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1. Introduction

In a series of papers [11, 12, 13, 14] we have been studying the geometric theta
correspondence (see below) for non-compact arithmetic quotients of symmetric spaces
associated to orthogonal groups. It is our overall goal to develop a general theory
of geometric theta liftings in the context of the real differential geometry/topology
of non-compact locally symmetric spaces of orthogonal and unitary groups which
generalizes the theory of Kudla-Millson in the compact case, see [24].

In this paper we study in detail the geometric theta lift for Hilbert modular surfaces.
In particular, we will give a new proof and an extension (to all finite index subgroups
of the Hilbert modular group) of the celebrated theorem of Hirzebruch and Zagier
[16] that the generating function for the intersection numbers of the Hirzebruch-Zagier
cycles is a classical modular form of weight 2.1 In our approach we replace Hirzebuch’s
smooth complex analytic compactification X̃ of the Hilbert modular surface X with
the (real) Borel-Serre compactification X. The various algebro-geometric quantities
that occur in [16] are then replaced by topological quantities associated to 4-manifolds
with boundary. In particular, the “boundary contribution” in [16] is replaced by sums
of linking numbers of circles (the boundaries of the cycles) in the 3-manifolds of type
Sol (torus bundle over a circle) which comprise the Borel-Serre boundary.

The geometric theta correspondence. We first explain the term “geometric theta cor-
respondence”. The Weil (or oscillator) representation gives us a method to construct
closed differential forms on locally symmetric spaces associated to groups which be-
long to dual pairs. Let V be a rational quadratic space of signature (p, q) with
for simplicity even dimension. Then the Weil representation induces an action of
SL2(R)×O(VR) on S(VR), the Schwartz functions on VR. Let G = SO0(VR)and let K
be a maximal compact subgroup. We let g and k be their respective Lie algebras and
let g = p⊕ k be the associated Cartan decomposition. Suppose

ϕ ∈ (S(VR)⊗ ∧rp∗)K

is a cocycle in the relative Lie algebra complex for G with values in S(V ). Then ϕ
corresponds to a closed differential r-form ϕ̃ on the symmetric space D = G/K of
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1Eichler, [16] p.104, proposed a proof using “Siegel’s work on indefinite theta functions”. This is

what our proof is, though with perhaps more differential geometry than Eichler had in mind.
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dimension pq with values in S(V ). For a coset of a lattice L in V , we define the theta
distribution Θ = ΘL by Θ =

∑
`∈L δ`, where δ` is the delta measure concentrated at `.

It is obvious that Θ is invariant under Γ = Stab(L) ⊂ G. There is also a congruence
subgroup Γ′ of SL(2,Z)) such that Θ is also invariant under Γ′. Hence we can apply
the theta distribution to ϕ̃ to obtain a closed r-form θϕ on X = Γ\D given by

θϕ(L) = 〈ΘL, ϕ̃〉.
Assume now in addition that ϕ has weight k under the maximal compact subgroup
SO(2) ⊂ SL2(R). Then θϕ also gives rise to a (in general) non-holomorphic function
on the upper half place H which is modular of weight k for Γ′. We may then use θϕ
as the kernel of a pairing of modular forms f with (closed) differential (pq− r)-forms
η or r-chains (cycles) C in X. The resulting pairing in f , η (or C), and ϕ as these
objects vary, we call the geometric theta correspondence.

The cocycle of Kudla-Millson. The key point of the work of Kudla and Millson [21, 22]
is that they found (in greater generality) a family of cocycles ϕVq in (S(V )⊗ ∧qp∗)K
with weight (p+q)/2 for SL2. Moreover, these cocycles give rise to Poincaré dual forms
for certain totally geodesic, “special” cycles in X. Recently, it has now been shown,
first [17] for SO(3, 2), and then [1] for all SO(p, q) and p + q > 6 (with p ≥ q) in the
cocompact (standard arithmetic) case that the geometric theta correspondence spe-
cialized to ϕVq induces on the adelic level an isomorphism from the appropriate space
of classical modular forms to Hq(X). In particular, for any congruence quotient, the
dual homology groups are spanned by special cycles. This gives further justification
to the term geometric theta correspondence and highlights the significance of these
cocycles. In [12] we generalize ϕVq to allow suitable non-trivial coefficient systems
(and one has an analogous isomorphism in [1]).

The main results. In the present paper, we consider the case when V has signature
(2, 2) with Q-rank 1. Then D ' H × H, and X is a Hilbert modular surface. We
let X be the Borel-Serre compactification of X which is obtained by replacing each
isolated cusp associated to a rational parabolic P with a boundary face e′(P ) which
turns out to be a torus bundle over a circle, a 3-manifold of type Sol. This makes X
a 4-manifold with boundary. For simplicity, we assume that X has only one cusp so
that ∂X = e′(P ), and we write k : ∂X ↪→ X for the inclusion. The special cycles Cn

2

in question are now embedded modular and Shimura curves, and are parameterized
by n ∈ N. They define relative homology classes in H2(X, ∂X,Q).

The geometric theta correspondence of Kudla-Millson [24] for the cocycle ϕV2 in
this situation takes the following shape. For a compact cycle C in X, we have that

(1.1) 〈θϕV2 , C〉 =

∫
C

θϕV2 =
∑
n≥0

(Cn · C)qn

is a holomorphic modular form of weight 2 and is equal to the generating series of
the intersection numbers with Cn. Here q = e2πiτ with τ ∈ H. (There is a similar
statement for the pairing of θϕV2 with a closed compactly supported differential 2-form

on X representing a class in H2
c (X), see Theorem 7.1). Our first result is

2We distinguish the relative cycles Cn in X from the Hirzebruch-Zagier cycles Tn in X̃, see below.
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Theorem 1.1. (Theorem 7.3) The differential form θϕV2 on X extends to a form

on X, and the restriction k∗ of θϕV2 to ∂X gives an exact differential form on ∂X.

Moreover, there exists a theta series θφW1 for a space W of signature (1, 1) of weight

2 with values in the 1-forms on ∂X such that θφW1 is a primitive for k∗θϕV2 :

d(θφW1 ) = k∗θϕV2 .

Considering the mapping cone for the inclusion k : ∂X ↪→ X (see Section 3.3) we
then view the pair [θϕV2 , θφW1 ] as an element of the compactly supported cohomology

H2
c (X). Explictly, let C be a relative cycle in X representing a class in H2(X, ∂X,Z).

Then the Kronecker pairing between [θϕV2 , θφW1 ] and C is given by

(1.2) 〈[θϕV2 , θφW1 ], C〉 =

∫
C

θϕV2 −
∫
∂C

θφW1 .

In this way, we obtain an extension of the geometric theta lift which captures the
non-compact situation.

To describe the geometric interpretation of this extension, we study the cycle Cn
at the boundary ∂X (Section 4). The intersection of Cn with ∂X is a union of circles
contained in the torus fibers of Sol. But rationally such circles are homologically
trivial. Hence we can find a (suitably normalized) rational 2-chain An in ∂X whose
boundary is the boundary of Cn in ∂X. “Capping” off Cn by An, we obtain a closed
cycle Cc

n in X defining a class in H2(X,Q). Our main result is the extension of (1.1):

Theorem 1.2. (Theorem 7.7) Let C be a relative cycle in X. Then

〈[θϕV2 , θφW1 ], C〉 =
∑
n≥0

(Cc
n · C)qn

is a holomorphic modular form of weight 2 and is equal to the generating series of
the intersection numbers with the capped cycles Cc

n. (Similarly for the pairing with
an arbitrary closed 2-form on X representing a class in H2(X)).

Note that in view of (1.2) the lift of classes of H2(X, ∂X) or H2(X) is the sum of
two in general non-holomorphic modular forms (see below).

In [13] we systematically study for O(p, q) the restriction of the classes θϕVq (also

with non-trivial coefficients) to the Borel-Serre boundary. Whenever the restriction
vanishes cohomologically, we can expect that a similar analysis to the one given in
this paper will give analogous extensions of the geometric theta correspondence. In
fact, aside from this paper we have at present managed to do this for several other
cases, namely for modular curves with non-trivial coefficients [14] generalizing work
of Shintani [27] and for Picard modular surfaces [15] generalizing work of Cogdell [6].

Linking numbers in 3-manifolds of type Sol. The theta series θφW1 at the boundary is
of independent interest and has geometric meaning in its own right. Recall that for
two disjoint (rationally) homological trivial 1-cycles a and b in a 3-manifold M we
can define the linking number of a and b as the intersection number

Lk(a, b) = A · b
of (rational) chains in M . Here A is a 2-chain in M with boundary a. We show
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Theorem 1.3. (Theorem 6.3) Let c be homologically trivial 1-cycle in ∂X which is
disjoint from the torus fibers containing components of ∂Cn. Then the holomorphic
part of the weight 2 non-holomorphic modular form

∫
c
θφW1 is given by the generating

series of the linking numbers
∑

n>0 Lk(∂Cn, c)q
n.

We also give a simple formula in Theorem 4.10 for the linking number of two
circles contained in the fiber of a 3-manifold M of type Sol in terms of the glueing
homeomorphism for the bundle.

One can reformulate the previous theorem stating that
∑

n>0 Lk(∂Cn, c)q
n is a

“mixed Mock modular form” of weight 2; it is the product of a Mock modular form
of weight 3/2 with a unary theta series. Such forms, which originate with the famous
Ramanujan Mock theta functions, have recently generated great interest.

Theorem 1.3 (and its analogues for the Borel-Serre boundary of modular curves
with non-trivial coefficients and Picard modular surfaces) suggest that there is a
more general connection between modular forms and linking numbers of nilmanifold
subbundles over special cycles in nilmanifold bundles over locally symmetric spaces.

Relation to the work of Hirzebruch and Zagier. In their seminal paper [16], Hirzebruch-
Zagier provided a map from the second homology of the smooth compactification of
certain Hilbert modular surfaces j : X ↪→ X̃ to modular forms. They introduced the
Hirzebruch-Zagier curves Tn in X, which are given by the closure of the cycles Cn in
X̃. They then defined “truncated” cycles T cn as the projections of Tn orthogonal to
the subspace of H2(X̃,Q) spanned by the compactifying divisors of X̃. The principal
result of [16] was that

∑
n≥0[T cn]qn defines a holomorphic modular form of weight

2 with values in H2(X̃,Q). We show j∗C
c
n = T cn (Proposition 4.7), and hence the

Hirzebruch-Zagier theorem follows easily from Theorem 1.2 above, see Theorem 7.9.
The main work in [16] was to show that the generating function

F (τ) =
∞∑
n=0

(T cn · Tm)qn

for the intersection numbers in X̃ of T cn with a fixed Tm is a modular form of weight
2. The Hirzebruch-Zagier proof of the modularity of F was a remarkable synthesis of
algebraic geometry, combinatorics, and modular forms. They explicitly computed the
intersection numbers T cn ·Tm as the sum of two terms, T cn ·Tm = (Tn ·Tm)X+(Tn ·Tm)∞,
where (Tn · Tm)X is the geometric intersection number of Tn and Tm in the interior
of X and (Tn · Tm)∞ which they called the “contribution from infinity”. They then
proved both generating functions

∑∞
n=0(Tn · Tm)Xq

n and
∑∞

n=0(Tn · Tm)∞q
n are the

holomorphic parts of two non-holomorphic forms FX and F∞ with the same non-
holomorphic part (with opposite signs). Hence combining these two forms gives F (τ).

We recover this feature of the original Hirzebruch-Zagier proof via (1.2) with C =
Cm. The first term on the right hand side of (1.2) was studied in the thesis of the
first author of this paper [9] and gives the interior intersections (Tn ·Tm)X encoded in
FX . So via Theorem 1.2 the second term on the right hand side of (1.2) must match
the boundary contribution F∞ in [16], that is, we obtain
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Theorem 1.4.
(Tn · Tm)∞ = Lk(∂Cn, ∂Cm).

Hence we give an interpretation for the boundary contribution in [16] in terms
of linking numbers in ∂X. In fact, the construction of θφW1 owes a great deal to

Section 2.3 in [16], where a scalar-valued version of θφW1 is introduced, see also Exam-
ple 6.4. Using Theorem 4.11 one can also make the connection between our linking
numbers and the formulas of the boundary contribution in [16] explicit.

To summarize, we start with the difference of theta integrals (1.2) (which we know
a priori is a holomorphic modular form), then by functorial differential topological
computations we relate its Fourier coefficients to intersection/linking numbers, and
by direct computation of the integrals involved we obtain the explicit formulas of
Hirzebruch-Zagier and a “closed form” for their generating function.

Note that Bruinier [4] and Oda [26] use related theta series to consider [16], but
their overall approach is different.

Currents. One of the key properties of the cocycle ϕV2 is that the n-th Fourier co-
efficients of θϕV2 represents the Poincaré dual class for the cycle Cn. Kudla-Millson

establish this by showing that ϕV2 gives rise to a Thom form for the normal bundle
of each of the components of Cn. To prove our main result, Theorem 1.2, we follow
a different approach using currents which is implicit in [5] and is closely related to
the Green’s function Ξ(n) for the divisors Cn constructed by Kudla [18, 19]. This
function plays an important role in the Kudla program (see eg [20]) which considers
the analogous generating series for the special cycles in arithmetic geometry. In the
non-compact situation however, one needs to modify Ξ(n) to obtain a Green’s func-
tion for the cycle T cn in X̃. Discussions with U. Kühn suggest that the constructions
in this paper indeed give rise to such a modification of Ξ(n), see Remark 8.5.

We would like to thank Rolf Berndt, Jan Bruinier, Jose Burgos, Misha Kapovich,
and Ulf Kühn for fruitful and extensive discussions on the constructions and results
of this paper. As always it is a great pleasure to thank Steve Kudla for his interest
and encouragement. Each of us began the work of relating theta lifts and special
cycles with him.

We dedicate this paper to the memory of Gretchen Taylor Millson, beloved wife of
the second author.

2. The Hilbert modular surface and its Borel-Serre compactification

2.1. The symmetric space and its arithmetic quotient.

2.1.1. The orthogonal group and its symmetric space. Let V be a rational vector space
of dimension 4 with a non-degenerate symmetric bilinear form ( , ) of signature (2, 2).
We let G = SO(V ), viewed as an algebraic group over Q. We let G = G0(R) '
SO0(2, 2) be the connected component of the identity of the real points of G. It is
most convenient to identify the associated symmetric space D = DV with the space
of negative 2-planes in V (R) on which the bilinear form ( , ) is negative definite:

D = {z ⊂ VR; dim z = 2 and ( , )|z < 0}.
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We pick an orthogonal basis {e1, e2, e3, e4} of VR with (e1, e1) = (e2, e2) = 1 and
(e3, e3) = (e4, e4) = −1. We denote the coordinates of a vector x with respect to this
basis by xi. We pick as base point of D the plane z0 = [e3, e4] spanned by e3 and e4,
and we let K ' SO(2) × SO(2) be the maximal compact subgroup of G stabilizing
z0. Thus D ' G/K. Of course, D ' H×H, the product of two upper half planes.

We let P be a rational parabolic subgroup stabilizing a rational isotropic line ` and
define P = P 0(R) as before. We let N be its unipotent subgroup and N = N(R). We
let u = (e1 +e4)/

√
2 and u′ = (e1−e4)/

√
2 be two isotropic vectors so that (u, u′) = 1.

We assume that u, u′ are defined over Q and obtain a rational Witt decomposition

V = `⊕W ⊕ `′

with ` = Qu, `′ = Qu′, and a subspace W = `⊥ ∩ `′⊥ such that WR = spanR(e2, e3).
The choice of u′ gives a Levi splitting of P , and we write

P = NAM

for the Langlands decomposition. Here, with respect to the basis u, e2, e3, u
′, we have

N =
{
n(w) =

(
1 (·,w) −(w,w)/2

1W −w
1

)
; w ∈ WR

}
,

A =
{
a(t) =

(
t

1W
t−1

)
; t ∈ R+

}
,

M =

{
m(s) =

( 1
cosh(s) sinh(s)
sinh(s) cosh(s)

1

)
; s ∈ R

}
.

Note N ' WR. We obtain coordinates for D by z = z(t, s, w) where z is the negative
two-plane in VR with z = [n(w)a(t)m(s)e3, n(w)a(t)m(s)e4].

2.1.2. Arithmetic Quotient. We let L be an even lattice in V of level N , that is
L ⊆ L#, the dual lattice, (x, x) ∈ 2Z for x ∈ L, and q(L#)Z = 1

N
Z. We fix h ∈ L#

and let Γ ⊆ StabL be a subgroup of finite index of the stabilizer of L := L+ h in G.
For each isotropic line ` = Qu, we assume that u is primitive in the lattice L in V .
We will throughout assume that the Q-rank of G is 1, that is, V splits exactly one
hyperbolic plane over Q. Then we define the Hilbert modular surface

X = Γ\D.

Example 2.1. An important example is the following. Let d > 0 be the discriminant
of the real quadratic field K = Q(

√
d) over Q, OK its ring of integers. We denote by

x 7→ x′ the Galois involution on K. We let V ⊂M2(K) be the space of skew-hermitian
matrices in M2(K), i.e., which satisfy tx′ = −x. Then the determinant on M2(K)
gives V the structure of a non-degenerate rational quadratic space of signature (2, 2)
and Q-rank 1. We define the integral skew-hermitian matrices by

L =
{
x =

(
a
√
d λ

−λ′ b
√
d

)
: a, b ∈ Z, λ ∈ OK

}
.

Then L is a lattice of level d. We embed SL2(K) into SL2 R×SL2(R) by g 7→ (g, g′) so
that SL2(OK) acts on L by γ.x = γxtγ′ as isometries. Hirzebruch and Zagier actually
considered this case for d ≡ 1 (mod 4) a prime.
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The quotient space X is in general an oriented uniformizable orbifold with isolated
singularities. We will treat X as a manifold - we will use Stokes’ Theorem and
Poincaré duality over Q on X. This is justified because in each instance we can pass
to a finite normal cover Y of X with Y a manifold. Hence, the formulas we want hold
on Y . We then then go back to the quotient by taking invariants or summing over the
group Φ of covering transformations. The point is that the de Rham complex of X is
the algebra of Φ-invariants in the one of Y and the rational homology (cohomology)
groups of X are the groups of Φ-coinvariants (invariants) of those of Y .

2.2. Compactifications.

2.2.1. Admissible Levi decompositions of P . We let ΓP = Γ ∩ P and ΓN = ΓP ∩ N .
Then the quotient ΓP/ΓN is a non-trivial arithmetic subgroup of P/N and lies inside
the connected component of the identity of the real points of P/N . Furthermore,
ΓP/ΓN acts as isometries of spinor norm 1 on the anisotropic quadratic space `⊥/` of
signature (1, 1). Hence ΓP/ΓN ' Z is infinite cyclic. Therefore the exact sequence

1→ ΓN → ΓP → ΓP/ΓN → 1

splits. We fix g ∈ ΓP such that its image ḡ generates ΓP/ΓN . Then g defines a Levi
subgroup M . In fact, the element g generates ΓM := ΓP ∩M . Hence

ΓP = ΓM n ΓN .

We will say a Levi decomposition P = NAM is admissible if ΓP = (M ∩ ΓP ) n ΓN .
In the following we assume that we have picked an admissible Levi decomposition for
each rational parabolic.

2.2.2. Borel-Serre compactification. We let D be the (rational) Borel-Serre enlarge-
ment of D, see [3] or [2], III.9. For any parabolic P as before with admissible Levi
decomposition P = NAM , we define the boundary component

e(P ) = MN ' DW ×W.
Here DW 'M ' R is the symmetric space associated to the orthogonal group of W .
Then D is given by

D = D ∪
∐
P

e(P ),

where P varies over all rational parabolics. The action of Γ on D extends to D in a
natural way, and we let

X := Γ\D
be the Borel-Serre compactification of X = Γ\D. This makes X a manifold with
boundary such that

∂X =
∐
[P ]

e′(P ),

where for each cusp, the corresponding boundary component is given by

e′(P ) = ΓP\e(P ).

Here [P ] runs over all Γ-conjugacy classes. The space XW := ΓM\DW is a circle.
Hence e′(P ) is a torus bundle over the circle, where the torus T 2 is given by ΓN\N .
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That is, e′(P ) = XW × T 2, and we have the natural map κ : e′(P ) → XW . We
have a natural product neighborhood of e(P ) in D and hence for e′(P ) in X given
by [(T,∞] × e′(P )] for T sufficiently large given by z(t, s, w) with t > T . We let
i : X ↪→ X and iP : e′(P ) ↪→ X be the natural inclusions.

It is one of the fundamental properties of the Borel-Serre compactification X that
it is homotopic equivalent to X itself. Hence their (co)homology groups coincide.

2.2.3. Hirzebruch’s smooth compactification. We let X ′ be the Baily-Borel compact-
ifciation of X, which is obtained by collapsing in X each boundary component e′(P )
to a single point or topologically by taking a cone on each component of the Borel-
Serre boundary. It is well known that X ′ is a projective algebraic variety. We let X̃
be Hirzebruch’s smooth resolution of the cusp singularities and π : X̃ → X ′ be the
natural map collapsing the compactifying divisors for each cusp. We let j : X ↪→ X̃
be the natural embedding. Note that the Borel-Serre boundary separates X̃ into two
pieces, the (connected) inside X in, which is isomorphic to X and the (disconnected)
outside Xout, which for each cusp is a neighborhood of the compactifying divisors.
Note that we can view e′(P ) as lying in both X in and Xout since the intersection
X in ∩Xout is equal to

∐
P e(P ).

3. (Co)homology

In this section we describe the relationship between the (co)homology of the various
compactifications.

3.1. The homology of the boundary components. Every element of ΓN =
π1(T 2) is a rational multiple of a commutator in ΓP and accordingly the image of
H1(T 2,Q) in H1(e′(P ),Q) is trivial. Let aP ∈ H1(e′(P ),Z) be the class of the iden-
tity section of κ : e′(P ) → XW and bP ∈ H2(e′(P ),Z) be the class of the torus fiber
of κ. It is clear that the intersection number of aP and bP is 1 (up to sign) whence
aP and bP are nontrivial primitive classes. Furthermore, aP generates H1(e′(P ),Q)
and H2(e′(P ),Z) ∼= Z, generated by bP . So

Lemma 3.1. (i) The first rational homology group of e′(P ) is generated by aP .
(ii) The second homology group of e′(P ) is generated by bP .

Remark 3.2. To compute the homology over Z one has only to use the Wang se-
quence for a fiber bundle over a circle, see [25], page 67.

Let ΩP be the unique P -invariant 2-form on e′(P ) such that

(3.1)

∫
bP

ΩP = 1.

Since bP is the image of the fundamental class of T 2 inside H2(e′(P ),Z), we see that
that the restriction of ΩP to T 2 lifts to the area form on WR ' N normalized such
that T 2 = ΓN\N has area 1.
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3.2. Homology and cohomology of X and X̃. Accordingly to the discussion in
Section 2.2.3 we have the Mayer-Vietoris sequence

0→ ⊕PH2(e′(P ))→ H2(X)⊕ (⊕PSP )→ H2(X̃)→ 0.

Here SP denotes the span of the classes defined by compactifying divisors at the cusp
associated to P . The zero on the left comes from H3(X̃) = 0 and the zero on the
right comes from the fact that for each P the class aP injects into H1(Xout), see [28],
II.3. Since the generator bP has trivial intersection with each of the compactifying
divisors, bP bounds on the outside so a fortiori it bounds in X̃. Thus the above short
exact sequence is the sum of the two short exact sequences ⊕PH2(e′(P ))→ H2(X)→
j∗H2(X) and 0 → ⊕PSP → ⊕PSP . By adding the third terms of the two sequences
and equating them to H2(X̃) we obtain the orthogonal splittings (for the intersection
pairing) - see also [28], p.123,

H2(X̃) = j∗H2(X)⊕
(
⊕[P ]SP

)
, H2(X̃) = j#H

2
c (X)⊕

(
⊕[P ]S

∨
P

)
.

Here j# is the push-forward map. Furthermore, the pairings on each summand are
non-degenerate. Considering ⊕PH2(e′(P ))→ H2(X)→ j∗H2(X) we also obtain

Proposition 3.3. H2(∂X) is the kernel of j∗ so that

j∗H2(X) ' H2(X)/
∑
[P ]

H2(e′(P )).

3.3. Compactly supported cohomology and the cohomology of the mapping
cone. We briefly review the mapping-cone-complex realization of the cohomology of
compact supports of X. For a more detailed discussion, see [14], section 5.

We let A•c(X) be the complex of compactly supported differential forms on X
which gives rise to H•c (X), the cohomology of compact supports. We now represent
the compactly-supported cohomology of X by the cohomology of the mapping cone
C• of i∗, see [29], p.19, where as before i : X ↪→ X. However, we will change the sign
of the differential on C• and shift the grading down by one. Thus we have

Ci = {(a, b), a ∈ Ai(X), b ∈ Ai−1(∂X)}
with d(a, b) = (da, i∗a − db). If (a, b) is a cocycle in C• we will use [[a, b]] to denote
its cohomology class. We have

Proposition 3.4. The cochain map A•c(X) → C• given by c 7→ (c, 0) is a quasi-
isomorphism.

We now give a cochain map from C• to A•c(X) which induces the inverse to the
above isomorphism. We let V be a product neighborhood of ∂X as in Section 2.2.2,
and we let π : V → ∂X be the projection. If b is a form on ∂X we obtain a form
π∗b on V. Let f be a smooth function of the geodesic flow coordinate t which is 1
near t = ∞ and zero for t ≤ T for some sufficiently large T . We may regard f as a
function on V by making it constant on the ∂X factor. We extend f to all of X by
making it zero off of V . Let (a, b) be a cocycle in Ci. Then there exist a compactly
supported closed form α and a form µ which vanishes on ∂X such that

a− d(fπ∗b) = α + dµ.
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We define the cohomology class [a, b] in the compactly supported cohomology H i
c(X)

to be the class of α, and the assignment [[a, b]] 7→ [a, b] gives the desired inverse. From
this we obtain the following integral formulas for the Kronecker pairings with [a, b].

Lemma 3.5. Let η be a closed form on X and C a relative cycle in X of appropriate
degree. Then

〈[a, b], [η]]〉 =

∫
X

a ∧ η −
∫
∂X

b ∧ i∗η, and 〈[a, b], C〉 =

∫
C

a−
∫
∂C

b.

4. Capped special cycles and linking numbers in Sol

For x ∈ V such that (x, x) > 0, we define

Dx = {z ∈ D; z ⊥ x}.
Then Dx is an embedded upper half plane in D. We let Γx ⊂ Γ be the stabilizer of
x and define the special or Hirzebruch-Zagier cycle by

Cx = Γx\Dx,

and by slight abuse identify Cx with its image in X. These are modular or Shimura
curves. For positive n ∈ Q, we write Ln = {x ∈ L; 1

2
(x, x) = n}. Then the composite

cycles Cn are given by

Cn =
∑

x∈Γ\Ln

Cx.

Since the divisors define in general relative cycles, we take the sum in H2(X, ∂X,Z).

4.1. The closure of special cycles in the Borel-Serre boundary and the
capped cycle Cc

x. We now study the closure of Cx in ∂X, which is the same as the
intersection of Cx or ∂Cx with the union of the hypersurfaces e′(P ). A straightforward
calculation gives

Proposition 4.1. If (x, u) 6= 0 then there exists a neighborhood U∞ of e(P ) such that

Dx ∩ U∞ = ∅.
If (x, u) = 0, then Dx ∩ e(P ) is contained in the fiber of p over s(x), where s(x) is
the unique element of R satifying

(x,m(s(x))e3) = 0.

At s(x) the intersection Dx ∩ e(P ) is the affine line in W given by

{w ∈ W : (x,w) = (u′, x)}.

We define cx ⊂ ∂Cx to be the closed geodesic in the fiber over s(x) which is the
image of Dx ∩ e(P ) under the covering e(P )→ e′(P ). We have

Proposition 4.2. (i) The 1-cycle ∂Cx is a finite union of circles.
(ii) At a cusp associated to P , each circle is contained in a fiber of the map κ :

e′(P )→ XW and hence is a rational boundary (by Lemma 3.1).
(iii) Two boundary circles cx and cy are parallel if they are contained in the same

fiber. In particular, cx ∩ cy 6= ∅ ⇐⇒ cx = cy.
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We now describe the intersection of Cn or ∂Cn with e′(P ). For LV = L = L + h
we can write

LW = LWP
= (L ∩ u⊥)/(L ∩ u) '

∐
k

(LW,k + hW,k)

for some lattices LW,k ⊂ W and vectors hW,k ∈ L#
W,k.

Via the isomorphism W ' N , we can identify ΓN = N ∩Γ with a lattice ΛW in W .
Since u is primitive in L and n(w)x = x + (w, x)u for a vector x ∈ u⊥ we see that
LW is contained in the dual lattice of ΛW .

Lemma 4.3. The intersection ∂Cn ∩ e′(P ) is given by∐
x∈ΓM\LW
(x,x)=2n

∐
0≤k<min′λ∈ΛW

|(λ,x)|

cx+ku.

Here min′ denotes that we take the minimum over all nonzero values of |(λ, x)|.

Proof. We will first prove ∂Cn,P := ∂Cn ∩ e′(P ) is a disjoint union

(4.1) ∂Cn,P =
∐

y∈ΓP \Ln,u

cy,

where Ln,u = {x ∈ L∩u⊥; (x, x) = 2n}. Indeed, first note that by Proposition 4.1 only
vectors in Ln,u can contribute to ∂Cn,P . The action of Γ on V induces an equivalence
relation ∼Γ on the set Γp\Ln,u ⊂ V which is consequently a union of equivalence
classes [xi] = [xi]P , 1 ≤ i ≤ k. We may accordingly organize the union R on the right-

hand side of (4.1) as R =
∐k

i=1

∐
y∈[xi]

cy. But it is clear that (∂Cxi)P =
∐

y∈[xi]
cy

and hence we have the equality of 1-cycles in e′(P ) and ∂X

(4.2) (∂Cxi)P =
∑

y∈[xi]P

cy and ∂Cxi =
∑
[P ]

∑
y∈[xi]P

cy,

since an element y ∈ [xi] gives rise to the lift Dy of Cxi to D that intersects e(P ) and
this intersection projects to cy. Thus we may rewrite the right-hand side of(4.1) as
R =

∐
∼Γ\Ln,u ∂Cxi . But it is clear that this latter union is ∂Cn,P and (4.1) follows.

Finally, we easily see that
∐

x∈ΓM\LW
(x,x)=2n

∐
0≤k<min′λ∈ΛW

|(λ,x)| x + ku is a complete set of

representatives of ΓP -equivalence classes in Ln,u. These give the circles cx+ku above.
�

Proposition 4.4. Let x ∈ Ln,u with n > 0. Then there exists a rational 2-chain ax
in e′(P ) such that

(1) ∂ax = cx
(2)

∫
ax

ΩP = 0, here ΩP is the area form for the fibers (see (3.1))

Proof. Except for the rationality of the cap this follows immediately from Proposi-
tion 4.2. The problem is to find a cap ax such that

∫
ax

ΩP ∈ Q. We will prove this in
Section 4.3 below. �
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We will define (Ax)P by (Ax)P =
∑

y∈[x] ax. Then sum over the components e′(P )

to obtain Ax a rational 2-chain in ∂X. Then we have (noting that (∂Cx)P =
∑

y∈[x] cy)

∂Ax = ∂Cx.

Definition 4.5. We define the rational absolute 2-cycle in X by

Cc
x = Cx ∪ (−Ax)

with the 2-chain Ax in ∂X as in Proposition 4.4. In particular, Cc
x defines a class in

H2(X) = H2(X). In the same way we obtain Cc
n.

4.2. The closure of the special cycles in X̃ and the cycle T cn. Following
Hirzebruch-Zagier we let Tn be the cycle in X̃ given by the closure of the cycle
Cn in X̃. Hence Tn defines a class in H2(X̃).

Definition 4.6. Consider the decomposition H2(X̃) = j∗H2(X)⊕
(
⊕[P ]Sp

)
, which is

orthogonal with respect to the intersection pairing on X̃. We let T cn be the image of
Tn under orthogonal projection onto the summand j∗H2(X).

Proposition 4.7. We have

j∗C
c
n = T cn.

Proof. For simplicity, we assume that X has only one cusp. The 3-manifold e′(P )
separates Tn and we can write Tn = Tn ∩X in + Tn ∩Xout as (appropriately oriented)
2-chains in X̃. It is obvious that we have j∗Cn = Tn ∩ X in as 2-chains. We write
Bn = Tn ∩ Xout. We have ∂Cn = −∂Bn. Hence we can write Tn = j∗C

c
n + Bc

n, the
sum of two 2-cycles in X̃. Here Bc

n is obtained by ‘capping’ Bn in e′(P ) with the
negative of the cap An of Cc

n. Since j∗C
c
n is clearly orthogonal to SP (since it lies

in X in) and Bc
n ∈ SP (since it lies in Xout) the decomposition Tn = j∗C

c
n + Bc

n is
just the decomposition of Tn relative to the splitting H2(X̃) = j∗H2(X)⊕ SP . Hence
T cn = j∗C

c
n, as claimed. �

4.3. Rationality of the cap. We will now prove Proposition 4.4. In fact we will
show that it holds for any circle α contained in a torus fiber of e(P ) and passing
through a rational point. We would like to thank Misha Kapovich for simplifying our
original argument. The idea is to construct, for each component of ∂Cx, a 2-chain A
with that component as boundary so that A is a sum P+T+M(γ0) of three simplicial
2-chains in M . We then verify that the “parallelogram” P and the “triangle” T have
rational area and the period of Ω over the “monodromy chain” M(γ0) is zero.

In what follows we will pass from pictures in the plane involving directed line
segments, triangles and parallelograms to identities in the space of simplicial 1-chains
C1(T 2) on T 2. The principal behind this is that any k-dimensional subcomplex S of
a simplicial complex Y which is the fundamental cycle of an oriented k-submanifold
|S| (possibly with boundary) of Y corresponds in a unique way to a sum of oriented
k-simplices in Ck(Y ).

In this subsection we will work with a general 3-manifold M with Sol geometry. Of
course this includes all the manifolds e′(P ) that occur in this paper. Let f ∈ SL(2,Z)
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be a hyperbolic element. We will then consider the 3-manifold M obtained from
R× T 2 (with the 2-torus T 2 = W/Z2) given by the relation

(4.3) (s, w) ∼ (s+ 1, f(w)).

We let π : R× T 2 →M be the resulting infinite cyclic covering.
We now define notation we will use below. We will use Greek letters to denote

closed geodesics on T 2, a subscript c will indicate that the geodesic starts at the
point c on T 2. We will use the analogous notation for geodesic arcs on W . We will
use [α] to denote the corresponding homology class of a closed geodesic α on T 2. If
x and y are points on W we will use xy to denote the oriented line segment joining
x to y and −→xy to denote the corresponding (free) vector i.e. the equivalence class of
xy modulo parallel translation.

We first take care of the fact that α does not necessarily pass through the origin.
For convenience we will assume α is in the fiber over the base-point z(x) corresponding
to s = 0. Let α0 be the parallel translate of α to the origin. Then we can find a

cylinder P , image of an oriented parallelogram P̃ under the universal cover W → T 2

with rational vertices, such that in Z1(T 2,Q), the group of rational 1-cycles, we have

(4.4) ∂P = α− α0.

Since P̃ has rational vertices we find
∫
P

Ω =
∫ eP Ω ∈ Q.

Now we take care of the harder part of finding A as above. The key is the construc-
tion of “monodromy 2-chains”. For any closed geodesic γ0 ⊂ T 2 starting at 0 we define
the monodromy 2-chain M(γ0) to be the image of the cylinder γ0 × [0, 1] ⊂ T 2 × R
in M . The reader will verify using (4.3) that in Z1(T 2,Q) we have

(4.5) ∂M(γ0) = f−1(γ0)− γ0.

Since f preserves the origin, the geodesic f−1(γ0) is also a closed geodesic starting at
the origin. Since f−1 is hyperbolic we have | tr(f−1)| > 2 and hence det(f−1 − I) =
det(I − f) = tr(f)− 2 6= 0. Put N = det(f−1 − I) and define [γ0] ∈ H1(T 2,Z) by

(4.6) f−1([γ0])− [γ0] = N [α0].

Note that [γ0] = N{(f−1 − I)−1([α0]} is necessarily an integer homology class. Also
note that is an equation in the first homology, it is not an equation in the group of 1-
cycles Z1(T 2,Q). Since any homology class contains a unique closed geodesic starting
at the origin we obtain a closed geodesic γ0 ∈ [γ0] and a corresponding monodromy
2-chain M(γ0) whence (4.5) holds in Z1(T 2,Q). We now solve

Problem 4.8. Find an equation in Z1(T 2,Z) which descends to (4.6).

Let h1 resp. h2 denote the covering transformation of π corresponding to the
element α0 resp γ0 of the fundamental group of T 2. Define c1 and c2 in W by

c1 = Nh1(0) and c2 = h2(0). Define d ∈ W by d = f−1(c2) in W . Let T̃ be the
oriented triangle with vertices 0, c2, d. Then

(i) π(0c1) = Nα0 (ii) π(0c2) = γ0 (iii) π(0d) = π(f−1(0c2)) = f−1(γ0).
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We now leave it to the reader to combine the homology equation (4.6) and the three
equations to show the equality of directed line segments

(4.7) h2(0c1) = c2d.

With this we can solve the problem. We see that if we consider T̃ as an oriented
2-simplex we have the following equality of one chains

∂T̃ = 0c2 + c2d− 0d.

Let T be the image of T̃ under π. Take the direct image of the previous equation
under π and use equation (4.7) which implies that the second edge c2d is equivalent
under h2 in the covering group to the directed line segment 0c1 which maps to Nα0.
Hence c2d also maps to Nα0. We obtain the following equation in Z1(T 2,Z)

(4.8) ∂T = γ0 +Nα0 − f−1(γ0),

and we have solved the above problem. Combining (4.5) and (4.8) we have

∂(M(γ0) + T ) = f−1(γ0)− γ0 + γ0 + α0 − f−1(γ0) = Nα0.

Combining this with (4.4) and setting where A0 =M(γ0) + T we obtain

(4.9) ∂(NP + A0) = Nα,

in Z1(M,Z). Hence if we define A to be the rational chain A = 1
N

(NP + A0) =

P + 1
N
T + 1

N
M(γ0) in M we have the following equation in Z1(M,Q):

∂A = α.

Finally, the integral of Ω over A is rational. Indeed, the integral over P is rational.

Since all vertices of T̃ are integral the area of T̃ is integral, the integral of Ω over T
is integral. Thus it suffices to observe that the restriction of Ω toM(c) is zero. With
this we have completed the proof of Proposition 4.4.

4.4. Linking numbers in Sol. In the introduction we defined the linking number
of two two disjoint homologically trivial 1-cycles a and b in a closed 3-manifold M
as Lk(a, b) = 〈A, b〉, where A is any rational 2-chain in M with boundary a. Since b
defines a trivial homology class in M , the link is well-defined, ie, does not depend on
the choice of A.

We let M be the Sol manifold as before realized as in Section 4.3 via (4.3) and
consider the case when a and b are two contained in two torus fibers. Then by the
previous section they are homologically trivial. If a and b are contained in the same
fiber we move b to the right (i.e. in the direction of positive s) to a nearby fiber. We
take a, b ∈ H1(T 2,Z), and in this section we are allowed to confuse a and b with their
representatives in the lattice Z2 and the unique closed geodesic in T 2 passing through
the origin that represents them. We will write for the image of a and b in R×T 2 and
M a = a(0) = 0× a and b = b(ε) = ε× b. Our goal is to compute the linking number
Lk(a, b(ε)). By the explicit construction of the cap A in Section 4.3 we obtain

Lemma 4.9.

Lk(a, b(ε)) = M(c) · b(ε) = c(ε) · b(ε) = c · b.
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Here c is the rational one cycle obtained by solving (f−1 − I)(c) = a and M(c) is
the (rational) monodromy 2-chain associated to c (see above) with boundary ∂M(c) =
(f−1 − I)(c) = a. Here the first · is the intersection of chains in M , the next · is the
intersection number of 1-cycles in the fiber ε × T 2 and the last · is the intersection
number of 1-cycles in 0× T 2.

Noting that this last intersection number coincides with the intersection number
of the underlying homology classes which in term coincides with the symplectic form
〈·, ·〉 on H1(T 2,Q) we have found our desired formula for the linking number.

Theorem 4.10. Lk(a, b(ε)) = 〈(f−1 − I)−1(a), b〉.

It is a remarkable fact that there is a simple formula involving only the action of the
glueing homeomorphism f ∈ SL(2,Z) on H1(T 2,Z) for linking numbers for 1-cycles
contained in fiber tori T 2 of in Sol (unlike the case of linking numbers in R3).

This immediately leads to an explicit formula for the numbers Lk(∂Cn, ∂Cm). Using
Lemma 4.3 we obtain

Theorem 4.11. Let g = (f−1 − I)−1. Then

Lk((∂Cn)P , (∂Cm)P ) =
∑

x∈ΓM\LW
(x,x)=2n

∑
x′∈ΓM\LW
(x,x)=2m

( min
λ∈ΛW

′|(λ, x)|)( min
µ∈ΛW

′|(µ, x′)|)〈g(Jx), Jx′〉.

Here Jx is properly oriented primitive vector in ΛW such that (Jx, x) = 0.

Example 4.12. We consider the integral skew Hermitian matrices in Example 2.1.
Let u =

(√
p 0

0 0

)
, so that W = {

(
0 λ
−λ′ 0

)
; λ ∈ K} ' K. The symplectic form on

K is given by 〈λ, µ〉 = 1√
p
(λµ′ − λ′µ). The action of the unipotent radical N =

{n(λ) = ( 1 λ
0 1 )} on a vector µ ∈ K is now slightly different, namely, n(λ)µ = µ +

〈λ, µ〉u. Hence in these coordinates, ∂Cµ is given by the image of the line Rµ = {λ ∈
KR; 〈λ, µ〉 = 0}, and (min′λ∈OK |〈λ, µ〉|)µ is a primitive generator in OK for that line.
We let ε be a generator of U+, the totally positive units in OK , and we assume that
the glueing map f is realized by multiplication with ε′. For d ≡ 1 (mod 4) a prime
and m = 1, C1 has only component arising from x = 1 ∈ K and C1 ' SL2(Z)\H.
Then Theorem 4.11 becomes (the min′-term is now wrt 〈 , 〉)

Lk((∂Cn)P , (∂C1)P ) = 2
∑

µ∈U+\OK
µµ′=n,µ�0

〈
µ
ε−1

, 1
〉

= 2
∑

µ∈U+\OK
µµ′=n,µ�0

=
2
√
p

µ+ µ′ε

ε− 1
.

This is (twice) the “boundary contribution” in [16], Section 1.4, see also Section 7.5.

5. Schwartz functions and forms

Let U be a non-degenerate rational quadratic space of signature (p, q) and even
dimension m. We will later apply the following to U = V and U = W . Changing
notation from before, we let G = SO0(UR) with maximal compact subgroup K and
write D = G/K for the associated symmetric space. We let S(UR) be the space of
Schwartz functions on UR on which SL2(R) acts via the Weil representation ω.
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5.1. Extending certain Schwartz functions to functions of τ ∈ H and z ∈ D.
Let ϕ ∈ S(UR) be an eigenfunction under the maximal compact SO(2) of SL2(R) of

weight r. Define g′τ ∈ SL2(R) by g′τ = ( 1 u
0 1 )

(
v1/2 0

0 v−1/2

)
. Then we have ω(g′τ )ϕ(x) =

vm/4ϕ(
√
vx)eπi(x,x)u. Accordingly we define

(5.1) ϕ(x, τ) = v−r/2ω(g′τ )ϕ(x) = v−r/2+m/4ϕ0(
√
vx)eπi(x,x)τ .

Here we have also defined ϕ0(x) = ϕ(x)eπ(x,x). Let E be a G-module and let gz ∈
G be any element that carries the basepoint z0 in D to z ∈ D. Then define for
ϕ ∈ [S(UR)⊗E]K , the E-valued K-invariant Schwartz functions on UR, the functions
ϕ(x, z) and ϕ(x, τ, z) for x ∈ U, z ∈ D, τ ∈ H by

ϕ(x, z) = gzϕ(g−1
z x) and ϕ(x, τ, z) = gzϕ(g−1

z x, τ).

We will continue to use these notational conventions for other (not necessarily Schwartz)
functions that arise in this paper.

5.2. Schwartz forms for V . Let g be the Lie algebra of G and g = k ⊕ p be the

Cartan decomposition of g associated to K. We identify g '
∧2

VR as usual via

(v1 ∧ v2)(v) = (v1, v)v2 − (v2, v)v1. We write Xij = ei ∧ ej ∈ g and note that p is
spanned by Xij with 1 ≤ i ≤ 2 and 3 ≤ j ≤ 4. We write ωij for their dual. We orient
D such that ω13 ∧ ω14 ∧ ω23 ∧ ω24 gives rise to the G-invariant volume element on D.

5.2.1. Special forms for V . The Kudla-Millson form ϕ2 is an element in

[S(VR)⊗A2(D)]G ' [S(VR)⊗
∧2

p∗]K ,

where the isomorphism is given by evaluation at the base point. Here A2(D) denotes
the differential 2-forms on D. Note that G acts diagonally in the natural fashion. At
the base point ϕ2 is given by

ϕ2 =
1

2

4∏
µ=3

2∑
α=1

(
xα −

1

2π

∂

∂xα

)
ϕ0 ⊗ ωαµ.

Here ϕ0(x) := e−π(x,x)0 , where (x, x)0 =
∑4

i=1 x
2
i is the minimal majorant associated

to the base point in D. Note that ϕ2 has weight 2, see [21]. There is another Schwartz
form ψ1 of weight 0 which lies in [S(VR)⊗A1(D)]G ' [S(VR)⊗ p∗]K and is given by

(5.2) ψ1 = −x1x3ϕ0(x)⊗ω14 +x1x4ϕ0(x)⊗ω13−x2x3ϕ0(x)⊗ω24 +x2x4ϕ0(x)⊗ω23.

The key relationship is (see [24], §8)

Theorem 5.1.
ω(L)ϕ2 = dψ1.

Here ω(L) is the Weil representation action of the SL2-lowering operator L = 1
2

(
1 −i
−i −1

)
∈

sl2(R) on S(VR), while d denotes the exterior differentiation on D.

On the upper half plane H, the action of L corresponds to the action of the classical
Maass lowering operator which we also denote by L. For a function f on H, we have

Lf = −2iv2 ∂

∂τ̄
f.
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When made explicit using (5.1) Theorem 5.1 translates to

(5.3) v
∂

∂v
ϕ0

2(
√
vx) = d

(
ψ0

1(
√
vx)
)
.

5.2.2. The singular form ψ̃1. We define the singular form ψ̃1 by

ψ̃1(x) = −
(∫ ∞

1

ψ0
1(
√
rx)

dr

r

)
e−π(x,x) = − 1

2π(x2
3 + x2

4)
ψ1(x).(5.4)

for x 6= 0, and as before ψ̃0
2,0(x) = ψ̃1(x)eπ(x,x) and ψ̃1(x, z). We see that ψ̃1 is defined

for x /∈ span[e3, e4]⊥. Formulated differently, ψ̃1(x, z) for fixed x is defined for z /∈ Dx.

Furthermore, as if ψ̃1 was a Schwartz function of weight 2, we define

ψ̃1(x, τ, z) = ψ̃0
1(
√
vx, z)eπi(x,x)τ = −

(∫ ∞
v

ψ0
1(
√
rx, z)

dr

r

)
eπi(x,x)τ .(5.5)

Proposition 5.2. ψ̃1(x, z) is a differential 1-form with singularities along Dx. Out-
side Dx, we have

dψ̃1(x, z) = ϕ2(x, z).

Here d denotes the exterior differentiation on D. In particular, for (x, x) ≤ 0, we see
that ϕ2(x) is exact. Furthermore,

Lψ̃1(x, τ) = ψ1(x, τ).

Proof. Using (5.4) and (5.3), we see

dψ̃0
1(x, z) = −

∫ ∞
1

d
(
ψ0

1(
√
rx, z)

) dr
r

= −
∫ ∞

1

∂

∂r

(
ϕ0

2(
√
rx, z)

) dr
r

= ϕ0
2(x, z),

as claimed. The formula Lψ̃1(x, τ) = ψ1(x, τ) follows easily from (5.5). �

Remark 5.3. The construction of the singular form ψ̃ works in much greater gener-
ality for O(p, q) whenever we have two Schwartz forms ψ and ϕ (of weight r − 2 and
r resp.) such that

dψ = Lϕ.

Then the analogous construction of ψ̃ then immediately yields dψ̃ = ϕ outside a
singular set. The main example for this are the general Kudla-Millson forms ϕq
and ψq−1, see [24]. For these forms, this construction is already implicit in [5]. In

particular, the proof of Theorem 7.2 in [5] shows that ψ̃ gives rise to a differential
character for the analogous cycle Cx, see also Section 8 of this paper. The unitary
case will be considered in [10].

5.3. Schwartz forms for W . Let W ⊂ V be the rational quadratic space of signa-
ture (1, 1) obtained from the Witt decomposition of V . We will refer to the nullcone
of W as the light-cone. We write m ' R for the Lie algebra of M = SO0(WR).
Then X23 = e2 ∧ e3 is its natural generator with dual ω23. We identify the associated
symmetric space DW to M with the space of lines in WR on which the bilinear form
( , ) is negative definite:

DW = {s ⊂ WR; dim s = 1 and ( , )|s < 0}.
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We pick as base point of DW the line s0 spanned by e3. We set x(s) := m(s)e3 =
sinh(s)e2+cosh(s)e3. This realizes the isomorphism DW ' R. Namely, s = spanx(s).
Accordingly, we frequently write s for s and vice versa. A vector x ∈ W of positive
length defines a point DW,x in D via DW,x = {s ∈ D; s ⊥ x}. So s = DW,x if and
only if (x, x(s)) = 0. We also write s(x) = DW,x.

5.3.1. Special forms for W . We carry over the conventions from section 5.1. We first
consider the Schwartz form ϕ1,1 on WR constructed in [12] (in much greater generality)
with values in A1(DW )⊗WC. More precisely,

ϕ1,1 ∈ [S(WR)⊗A1(DW )⊗WC]M ' [S(WR)⊗m∗ ⊗WC],

Here M acts diagonally on all three factors. Explicitly at the base point, we have

ϕ1,1(x) =
1

23/2

(
4x2

2 −
1

π

)
e−π(x2

2+x2
3) ⊗ ω23 ⊗ e2.

Note that ϕ1,1 has weight 2, see [12], Theorem 6.2. We define ϕ1,1(x, s) and ϕ0
1,1 as

before. There is another Schwartz function ψ0,1 of weight 0 given by

ψ0,1(x) = − 1√
2
x2x3e

−π(x2
2+x2

3) ⊗ 1⊗ e2 +
1

4
√

2π
e−π(x2

2+x2
3) ⊗ 1⊗ e3

∈ [S(WR)⊗
∧0

m∗ ⊗WC],

and also ψ0,1(x, s) and ψ0
0,1. Note that the notation differs from [12], section 6.5. The

function ψ0,1 defined here is the term −ψ1,1 − 1
2
Λ1,1 given in Theorem 6.11 in [12].

The key relation between ϕ1,1 and ψ0,1 (correcting a sign mistake in [12]) is given by

Theorem 5.4. ([12], Theorem 6.2)

ω(L)ϕ1,1 = dψ0,1.

When made explicit, we have, again using (5.1),

(5.6) v3/2 ∂

∂v

(
v−1/2ϕ0

1,1(
√
vx, s)

)
= d

(
ψ0

0,1(
√
vx, s)

)
.

5.3.2. The singular Schwartz function ψ̃0,1. In the same way as for V we define

ψ̃0,1(x) = −
(∫ ∞

1

ψ0
0,1(
√
rx)r−3/2dr

)
e−π(x,x)(5.7)

for all x ∈ W , including x = 0. Define ψ̃0
0,1(x), ψ̃0

0,1(x, s) as before and also

ψ̃0,1(x, τ, s) = v−1/2ψ̃0
0,1(
√
vx, s)eπi(x,x)τ = −

(∫ ∞
v

ψ0
0,1(
√
rx, s)r−3/2dr

)
eπi(x,x)τ .

Note that ψ̃0,1(x, s) has a singularity at Dw,x. Define functions A and B by

ψ̃0,1(x) = A(x)⊗ 1⊗ e2 +B(x)⊗ 1⊗ e3

and note

(5.8) −X23B(x) = A(x).

We extend these functions to DW as before. We see by integrating by parts
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Lemma 5.5.

A(x) =
1

2
√
π
x2

x3

|x3|
Γ(1

2
, 2πx2

3)e−π(x,x)

B(x) = − 1

2
√

2π
e−π(x2

2+x2
3) +

1

2
√
π
|x3|Γ(1

2
, 2πx2

3)e−π(x,x).

Here Γ(1
2
, a) =

∫∞
a
e−uu−1/2du is the incomplete Γ-funtion at s = 1/2.

It is now immediate that B is continuous and bounded on DW . Since A is clearly
bounded we find that A and B are locally integrable on DW and integrable and
square-integrable on W . The singularities of A and B are given as follows.

Lemma 5.6. (i) B(x)− (1/2)|x3|e−π(x,x) is C2 on the Minkowski plane W .
(ii) A(x)− (1/2)x2

x3

|x3|e
−π(x,x) is C1 on the Minkowski plane W .

Proof. Use Lemma 5.5, expand the incomplete gamma function around x3 = 0, and
observe that |x|xn is Cn for n > 0. �

The key properties of ψ̃0,1 analogous to Lemma 5.2 are given by

Lemma 5.7. Outside DW,x,

dψ̃0,1(x, s) = ϕ1,1(x, s) and Lψ̃0,1(x, τ) = ψ0,1(x, τ).

5.3.3. The singular function ψ̃′0,1. Inspired by [16], section 2.3, we define a functions
A′(x) and B′(x) on W by

B′(x) =

{
1
2

min(|x2 − x3|, |x2 + x3|)e−π(x,x) ifx2
2 − x2

3 > 0,

0 otherwise,
(5.9)

A′(x) = −X23B
′(x) = − sgn(x2x3)B′(x).

Lemma 5.8. (i) B′(x) + 1
2
|x3|e−π(x,x) is C2 on the complement of the light-cone

in W and C2 on nonzero M-orbits.
(ii) A′(x) + 1

2
x2

x3

|x3|e
−π(x,x) is C1 on the complement of the light-cone in W and C1

on nonzero M-orbits.

We define ψ̃′0,1 by

ψ̃′0,1(x) = A′(x)⊗ 1⊗ e2 +B′(x)⊗ 1⊗ e3

and ψ̃′0,1(x, τ, s) = v−1/2m(s)ψ̃′0,1(m−1(s)
√
vx))eπi(x,x)τ . A little calculation shows that

ψ̃′0,1(x) is locally constant on DW with a singularity at DW,x and holomorphic in τ :

Lemma 5.9. Outside DW,x we have

dψ̃′0,1(x) = 0 and Lψ̃′0,1(x, τ) = 0.

Remark 5.10. The functions ψ̃0,1(x) and ψ̃′0,1(x) define currents on DW . One can
show, similarly to Section 6.5, that for (x, x) > 0 we have

d[ψ̃0,1(x)] = δDW,x⊗x + [ϕ1,1(x)], d[ψ̃′0,1(x)] = −δDW,x⊗x,
where DW,x ⊗ x is the 0-cycle DW,x ‘with coefficient x ∈ W ’ defined in [12].
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5.3.4. The form φ0,1 on W . We now combine ψ̃0,1 and ψ̃′0,1 to obtain an integrable
and also square-integrable W -valued function

φ0,1 ∈ [L2(WR)⊗
∧0

m∗ ⊗WC]

by
φ0,1(x) = ψ̃0,1(x) + ψ̃′0,1(x)

and then also φ0,1(x, s). Combining Lemmas 5.6, 5.8 and (5.8), (5.9) we obtain

Proposition 5.11. (i) B(x) + B′(x) is C2 on the complement of the light-cone
in W and C2 on nonzero M-orbits.

(ii) A(x) + A′(x) is C1 on the complement of the light-cone in W and C1 on
nonzero M orbits.

(iii) X23(B +B′) = −(A+ A′) on all of W .
So for given x, the function φ0,1(x, s) is a C1-function on DW with values in WC.

The following theorem is fundamental for us. It is an immediate consequence of
the Lemmas 5.7 and 5.9.

Theorem 5.12. The form ϕ1,1 on DW is exact. Namely,

dφ0,1 = ϕ1,1.

Furthermore,
Lφ0,1 = dψ0,1.

Proposition 5.13. The function φ0,1 is an eigenfunction of K ′ = SO(2) of weight 2
under the Weil representation. More precisely,

ω(k′)φ0,1 = χ2(k′)φ0,1,

where χ is the standard character of SO(2) ' U(1).

Proof. It suffices to show this for one component of φ0,1, that is, the function B(x) +
B′(x). Then the assertion has been already proved in §2.3 by showing that B(x) +
B′(x) is an eigenfunction under the Fourier transform. We give here an infinitesimal
proof. Since ω(k′) acts essentially as Fourier transform and B + B′ is L1, we see
that ω(k′)(B + B′) is continuous. Hence it suffices to establish the corresponding
current equality [ω(k′)(B+B′)] = χ2(k′)[B+B′], since continuous functions coincide
when they induce the same current. The infinitesimal generator of K ′ acts by H :=
−i
4π

(
∂2

∂x2
2
− ∂2

∂x2
3

)
+ πi(x2

2 − x2
3), and a straightforward calculation immediately shows

HB′ = 2iB′ and HB = 2iB,

outside the singularity x2
2 − x2

3 = 0. Now we consider the currents H[B] and H[B′].

An easy calculation using that B and B′ are C2 up to |x3|e−π(x2
2−x2

3) shows that for a
test function f on W we have

H[B](f) = [HB](f) +

∫ ∞
0

e−πx
2
2f(x2, 0)dx2,

H[B′](f) = [HB′](f)−
∫ ∞

0

e−πx
2
2f(x2, 0)dx2.
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Thus H[B +B′] = [H(B +B′)] = 2i[B +B′] as claimed. �

5.3.5. The map ιP . We define a map

ιP : S(WR)⊗
∧i

m∗ ⊗WC → S(WR)⊗
∧i+1

(m∗ ⊕ n∗)

by
ιP (ϕ⊗ ω ⊗ w) = ϕ⊗ ((ω ∧ (w ∧ u′)) .

Here we used the isomorphism n ' W ∧ Ru ∈
∧2 VR ' g and identify W with its

dual via the bilinear form ( , ) so that n∗ ' W ∧ Ru′. In [13], Section 6.2 we explain
that ιP is a map of Lie algebra complexes. Hence we obtain a map of complexes

[S(WR)⊗Ai(DW )⊗WC]M → [S(WR)⊗Ai+1(e(P ))]NM ,

which we also denote by ιP . Here N acts trivially on S(WR). Explicitly, the vectors
e2 and e3 in W map under ιP to the left-invariant 1-forms

e2 7→ cosh(s)dw2 − sinh(s)dw3 e3 7→ sinh(s)dw2 − cosh(s)dw3

with the coordinate functions w2, w3 on W defined by w = w2e2 +w3e3. We apply ιP
to the forms on W of this section, and we obtain ϕP1,1, φP0,1, ψP0,1, and ψ′P0,1.

6. The boundary theta lift and linking numbers in Sol

6.1. Global theta functions for W . We let LW be a ΓP -invariant (coset of a)
lattice in W , where ΓN acts trivially on W . For ϕ1,1, we define its theta function by

θϕ1,1(τ,LW ) =
∑
x∈LW

ϕ1,1(x, τ)

and similarly for ψ0,1, and φ0,1. Then the usual theta machinery gives that θϕ1,1(τ,LW )
and θφ0,1(LW ) both transform like (non)-holomorphic modular forms of weight 2 for
some congruence subgroup of SL2(Z).

Remark 6.1. The claim is not obvious for θφ0,1 , since φ0,1 is not a Schwartz function.
In that case, we use Proposition 5.11. The component B + B′ of φ0,1 is C2 outside
the light cone. Since W is anisotropic we can then apply Possion summation, and
this component transforms like a modular form. Then apply the differential operator
X23 to obtain the same for the other component A+ A′ of φ0,1.

In fact, if W is isotropic and LW intersects non-trivially with the light cone, then
θφ0,1 is not quite a modular form. The case, when the Q-rank of V is 2 is interesting
in its own right. We will discuss this elsewhere.

Via the map ιP from Section 5.3.5 we can view all theta functions for W as functions
resp. differential forms on e′(P ). We set θPϕ1,1

= θϕP1,1 , and similarly θPψ0,1
and θPφ0,1

.

Since ιP is a map of complexes we immediately see by Theorem 5.4 and Theorem 5.12

Proposition 6.2.

LθPϕ1,1
= dθPψ0,1

and LθPφ0,1
= θPψ0,1

.

We now interpret the (holomorphic) Fourier coefficients of the boundary theta lift
associated to θPφ (τ,LWP

). They are given by linking numbers. We have
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Theorem 6.3. Let c a homological trivial 1-cycle in e′(P ) which is disjoint from
the torus fibers containing components of ∂Cn or for c = ∂Cy for Cy one of the
components of Cn, we have∫

c

θPφ0,1
(τ,LWP

) =
∞∑
n=1

Lk((∂Cn)P , c)q
n +

∑
n∈Q

∫
c

ψ̃P0,1(n)(τ).

So the Fourier coefficients of the holomorphic part of
∫
c
θPφ (τ,LWP

) are the linking
numbers of the cycles c and ∂Cn at the boundary component e′(P ).

Theorem 6.3 follows from φ0,1 = ψ̃0,1 + ψ̃′0,1 combined with Theorem 6.7 below.

Example 6.4. In the situation of Examples 2.1 and 4.12, we obtain∫
∂C1

θPφ0,1
(τ,LWP

) =
1√
2d

∑
λ∈OK
λλ′>0

min(|λ|, |λ′|)e−2πλλ′τ−
√

2√
dv

∑
λ∈OK

β(πv(λ−λ′)2)e−2πλλ′τ ,

where β(s) = 1
16π

∫∞
1
e−stt−3/2dt. This is (up to a constant) exactly Zagier’s function

W(τ) in [16], §2.3.

6.2. Linking numbers, de Rham cohomology and linking duals. We begin
with a general discussion of integral formulas for linking numbers. Such formulas go
back to the classical Gauss-Ampère formula for R3, see [8], p.79-81, and [7] for its
generalization to S3 and H3. Suppose now that c is a 1-cycle in an oriented compact
3-manifold M that is a rational boundary and U is a tubular neighborhood of c.

Definition 6.5. We will say any closed form β in M − U is a linking dual (relative
to U) of the bounding 1-cycle c if for any 1-cycle a in M − U which is a rational
boundary in M we have ∫

a

β = Lk(a, c).

We will prove that given a cycle c that bounds rationally then linking duals for c
exist for all tubular neighborhoods U of c. Let η be a Thom form for c compactly
supported in U . This means that η is closed and has integral 1 over any normal disk
to c. Let ηM be the extension of η to M by zero. It is standard in topology (the
extension of the Thom class by zero is the Poincaré dual of the zero section of the
normal bundle) that the form ηM represents the 2-dimensional cohomology class on
M which is Poincaré dual to c. Since c is a rational boundary there exists a 1-form β
on M such that dβ = ηM . We will now see that β is a linking dual of c. To this end,
suppose a is a 1-cycle in M−U which is a rational boundary in M , hence there exists
a rational chain A with ∂A = a. We may suppose ηM vanishes in a neighborhood V
of a which is disjoint from U . Then the restriction ηM−V of ηM to M − V represents
the (relative) Poincaré dual of the absolute cycle c in (M −V, ∂(M −V )). Using this
the reader will show that∫

A

ηM =

∫
A∩(M−V )

ηM−V = A · c = Lk(a, c).
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Note that restriction of β to M − U is closed. Then∫
a

β =

∫
A

ηM = Lk(a, c).

Hence we have

Proposition 6.6. β is a linking dual of c.

6.3. The 1-form e2πnψ̃′0,1(n) is a linking dual of (∂Cn)P . We now return to the
case in hand. In what follows, we drop subscript and superscript P ’s since we are
fixing a boundary component e(P ). We let Fn be the union of the fibers containing
components of ∂Cn, and we let Fx be the fiber containing cx. Recall that cx is the
image of Dx ∩ e(P ) in e′(P ).

Theorem 6.7. Let n > 0. The 1-form e2πnψ̃′0,1(n) is a linking dual for ∂Cn in e′(P )
relative to any neighborhood U of Fn. Hence, for c a rational 1-boundary in e′(P )
which is disjoint from Fn we have

(6.1)

∫
c

ψ̃′0,1(n) = Lk(∂Cn, c)e
−2πn.

Furthermore, (6.1) holds when c = cy contained in one fiber Fx of ∂Cn.

We will first deal with the case in which c is disjoint from Fn (which we will refer
to in what follows as case (i)), then at the end of this section we will reduce the case
in which c = cy (which we will refer to as case (ii)) to case (i) by a Stokes’ Theorem
argument. Thus we will now assume we are in case (i).

The key step is

Proposition 6.8. Let n > 0 and let η be an exact 2-form in e′(P ) which is compactly
supported in the complement of Fn. Then

(6.2)

∫
e′(P )

η ∧ ψ̃′0,1(n) =

(∫
An

η

)
e−2πn.

Remark 6.9. Note that (6.2) also holds in case η = ΩP . In this case the right-hand
side is zero by the normalization of the cap An and the left-hand side is zero because
Ω ∧ ψ̃′0,1(n) = 0 since Ω has bidegree (0, 2) and ψ̃′0,1(n) has bidegree (0, 1) (here we
use the obvious base/fiber bigrading on the de Rham algebra of e′(P )).

6.4. Proof of Proposition 6.8.

Lemma 6.10. Under the hypothesis on η in Proposition 6.8 we have∫
An

η =
∑

x∈ΓM\LW
(x,x)=2n

min
λ∈ΛW

′|(λ, x)|
∫
ax

η

Proof. We use Lemma 4.3. Write η = dω for some 1-form ω which by the support
condition on η is closed in Fn. Since cx+ku and cx are parallel hence homologous
circles in Fx, we see

∫
ax+ku

η =
∫
cx+ku

ω =
∫
cx
ω =

∫
ax
η. �
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Since

ψ̃′0,1(n) =
∑

x∈ΓM\LW
(x,x)=2n

∑
γ∈ΓM

γ∗ψ̃′0,1(x),

Proposition 6.8 will now follow from

Proposition 6.11. Under the hypothesis on η in Proposition 6.8, we have for any
positive length vector x ∈ LW∫

e′(P )

η ∧
∑
γ∈ΓM

γ∗ψ̃′0,1(x) = ( min
λ∈ΛW

′|(λ, x)|)
(∫

ax

η

)
e−π(x,x).

Proof. By choosing appropriate coordinates we can assume that x = µe2 with µ =
±
√

2n, so that the singularity of
∑

γ∈ΓM
γ∗ψ̃′0,1(x) in e′(P ) occurs at s = 0. We pick

a tubular neighborhood Uε = (−ε, ε)× T 2 in e′(P ) around Fx. Then we have first∫
e′(P )

η ∧
∑
γ∈ΓM

γ∗ψ̃′
P

0,1(x) = lim
ε→0

∫
e′(P )−Uε

η ∧
∑
γ∈ΓM

γ∗ψ̃′
P

0,1(x).

Since η ∧ ψ̃′0,1(x) = d(ω ∧ ψ̃′0,1(x)) outside Uε and ∂(e′(P ) − Uε) = −∂Uε we see by
Stokes’ theorem∫

e′(P )−Uε
η ∧

∑
γ∈ΓM

γ∗ψ̃′0,1(x) = −
∫
∂Uε

ω ∧
∑
γ∈ΓM

γ∗ψ̃′0,1(x)(6.3)

=
∑
γ∈ΓM

∫
T 2

[
ω(−ε, w) ∧ ˜ψ′0,1(γ−1x,−ε, w)− ω(ε, w) ∧ ψ̃′0,1(γ−1x, ε, w)

]
.

For γ 6= 1 we note that ω(s, w) ∧ ψ̃′0,1(γ−1x, s, w) is continuous at s = 0, while for
γ = 1, we have

(6.4) ψ̃′0,1(µe2, s, w) =
1

2
|µ|(sgn(s)dw2 − dw3)e−πµ

2

.

Hence taking the limit in the last term of (6.3) we obtain

|µ|e−πµ2

∫
T 2

ω3(0, w)dw2dw3 = |µ|e−πµ2

∫
T 2/ce2

(∫
ce2

ω(0, w2, w3)

)
dw2.

In the expression T 2/ce2 (and for the rest of this proof) we have abused notation and
identified the cycle ce2 with the subgroup 0× S1 of T 2.

Here ω3 is the dw3 component of ω and we used that ∂Dx is the w3-line in W . Note
that the inner integral on the right is the period of ω over (homologous) horizontal
translates of the cycle ce2 . But the restriction of ω to Fx is closed so

∫
ce2
ω(0, w2, w3)

is independent of w2 and the last integral becomes
(∫

T 2/ce2
dw2

)(∫
ce2
ω
)
e−πµ

2
. But∫

ce2
ω =

∫
Ae2

η. The proposition is then a consequence of

|µ|
∫
T 2/∂ce2

dw2 = |µ| min
λ∈ΛW

′|(λ, e2)| = min
λ∈ΛW

′|(λ, x)|,
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which follows from the fact that the map W → R given by w 7→ (w, e2) induces an
isomorphism T 2/∂Ce2 ' R/min′λ∈ΛW

|(λ, e2)|)Z.
�

6.5. Proof of Theorem 6.7. We now prove Theorem 6.7. First we will assume that
we are in case(i). We need to show∫

c

ψ̃′0,1(n) = Lk(∂Cn, c)e
−2πn = (An · c)e−2πn.

The theorem will be a consequence of the following discussion. We may assume that
c is an embedded loop in e′(P ) (note that since any loop in a manifold of dimension
3 or more is homotopic to an embedded loop by transversality any homology class of
degree 1 in e′(P ) is represented by an embedded loop).

Choose a tubular neighborhood N(c) of c such that N(c) is disjoint from Fn. Let
ηc be a closed 2-form which is supported inside N(c) and has integral 1 on the disk
fibers of N(c) (a Thom class for the normal disk bundle N(c)). Then we have proved
in Subsection 6.2

Lemma 6.12.

(6.5)

∫
An

ηc = An · c = Lk(∂Cn, c).

We then have

Lemma 6.13. ∫
c

ψ̃′0,1(n) =

(∫
An

ηc

)
e−2πn.

Proof. To prove the Lemma we compute
∫
e′(P )

ηc∧ ψ̃′0,1(n) =
∫
e′(P )

ψ̃′0,1(n)∧ηc in two

different ways. First we apply Proposition 6.8 with η = ηc. We deduce∫
e′(P )

ηc ∧ ψ̃′0,1(n) =

(∫
An

ηc

)
e−2πn.

Next choose a tubular neighborhood Vn of the fibers Fn such that e′(P )−Vn contains

N(c). Then ψ̃′0,1(n) is smooth on e′(P )−Vn ⊃ supp(ηc). Also, since ηc is the extension
of a Thom class by zero, the restriction of ηc to e′(P ) − Vn represents the Poincaré
dual PD(c) of the absolute cycle c in e′(P )− Vn. The lemma now follows from∫
e′(P )

ψ̃′0,1(n) ∧ ηc =

∫
e′(P )−Vn

ψ̃′0,1(n) ∧ ηc =

∫
e′(P )−Vn

ψ̃′0,1(n) ∧ PD(c) =

∫
c

ψ̃′0,1(n).

�

By Lemma 6.12 this concludes the proof of Theorem 6.7 in the case when c is
disjoint from the fibers Fn.

It remains to treat case (ii). Thus we now assume that c = cy which is contained
in a fiber Fx containing a component of ∂Cn. We first prove

Lemma 6.14. ∫
c

ψ̃′0,1(x) =

∫
c(ε)

ψ̃′0,1(x).
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Proof. We can take x = µe2 and hence c is contained in the fiber over the image of
e3 ∈ W . Hence, by Proposition 4.1, c is the circle in the torus fiber at s(x) = 0 in
the e3-direction, i.e., parallel to the image of (0,Re3) in e′(P ). We note that by (6.4)

even though ψ̃′0,1(x) is not defined on the whole fiber over s = 0 its restriction to c
is smooth. Hence the left hand side is well-defined since all the other terms in the
sum are defined on the whole fiber and in fact in a neighborhood of that fiber. Hence

the locally constant form
∑

γ∈ΓM
γ∗ψ̃′0,1(x) is closed on the cylinder [0, ε]× c, and its

integrals over the circles s× c all coincide. But ε× c = c(ε). The lemma follows. �

Summing over x and using case (i) we obtain∫
c

ψ̃′0,1(n) =

∫
c(ε)

ψ̃′0,1(n) = Lk(∂Cn, c(ε)),

since c(ε) is disjoint from all the components of Fn. Thus it suffices to prove

(6.6) Lk(∂Cn, c) = Lk(∂Cn, c(ε)).

To this end suppose that c ⊂ Fx ⊂ Fn and c1, · · · , ck are the components of ∂Cn
contained in Fx. Hence c and ci, 1 ≤ i ≤ k, are all parallel. Since the fibers containing
all other components of ∂Cn are disjoint from c, (6.6) will follow from

Lk(ci, c) = Lk(ci, c(ε)), 1 ≤ i ≤ k.

If ci = c then the previous equation is the definition of Lk(c, c). Thus we may
assume ci is parallel to and disjoint from c. In this case their linking number is
already topologically defined. But since c is disjoint from ci the circles c and c(ε) are
homologous in the complement of ci (by the product homology c × [0, ε]) and since
the linking number with ci is a homological invariant of the complement of ci in e′(P )
we have Lk(ci, c(ε)) = Lk(ci, c).

We this Theorem 6.7 is proved.

7. The generating series of the capped cycles

In this section, we show that the generating series of the ‘capped’ cycles Cc
n gives

rise to a modular form, extending Theorem 7.1 to a lift of the full cohomology H2(X)
of X. In particular, we give our new proof of the theorem of Hirzebruch and Zagier
and show how a remarkable feature of their proof appears from our point of view.

7.1. The theta series associated to ϕ2. We define the theta series

θϕ2(τ,L) =
∑
x∈L

ϕ2(x, τ, z).

In the following we will often drop the argument L = L+ h. For n ∈ Q, we also set

ϕ2(n) =
∑

n∈Ln,x 6=0

ϕ2(x).

Clearly, θϕ2(τ,L) and ϕ2(n) descend to closed differential 2-forms on X. Furthermore,
θϕ2(τ,L) is a non-holomorphic modular form in τ of weight 2 for the principal con-
gruence subgroup Γ(N). In fact, for L = L as in Example 2.1, θϕ2(τ,L) transforms
like a form for Γ0(d) of nebentypus.
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Theorem 7.1 (Kudla-Millson [24]). We have

[θϕ2(τ)] = − 1

2π
δh0[ω] +

∑
n>0

PD[Cn]qn ∈ H2(X,Q)⊗M2(Γ(N)).

That is, for any closed 2-form η on X with compact support,

Λ(η, τ) :=

∫
X

η ∧ θϕ2(τ,L) = − 1

2π
δh0

∫
X

η ∧ ω +
∑
n>0

(∫
Cn

η

)
qn.

Here δh0 is Kronecker delta, and ω is the Kähler form on D normalized such that its
restriction to the base point is given by ω13 ∧ ω14 + ω23 ∧ ω24. We obtain a map

(7.1) Λ : H2
c (X,C)→M2(Γ(N))

from the cohomology with compact supports to the space of holomorphic modular forms
of weight 2 for the principal congruence subgroup Γ(N) ⊂ SL2(Z)). Alternatively, for
C an absolute 2-cycle in X defining a class in H2(X,Z), the lift Λ(C, τ) is given by
(1.1) with C0 the class given by − 1

2π
δh0[ω].

The key fact for the proof of the Fourier expansion is that for n > 0, the form ϕ2(n)
is a Poincaré dual form of Cn, while ϕ2(n) is exact for n ≤ 0, see also Section 8.

7.2. The restrictions of the global theta functions.

Theorem 7.2. The differential forms θϕ2(LV ) and θψ1(LV ) on X extend to the Borel-
Serre compactification X. More precisely, for the restriction i∗P to the boundary face
e′(P ) of X, we have

i∗P θϕ2(LV ) = θPϕ1,1
(LWP

) and i∗P θψ1(LV ) = θPψ0,1
(LWP

).

Proof. The restriction of θϕ2(LV ) is the theme (in much greater generality) of [13]. For
θψ1(LV ) one proceeds in the same way. In short, one detects the boundary behaviour
of the theta functions by switching to a mixed model of the Weil representation. For
a model calculation see the proof of Theorem 7.4 below. �

We conclude by Proposition 6.2

Theorem 7.3. The restriction of θϕ2(LV ) to the boundary of X is exact and

i∗P θϕ2(LV ) = d
(
θPφ0,1

(LWP
)
)
.

We also have a crucial restriction result for the singular form ψ̃0,1. However, one

needs to be careful in forming the naive theta series associated to ψ̃0,1 by summing
over all (non-zero) lattice elements. This would give a form on X with singularities

on a dense subset of X. Instead we define ψ̃2,0(n) in the same way as for ϕ2(n) by
summing over all non-zero x ∈ LV of length n ∈ Q. This gives a 1-form on X which
for n > 0 has singularities along the locally finite cycle Cn. Similarly, we define

ψ̃P0,1(n) =
∑

x∈LWP ,(x,x)=2n

ψ̃P0,1(x),

which descends to a 1-form on e′(P ) with singularities. We also define ψ̃′0,1(n) and

φP0,1(n) in the same way. We have
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Proposition 7.4. The restriction of the 1-form ψ̃1(n) to e′(P ) is given by

i∗P ψ̃1(n) = ψ̃P0,1(n).

Proof. We assume that P is the stabilizer of the isotropic line ` = Qu. For x =
au+ xW + bu′, we have for the majorant at z = (w, t, s) the formula

(x, x)z =
1

t2
(a− (xW , w)− bq(w))2 + (xw + bw, xw + bw)s + b2t2.

Here ( , )s is the majorant associated to W . Hence by (5.4) and (5.2) we see that the

sum of all x ∈ LV with b 6= 0 in ψ̃1(n) is uniformly rapidly decreasing as t→∞. Now
fix an element xW ∈ LW . Then xW +(a+h)u ∈ LV for all a ∈ Z for some h ∈ Q/Z; in

fact all elements in LV ∩ u⊥ are of this form. We consider
∑

a∈Z ψ̃1(xW + (a+ h)u, z)
as t → ∞. By considerations as in [13], sections 4 and 9, we can assume w = 0 and
s = 0. We apply Poisson summation for the sum on a ∈ Z and obtain∑

a∈Z

ψ̃1(xW + au, z) =
∑
k∈Z

(∫ ∞
1

P (x, t, r)e−2πx2
3r+t

2k2/r dr

r

)
e−2πikhe−π(xW ,xW ),

where

P (x, t, r) =
x2x3

√
r√

2
dw2 +

1

2
√

2

(
1

2π
− t2k2

r

)
dw3 −

ix3k√
2
dt+

ix2kt√
2
ds.

Now the sum over all k 6= 0 is rapidly decreasing while for k = 0 we obtain ψ̃0,1(xW ).
If xW = 0, i.e., for n = 0 one needs to argue slightly differently. Then we have∑

a6=0

ψ̃1(au, z) =
1

2
√

2π

∑
a6=0

e−πa
2/t2 dw3

t
=

1

2
√

2π

(∑
k∈Z

e−πt
2k2

)
dw3 −

1

2
√

2π

dw3

t
,

which goes to 1
2
√

2π
dw3 = ψ̃0,1(0). This proves the proposition. �

7.3. Main result. In the previous sections, we constructed a closed 2-form θϕ2 on
X such that the restriction of θϕ2 to the boundary ∂X was exact with primitive∑

[P ] θ
P
φ0,1

. From now on we usually write ϕ for ϕ2 and φ for φ0,1 if it does not cause
any confusion. By the definition of the differential for the mapping cone complex C•

we immediately obtain by Theorem 7.2 and Theorem 7.3

Proposition 7.5. The pair (θϕ2(LV ),
∑

[P ] θ
P
φ0,1

(LWP
)) is a 2-cocycle in C•.

We write for short (θϕ, θφ). We obtain a class [[θϕ, θφ]] in H2(C•) and hence a
class [θϕ, θφ] in H2

c (X). The pairing with [θϕ, θφ] then defines a lift Λc on differential
2-forms on X, which factors through H2(X) = H2(X). By Lemma 3.5 it is given by

Λc(η, τ) =

∫
X

η ∧ θϕ2 −
∑
[P ]

∫
e′(P )

i∗η ∧ θPφ0,1
.

Theorem 7.6. The class [[θϕ, θφ]] is holomorphic, that is,

L (θϕ, θφ) = d(θψ1 , 0).

Hence [θϕ, θφ] is a holomorphic modular form with values in the compactly supported
cohomology of X, so that the lift Λc takes values in the holomorphic modular forms.
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Proof. By Theorem 7.2 and Theorem 6.2 we calculate

d(θψ1 , 0) = (dθψ1 , i
∗θψ1) =

Lθϕ2 ,
∑
[P ]

θPψ0,1

 = L

θϕ2 ,
∑
[P ]

θPφ0,1

 . �

It remains to compute the Fourier expansion in τ of [θϕ, θφ](τ). We will carry this
out in Section 8.

Theorem 7.7. We have

[θϕ, θφ](τ) = − 1

2π
δh0[ω] +

∑
n>0

PD[Cc
n]qn ∈ H2

c (X,Q)⊗M2(Γ(N)).

That is, for any closed 2-form η on X

Λc(η, τ) = − 1

2π
δh0

∫
X

η ∧ ω +
∑
n>0

(∫
Ccn

η

)
qn,

In particular, the map takes values in the holomorphic modular forms and factors
through cohomology. We obtain a map

(7.2) Λc : H2(X)→M2(Γ(N))

from the cohomology with compact supports to the space of holomorphic modular forms
of weight 2 for the principal congruence subgroup Γ(N) ⊆ SL2(Z)). Alternatively, for
C any relative 2-cycle in X defining a class in H2(X, ∂X,Z), we have

Λc(C, τ) = − 1

2π
δh0 vol(C) +

∑
n>0

(Cc
n · C)qn ∈M2(Γ(N)).

Remark 7.8. In the theorem we now consider the Kähler form ω representing a class
in the compactly supported cohomology. In fact, our mapping cone construction gives
an explicit coboundary by which ω is modified to become rapidly decreasing.

7.4. The Hirzebruch-Zagier Theorem. We now view [θϕ, θφ] as a class in H2(X̃)

via the map j# : H2
c (X)→ H2(X̃). We recover the Hirzebruch-Zagier-Theorem.

Theorem 7.9. We have

j#[θϕ, θφ](τ) = − 1

2π
δh0[ω] +

∑
n>0

[T cn]qn ∈ H2(X̃,Q)⊗M2(Γ(N)).

In particular,

− 1

2π
δh0 vol(Tm) +

∑
n>0

(T cn · Tm)X̃q
n ∈M2(Γ(N)).

This is the result Hirzebruch-Zagier proved for certain Hilbert modular surfaces (Ex-
ample 2.1) by explicitly computing the intersection numbers Tm · T cn.

Proof. This follows from Theorem 7.7 since j∗C
c
n = T cn (Proposition 4.7), combined

with the following general principle. Suppose ω is a compactly supported form on X
such that the cohomology class of ω is the Poincaré dual of the homology class of a
cycle C: [ω] = PD(C). Then we have j#[ω] = PD(j∗C). To see this we have only
to replace ω by a cohomologous ‘Thom representative’ of PD(C), namely a closed
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form ω̃ supported in a tubular neighborhood N(C) of C in X such that the integral
of ω̃ over any disk of N(C) is one. Then it is a general fact from algebraic topology
(extension by zero of a Thom class) that ω̃ represents the Poincaré dual of C in any
manifold M containing N(C), in particular for M = X̃. �

Remark 7.10. If one is only interested in recovering the statement of this theorem,
then there is also a different way of deriving this from the Kudla-Millson theory.
Namely, the lift Λ on H2(X) (Theorem 7.1) factors through the quotient of H2(X) by
H2(∂X) since the restriction of θϕ2 is exact (Theorem 7.3). But by Proposition 3.3 we
have j∗H2(X) ' H2(X)/H2(∂X), and the Hirzebruch-Zagier result exactly stipulates
the modularity of the lift of classes in j∗H2(X). However, in that way one misses the
remarkable extra structure coming from ∂X as we will explain in the next subsection.

7.5. The lift of special cycles. We now consider the lift of a special cycle Cy. By
Theorem 7.7 and Lemma 3.5 we see

Λc(Cy, τ,LV ) = − 1

2π
δh0 vol(Cy) +

∑
n>0

(Cc
n · Cy)qn(7.3)

=

∫
Cy

θϕ2(τ,LV )−
∑
[P ]

∫
(∂Cy)P

θPφ0,1
(τ,LWP

).

The two terms on the right, the integrals over Cy and ∂Cy, are both non-holomorphic
modular forms (see below) whose difference is holomorphic (by Theorem 7.6). So the
generating series series of (Cc

n ·Cy) is the sum of two non-holomorphic modular forms.
We now give geometric interpretations for the two individual non-holomorphic forms.

Following [16] we define the interior intersection number of two special cycles by

(Cn · Cy)X = (Cn · Cy)tr + vol(Cn ∩ Cy),

the sum of the transversal intersections and the volume of the 1-dimensional (complex)
intersection of Cn and Cy which occur if one of the components of Cn is equal to Cy.

Theorem 7.11. We have∫
Cy

θϕ2(τ,LV ) = − 1

2π
δh0 vol(Cy) +

∞∑
n=1

(Cn · Cy)Xqn +
∑
n∈Q

∑
[P ]

∫
(∂Cy)P

ψ̃P0,1(n)(τ).

So the Fourier coefficients of the holomorphic part of the non-holomorphic modular
form

∫
Cy
θϕ2 are the interior intersection numbers of the cycles Cy and Cn.

Proof. This is essentially [9], section 5, where more generally O(p, 2) is considered.
There the interpretation of the holomorphic Fourier coefficients as interior intersection
number is given. (For more details of an analogous calculation see [14], section 8).
A little calculation using the formulas in [9] gives the non-holomorphic contribution.

A more conceptual proof would use the relationship between ϕ2 and ψ̃1 (see Propo-

sition 5.2 and Section 8) and the restriction formula for ψ̃1(n) (Theorem 7.4). �

By slight abuse of notation we write Lk(Cn, Cy) =
∑

[P ] Lk((∂Cn)P , (∂Cy)P ) for the
total linking number of ∂Cn and ∂Cy. Then by Theorem 6.3 we obtain
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Theorem 7.12.∑
[P ]

∫
(∂Cy)P

θPφ0,1
(τ,LWP

) =
∑
n>0

Lk(Cn, Cy)q
n +

∑
n∈Q

∑
[P ]

∫
(∂Cy)P

ψ̃P0,1(n)(τ).

So the Fourier coefficients of the holomorphic part of
∫

(∂Cy)P
θPφ (τ,LWP

) are the linking

numbers of the cycles ∂Cy and ∂Cn at the boundary component e′(P ).

Remark 7.13. There is also another “global” proof for Theorem 7.12. The cycle Cy
intersects e′(P ) transversally (when pushed inside) and hence also the cap An. From
this it is not hard to see that we can split the intersection number Cc

n · Cy as

Cc
n · Cy = (Cn · Cy)X − Lk(Cn, Cy).

Hence Theorem 7.12 also follows from combining (7.3) and Theorem 7.11.

Hirzebruch-Zagier also obtain the modularity of the functions given in Theorems 7.11
and 7.12, but by quite different methods. In particular, they explicitly calculate the
intersection number T cn ·Tm. They split the intersection number into the interior part
(Tn · Tm)X and a ‘boundary contribution’ (Tn · Tm)∞ given by

(Tn · Tm)∞ = (Tn · Tm)X̃−X − (Tm − T cm) · (Tn − T cn).

Now by Theorem 7.9 and its proof we have

T cn · Tm = Cc
n · Cm.

We have (per definition) (Tn·Tm)X = (Cn·Cm)X , so Theorem 7.11 gives the generating
series for (Tn ·Tm)X . Note that Theorem 5.4 in [9] also compares the explicit formulas
in [16] for (Tn · Tm)X with the ones obtained via

∫
Cy
θϕ2(τ,LV ). All this implies

(Tn · Tm)∞ = Lk(Cn · Cm).

Independently, we also obtain this from comparing the explicit formulas for the bound-
ary contribution in [16], Section 1.4 with our formulas for the linking numbers, The-
orem 4.11 and Example 4.12.

8. A current approach for the special cycles

In this section we prove Theorem 7.7, the crucial Fourier coefficient formula for
our lift Λc. As a consequence of our approach we will also obtain Theorem 6.7, the
linking number interpretation for the lift at the boundary.

8.1. A differential character for Cc
n. The key step for the entire Kudla-Millson

theory is that for n > 0 the form ϕ2(n) is a Poincaré dual form for the cycle Cn, i.e.,

Theorem 8.1 ([22, 23]). Let η be a closed rapidly decreasing 2-form. Then∫
X

η ∧ ϕ2(n) =

(∫
Cn

η

)
e−2πn.
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To show this they employ at some point a homotopy argument which requires η to
be rapidly decaying. Since we require η to be any closed 2-form on the compactifi-
cation X, their approach is not applicable in our case. Instead, we use a differential
character argument for ϕ2 which implicitly already occurred in [5], Section 7 for
general signature (p, q). Namely, we have

Theorem 8.2. ([5], Section 7) Let n > 0. The singular form ψ̃1(n) is a differential

character in the sense of Cheeger-Simons for the cycle Cn. More precisely, ψ̃1(n) is
a locally integrable 1-form on X, and for any compactly supported 2-form η we have∫

X

η ∧ ϕ2(n) =

(∫
Cn

η

)
e−2πn −

∫
X

dη ∧ ψ̃1(n).

Proof. This is the content of the proofs of Theorem 7.1 and Theorem 7.2 in [5].
There the analogous properties for a singular theta lift associated to ψ is established.
However, the proofs boil down to establish the claims for ψ̃1. The form ψ̃ there is
indeed the form ψ̃1 of this paper. �

Remark 8.3. The form ψ̃1 is closely related to Kudla’s Green function ξ [18, 19]
(more generally for O(p, 2)) which is given by

ξ(x) =

(∫ ∞
1

ϕ0
0(
√
rx)

dr

r

)
e−π(x,x).

Then Ξ(n) =
∑

x∈Ln ξ(x) gives rise to a Green’s function for the divisor Cn and

moreover ddcξ = ϕ2. Here dc = 1
4πi

(∂ − ∂). This suggests dcξ = ψ̃1, which indeed
follows from dcϕ0 = −ψ1, see [5], Remark 4.5.

For n ∈ Q we define

ϕc2(n) := ϕ2(n)−
∑
[P ]

d(fπ∗φP0,1(n))

and follow the current approach to show that for n > 0 the form ϕc2(n) is a Poincaré
dual form for the cycle Cc

n. Here we follow the notation of subsection 3.3. That is,
π∗φP0,1(n) is the pullback to a product neighborhood V of ∂X, and f is a smooth
function on V of the geodesic flow coordinate t which is 1 near t =∞ and zero else.
Note that ϕc2(n) is exactly the n-th Fourier coefficient of the mapping cone element
[θϕ, θφ], when realized as a rapidly decreasing form on X. We also define

ψ̃c1(n) = ψ̃1(n)− fπ∗φP0,1(n).

We call a differential form η on X special if in a neighborhood of each boundary
component e′(P ) it is the pullback of a form ηP on e′(P ) under the geodesic retraction
and if the pullback of the form ηP to the universal cover e(P ) is N -left-invariant.
The significance of the forms lies in the fact that the complex of special forms also
computes the cohomology of X. Note that the proof of Theorem 7.2 shows that θϕ2

is ‘almost’ special; it only differs from a special form by a rapidly decreasing form.
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Theorem 8.4. Let n > 0. The form ψ̃c1(n) is a differential character for the cycle Cc
n.

More precisely, ψ̃c1(n) is a locally integrable 1-form on X and satisfies the following
current equation on special 2 forms on X:

d[ψ̃c1(n)] + δCne
−2πn = [ϕc2(n)].

That is, for any special 2-form η on X we have∫
X

η ∧ ϕc2(n) =

(∫
Ccn

η

)
e−2πn −

∫
X

dη ∧ ψ̃c2(n).

This implies Theorem 7.7 for the positive Fourier coefficients. For n ≤ 0, the form
ϕc2(n) is exact with primitive ψ̃c2(n) which by Theorem 7.4 is decaying. So Theorem 8.4
holds also for n ≤ 0 with Cc

n = ∅. Hence for the these coefficients only the term x = 0
contributes, which gives the integral of η against the Kähler form.

Remark 8.5. In view of Remark 8.3 it is very natural question to ask how one can
modify Kudla’s Green’s function Ξ(n) to obtain a Green’s function for the cycle T cn
in X̃. Extensive discussions with Kühn suggest that (if X has only one cusp)

Ξ(n)− t
∑
x∈LW

(x,x)=2n

fπ∗(B(x) +B′(x))

is such a Green’s function, but we have not checked all details.

8.2. Proof of Theorem 8.4. For simplicity assume that X has only one cusp and
continue the drop the superscript P . We let ρT be a family of smooth functions on a
standard fundamental domain F of Γ in D only depending on t which is 1 for t ≤ T
and 0 for T + 1. We then have∫

X

η ∧ ϕc2(n) = lim
T→∞

∫
X

ρTη ∧ (ϕ2(n)− d(fπ∗φ0,1(n))) .

We apply Theorem 8.2 for the compactly supported form ρTη and obtain∫
X

η ∧ ϕc2(n) = lim
T→∞

[(∫
Cn

ρTη

)
e−2πn −

∫
X

d(ρTη) ∧ ψ̃1(n)(8.1)

−
∫
X

d (ρTη ∧ (fπ∗φ0,1(n)))− d(ρTη) ∧ fπ∗φ0,1(n)

]

The first term on the right hand side of (8.1) goes to
(∫

Cn
η
)
e−2πn as T →∞, while

the third vanishes for any T by Stokes’ theorem. For the two remaining terms of (8.1)
we first note d(ρTη) = ρ′T (t)dt∧ η+ ρTdη and ρ′T (t) = 0 outside [T, T + 1]. We obtain
for these two terms

(8.2) −
∫
X

(dη) ∧
(
ψ̃1(n)− fπ∗φ0,1(n)

)
− lim

T→∞

∫ T+1

T

∫
e′(P )

ρ′T (t)dt ∧ η ∧
(
ψ̃1(n)− fπ∗φ0,1(n)

)
.
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It remains to compute the second term in the previous equation. For T sufficiently
large we have f ≡ 1. Furthermore by Theorem 7.4 and its proof we have ψ̃1(n) =

π∗ψ̃0,1(n)+O(e−Ct). As φ0,1(n) = ψ̃0,1(n)+ ψ̃′0,1(n), we can replace ψ̃1(n)−fπ∗φ0,1(n)

by −π∗ψ̃′0,1(n). Since η is special it does not depend on the t-variable near the
boundary. For the last term in (8.2)

lim
T→∞

∫ T+1

T

ρ′T (t)dt

∫
e′(P )

η ∧ π∗ψ̃′0,1(n) = −
∫
e′(P )

η ∧ ψ̃′0,1(n) = −
(∫

An

η

)
e−2πn.

Indeed, for η = Ω this is Remark 6.9. Otherwise, η is exact with special primitive ω,
and it is not hard to see that the proof of Proposition 6.8 carries over to this situation.
Since Cc

n = Cn
∐

(−An) collecting all terms completes the proof of Theorem 8.4.
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