉj , . . . , Cq⊥j}, and sgn(C;x) is defined in (4.2).

Remark 7.4. This result is just an integrated version of equation (25) in Proposition 3.6 in

[18]. For convenience, we give the proof, taken from [18], in our notation.

Proof. Let z be the negative q-plane spanned by C = {C1, . . . , Cq}, and, for y, y′ ∈ z, let

((y, y′)) = −(y, y′). We also suppose that x = prz(x). If f is a smooth function on z, then

−
∫ ∞

1
((∇f(t x), x)) dt = −

∫ ∞
1

d

dt
{f(tx)} dt(7.4)

= f(x)− lim
t→∞

f(tx).

Here ∇ is the gradient operator and we assume that the radial limit of f exists. On the other

hand, by (25) Proposition 3.6 of [18],

(7.5) −((∇Eq(C;x), x)) = 2
∑
j

((x,Cj)) e
−π ((x,Cj))

2
Eq−1(C[j];x⊥j).

Moreover, for x regular with respect to C, we have, [1] and [18], Remark p.7,

(7.6) lim
t→∞

Eq(C; tx) = sgn(C;x).

For convenience, we will give the proof of (7.5) in the Appendix. Combining them and noting

that the identity (7.4) is valid for the function f(x) = Eq(C;x) when x is regular with respect

to C, we have

Eq(C;x)− sgn(C;x) = −2
∑
j

(x,Cj)

∫ ∞
1

e−π t
2(x,Cj)

2
Eq−1(C[j]; tx⊥j) dt,

as required. �

Corollary 7.5.

I00(x; C) = (−1)q2−q
∑
I

(−1)|I|
(
Eq(C

I ;x
√

2)− sgn(CI ;x)
)
,

and

I0(x; C) = I00(x; C) + (−1)qΦq(x; C) = (−1)q2−q
∑
I

(−1)|I|Eq(C
I ;x
√

2).

Note that the second identity in Corollary 7.5 follows from Proposition 7.2, since the first

identity implies that

lim
ε↓0

I00(x; Cε(x)) = −(−1)qΦq(x; C).



24 JENS FUNKE AND STEPHEN KUDLA

The identity of Theorem 4.1 follows immediately from this and the continuity of E(CI ;x)

with respect to CI .

Corollary 7.6.

I(τ, x, C) :=

∫
[0,1]q

φ∗C(ϕKM (τ, x))(7.7)

= qQ(x) (−1)q2−q
∑
I

(−1)|I|Eq(C
I ;x
√

2v).

8. Shadows of indefinite theta series

In this section, we compute the shadow of Iµ(τ, C), i.e., the complex conjugate of its image

under the lowering operator −2iv2 ∂
∂τ̄ . The crucial facts are the relation (i) of Lemma 5.1,

−2iv2 ∂

∂τ̄
ϕKM (τ, x) = dψ(τ, x),

and the pullback identity (ii) of Lemma 6.3. Then, as in the proof of Proposition 7.2, we

have

(8.1) −2iv2 ∂

∂τ̄
{Iµ(τ, C)} =

∑
x∈µ+L

∫
∂S(C)

ψ(τ, x),

and ∫
∂S(C)

ψ(τ, x) = 2−
1
2 v

3
2

q∑
j=1

(
(x,Cj′) e

−2πv(x,Cj′ )
2
q−

1
2

(x,Cj′ )
2
I(τ, x⊥j′ , C[j′])(8.2)

− (x,Cj) e
−2πv(x,Cj)

2
q−

1
2

(x,Cj)
2
I(τ, x⊥j , C[j])

)
.

where we use the notation introduced in Corollary 7.6. The combination of (8.1), (8.2) and

(7.7) yields an explicit formula for the shadow of Iµ(τ, C), a (typically non-holomorphic)

modular form of weight 2− p+q
2 .

Now suppose that the collection C is rational. For each j, write

L0
j = L ∩QCj , L1

j = L ∩ Vj
so that, for suitable coset representatives µ0

j,r ∈ (L0
j )
∨ and µ1

j,r ∈ (L1
j )
∨,

µ+ L =
⊔
r

(
(µ0
j,r + L0

j )⊕ (µ1
j,r + L1

j )

)
.

Then, writing Iµ(τ, C, L) to make explicit the dependence on the lattice L,

−2iv2 ∂

∂τ̄
{Iµ(τ, C, L)} = 2−

1
2

q∑
j=1

∑
r

v
3
2 θµ0j,r

(τ, L0
j ) Iµ1j,r

(τ, C[j], L1
j )

−
∑
r′

v
3
2 θµ0

j′,r′
(τ, L0

j′) Iµ1j′,r′
(τ, C[j′], L1

j′),
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where

θµ0j,r
(τ, L0

j ) =
∑

x0∈µ0j,r+L0
j

(x0, Cj) q
1
2

(x0,Cj)
2

is a unary theta series of weight 3
2 . Thus, the image of Iµ(τ, C) under the ξ-operator is a linear

combination of products of unary theta series of weight 3
2 and the conjugates of indefinite

theta series for spaces of signature (p, q − 1), as asserted in Corollary 1.3.

Remark 8.1. While we have only discussed the shadows of ‘cubical’ integrals, the case of

simplical integrals can the treated in the same way.

9. The case of a simplex

In this section, we work out the theta integral over a simplex. The general inductive procedure

is the same as in the cubical case, but some interesting differences arise.

9.1. Some geometry. For V of signature (p, q), we consider a collection of vectors

C = [C0, . . . , Cq]

Ci ∈ V with (Ci, Ci) < 0. We suppose that, for all j,

Pj = span{C0, . . . , Ĉj , . . . , Cq}

is a negative q-plane. We assume that the collection C is linearly independent and let U =

span(C). Note that sig(U) = (1, q), and let D(U) be the space of oriented negative q-planes

in U .

Let

C∨ = [C∨0 , . . . , C
∨
q ] = C (C, C)−1

be the dual basis of U with respect to ( , ). Since C∨j then spans P⊥j , we have (C∨j , C
∨
j ) > 0.

Let

∆q = {s = [s0, . . . , sq] ∈ R | sj ≥ 0, for all j,
∑
j

sj = 1},

and, for s ∈ ∆q, let

C∨(s) =

q∑
j=0

sjC
∨
j = C∨ ts.

Note that sj = (C∨(s), Cj). We say that C is in good position if

0 < (C∨(s), C∨(s)) = s(C∨, C∨)ts = s(C, C)−1ts

for all s ∈ ∆q. For example, if all entries of (C∨, C∨) = (C, C)−1 are non-negative, then C is

in good position.

Given C in good position, we define

z(s) = C∨(s)⊥ ∈ D,
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with orientation νz(s) ∈
∧q z(s) defined by

(9.1) C∨(s) ∧ νz(s) = νU ,

where we have fixed an orientation

νU = C0 ∧ C1 ∧ · · · ∧ Cq

in
∧q+1 U . For example,

zj = z(0, . . . , 1, . . . , 0) = (C∨j )⊥ = span{C0, . . . , Ĉj , . . . , Cq}

with orientation given as follows. Let Rj be the jth column of the matrix (C,C)−1, so that

(9.2) C∨j = CRj =

q∑
i=0

RijCi.

Then

C∨j ∧ C0 ∧ · · · ∧ Ĉj ∧ · · · ∧ Cq = (−1)jRjj C0 ∧ C1 ∧ · · · ∧ Cq.

Since Rjj = (C∨j , C
∨
j ) > 0,

(9.3) zj = span{C0, . . . , Ĉj , . . . , Cq}[j]

where the ‘twist’ [j] indicates that the given basis gives (−1)jνz(s).

For example, for q = 1 we have

(9.4) z0 = span{C1}p.o., z1 = span{−C0}p.o..

In particular, good position requires (C0, C1) > 0 in this case! For q = 2, we have

(9.5) z0 = span{C1, C2}p.o., z1 = span{−C0, C2}p.o., z2 = span{C0, C1}p.o..

By construction, all the zj ’s lie in the same component of D and, by linear independence,

the map

φC : ∆q −→ D, s 7→ z(s)

is an embedding. Let S(C) = φC(∆q) be its image. The jth face of this tetrahedron is given

by restricting to the subset of s with sj = 0, so that it is given as

{z ∈ S(C) | (C∨(s), Cj) = 0} = {z ∈ S | Cj ∈ z}.

Moreover, in the image Uj of U under the projection to Vj = C⊥j , we have

[C∨0 , . . . , Ĉ
∨
j , . . . , C

∨
q ]

is the dual basis to

C⊥j := [C0⊥j , . . . , Cq⊥j ].

Thus, up to orientation, to be discussed in a moment, the restriction of φC to a face of ∆q is

again a simplex φC⊥j in D(Vj)! Note that, in particular, C in good position implies that C⊥j
is in good position for all j.
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Next consider S(C) ∩Dx. This set depends only on prU (x) and is given by

S(C) ∩Dx =


S(C) ∩D(U)prU (x) if Q(prU (x)) > 0,

∅ if prU (x) 6= 0 and Q(prU (x)) ≤ 0,

S(C) if prU (x) = 0.

Here, when Q(prU (x)) > 0 so that prU (x) is a positive vector in U , D(U)prU (x) is a pair of

oriented negative q-planes in U given by the orthogonal complement to prU (x) with its two

orientations. One of these has orientation determined by prU (x) by the analogue of the recipe

(9.1). Then S(C) ∩Dx = φC(s(x)) is the same q-plane with orientation shifted by

sgn(prU (x), C∨(s(x))q = sgn(x,C∨(s(x)))q.

To determine s(x), we solve

prU (x) = λC∨(s), s ∈ ∆q, λ ∈ R×

i.e.,

(x,Cj) = λ sj , 0 ≤ j ≤ q.
The existence of a solution implies that sgn(x,Cj), if non-zero, is independent of j and that

(9.6)

q∑
j=0

(x,Cj) = λ.

Thus we have the following simple description.

Lemma 9.1. Suppose that Q(prU (x)) > 0. If sgn(x,Cj) is independent of j when it is

non-zero, then

S(C) ∩Dx = φC(s(x)),

where

s(x)j = (x,Cj)λ(x; C)−1

with

λ(x, C) =
∑
j

(x,Cj).

Otherwise S(C) ∩Dx = φC(s(x)) is empty.

When S(C)∩Dx is non-empty, we determine the intersection number of the oriented q-simplex

S(C) with the oriented codimension q cycle Dx. The claim is that this is determined by the

sign of the inner product of prU (x) with C∨(s(x)).

Proposition 9.2. Let Φ4q (x, C) be as in (1.3). Then, if x is regular with respect to C,

(9.7) I(S(C), Dx) = Φ4q (x, C).

Suppose that prU (x) 6= 0. Then Φ4q (x, C) is non-zero precisely when all of the non-zero

sgn(x,Ci)’s coincide. Suppose further that s(x) lies on r ‘walls’, i.e., that r of the inner

products (x,Cj) vanish. Then

Φ4q (x, C) = 2−r (−1)qsgn(λ(x, C))q.
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When prU (x) = 0, then Φ4q (x, C) = 2−q for q even and vanishes for q odd. Note that, if x is

not regular with respect to C, then the intersection number is not defined.

Proof. Recall that, if ζ ∈ OFD is a properly oriented q-frame projecting to z ∈ D, then

Tz(D) ' U(z)q, where U(z) = z⊥ in V . Also note that, under this isomorphism, the natural

metric on Tz(D) is given by ((η, η′)) = −tr((ηi, η
′
j)) where η = [η1, . . . , ηq] and η′ = [η′1, . . . , η

′
q].

For our fixed collection C with U = span{C}, we have an embedding D(U) −→ D, where

D(U) is the space of oriented negative q-planes in U . Recall that sig(U) = (1, q). For

z ∈ D(U), write W (z) for its orthogonal complement in U . Again supposing that ζ ∈ OFD

with projection z is given, we have

Tz(D(U)) 'W (z)q.

Note that dimW (z) = 1, and suppose that w = w(z) is a properly oriented basis vector.

Then Tz(D(U)) is spanned by the vectors τ1(w) = [w, 0, . . . , 0], τ2(w) = [0, w, 0, . . . , 0], etc.

Similarly, if z ∈ Dx, then the normal subspace to Tz(Dx) is spanned by the vectors τi(x),

1 ≤ i ≤ q. For z = φC(s(x)), we have w = C∨(s(x)), and the intersection number of these

two cycles is then given by

sgn(( τ1(x) ∧ · · · ∧ τq(x), τ1(w) ∧ · · · ∧ τq(w) )) = (−1)q det((τi(x), τj(w)))

= (−1)qsgn(x,C∨(s(x)))q.

But now

C∨(s(x)) = λ(x, C)−1
∑
j

(x,Cj)C
∨
j ,

and, recalling (9.2),

(x,C∨(s(x))) = λ(x, C)−1
∑
j

(x,Cj)(x,C
∨
j ) = λ(x, C)−1

∑
i,j

(x,Cj)Ri,j(x,Ci).

If we assume that all of the non-zero (x,Ci)’s have the same sign, and recalling that Ri,j ≥ 0,

we see that

sgn(x,C∨(s(x))) = sgn(λ(x, C)).

�

For q = 1, and x regular with respect to C,

I(S(C), Dx) = −1

2
(sgn(x,C0) + sgn(x,C1)).

Note that, due to the ‘twist’ occurring in (9.3), our negative lines are z0 = span{C1}p.o. and

z1 = span{−C0}p.o. Thus the ‘cubical’ data is C� = {C1,−C0}, and I(S(C), Dx) coincides

with

Φ�
1 (x, C�) =

1

2
(sgn(x,−C0)− sgn(x,C1)).



THETA INTEGRALS AND GENERALIZED ERROR FUNCTIONS II 29

9.2. The integral of the theta form. We would like to compute

I0(x; C) =

∫
S(C)

ϕ0
KM (x).

The case q = 1, coincides with the Zwegers case for C� = {C1,−C0}, and we have

(9.8) I0(x/
√

2; C) = −1

2
(E1(C0;x) + E1(C1;x)).

As a check on signs, note that, since

lim
t→∞

E1(C; tx) = sgn(x,C),

this is consistent with the value of I(S(C), Dx) for q = 1 above.

For the general case, we suppose that x is regular with respect to C and proceed by induction.

Due to regularity, S(C) ∩Dx is either empty or is a single point φC(s(x)) on the interior of

S(C). Recall that, by (9.3),

∂S(C) =

q∑
j=0

(−1)jS(C⊥j).

Then by Remark 3.4 of [5], we have

(9.9) I0(x; C) =

∫
S(C)

ϕ0
KM (x) = I(S(C), Dx) +

∫
∂S(C)

Ψ0
KM (x).

Since limt→∞Ψ0
KM (tx) = 0, this identity gives the limiting value

lim
t→∞

I0(tx; C) = lim
t→∞

∫
S(C)

ϕ0
KM (tx) = I(S(C), Dx).

Now using Corollary 6.2, we have the inductive formula∫
∂S(C)

Ψ0
KM (x) =

q∑
j=0

(−1)j
∫
S(C⊥j)

κ∗jΨ
0
KM (x)(9.10)

=

q∑
j=0

2
1
2 (x,Cj)

∫ ∞
1

e−2πt2(x,Cj)
2
I0(tx⊥j ; C⊥j) dt.

Using this, we obtain the following explicit formula.

Theorem 9.3. For a subset I ⊂ {0, 1, . . . , q}, let C(I) be the collection of q+ 1−|I| elements

where the Ci with i ∈ I have been omitted.

I0(x/
√

2; C) = (−1)q2−q
[q/2]∑
r=0

∑
I

|I|=2r+1

Eq−2r(C(I);x).

Here E0(. . . ) = 1.
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Remark 9.4. (i) Note that if this formula is proved for x regular, then it holds for all x by

continuity.

(ii) Substituting tx for x and letting t go to infinity, we obtain the ‘holomorphic’ part:

(9.11) (−1)q2−q
[q/2]∑
r=0

∑
I

|I|=2r+1

sgn(CI , x),

where sgn(∅, x) = 1. In the case of x regular, (9.9) implies that this must coincide with

I(S(C), Dx). In fact, it is easily checked that (9.11) is equal to Φ4q (x, C) for all x. Thus our

theta integral is the non-holomorphic completion of the series∑
x∈µ+L

Φ4q (x, C) qQ(x).

Proof. The case q = 1 is (9.8). In the induction, we use the notation

C[j] = [C0⊥j , . . . , Cj−1⊥j , Cj+1⊥j , . . . , Cq⊥j ].

Let A = {0, 1, . . . , q} and for a subset I ⊂ A, let CI be the collection of q + 1 − |I| vec-

tors obtained by omitting the Ci with i ∈ I. Also denote by I[j] a subset of A[j] :=

{0, 1, . . . , ĵ, . . . , q}.

We have

I0(x/
√

2; C)− I(S(C), Dx) =

∫
∂S(C)

Ψ0
KM (x/

√
2)

=

q∑
j=0

(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
I0(tx⊥j/

√
2; C[j]) dt

= (−1)q2−q
q∑
j=0

−2(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
[(q−1)/2]∑
r=0

∑
I[j]⊂A[j]
|I[j]|=2r+1

Eq−1−2r(C[j]I[j], tx⊥j) dt

= (−1)q2−q
[(q−1)/2]∑
r=0

∑
j∈A

∑
I⊂A

|I|=2r+1
j /∈I

−2(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
Eq−1−2r(C[j]I ; tx⊥j) dt
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= (−1)q2−q
[(q−1)/2]∑
r=0

∑
I⊂A

|I|=2r+1

∑
j∈A
j /∈I

−2(x,Cj)

∫ ∞
1

e−πt
2(x,Cj)

2
Eq−1−2r((CI)[j]; tx⊥j) dt

= (−1)q2−q
[(q−1)/2]∑
r=0

∑
I⊂A

|I|=2r+1

(
Eq−2r(CI ;x)− sgn(x, CI)

)

= (−1)q2−q
[q/2]∑
r=0

∑
I⊂A

|I|=2r+1

Eq−2r(CI ;x)

− (−1)q2−q
[(q−1)/2]∑
r=0

∑
I⊂A

|I|=2r+1

sgn(x, CI)− (−1)q2−q δq,even.

Thus, to finish the proof, we note that

(9.12) I(S(C), Dx) = (−1)q2−q
[q/2]∑
r=0

∑
I⊂A

|I|=2r+1

sgn(x, CI),

where we use the convention that sgn(x, ∅) = 1. Here recall that we are assuming that x is

regular with respect to C. To check this, observe that

(−1)q2−q
[q/2]∑
r=0

∑
I⊂A

|I|=2r+1

sgn(x, CI) = (−1)q2−q
∑
J⊂A
|J |≡q(2)

∏
j∈J

σj

= (−1)q2−q−1

(∏
j∈A

(1 + σj) + (−1)q
∏
j∈A

(1− σj)
)
.

�

10. An example

In this section, we write out a very simple example, which illustrates the relation between

the (degenerate) cubical formula and the simplicial formula in the case q = 2.

Let A = {A0, A1, A2} be the data for a 2-simplex. The vertices are:

z0 = span{A1, A2}p.o., z1 = span{−A0, A2}p.o., z2 = span{A0, A1}p.o.,

and the theta integral is

1

4

(
E2(A1, A2) + E2(A0, A2) + E2(A0, A1) + 1

)
.

We can consider the related cubical data C = {{C1, C1′}, {C2, C2′}}, where

C1 = A0, C2 = A1, C2′ = −A2, C1′ = C2′ − C2 = −A1 −A2,
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so that the associated (degenerate) 2-cube has vertices

z2 = {C1, C2}, z1 = {C1, C2′}, z0 = {C1′ , C2′} = {C1′ , C2},

and theta integral

1

4

(
E2(C1, C2)− E2(C1, C2′)− E2(C1′ , C2) + E2(C1′ , C2′)

)
=

1

4

(
E2(A0, A1) + E2(A0, A2) + E2(A1 +A2, A1) + E2(A1 +A2, A2)

)
.

Coincidence of the two theta integrals is the equivalent to the identity

E2(A1 +A2, A1) + E2(A1 +A2, A2) = E2(A1, A2) + 1,

where all terms are given by integrals over the negative 2-plane z0. Writing y ∈ z0 as

y = aA∨1 + bA∨2 , with respect to the dual basis, and noting that

sgn(a+ b)(sgn(a) + sgn(b)) = sgn(a)sgn(b) + 1,

for a and b not both 0, the identity follows.

11. Appendix: Some proofs and details

11.1. Proof of part (iii) of Lemma 3.3. Suppose that C is in good position and that x ∈ V
with Φq(x; C) 6= 0. Let s0 = s(x) be the unique point of [0, 1]q such that ρC(s0) = Dx ∩ S(C).
Note that the map ρC extends to an open neighborhood of [0, 1]q so that, even if s0 lies on the

boundary, we can define ρC on an open set U around s0. We lift ρC to a map ρ̃C : U → OFD,

defined by

ρ̃C : s 7→ ζ(s) = B(s)P−1, P ∈ Symq(R)>0, P 2 = −(B(s), B(s)).

For convenience, we write B = [B1, . . . , Bq] = B(s). Then

(ρ̃C)∗(
∂

∂sj
) = ḂjP

−1 − ζṖjP−1, Ḃj :=
∂

∂sj
B = [0, . . . ,−Cj + Cj′ , . . . , 0], Ṗj :=

∂

∂sj
P.

The components in the connection subspace U(z)q of Tζ(OFD) are then

(ρC)∗(
∂

∂sj
) = τj P

−1, τj = [0, . . . ,prU(z)(−Cj + Cj′), . . . , 0]

and these are linearly independent provided prU(z)(−Cj +Cj′) 6= 0 for all j. But at the point

z0 = ρC(s0), we have x ∈ U(z0), and the q vectors

η(x, j) = [0, . . . , 0, , x, 0, . . . , 0],

with x in the jth component, span the normal to Tz0(Dx). Note that the metric g on

Tz(D) ' U(z)q is given by

g(η, η′) = tr( (ηi, η
′
j) ).

Then we have

g
(
η(x, i), τj

)
= [ (x,Cj′)− (x,Cj) ] δij .
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This shows that τj 6= 0 for all j and hence ρC is immersive at s(x). We can choose the

open neighborhood U of s(x) in Rq so that the restriction of ρC to U is an embedding. The

orientation of the codimension q cycle Dx is defined by an element of νz,x ∈
∧(p−1)q Tz(Dx)

such that

νx ∧ νz,x ∈
∧pq(Tz(D))

is properly oriented, where

νx = η(x, 1) ∧ · · · ∧ η(x, q).

Here we have fixed an orientation of D. Thus the intersection number at z0 of Dx with ρC(U)

is

I(Dx, ρC(U)) = sgn det(g(η(x, i), τj)) =
∏
j

sgn
(

(x,Cj′)− (x,Cj)
)
.

If x is regular with respect to C, then this quantity is

2−q
q∏
j=1

(
sgn(x,Cj′)− sgn(x,Cj)

)
= (−1)qΦq(x; C).

In general, we have

(11.1) (−1)qΦq(x; C) = 2−r I(Dx, ρC(U)),

where r, 0 ≤ r ≤ q, is the number of walls passing through s(x). Thus, Φq(x; C) is a ‘weighted’

intersection number.

11.2. Proof of (7.5). For y, y′ ∈ Z = span{C}, we write ((y, y′)) = −(y, y′), and we assume

that x ∈ Z. We let

C∨ = [C∨1 , . . . , C
∨
q ] = C((C,C))−1

be the dual basis. We write

x =
∑
i

xiC
∨
i , xi = ((x,Ci)).

For a fixed index j, we write

x = x⊥j + x′Cj , x⊥j =
∑
i 6=j

xiC
∨
i , xj = ((x,Cj)) = x′((Cj , Cj)),

and similarly for our variable of integration y ∈ Z. Note that, in particular,

sgn((y, Cj)) = sgn(y′).

We can write

dy = dy⊥j dy
′

where

1 =

∫
Z
e−π((y,y)) dy =

∫
Z⊥j

∫
R
e−π((y⊥j ,y⊥j)) e−π(y′)2((Cj ,Cj)) dy⊥j dy

′,

where dy′ is ((Cj , Cj))
1
2 times Lebesque measure, so that∫

R
e−π(y′)2((Cj ,Cj)) dy′ = 1.
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We write3

(−1)qEq(C;x) =

∫
Z
e−π((y−x,y−x))

∏
i

sgn((y, Ci)) dy

=

∫
Z⊥j

∫
R
e−π((y⊥j−x⊥j ,y⊥j−x⊥j)) e−π(y′−x′)2((Cj ,Cj))

∏
i 6=j

sgn((y, Ci)) sgn(y′) dy⊥j dy
′

= (−1)q−1Eq−1(C[j];x⊥j)

∫
R
e−π(y′−x′)2((Cj ,Cj)) sgn(y′) dy′

= (−1)q−1Eq−1(C[j];x⊥j)

∫
R
e−π(y′)2((Cj ,Cj)) sgn(yj + xj) dy

′.

But then, taking into account that dy′ = ((Cj , Cj))
− 1

2 dLebyj , we have

xj
∂

∂xj

{
(−1)qEq(C;x)

}
= ((x,Cj)) (−1)q−1Eq−1(C[j];x⊥j)

×
∫
R
e−πy

2
j ((Cj ,Cj))

−1

2δ(yj + xj) ((Cj , Cj))
− 1

2 dLebyj

= 2((x,Cj))(−1)q−1Eq−1(C[j];x⊥j) e
−π((x,Cj))

2
.

Here recall that Cj = Cj((Cj , Cj))
− 1

2 . Summing on j, we obtain (7.5).
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