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Abstract

We study subgroups of PU(2, 1) generated by two unipotent maps A and B whose product AB is
also unipotent. We show that the set of conjugacy classes of such groups is two dimensional and
we provide coordinates on it. By considering their action on complex hyperbolic space H2

C
, we

describe a two dimensional open disc of discrete groups of this type. In particular, our results give
a proof of a conjecture of Schwartz for (3, 3,∞)-triangle groups. As a special case, we also consider
a particular group on the boundary of this disc where the commutator [A,B] is also unipotent. We
show that the boundary of the quotient orbifold associated to the latter group is a spherical CR
uniformisation of the Whitehead link complement.

AMS classification 51M10, 32M15, 22E40

1 Introduction

The framework of this article is the study of the deformations of a discrete subgroup Γ of a Lie group
H in a Lie group G containing H. This question has been addressed in many different contexts. A
classical example is the one where Γ is a Fuchsian group, H = PSL(2,R) and G = PSL(2,C). When
Γ is discrete, such groups are called quasi-Fuchsian. We will be interested in the case where Γ is a
discrete subgroup of H = SO(2, 1) and G = SU(2, 1) (or their natural projectivisations over R and
C respectively). The geometrical motivation is very similar: In the classical case, PSL(2,C) is the
orientation preserving isometry group of hyperbolic 3-space H3 and a Fuchsian group preserves a
totally geodesic hyperbolic plane H2 in H3. In our case SU(2, 1) is (a triple cover of) the holomorphic
isometry group of complex hyperbolic 2-space H2

C
and subgroups of SO(2, 1) preserve a totally geodesic

Lagrangian plane isometric to H2. Such a discrete subgroup of SO(2, 1) is called R-Fuchsian.
A motivating example is the case where Γ is an R-Fuchsian representation ρ0 of π1(Σ), the funda-

mental group of Σ, a closed Riemann surface without boundary and genus g ≥ 2. Then this point ρ0
in the representation variety admits a neighbourhood of maximal dimension containing only discrete
and faithful representations. See [19, 23, 27].

We note that there is a second way to embed the hyperbolic plane totally geodesically in H2
C
,

namely as the intersection of H2
C
with a complex line. A discrete subgroup preserving such a complex

line is called C-Fuchsian. In contrast to the R-Fuchsian case, if Σ is closed surface as above, then all
nearby deformations of a C-Fuchsian representation of π1(Σ) also preserve a complex line. This is a
special case of the rigidity theorems due to Toledo [36] and Goldman and Millson [16] (see also [14],
for an exposition in the context of PU(2, 1)). This contrasting behaviour is a consequence of the fact
that C-Fuchsian representations are reducible, whereas R-Fuchsian ones are not.
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For surfaces with punctures then C-Fuchsian as well as R-Fuchsian representations can be deformed
in a non-trivial way. Several explicit constructions of such deformations have been given by various
authors (see for instance [10, 12, 20, 21, 37, 39]). The quotient of H2

C
by an R or C-Fuchsian punctured

surface group is a disc bundle over the surface. As the surface is non-compact, this bundle is trivial.
Its boundary is a circle bundle over the surface. Things become interesting if we deform the group
in such a way that a loop on the surface is represented by a parabolic map: the topology of the
manifold at infinity can change. A hyperbolic manifold arising in this way was first constructed by
Schwartz (see Theorem 1.1 below). Such three-manifolds appearing on the boundary of quotient of
H2

C
are naturally equipped with a spherical CR structure, which is the analogue of the flat conformal

structure in the real hyperbolic case. These structures are examples of (X,G)-structure, where X =
S3 = ∂H2

C
and G = PU(2, 1). To any such structure on a three manifold M are associated a

holonomy representation ρ : π1(M) −→ PU(2, 1) and a developing map D = M̃ −→ X. This
motivates the study of representations of fundamental groups of hyperbolic three manifolds in PU(2, 1)
and PGL(3,C) initiated by Falbel in [8], and continued in [11, 9] (see also [22]). Among PU(2,1)-
representations, uniformisations (see Definition 1.3 in [5]) are of special interest. There, the manifold
at infinity is the quotient of the discontinuity region by the group action. Schwartz’s example provides
a uniformisation of the Whitehead link complement, and Deraux and Falbel described a uniformisation
of the complement of the figure eight knot in [6]. In [4], Deraux proved that this uniformisation was
flexible.

The main goals of this paper are first to investigate the question of discreteness in the PU(2, 1)-
representation variety of the fundamental group of the 3-punctured sphere where the holonomy around
each boundary component is unipotent, and secondly to produce a spherical CR uniformisation of the
complement of the Whitehead which is non conjugate to Schwartz’s example.

Complex hyperbolic ideal triangle groups are an important motivation for this work. These groups
were first studied by Goldman and Parker in [17] and are generated by three complex reflections
(I1, I2, I3) fixing pairwise asymptotic, distinct complex lines. They are natural PU(2, 1)-deformations
of the classical ideal triangle group in the hyperbolic plane generated by three geodesic reflections
fixing distinct, pairwise asymptotic geodesics. In a complex hyperbolic ideal triangle group, the maps
A = I2I1, B = I1I3 and AB = I2I3 are unipotent parabolic. Furthermore, there are regular elliptic
maps S and T (see Section 2.2) each of order three that cyclically permutes the fixed points of A,
AB and B and the fixed points of A, B and BA respectively. It is not hard to show that A = ST
and B = TS; see Proposition 3.2. Therefore, the group 〈A,B〉 has index 2 in the ideal triangle group
〈I1, I2, I3〉 and index 3 in the group 〈S, T 〉 generated by two elements of order 3.

Complex hyperbolic ideal triangle groups are parametrised up to conjugation by a single real valued
invariant, the Cartan angular invariant, denoted by A, of the fixed points of A, B and AB; see Section
2.6 for precise definitions about the Cartan invariant. In particular A ∈ [−π/2, π/2], it vanishes if and
only if the three points lie in a real plane, and is equal to ±π/2 if and only if the three points lie in a
complex line. Since we assume the three complex lines are distinct then A ∈ (−π/2, π/2). The main
results we are interested in about complex hyperbolic triangle groups are summed up in the following
theorem, saying that discreteness is controlled by a single element (I2I3I1)

2 = [A,B] = (ST−1)3.

Theorem 1.1 (Goldman, Parker [17], Schwartz [30, 31, 33]). Let I1, I2, I3 be complex involutions
fixing distinct, pairwise asymptotic complex lines. Let A be the Cartan invariant of the fixed points of
I1I2, I2I3 and I3I1 and let S be the regular elliptic map cyclically permuting these points.

1. The group 〈I1, I2, I3〉 is a discrete and faithful representation of an (∞,∞,∞)-triangle group if
and only if I1I2I3 is non elliptic. This happens when |A| ≤ arccos

√
3/128.

2. When I1I2I3 is elliptic the group is not discrete. In this case arccos
√
3/128 < |A| < π/2.
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3. When I1I2I3 is parabolic the quotient of H2
C
by the group 〈I1I2, S〉 is a complex hyperbolic orbifold

whose boundary is a spherical CR uniformisation of the Whitehead link complement. These
groups have Cartan invariant A = ± arccos

√
3/128,

The question that initially motivated this work is to understand to what extend such behaviour
can be described in other cases. For example, Will gave another family of discrete and faithful
representations of the fundamental group of the 3-punctured sphere as a special case of [39]. There,
he described a 1-parameter discrete and faithful PU(2, 1)-deformation of (the holonomy of) any finite
volume hyperbolic structure on the surface Σg,p, where g is the genus and p the number of cusps.
Roughly, his idea is to start from an R-Fuchsian group and to bend along the edges of an ideal
triangulation while keeping each ideal triangle in a Lagrangian plane. This construction provides
embeddings of the Teichmüller space Tg,p into the PU(2, 1)-representation variety of π1(Σg,p), of which
images contain only discrete, faithful and parabolicity-preserving representations. Moreover the images
of the boundary parabolic loops by the representations all are unipotent. In the case where g = 0 and
p = 3, there is only one such hyperbolic structure, and we obtain a 1-parameter family of 3-punctured
sphere groups. These groups are generated by two unipotent maps A and B such that AB is also
unipotent (these three group elements correspond to peripheral curves of the 3-punctured sphere).

Z

Figure 1: The parameter space. The exterior curve corresponds to classes of groups for which [A,B]
is parabolic. The portions of the horizontal and vertical axes correspond respectively to ideal triangle
groups and bending groups, that are known to be discrete from previous work [17, 30, 31, 33, 39].
The isolated marked points correspond to groups studied by Deraux–Falbel and Falbel–Parker [6, 13].
The central dashed curve bounds the region Z where we prove discreteness.

Our focus will be on subgroups of PU(2, 1) generated by two unipotent maps A and B whose
product AB is also unipotent. Such a group always lies as an index 3 subgroup of 〈S, T 〉 where S
and T are regular elliptic elements of order three satisfying ST = A and TS = B; see Proposition
3.2. We remark in Proposition 3.3 that the fundamental group of the Whitehead link complement
always surjects onto this group 〈S, T 〉. We show that, up to conjugation in PU(2, 1), such groups are
parametrised by the Cartan angular invariants of the fixed points of (A,AB,B) and the fixed points
of (A,AB,BA), denoted by (α1, α2) ∈ (−π/2, π/2)2; see Theorem 3.1. Note that Γ is R-Fuchsian if
and only if (α1, α2) = (0, 0). Here is our main theorem; see Theorem 5.2 below:

Theorem 1.2. Suppose that Γ = 〈A,B〉 is the group associated to parameters (α1, α2) satisfying
D
(
4 cos2(α1), 4 cos

2(α2)
)
> 0, where D is the polynomial given by

D(x, y) = x3y3 − 9x2y2 − 27xy2 + 81xy − 27x− 27.

Then Γ is discrete and isomorphic to the free group F2. This region is Z in Figure 1.
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The rough idea of the proof is to construct fundamental domains for these groups associated to
their Ford domains. We thus have to consider a 2-parameters family of such polyhedra, and the
polynomial D controls the combinatorial complexity within this family. In particular, Theorem 1.2
gives an explicit neighbourhood of the R-Fuchsian group consisting of discrete and free representations.
A consequence of Theorem 1.2 is that we can completely describe the groups with α1 = 0. These
are Will’s bending groups from [39] described above. It turns out, that they are also subgroups of
(3, 3,∞)-triangle groups. That is, there are three involutions I1, I2, I3, each fixing a complex line,
so that S = I2I1 and T = I1I3 have order 3 and ST = A = I2I3 is unipotent; see Proposition 3.6.
Furthermore, writing B = TS = I1I3I2I1 we have [A,B] = (ST−1)3 = (I2I1I3I1)

3. Our second main
result is a statement analogous to Theorem 1.1 for (3, 3,∞)-triangle groups, proving a special case of
Conjecture 5.1 of Schwartz [32]. Compare with the proof of this conjecture for (3, 3, n)-triangle groups
given by Parker, Wang and Xie in [28].

Theorem 1.3. Let I1, I2 and I3 be complex involutions fixing distinct complex lines and so that
S = I2I1 and T = I1I3 have order three and A = ST = I2I3 is unipotent. Let A be the Cartan
invariant of the fixed points of A, SAS−1 and S−1AS.

1. The group 〈I1, I2, I3〉 is a discrete and faithful representation of the (3, 3,∞)-triangle group if
and only if I2I1I3I1 is non-elliptic. This happens when |A| ≤ arccos

√
3/8.

2. When I2I1I3I1 is parabolic the quotient of H2
C
by 〈A,S〉 is a complex hyperbolic orbifold whose

boundary is a spherical CR uniformisation of the Whitehead link complement. These groups
have Cartan invariant A = ± arccos

√
3/8.

The part of Theorem 1.3 where [A,B] = (I2I1I3I1)
3 is loxodromic follows by restricting Theorem

1.2 to the case where α1 = 0 (and writing α2 = A), and also using Proposition 3.6 for the decompo-
sition. In [39] Will used bending to prove these groups are discrete as long as |A| = |α2| ≤ π/4. The
gap between the vertical segment in Figure 1 and the curve where [A,B] is parabolic illustrates the
non-optimality of the result of [39].

The groups where [A,B] = (I2I1I3I1)
3 is parabolic are the focus of Section 6. The second part

of Theorem 1.3 will be proved in Theorem 6.4. These groups were identified by Falbel, Koseleff and
Rouillier in their census of PGL(3,C) representations of knot and link complement groups, see page
254 of [11].

As well as the ideal triangle groups and bending groups discussed above, there are some other
previously studied discrete groups in this family. We give them in (α1, α2) coordinates and illustrate
them in Figure 1.

1. The groups corresponding to α1 = 0 and α2 = ± arctan
√
7 have been studied in great detail by

Deraux and Falbel who proved that they give a spherical CR uniformisation of the figure eight
knot complement [6]. These groups mean that there is no statement for Theorem 1.3 analogous
to the second part of Theorem 1.1: the group from [6] is contained in a discrete (non-faithful)
(3, 3,∞) triangle groups where I2I1I3I1 is elliptic.

2. The groups where α1 = ±π/6 and α2 = ±π/3 are discrete, since they are subgroups of the
Eisenstein-Picard lattice PU(2, 1;Z[ω]), where ω is a cube root of unity. This lattice has been
studied by Falbel and Parker in [13].

Finally, we explain the title and how work of Riley motivated our method of proof. Riley considered
subgroups of PSL(2,C) generated by two parabolic maps A and B. There is a two (real) parameter
family of such groups and he wanted to determine the parameters for which 〈A,B〉 is discrete and
free. This parameter space has since been called the Riley slice of Schottky space. Riley also identified
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hyperbolic uniformisations of the figure eight knot complement as certain points in this space where
the group is not free; our space also contains CR uniformisations of this group; see Figure 1. One of
Riley’s methods was to construct Ford domains (based at the parabolic fixed points of A). He wrote
computer programmes to determine which parameters correspond to groups where the Ford domain
has the same combinatorics. This work has been taken up more recently by Akiyoshi, Sakuma, Wada
and Yamashita. In their book [1] they illustrate one of Riley’s original computer pictures1, Figure
0.2a, and their version of this picture, Figure 0.2b. The groups we consider in this paper correspond
to the outermost region in these figures where the combinatorial structure is the simplest. This is the
region Z defined by the polynomial D in Theorem 1.2. We believe that it should be possible to mimic
Riley’s approach and to construct regions in our parameter space where the Ford domain is more
complicated. However, as with Riley’s work, this may only be possible via computer experiments.

There is, conjecturally, one extremely significant difference between the classical Riley slice and
our complex hyperbolic version. The boundary of the Riley slice is not a smooth curve and has a dense
set of points where particular group elements are parabolic. (This is an extremely rich and beautiful
topic and we refer the reader to [1] and the references it contains.) On the other hand, we believe that
discreteness is completely controlled by the commutator [A,B], or equivalently ST−1. If this is true,
then the boundary of our set is piecewise smooth; it is given by the simple closed curve in Figure 1.

This article is organised as follows. In Section 2 we gather together the necessary background facts
on complex hyperbolic space and its isometries. In Section 3, we describe coordinates on the space of
(conjugacy classes) of group generated by two unipotent isometries with unipotent product. Section
4 is devoted to the description of the isometric spheres that bound our fundamental domains. We
state and apply the Poincaré polyhedron theorem in Section 5. In Section 6, we focus on the specific
case where the commutator becomes parabolic, and prove that the corresponding manifold at infinity
is homeomorphic to the complement of the Whitehead link. In Section 7, we give the the technical
proofs which we have omitted for readability in the earlier sections.

Acknowledgements: The authors would like to thank Martin Deraux and Elisha Falbel for nu-
merous interesting dicussions. The second author thanks Lucien Guillou for a very helpful discussion.
This research was financially supported by ANR SGT and an LMS Scheme 2 grant. The research took
place during visits of both authors to Les Diablerets, Durham, Grenoble, Hunan University, ICTP
and Luminy, and we would like to thank all these instutions for hospitality.

2 Preliminary material

Throughout we will work in the complex hyperbolic plane using a projective model and will therefore
pass from projective objects to lifts of them. Our convention is that the same letter will be used to
denote a point in CP 2 and a lift of it to C

3 with a bold font for the lift. As an example, each time p
is a point of H2

C
, p will be a lift of p to C

3.

2.1 The complex hyperbolic plane

Let H be the following matrix

H =



0 0 1
0 1 0
1 0 0


 .

The Hermitian product on C
3 associated to H is given by 〈x,y〉 = y∗Hx. The corresponding Hermi-

tian form has signature (2, 1), and we denote by V− (respectively V0 and V+) the associated negative

1JRP has one of Riley’s printouts of this picture dated 26th March 1979
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(respectively null and positive) cones in C
3.

Definition 1. The complex hyperbolic plane H2
C
is the image of V− in CP 2 by projectivisation and

its boundary ∂H2
C

is the image of V0 in CP 2. The complex hyperbolic plane is endowed with the
Bergman metric

ds2 =
−4
〈z, z〉2 det

(
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)
.

The Bergman metric is equivalent to the Bergman distance function ρ defined by

cosh2
(
ρ(m,n)

2

)
=
〈m,n〉〈n,m〉
〈m,m〉〈n,n〉 ,

where m and n are lifts of m and n to C
3.

Let z = [z1, z2, z3]
T be a (column) vector in C

3 − {0}. Then z ∈ V− (respectively V0) if and only
if 2Re(z1z3) + |z2|2 < 0 (respectively = 0). Vectors in V0 with z3 = 0 must have z2 = 0 as well. Such
a vector is unique up to scalar multiplication. We call such its projectivisation the point at infinity
q∞ ∈ ∂H2

C
. If z3 6= 0 then we can use inhomogeneous coordinates with z3 = 1. Writing 〈z, z〉 = −2u

we give H2
C
∪∂H2

C
−{q∞} horospherical coordinates (z, t, u) ∈ C×R×R≥0 defined as follows. A point

q ∈ H2
C
∪ ∂H2

C
with horospherical coordinates (z, t, u) is represented by the following vector, which

we call its standard lift.

q =



−|z|2 − u+ it

z
√
2

1


 if q 6= q∞, q∞ =



1
0
0


 if q = q∞. (1)

Points of ∂H2
C
− {q∞} have u = 0 and we will abbreviate (z, t, 0) to [z, t].

Horospherical coordinates give a model of complex hyperbolic space analogous to the upper half
plane model of the hyperbolic plane. The Cygan metric dCyg on ∂H2

C
− {q∞} plays the role of the

Euclidean metric on the upper half plane. It is defined by the distance function:

dCyg(p, q) =
∣∣〈p,q〉

∣∣1/2 =
∣∣∣|z − w|2 + i

(
t− s+ Im(zw)

)∣∣∣
1/2

(2)

where p and q have horospherical coordinates [z, t] and [w, s]. We may extend this metric to points p
and q in H2

C
with horospherical coordinates (z, t, u) and (w, s, v) by writing

dCyg(p, q) =
∣∣∣|z − w|2 + |u− v|+ i

(
t− s+ Im(zw)

)∣∣∣
1/2

If (at least) one of p and q lies in ∂H2
C
then we still have the formula dCyg(p, q) =

∣∣〈p,q〉
∣∣1/2.

2.2 Isometries

Since the Bergman metric and distance function are both given solely in terms of the Hermitian form,
any unitary matrix preserving this form is an isometry. Similarly, complex conjugation of points in
C
3 leaves both the metric and the distance function unchanged. Hence, complex conjugation is also

an isometry.
Define U(2, 1) to be the group of unitary matrices preserving the Hermitian form and PU(2, 1)

to be the projective unitary group obtained by identifying non-zero scalar multiples of matrices in
U(2, 1). We also consider SU(2, 1) the subgroup of matrices in U(2, 1) with determinant 1.
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Proposition 2.1. Every Bergman isometry of H2
C
is either holomorphic or anti-holomorphic. The

group of holomorphic isometries is PU(2, 1). Every antiholomorphic isometry is complex conjugation
followed by an element of PU(2, 1).

Elements of SU(2, 1) fall into three types, according to the number and type of the fixed points
of the corresponding isometry. Namely, an isometry is loxodromic (respectively parabolic) if it has
exactly two fixed points (respectively exactly one fixed point) on ∂H2

C
. It is called elliptic when it

has (at least) one fixed point inside H2
C
. An elliptic element A ∈ SU(2, 1) is called regular elliptic

whenever it has three distinct eigenvalues, and special elliptic if it has a repeated eigenvalue. The
following criterion distinguishes the different isometry types.

Proposition 2.2 (Theorem 6.2.4 of Goldman [15]). Let F be the polynomial given by F(z) = |z|4 −
8Re (z3) + 18|z|2 − 27, and A be a non identity matrix in SU(2, 1). Then

1. A is loxodromic if and only if F(trA) > 0,

2. A is regular elliptic if and only if F(trA) < 0,

3. if F(trA) = 0, then A is either parabolic or special elliptic.

We will be especially interested in elements of SU(2, 1) with trace 0 and those with trace 3.

Lemma 2.3 (Section 7.1.3 of Goldman [15]). 1. A matrix A in SU(2, 1) is regular elliptic of order
three if and only if its trace is equal to zero.

2. Let (p, q, r) be three pairwise distinct points in ∂H2
C
, not contained in a common complex line.

Then there exists a unique order three regular elliptic isometry E so that E(p) = q and E(q) = r.

Suppose that T ∈ SU(2, 1) has trace equal to 3. Then all T eigenvalues of T equal 1, that is T is
unipotent. If T is diagonalisable then it must be the identity; if it is non-diagonalisable then it must
fix a point of ∂H2

C
. Conjugating within SU(2, 1) if necessary, we may assume that T fixes q∞. This

implies that T is upper triangular with each diagonal element equal to 1.

Lemma 2.4 (Section 4.2 of Goldman [15]). Suppose that [w, s] ∈ ∂H2
C
−{q∞}. Then there is a unique

T[w,s] ∈ SU(2, 1) taking the point [0, 0] ∈ ∂H2
C
to [w, s]. As a matrix this map is:

T[w,s] =



1 −w

√
2 −|w|2 + is

0 1 w
√
2

0 0 1


 . (3)

Moreover, composition of such elements gives ∂H2
C
− {q∞} the structure of the Heisenberg group

[w, s] · [z, t] =
[
w + z, s+ t− 2Im(zw)

]

and T[w,s] acts as left Heisenberg translation on ∂H2
C
− {q∞}.

The action of T[w,s] on horospherical coordinates is:

T[w,s] : (z, t, u) 7−→
(
w + z, s + t− 2Im(zw), u

)
.

An important observation is that this is an affine map, namely a translation and shear.
We can restate Lemma 2.4 in an invariant way. This result is actually true for any parabolic

conjugacy class, as a special case of Proposition 3.1 in [25].

Corollary 2.5. Let p1, p2 and p3 be any three points in ∂H2
C
. Then there is a unique unipotent

element of PU(2, 1) fixing p1 and taking p2 to p3.

Proof. We can choose A ∈ SU(2, 1) taking p1 to q∞ and p2 to [0, 0]. The result then follows from
Lemma 2.4.
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2.3 Totally geodesic subspaces.

Maximal totally geodesic subspaces of H2
C
have real dimension 2, and they fall in two types. Complex

lines are intersections with H2
C
of projective lines in CP 2. By Hermitian duality, any complex line L

is polar to a point in CP 2 that is outside the closure of H2
C
. Any lift of this point is called a polar

vector to L. Any two distinct points p and q in the closure H2
C
belong to a unique complex line, that

is polar to the vector p⊠ q = Hp ∧ q (see Section 2.2.7. in Chapter 2 of Goldman [15] for details).
The other type of maximal totally geodesic subspace is a Lagrangian plane. Lagrangian planes

are PU(2, 1) images of the set of real points H2
R
⊂ H2

C
. In particular, real planes are fixed points sets

of antiholomorphic isometric involutions (sometimes called real symmetries). The symmetry fixing
H2

R
is complex conjugation. In turn, the symmetry about any other Lagrangian plane M ·H2

R
, where

M ∈ SU(2, 1), is given by z 7−→ MM−1 z = M
(
M−1z

)
. Note that the matrix N = MM−1 satisfies

NN = Id: this reflects the fact that real symmetries are involutions. We refer the reader to Chapter
3 and 4 of Goldman [15].

2.4 Isometric spheres

Definition 2. For any B ∈ SU(2, 1) that does not fix q∞ the isometric sphere of B, denoted I(B), is
defined to be

I(B) =
{
p ∈ H2

C ∪ ∂H2
C :

∣∣〈p,q∞〉
∣∣ =

∣∣〈p, B−1(q∞)〉
∣∣ =

∣∣〈B(p),q∞〉
∣∣
}

(4)

where p is the standard lift of p ∈ H2
C
∪ ∂H2

C
given in (1).

The interior of I(B) is the bounded component of the complement, namely,

{
p ∈ H2

C ∪ ∂H2
C :

∣∣〈p,q∞〉
∣∣ >

∣∣〈p, B−1(q∞)〉
∣∣
}
.

The exterior of I(B) is the unbounded component of the complement.

Suppose B is written as a matrix as

B =



a b c
d e f
g h j


 . (5)

Then B−1(q∞) =
[
j, h, g

]T
. Thus B fixes q∞ if and only if g = 0. If B does not fix q∞ (that is g 6= 0)

the horospherical coordinates of B−1(q∞) are:

B−1(q∞) =
[
h/

(
g
√
2
)
, Im

(
j/g

)]
.

Lemma 2.6 (Section 5.4.5 of Goldman [15]). Let B ∈ PU(2, 1) be an isometry of H2
C
not fixing q∞.

1. The transformation B maps I(B) to I(B−1), and the interior of I(B) to the exterior of I(B−1).

2. For any A ∈ PU(2, 1) fixing q∞ and such that the corresponding eigenvalue has unit modulus,
we have I(B) = I(AB).

Using the characterisation (2) of the Cygan metric in terms of the Hermitian form, the following
lemma is obvious.

Lemma 2.7. Suppose that B ∈ SU(2, 1) written in the form (5) does not fix q∞. Then the isometric
sphere I(B) is the Cygan sphere in H2

C
∪ ∂H2

C
with centre B−1(q∞) and radius rA = 1/|g|1/2.
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The importance of isometric spheres is that they form the boundary of the Ford polyhedron. This
is the limit of Dirichlet polyhedra as the centre point approaches ∂H2

C
; see Section 9.3 of Goldman

[15]. The Ford polyhedron D for a discrete group Γ is the intersection of the (closures of the) exteriors
of all isometric spheres for elements of Γ not fixing q∞. That is:

DΓ =
{
p ∈ H2

C ∪ ∂H2
C :

∣∣〈p,q∞〉
∣∣ ≥

∣∣〈p, B−1q∞〉
∣∣ for all B ∈ Γ with B(q∞) 6= q∞

}
.

Of course, just as for Dirichlet polyhedra, to construct the Ford polyhedron one must check infinitely
many equalities. Therefore our method will be to guess the Ford polyhedron and check this using
the Poincaré polyhedron theorem. When q∞ is not a conical limit point, the Ford polyhedron is
preserved by Γ∞, the stabiliser of q∞ in Γ. It is a fundamental polyhedron for the partition of Γ into
Γ∞-cosets. In order to obtain a fundamental domain for Γ, one must intersect the Ford domain with
a fundamental domain for Γ∞.

2.5 Cygan spheres and geographical coordinates.

We now give some geometrical results about Cygan spheres. They are, in particular, applicable to
isometric spheres. The Cygan sphere S[0,0](r) of radius r > 0 with centre the origin [0, 0] is the (real)
hypersurface of H2

C
∪ ∂H2

C
described in horospherical coordinates by the equation

S[0,0](r) =
{
(z, t, u) :

(
|z|2 + u

)2
+ t2 = r4

}
. (6)

From (6) we immediately see that when written in horospherical coordinates the interior of S[0,0](r)
is convex. The Cygan sphere S[w,s](r) of radius r with centre [w, s] is the image of S[0,0](r) under the
Heisenberg translation T[w,s]. Since Heisenberg translations are affine maps in horospherical coordi-
nates, we see that the interior of any Cygan sphere is convex. This immediately gives:

Proposition 2.8. The intersection of two Cygan spheres is connected.

Cygan spheres are examples of bisectors (otherwise called spinal hypersurfaces) and their inter-
section is an example of what Goldman calls an intersection of covertical bisectors. Thus Proposition
2.8 is a restatement of Theorem 9.2.6 of [15]. There is a natural system of coordinates on bisectors in
terms of totally geodesic subspaces, see Section 5.1 of [15]. In particular for Cygan spheres, these are
defined as follows:

Definition 3. Let S[0,0](r) be the Cygan sphere with centre the origin [0, 0] and radius r > 0. The
point g(α, β,w) of S[0,0](r) with geographical coordinates (α, β,w) is the point whose lift to C

3 is:

g(α, β,w) =



−r2e−iα

rwei(−α/2+β)

1


 , (7)

where β ∈ [0, π), α ∈ [−π/2, π/2] and w ∈ [−
√

2 cos(α),
√

2 cos(α)],
Let S[z,t](r) be the Cygan sphere with centre [z, t] and radius r. Then geographical coordinates on

S[z,t](r) are the images of geographical coordinates on S[0,0](r) under the Heisenberg translation T[z,t].

We will only be interested in geographical coordinates on S[0,0](1), the unit Cygan sphere centred
at the origin. Note that for the point g(α, β,w) of this sphere, 〈g(α, β, u), g(α, β, u)〉 = w2 − 2 cos(α).
Therefore the horospherical coordinates of g(α, β,w) are:

(
wei(−α/2+β)/

√
2, sin(α), cos(α) − w2/2

)

In particular, the points of S[0,0](1) on ∂H2
C
are those with w = ±

√
2 cos(α).

The level sets of α and β are totally geodesic subspaces of H2
C
; see Example 5.1.8 of Goldman [15].
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Proposition 2.9. Let S[w,s](r) be a Cygan sphere with geographical coordinates (α, β,w).

1. For each α0 ∈ (−π/2, π/2) the set of points Lα0
=

{
g(α, β,w) ∈ S[w,s](r) : α = α0

}
is a

complex line, called a slice of S[w,s](r).

2. For each β0 ∈ [0, π) the set of points Rβ0
=

{
g(α, β,w) ∈ S[w,s](r) : β = β0

}
is a Lagrangian

plane, called a meridian of S[w,s](r).

3. The set of points with w = 0 is the spine of S[w,s](r). It is a geodesic contained in every meridian.

Remark 1. From (6), it is easy to see that projections of boundaries of Cygan spheres onto the z-factor
are closed Euclidean discs in C. This correspond to the vertical projection onto C in the Heisenberg
group. This fact is often useful to prove that two Cygan spheres are disjoint.

2.6 Cartan’s angular invariant.

Élie Cartan defined an invariant of triples of pairwise distinct points p1, p2, p3 in ∂H2
C
; see Section 7.1

of Goldman [15]. For any lifts pj of pj to C
3, this invariant is defined by arg(−〈p1,p2〉〈p2p3〉〈p3,p1〉),

where the argument is chosen to lie in (−π, π]. We state here some important properties of A.

Proposition 2.10. [Sections 7.1.1 and 7.1.2 of [15]]

1. −π/2 ≤ A(p1, p2, p3) ≤ π/2 for any triple of pairwise distinct points p1, p2, p3.

2. A(p1, p2, p3) = ±π/2 if and only if p1, p2, p3 lie on the same complex line.

3. A(p1, p2, p3) = 0 if and only if p1, p2, p3 lie on the same Lagrangian plane.

4. Two triples p1, p2, p3 and q1, q2, q3 have A(p1, p2, p3) = A(q1, q2, q3) if and only if there exists
A ∈ SU(2, 1) so that A(pj) = qj for j = 1, 2, 3.

5. Two triples p1, p2, p3 and q1, q2, q3 have A(p1, p2, p3) = −A(q1, q2, q3) if and only if there exists
an anti-holomorphic isometry A so that A(pj) = qj for j = 1, 2, 3.

3 The parameter space

3.1 Coordinates

Our space of interest is the following.

Definition 4. Let U be the set of PU(2, 1)-conjugacy classes of non-elementary pairs (A,B) such that
A, B and AB are unipotent.

Here, by non-elementary, we mean that the two isometries A and B have no common fixed point
in ∂H2

C
. In fact, a slightly stronger statement will follow from Theorem 3.1 below. Namely A and B

do not preserve a common complex line and so the pair A, B have no common fixed point in CP 2 (see
Section 2.3). Another way to see this is that if A in PU(2, 1) is unipotent and preserves a complex
line, then its action on that complex line is via a unipotent element of SL(2,R) (that is parabolic with
trace +2). It is well known that if A and B are unipotent elements of SL(2,R) whose product is also
unipotent then A and B must share a fixed point (if A, B and AB are all parabolic with distinct fixed
points, at least one of them should have trace −2).

Note that BA = A−1(AB)A = B(AB)B−1 and so if AB is unipotent then so is BA. If pAB and
pBA in ∂H2

C
are the fixed points of AB and BA then we have A(pBA) = pAB and B(pAB) = pBA.
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From Corollary 2.5 this means that A and B are uniquely determined by the fixed points of A, B, AB
and BA. We describe a set of coordinates on U expressed in terms of the Cartan invariants of triples
of these fixed points.

Theorem 3.1. There is a bijection between U and the open square (α1, α2) ∈ (−π/2, π/2)2, which is
given by the map

Λ : (A,B) 7−→ (A(pA, pAB, pB),A(pA, pAB, pBA)) ,

where pA, pB, pAB and pBA are the parabolic fixed points of the corresponding isometries.

This result can be see as a special case of the main result of [25]. For completeness, we include
here a direct proof.

Proof. First, the two quantities α1 = A(pA, pAB, pB) and α2 = A(pA, pAB, pBA) are invariant under
PU(2, 1)-conjugation and thus the map Λ is well-defined. We must show that the image of Λ is
(−π/2, π/2)2. In other words, we must show α1 6= ±π/2 and α2 6= ±π/2.

Fix a choice of lifts pA, pB , pAB and pBA for the fixed points of A, B, AB and BA. Since the fixed
points are assumed to be distinct, we see that the Hermitian product of each pair of these vectors does
not vanish. The conditions A(pBA) = pAB and B(pAB) = pBA imply that there exist two non-zero
complex numbers λ and µ satisfying

ApBA = λpAB and BpAB = µpBA.

As AB is unipotent, its eigenvalue associated to pAB is 1, and therefore λµ = 1. Moreover, using the
fact that pA and pB are eigenvectors of A and B with eigenvalue 1, we have

〈pBA,pA〉 = 〈ApBA, ApA〉 = λ〈pAB ,pA〉, 〈pAB ,pB〉 = 〈BpAB, BpB〉 = µ〈pBA,pB〉. (8)

Using λµ = 1 and (8), it is not hard to show that n1 = λpAB −pBA is a polar vector for the complex
line L1 spanned by pA and pB (see Section 2.3). Moreover, 〈pAB ,n1〉 = −〈pAB ,pBA〉 6= 0. Thus pAB

does not lie on L1. That is, the three of points pA, pB, pAB do not lie on the same complex line and
so α1 6= ±π/2.

Likewise, again using λµ = 1 and (8) we find n2 = 〈pB ,pAB〉pA − 〈pA,pAB〉pB is a polar vector
for L2 and 〈pA,n2〉 = −〈pA,pAB〉〈pA,pB〉 6= 0. Hence pA does not lie on L2 and so α2 6= ±π/2. We
remark that, by construction, we have 〈n1,n2〉 = 0 and so in fact L1 and L2 are orthogonal.

An inverse map to Λ can be defined as follows. Fix (α1, α2) in (−π/2, π/2)2 and define

x1 =
√

2 cos(α1) and x2 =
√

2 cos(α2), for αi ∈ (−π/2, π/2), so x1, x2 ∈ R
∗
+. (9)

Now consider the following elements of SU(2, 1):

A =



1 −x1x22 −x21x22e−iα2

0 1 x1x
2
2

0 0 1


 and B =




1 0 0
x1x

2
2e

−iα1 1 0
−x21x22eiα2 −x1x22eiα1 1


 , (10)

Clearly, A and B are unipotent, and since tr(AB) = 3, AB is also unipotent. The four fixed points
can be lifted to the vectors

pA =



1
0
0


 , pB =



0
0
1


 , pAB =



−eiα1

x1e
iα2

1


 , pBA =



−eiα1

−x1e−iα2

1


 . (11)

They satisfy A(pA, pAB , pB) = α1 and A(pA, pAB , pBA) = α2.
Note that as either α1 or α2 tends to ±/π/2 (that is x1 or x2 respectively tends to 0) so A and B

both tend to the identity matrix.
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pA

pAB

pB

STpBA

Figure 2: Action of S and T on the tetrahedron (pA, pB , pAB, pBA).

From now on, we will identify any conjugacy class of pair in U with its representative given by
(10). We will repeatedly use the notation xi =

√
2 cos(αi) from (9) and, when necessary, we will freely

combine xi with trigonometric notation. It should be noted that the unipotent isometry A given by
(10) is equal to T[ℓA,tA], where

ℓA = x1x
2
2/
√
2 = 2 cos(α1) cos

2(α2) and tA = x21x
2
2 sin(α2) = 4 cos(α1) cos(α2) sin(α2). (12)

3.2 Products of order 3 elliptics.

Definition 5. Let S and T be the order three regular elliptic maps cyclically permuting (pA, pAB , pB)
and (pA, pB , pBA). Since α1 6= ±π/2 these triples of points do not lie on a complex line. Hence by
Lemma 2.3 S and T are uniquely determined.

If pA, pB, pAB and pBA are given by the vectors in (11), then S and T are given by the following
elements of SU(2, 1):

S = e−iα1/3




eiα1 x1e
iα1−iα2 −1

−x1eiα2 −eiα1 0
−1 0 0


 , T = eiα1/3




0 0 −1
0 −e−iα1 −x1e−iα1−iα2

−1 x1e
iα2 e−iα1


 , (13)

where as usual xi =
√

2 cos(αi); see (9).

Proposition 3.2. For any pair (A,B) ∈ U , let S and T be the isometries defined in Definition 5.
Then A = ST and B = TS.

Proof. Using the action of S and T on the parabolic fixed points, we have ST (pA) = S(pB) = pA and
ST (pBA) = S(pA) = pAB. This means ST is a unipotent map fixing pA and sending pBA to pAB.
Hence ST = A. Similarly, TS = B.

A more geometric proof of the existence of order three elliptic isometries decomposing pairs of
parabolics as above can be found in a slightly more general context in [25].

One consequence of the existence of this decomposition as product of order three elliptic is that any
group in U is the image of the fundamental group of the Whitehead link complement by a morphism
to PU(2,1). This follows directly from the following.

Proposition 3.3. The free product Z3 ∗ Z3 is a quotient of the fundamental group of the Whitehead
link complement.
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Proof. The fundamental group of the Whitehead link complement is presented by π = 〈u, v|rel(u, v)〉,
where

rel(u, v) = [u, v] · [u, v−1] · [u−1, v−1] · [u−1, v] (14)

Making the substitution u = st and v = tst, the relation becomes rel(st, tst) = [st, s−1t−3s−2]. This
relation is trivial whenever s3 = t3 = 1. Therefore π surjects onto Z3 ∗ Z3.

3.3 Symmetries of the moduli space

The parameters (α1, α2) determine Γ up to PU(2, 1) conjugation. We now show that there is an
antiholomorphic conjugation that changes the sign of both α1 and α2.

Proposition 3.4. There is an antiholomorphic involution ι with the properties:

1. ι interchanges pA and pB and interchanges pAB and pBA;

2. ι conjugates S to T and A to B (and vice versa);

3. ι conjugates the group Γ with parameters (α1, α2) to the group with parameters (−α1,−α2).

Proof. The action on C
3 of ι is:

ι :



z1
z2
z3


 7−→




z3
e−iα1z2

z1


 .

It is easy to see that ι2 is the identity and that ι sends pA to pB and sends pAB to (−e−iα1)pBA.
Projectivising gives the first part.

Since A is the unique unipotent map fixing pA and sending pBA to pAB, we see ιAι is the unique
unipotent map fixing ι(pA) = pB and sending ι(pBA) = pAB to ι(pAB) = pBA. Thus ιAι = B and so
ιBι = A. Applying Proposition 3.2 we see that ιSι = T and ιT ι = S, proving the second part.

The parameters associated to the group ιΓι are A(ιpA, ιpAB , ιpB) = A(pB , pBA, pA) = −α1 and
A(ιpA, ιpAB , ιpBA) = A(pB , pBA, pAB) = −α2. This completes the proof.

There are other symmetries of the parameter space U that, in general, do not arise from conjugation
by isometries.

Proposition 3.5. Let φh : (α1, α2) 7−→ (α1,−α2) and φv : (α1, α2) 7−→ (−α1, α2) denote the symme-
tries about the horizontal and vertical axes of the (α1, α2)-square. Then φh◦φv induces the conjugation
by ι given in Proposition 3.4. Moreover:

1. φh induces the change of generators (S, T ) 7−→ (T−1, S−1) and (A,B) 7−→ (A−1, B−1).

2. φv induces the change of generators (S, T ) 7−→ (S−1, T−1) and (A,B) 7−→ (B−1, A−1),

Proof. Making the change φh to the points in (11) and then applying diag[1, −1, 1] ∈ PU(2, 1) fixes pA
and pB and swaps pAB and pBA. Therefore it sends S to the map cyclically permuting (pA, pBA, pB),
which is T−1. Similarly it sends T to S−1.

It is clear that the change of generators (S, T ) 7−→ (T−1, S−1) sends A = ST to T−1S−1 = A−1

and B = TS to S−1T−1 = B−1.
The change of generators (A,B) 7−→ (A−1, B−1) fixes pA and pB. Since it sends AB to A−1B−1 =

(BA)−1 it sends pAB to pBA and similarly sends pBA to pAB. From this we can calculate the new
Cartan invariants and we obtain the symmetry φh.

Hence all three conditions in the first part are equivalent. The second part then follows the first
part and Proposition 3.4 by first applying φh and then conjugating by ι.
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The fixed point sets of these automorphisms are related to R-decomposibility and C-decomposibility
of Γ.

Definition 6 (Compare Will [38]). A pair (S, T ) of elements in PU(2, 1) is R-decomposible if there
exists three antiholomorphic involutions (ι1, ι2, ι3) such that S = ι2ι1 and T = ι1ι3.

A pair (S, T ) of elements in PU(2, 1) is C-decomposible if there exists three involutions (I1, I2, I3)
in PU(2, 1) such that S = I2I1 and T = I1I3.

The properties of R and C-decomposibility have also been studied (in the special case of pairs of
loxodromic isometries) from the point of view of traces in SU(2, 1) in [38], and (in the general case)
using cross-ratios in [29]. We could take either point of view here, but instead we choose to argue
directly with fixed points.

Proposition 3.6. Let (A,B) in U , and (S, T ) be the corresponding elliptic isometries.

1. If α1 = 0, then the pair (S, T ) is C-decomposible and the pair (A,B) is R-decomposible. In
particular, 〈S, T 〉 has index 2 in a (3, 3,∞)-triangle group.

2. If α2 = 0, then the pair (S, T ) is R-decomposible and the pair (A,B) is C-decomposible. In
particular 〈A,B〉 has index two in a complex hyperbolic ideal triangle group.

Proof. Consider the antiholomorphic involution ι1 : [z1, z2, z3] 7−→
[
z1, −z2, z3

]
. Applying ι1 to the

points in (11) with α1 = 0, we see that ι1 fixes pA and pB and interchanges pAB and pBA. Therefore
ι1 conjugates A to A−1 and B to B−1. Hence Aι1Aι1 and ι1Bι1B are the identity. That is ι2 = Aι1
and ι3 = ι1B are involutions. Hence (A,B) is R-decomposible.

Again assuming α1 = 0, consider the holomorphic involution defined by I1 = ι1ι (where ι is
the involution defined in Proposition 3.4). Then I1 fixes pAB and pBA and interchanges pA and pB.
Therefore, it conjugates S to S−1 and T to T−1. This means I2 = SI1 and I3 = I1T are involutions.
Hence (S, T ) is C-decomposible.

Now consider the holomorphic involution I ′1 : [z1, z2, z3] 7−→ [z1, −z2, z3]. This fixes pA and pB
and when α2 = 0 it interchanges pAB and pBA. As above this means I ′2 = AI ′1 and I ′3 = I ′1B are
involutions and (A,B) is C-decomposible. Finally, define ι′1 = I ′1ι. Arguing as above, again with
α2 = 0, we see that ι′2 = Sι′1 and ι′3 = ι′1T are involutions. Hence (S, T ) is R-decomposible.

As indicated above, when α1 = 0 the group generated by (I1, I2, I3) is a (3, 3,∞) reflection triangle
group. This group can be thought of as a limit as n tends to infinity of the (3, 3, n) triangle groups
which have been studied by Parker, Wang and Xie in [28]. The special case (3, 3, 4) has been studied
by Falbel and Deraux in [6]. Both [6] and [28] constructed Dirichlet domains, and the Ford domain we
construct can be seen as a limit of these. Moreover, R-decomposibility of the pair (A,B) when α1 = 0
can be used to show that these groups correspond to the bending representations of the fundamental
group of a 3-punctured sphere that have been studied in [39]. Ideal triangle groups have been studied
in great detail in [17, 31, 30, 33, 34].

3.4 Isometry type of the commutator.

The isometry type of the commutator will play an important role in the rest of this paper. It is easily
described using the order three elliptic maps given by Proposition 3.2.

Proposition 3.7. The commutator [A,B] has the same isometry type as ST−1. More precisely,
consider G(x41, x42) = G

(
4 cos2(α1), 4 cos

2(α2)
)
where

G(x, y) = x2y4 − 4x2y3 + 18xy2 − 27.
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Then [A,B] is loxodromic (respectively parabolic, elliptic) if and only if G(x41, x42) is positive (respec-
tively zero, negative).

Proof. First, from A = ST , B = TS and the fact that S and T have order 3, we see that

[A,B] = ABA−1B−1 = STTST−1S−1S−1T−1 = (ST−1)3.

This implies that [A,B] has the same isometry type as ST−1 unless ST−1 is elliptic of order three, in
which case [A,B] is the identity. This would mean that A and B commute, which can not be because
their fixed point sets are disjoint.

Representatives of S and T in SU(2, 1) are given in (13). A direct calculation using these matrices
shows that tr(ST−1) = x21x

4
2e

iα1/3. The function G(x41, x42) above is obtained by plugging this value in
the function F given in Proposition 2.2.

The null locus of G
(
4 cos2(α1), 4 cos

2(α2)
)
in the square (−π/2, π/2)2 is a curve, which we will

refer to as the parabolicity curve and denote by P. It is depicted on Figure 3. Similarly, the region
where G is positive (thus [A,B] loxodromic) will be denoted by L. It is a topological disc, which is the
connected component of the complement of the curve P that contains the origin. The region where
[A,B] is elliptic will be denoted by E .

4 Isometric spheres and their intersections

4.1 Isometric spheres for S, S−1 and their A-translates.

In this section we give details of the isometric spheres that will contain the sides of our polyhedron D.
The polyhedron D is our guess for the Ford polyhedron of Γ, subject to the combinatorial restriction
discussed in Section 4.2.

We start with the isometric spheres I(S) and I(S−1) for S and its inverse. From the matrix for
S given in (13), using Lemma 2.7 we see that I(S) and I(S−1) have radius 1/| − e−iα1/3|1/2 = 1
and centres S−1(q∞) = pB and S(q∞) = pAB respectively; see (11). In particular, I(S) is the Cygan
sphere S[0,0](1) of radius 1 centred at the origin; see (6). In our computations we will use geographical
coordinates in I(S) as defined in Definition 3. The polyhedron D will be the intersection of the
exteriors of I(S±1) and all their translates by powers of A. We now fix some notation:

Definition 7. For k ∈ Z let I+k be the isometric sphere I(AkSA−k) = AkI(S) and let I−k be the
isometric sphere I(AkS−1A−k) = AkI(S−1).

With this notation, we have:

Proposition 4.1. For any integer k ∈ Z, the isometric sphere I+k has radius 1 and centre the point
with Heisenberg coordinates [kℓA, ktA], where ℓA and tA are as in (12). Similarly, the isometric sphere
I−k has radius 1 and centre the point with Heisenberg coordinates [kℓA +

√
cos(α1)e

iα2 ,− sin(α1)].

Proof. As A is unipotent and fixes q∞, it is a Cygan isometry, and thus preserves the radius of isometric
spheres. This gives the part about radius. Moreover, it follows directly from Proposition 10 that Ak

acts on the boundary of H2
C
by left Heisenberg multiplication by [kℓA, ktA]. This gives the part about

centres by a straightforward verification.

The following proposition describes a symmetry of the family {I±k : k ∈ Z} which will be useful
in the study of intersections of the isometric spheres I±k .
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Proposition 4.2. Let ϕ be the antiholomorphic isometry Sι = ιT , where ι is as in Proposition
3.4. Then ϕ2 = A, and ϕ acts on the Heisenberg group as a screw motion preserving the affine line
parametrised by

∆ϕ =
{
δϕ(x) =

[
x+ i

√
cos(α1) sin(α2)

2
, x

√
cos(α1) sin(α2)−

sin(α1)

2

]
: x ∈ R

}
. (15)

Moreover, ϕ acts on isometric spheres as ϕ(I+k ) = I−k and ϕ(I−k ) = I+k+1 for all k ∈ Z.

Proof. Using the fact that T = ιSι we see that A = ST = SιSι = ϕ2. Moreover ϕ(pA) = Sι(pA) =
S(pB) = pA. Hence ϕ is a Cygan isometry. It follows by direct calculation that ϕ sends δϕ(x) to
δϕ(x+ ℓA/2), and so preserves ∆ϕ. Moreover,

ϕ(pBA) = Sι(pBA) = S(pAB) = pB, ϕ(pB) = Sι(pB) = S(pA) = pAB .

Hence ϕ sends I−−1 to I+0 since it is a Cygan isometry mapping the centre of I−−1 to the centre of I+0 .
Similarly, ϕ sends I+0 to I−0 . The action on other isometric spheres follows since ϕ2 = A.

4.2 A combinatorial restriction.

The following section is the crucial technical part of our work. As most of the proofs are computational,
we will omit many of them here; they will be provided in Section 7. We are now going to restrict
our attention to those parameters in the region L such that the three isometric spheres I+0 = I(S),
I−0 = I(S−1) and I−−1 = I(T ) have no triple intersection. We will describe the region we are interested
in by an inequality on α1 and α2. Prior to stating it, let us fix a little notation.

We denote by αlim
2 = arccos

(√
3/8

)
. Then G

(
4 cos2(0), 4 cos2(±αlim

2 )
)
= G(4, 3/2) = 0 and so the

two points (0,±αlim
2 ) are the two cusps of the curve P located on the vertical axis (see figure 3). Now,

let R be the rectangle (depicted in Figure 3) defined by

R =
{
(α1, α2) : |α1| 6 π/6, |α2| 6 αlim

2

}
. (16)

We remark that in Lemma 7.3 we will prove that when (α1, α2) ∈ R, the commutator [A,B] is non
elliptic. This means that R is contained in in the closure of L.

Definition 8. Let Z denote the subset of R where the triple intersection I+0 ∩ I−−1 ∩ I−0 is empty.

The following proposition characterises those points (α1, α2) that lie in Z.

Proposition 4.3. A parameter (α1, α2) ∈ R is in Z if and only if it satisfies

D(x41, x42) = D
(
4 cos2(α1), 4 cos

2(α1)
)
> 0,

where D is the polynomial given by

D(x, y) = x3y3 − 9x2y2 − 27xy2 + 81xy − 27x− 27.

The region Z is depicted in Figure 3: it is the interior of the central region of the figure. In fact, Z
is the region in all of L where I+0 ∩I−−1∩I−0 is empty, but as proving this is more involved, we restrict
ourselves to the rectangle R. This provides a priori bounds on the parameters α1 and α2 that will
make our computations easier. We will prove Proposition 4.3 in Section 7.3. It relies on Proposition
4.4, describing the set of points where D(x41, x42) > 0 and on Proposition 4.5, which gives geometric
properties of the triple intersection. Proofs of Proposition 4.4 and Proposition 4.5 will be given in
Section 7.2 and Section 7.1 respectively.
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P

Figure 3: The parameter space, with the parabolicity curve P and the regions E , L. The region Z is
the central region, which is contained in the rectangle R.

Proposition 4.4. The region Z is an open topological disc in R, symmetric about the axes and
intersecting them in the intervals {α2 = 0, −π/6 < α1 < π/6} and {α1 = 0, −αlim

2 < α2 < αlim
2 }.

Moreover, the intersection of the closure of Z with the parabolicity curve P consists of the two
points (0,±αlim

2 ).

Proposition 4.5. 1. The triple intersection I+0 ∩ I−0 ∩ I−−1 is contained in the meridian m of I+0
defined in geographical coordinates by β = (π − α1)/2.

2. If the triple intersection I+0 ∩ I−0 ∩ I−−1 is non-empty, it contains a point in ∂H2
C
.

The second part of Proposition 4.5 is not true for general triples of bisectors. It will allow us to
restrict ourselves to the boundary of H2

C
to prove Proposition 4.3. Restricting ourselves to the region

Z will considerably simplify the combinatorics of the family of isometric spheres {I±k : k ∈ Z}. The
following fact will be crucial in our study.

Proposition 4.6. Fix (α1, α2) a point in Z. Then the isometric sphere I+0 is contained in the exterior
of the isometric spheres I±k for all k, except for I+1 , I+−1, I−0 and I−−1.

The proof of Proposition 4.6 will be detailed in Section 7.4). We can give more information about
the intersections I±0 with these four other isometric spheres.

Proposition 4.7. If (α1, α2) ∈ Z, then the intersection I−−1 ∩ I−0 is contained in the interior of I+0 .
Proof. Since the point pB is the centre of I+0 , it lies in its interior. Moreover, pB lies on both I−−1

and I−0 : indeed, 〈pAB ,pB〉 = 〈pBA,pB〉 = 1. By Proposition 2.8, the intersection of the latter two
isometric spheres is connected. This implies that I−−1 ∩ I−0 is contained in the interior of I+0 for
otherwise I+0 ∩ I−−1 ∩ I−0 would not be empty.

Using Proposition 4.2, applying powers of ϕ to Propositions 4.6 and 4.7 gives the following results
describing all pairwise intersections.

Corollary 4.8. Fix (α1, α2) ∈ Z then for all k ∈ Z:

1. I+k is contained in the exterior of all isometric spheres in {I±k : k ∈ Z} except I+k−1, I−k−1, I−k
and I+k+1. Moreover, I+k ∩I−k−1 ∩I−k = ∅ and I+k ∩I+k−1 (respectively I+k ∩I+k+1) is contained in

the interior of I−k−1 (respectively I−k ).

2. I−k is contained in the exterior of all isometric spheres in {I±k : k ∈ Z} except I−k−1, I+k , I+k+1,

and I−k+1. Moreover, I−k ∩I−k ∩I−k+1 = ∅ and I−k ∩I−k−1 (respectively I−k ∩I−k+1) is contained in

the interior of I+k (respectively I+k+1).
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5 Applying the Poincaré polyhedron theorem inside Z.
5.1 The Poincaré polyhedron theorem

For the proof of our main result we need to use the Poincaré polyhedron theorem for coset decom-
positions. The general principle of this result is described in Section 9.6 of [2] in the context of the
Poincaré disc. A generalisation to the case of H2

C
has already appeared in Mostow [24] and Deraux,

Parker, Paupert [7]. In these cases it was assumed that the stabiliser of the polyhedron is finite. In
our case the stabiliser is the infinite cyclic group generated by the unipotent parabolic map A. There
are two main differences from the version given in [7]. First, we require that the polyhedron D has
infinitely many facets, the stabiliser group Υ is also infinite, but there are only finitely many Υ-orbits
of facets. Secondly, D has an ideal boundary in ∂H2

C
(which contains more than just cusps). In fact,

the version we need has many things in common with the version given by Parker, Wang and Xie
[28]. A more general statement will appear in Parker’s book [26]. In what follows we will adapt our
statement of the Poincaré theorem to the case we have in mind.

The polyhedron and its cell structure Let D be an open polyhedron in H2
C
. We define the ideal

boundary ∂∞D ofD to be the intersection of D with ∂H2
C
. This polyhedron has a natural cell structure

which we suppose is locally finite inside H2
C
. We suppose that the facets of D of all dimensions are

piecewise smooth submanifolds of H2
C
. Let Fk(D) be the collection of facets of codimension k having

non-trivial intersection with H2
C
. We suppose that facets are closed subsets of H2

C
. We write f◦ to

denote the interior of a facet f , that is the collection of points of f that are not contained in ∂H2
C
or any

facet of a lower dimension (higher codimension). Elements of F1(D) and F2(D) are respectively called
sides and ridges of D. Since D is a polyhedron, F0(D) = D and each ridge in F2(D) lies in exactly
two sides in F1(D). Similarly, the intersection of facets of D with ∂H2

C
gives rise to a polyhedral

structure on a subset of ∂∞D. We let IFk(D) denote the ideal facets of ∂∞D of codimension k so
that each facet in IFk(D) is contained in some facet of Fℓ(D) with ℓ < k. In particular, we will also
need to consider ideal vertices in IF4(D). These are points of either the endpoints of facets in F3(D)
or else they are points of ∂H2

C
contained in (at least) two facets of D that do not intersect inside H2

C
.

Note that, since we have defined ideal facets to be subsets of facets, it may be that ∂H2
C
contains

points of ∂∞D not contained in any ideal facet. In the case we consider, there will be one such point,
namely the point at ∞ fixed by A.

The side pairing. We suppose that there is a side pairing σ : F1(D) −→ PU(2,1) satisfying the
following conditions:

(1) For each side s ∈ F1(D) with σ(s) = S there is another side s− ∈ F1(D) so that S maps s
homeomorphically onto s− preserving the cell structure. Moreover, σ(s−) = S−1. Furthermore,
if s = s− then S = S−1 and S is an involution. In this case, we call S2 = id a reflection relation.

(2) For each s ∈ F1(D) with σ(s) = S we have D ∩ S−1(D) = s and D ∩ S−1(D) = ∅.

(3) For each w in the interior s◦ of s there is an open neighbourhood U(w) of w contained in
D ∩ S−1(D).

In the example we consider D will be the Ford domain of a group. In particular, each side s will
be contained in the isometric sphere I(S) of S = σ(s). Indeed, s = I(S) ∩ D. By construction we
have S : I(S) 7−→ I(S−1) and in this case s− = I(S−1) ∩D. The polyhedron D will be the (open)
infinite sided polyhedron formed by the intersection of the exteriors of all the I(S) where S = σ(s)

18



and s varies over F1(D). By construction, the sides of D are smooth hypersurfaces (with boundary)
in H2

C
.

Suppose that D is invariant under a group Υ that is compatible with the side pairing map in the
sense that for all P ∈ Υ and s ∈ F1(D) we have P (s) ∈ F1(D) and σ(Ps) = Pσ(s)P−1. We call
the latter a compatibility relation. We suppose that there are finitely many Υ-orbits of facets in each
Fk(D). In the example of a Ford domain Υ will be Γ∞, the stabiliser of the point ∞ in the group Γ.

Ridges and cycle relations. Consider a ridge r1 ∈ F2(D). Then, r1 is contained in precisely two
sides of D, say s−0 and s1. Consider the ordered triple (r1, s

−
0 , s1). The side pairing map σ(s1) = S1

sends s1 to the side s−1 preserving its cell structure. In particular, S1(r1) is a ridge of s−1 , say r2.
Let s2 be the other side containing r2. Then we obtain a new ordered triple (r2, s

−
1 , s2). Now apply

σ(s2) = S2 to r2 and repeat. Because there are only finitely many Υ-orbits of ridges, we eventually
find an m so that the ordered triple (rm+1, s

−
m, sm+1) = (P−1r1, P

−1s−0 , P
−1s1) for some P ∈ Υ (we

suppose this P is unique). We define a map ρ : F2(D) −→ PU(2,1) called the cycle transformation
by ρ(r1) = P ◦ Sm ◦ · · · ◦ S1. (Note that for any ridge r1 = s−0 ∩ s1, the cycle transformation map
ρ(r1) = R depends on a choice of one of the sides s−0 and s1. If we choose the other one then we send
R to R−1. This follows from the fact that then σ(s−j ) = σ(sj)

−1 and from the compatibility relations.)
By construction, the cycle transformation R = ρ(r1) maps the ridge r1 to itself setwise. However, R
may not be the identity on r1, nor on H2

C
. Nevertheless, we suppose that R has order n. The relation

Rn = id is called the cycle relation associated to r1.
Writing the cycle transformation ρ(r1) = R in terms of P and the Sj, we let C(r1) be the collection

of suffix subwords of Rn. That is

C(r1) =
{
Sj ◦ · · · ◦ S1 ◦Rk : 0 ≤ j ≤ m− 1, 0 ≤ k ≤ n− 1

}
.

We say that the cycle condition is satisfied at r1 provided:

(1)

r1 =
⋂

C∈C(r1)

C−1(D).

(2) If C1, C2 ∈ C(r1) with C1 6= C2 then C−1
1 (D) ∩ C−1

2 (D) = ∅.

(3) For each w ∈ r◦1 there is an open neighbourhood U(w) of w so that

U(w) ⊂
⋃

C∈C(r1)

C−1(D).

Ideal vertices and consistent horoballs. Suppose that D has ideal vertices. In this case, we
require that there is a system of consistent horoballs based at the ideal vertices and their images under
the side paring maps. For each ξ ∈ IF4(D) the consistent horoball Hξ is a horoball based at ξ with
the following property. Let ξ ∈ IF4(D) and let s ∈ F1(D) be a side with ξ ∈ s. Let S = σ(s).
Then S maps ξ to a point ξ− in s−. Note that ξ− is not necessarily an ideal vertex. If it is not, we
nevertheless define a consistent horoball Hξ− at ξ−. In order for these horoballs to form a system of
consistent horoballs we require that for each ideal vertex ξ and each side s with ξ ∈ s the side pairing
map σ(s) should map the horoball Hξ onto the horoball Hξ−. In particular, any cycle of side pairing
maps sending ξ to itself must also send Hξ to itself (setwise).
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Statement of the Poincaré polyhedron theorem. We can now state the version of the Poincaré
polyhedron theorem that we need (compare [24] or [7]).

Theorem 5.1. Let D be a smoothly embedded polyhedron D in H2
C

together with a side pairing
σ : F1(D) −→ PU(2,1). Let Υ < PU(2,1) be a group of automorphisms of D compatible with the side
pairing and suppose that each Fk(D) contains finitely many Υ-orbits. Let Γ be the group generated by
Υ and by the side pairing maps. Suppose that the cycle condition is satisfied for each ridge in F2(D)
and that there is a system of consistent horoballs at all the ideal vertices of D (if any). Then:

(1) The images of D under the cosets of Υ in Γ tessellate H2
C
. That is H2

C
⊂ ⋃

A∈ΓA(D) and
D ∩A(D) = ∅ for all A ∈ Γ−Υ.

(2) The group Γ is discrete and a fundamental domain for its action on H2
C
is obtained from the

intersection of D with a fundamental domain for Υ.

(3) A presentation for Γ (with respect to the generating set consisting of the generators of Υ and
the side pairing maps) has the following set of relations: the relations in Υ, the compatibility
relations between σ and Υ, the reflection relations and the cycle relations.

5.2 Application to our examples.

We are now going to apply Theorem 5.1 to the group generated by S and A. Explicit matrices for
these transformations are provided in equations (10) and (13). Our aim is to prove:

Theorem 5.2. Suppose that (α1, α2) is in Z. That is, D
(
4 cos2(α1), 4 cos

2(α1)
)
> 0, where D(x, y)

is the polynomial defined in Proposition 4.3. Then the group Γ = 〈S,A〉 associated to the parameters
(α1, α2) is discrete and has the presentation

〈S, A : S3 = (A−1S)3 = id〉. (17)

We obtain the presentation 〈S, T : S3 = T 3 = id〉 by changing generators to S and T = A−1S.

Definition of the polyhedron and its cell structure. The infinite polyhedron we consider is
the intersection of the exteriors of all the isometric spheres in {I±k : k ∈ Z}.
Definition 9. We call D the intersection of the exteriors of all isometric spheres I+k and I−k with
centres AkS−1(q∞) and AkS(q∞) respectively :

D =
{
q ∈ H2

C : dCyg

(
q,AkS±1(q∞)

)
> 1 for all k ∈ Z

}
. (18)

The set of sides of D is F1(D) = {s+k , s−k : k ∈ Z} where s+k = I+k ∩D and s−k = I−k ∩D.

Using Corollary 4.8 we can completely describe s+k and s−k .

Proposition 5.3. The side s+k (respectively s−k ) is topologically a solid cylinder in H2
C
∪ ∂H2

C
. The

intersection of ∂s+k (respectively s−k ) with H2
C
is the disjoint union of the topological discs s+k ∩ s−k−1

and s+k ∩ s−k (respectively s−k ∩ s+k and s−k ∩ s−k+1).

Proof. Since s+k is contained in I+k , its only possible intersections with other sides are contained
in I+k−1, I−k−1, I+k+1 and I−k+1 by Corollary 4.8. Since I+k ∩ I+k−1 and I+k ∩ I+k+1 are contained in

the interiors of other isometric spheres, the intersections s+k ∩ s+k−1 and s+k ∩ s+k+1 are empty. Also,

I+k ∩ I−k−1 ∩I−k = ∅ and so s+k ∩ s−k−1 and s+k ∩ s−k are disjoint. Since isometric spheres are topological

balls and their pairwise intersections are connected, the description of s+k follows. A similar argument
describes s−k .
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The side pairing σ : F1(D) −→ PU(2,1) is defined by

σ(s+k ) = AkSA−k, σ(s−k ) = AkS−1A−k. (19)

Let Υ = 〈A〉 be the infinite cyclic group generated by A. By construction the side pairing σ is
compatible with Υ. Furthermore, using Proposition 5.3 the set of ridges is F2(D) = {r+k , r−k : k ∈ Z}
where r+k = s+k ∩ s−k and r−k = s+k ∩ s−k−1. We can now verify that σ satisfies the first condition of
being a side pairing.

Proposition 5.4. The side pairing map σ(s+k ) = AkSA−k is a homeomorphism from s+k to s−k .
Moreover σ(s−k ) sends r+k = s+k ∩ s−k to itself and sends r−k = s+k ∩ s−k−1 to r−k+1 = s−k ∩ s+k+1.

Proof. By applying powers of A we need only need to consider the case where k = 0. First, the ridge
r+0 = s+0 ∩ s−0 = I(S) ∩ I(S−1) is defined by the triple equality

|〈z,q∞〉| = |〈z, S−1q∞〉| = |〈z, Sq∞〉|. (20)

The map S cyclically permutes pB = S−1(q∞), pA = q∞, pAB = S(q∞), and so maps r+0 to itself.
Similarly, consider r−0 = s+0 ∩ s−−1. The side pairing map S sends A−1S(q∞), the centre of I−−1, to

S(A−1S)(q∞) = S(T−1S−1)S(q∞) = ST 2(q∞) = (ST )S−1(ST )(q∞) = AS−1(q∞),

which is the centre of I+1 , where we have used A−1 = T−1S−1, T−1 = T 2 and ST (q∞) = q∞. Therefore
r−0 = s+0 ∩ s−−1 is sent to r−1 = s−0 ∩ s+1 as claimed. The rest of the result follows from our description
of s±k in Proposition 5.3.

Local tessellation. We now prove local tessellation around the sides and ridges of D.

s±k . Since σ(s±k ) = AkS±1A−1 sends the exterior of I±k to the interior of I∓k we see that D and
AkS±1A−k(D) have disjoint interiors and cover a neighbourhood of each point in s∓k . Together
with Proposition 5.4 this means σ satisfies the three conditions of being a side pairing.

r+0 . Consider the case of r+0 = s+0 ∩ s−0 = I(S) ∩ I(S−1), which is given by (20). Observe that r+0 is
mapped to itself by S. Using Proposition 5.4, we see that when constructing the cycle transfor-
mation for r+0 we have one ordered triple (r+0 , s

−
0 , s

+
0 ) and the cycle transformation ρ(r+0 ) = S.

The cycle relation is S3 = id and C(r+0 ) = {id, S, S2}. Consider an open neighbourhood U+
0

of r+0 but not intersecting any other ridge. The intersection of D with U+
0 is the same as the

intersection of U+
0 with the Ford domain DS for the order three group 〈S〉. Since S has order 3

this Ford domain is the intersection of the exteriors of I(S) and I(S−1). For z in DS , |〈z,q∞〉|
is the smallest of the three quantities in (20). Applying S = σ(s+0 ) and S−1 = σ(s−0 ) gives
regions S(DS) and S−1(DS) where one of the other two quantities is the smallest. Therefore
U+
0 ∩ S(U+

0 ) ∩ S(U−
0 ) is an open neighbourhood of r+0 contained in D ∪ S(D) ∪ S−1(D). This

proves the cycle condition at r+0 .

r−0 . Now consider r−0 = s+0 ∩ s−−1. When constructing the cycle transformation for r−0 we start
with the ordered triple (r−0 , s

−
−1, s

+
0 ). Applying S = σ(s+0 ) to r−0 gives the ordered triple

(r−1 , s
−
0 , s

+
1 ), which is simply (Ar−0 , As

−
−1, As

+
0 ). Thus the cycle transformation of r−0 is ρ(r−0 ) =

A−1S = T−1, which has order 3. Therefore the cycle relation is (A−1S)3 = id, and C(r−0 ) =
{id, A−1S, (A−1S)2}. Noting that I+0 has centre S−1(q∞)S−1A(q∞) = T (q∞) and I−−1 has cen-
tre A−1S(q∞) = T−1(q−∞) we see I+0 = I(T−1) and I−0 = I(T ). Therefore a similar argument
involving the Ford domain for 〈T 〉 shows that the cycle condition is satisfied at r−0 .
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r±k . Using compatibility of the side pairings with Υ = 〈A〉, we see that ρ(r+k ) = AkSA−k with cycle
relation (AkSA−k)3 = AkS3A−k = id and that the cycle condition is satisfied at r+k . Likewise,
ρ(r−k ) = Ak(A−1S)A−k = Ak−1SA−k with cycle relation (Ak−1SA−k)3 = Ak(A−1S)A−k = id
and the cycle condition is satisfied at r−k .

This is sufficient to prove Theorem 5.2 by applying the Poincaré polyhedron theorem when D has
no ideal vertices, that is to all groups Γ in the interior of Z. In particular, Γ is generated by the
generator A of Υ and the side pairing maps. Using the compatibility relations, there is only one side
pairing map up to the action of Υ, namely S. There are no reflection relations, and (again up to the
action of Υ) the only cycle relations are S3 = id and (A−1S)3 = id. Thus the Poincaré polyhedron
theorem gives the presentation (17). This completes the proof of Theorem 5.2.

For groups on the boundary of Z the same result is also true: this follows from Chuckrow’s theorem
(see for instance Theorem 2.7 of [3]). We do not need to apply the Poincaré polyhedron theorem for
these groups. However, to describe the manifold at infinity for the limit groups, we will need to know
a fundamental domain, and we will have to go through a similar analysis in the next section.

6 The limit group.

In this section, we consider the group Γlim, and unless otherwise stated, the parameters α1 and α2

will always be assumed to be equal to 0 and αlim
2 respectively. We know already that Γlim is discrete

and isomorphic to Z3 ∗ Z3. Our goal is to prove that its manifold at infinity is homeomorphic to the
complement of the Whitehead link. For these values of the parameters, the maps S−1T and ST−1 are
unipotent parabolic (see the results of Section 3.4), and we denote by VS−1T and VST−1 respectively
the sets of (parabolic) fixed points of conjugates of S−1T and ST−1 by powers of A.

1. As in the previous section, we apply the Poincaré polyhedron theorem, this time to the group
Γlim. We obtain an infinite A-invariant polyhedron, still denoted D, which is a fundamental
domain for A-cosets. This polyhedron is slightly more complicated than the one in the previous
section due to the appearance of ideal vertices that are the points in VS−1T and VST−1 .

2. We analyse the combinatorics of the ideal boundary ∂∞D of this polyhedron. More precisely,
we will see that the quotient of ∂∞D \ ({pA} ∪ VS−1T ∪ VST−1) by the action of the group 〈S, T 〉
is homeomorphic the the complement of the Whitehead link, which is Theorem 6.4.

6.1 Matrices and fixed points.

Before going any further, we provide specific expressions for the various objects we consider at the
limit point. When α1 = 0 and α2 = αlim

2 , the map ϕ described in Proposition 4.2 is given in Heisenberg
coordinates by

ϕ : [z, t] 7−→
[
z +

√
3/8 + i

√
5/8,−t+ x

√
5/2 + y

√
3/2

]
. (21)

In particular its invariant line ∆ϕ is parametrised by

∆ϕ =
{
δϕ(x) =

[
x+ i

√
5/32, x

√
5/8

]
: x ∈ R

}
. (22)

The parabolic map A = ϕ2 acts on ∆ϕ as A : δϕ(x) 7−→ δϕ(x+
√

3/2). As a matrix it is given by

A =



1 −

√
3 −3/2 + i

√
15/2

0 1
√
3

0 0 1


 . (23)
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We can decompose A into the product of regular elliptic maps S and T :

S =




1
√
3/2− i

√
5/2 −1

−
√
3/2− i

√
5/2 −1 0

−1 0 0


 , T =




0 0 −1
0 −1 −

√
3/2 + i

√
5/2

−1
√
3/2 + i

√
5/2 1




These maps cyclically permute (pA, pAB , pB) and (pA, pP , pPA) where

pA =



1
0
0


 , pB =



0
0
1


 , pAB =




−1√
3/2 + i

√
5/2

1


 , pBA =




−1
−
√
3/2 + i

√
5/2

1


 . (24)

Using α1 = 0, we will occasionally use the facts from Proposition 3.6 that (S, T ) is C-decomposible
and (A,B) is R-decomposible.

As mentionned above, in the group Γlim the elements ST−1, S−1T , TST , STS and the commu-
tator [A,B] = (ST−1)3 are unipotent parabolic. For future reference, we provide here lifts of their
fixed points, both as vectors in C

3 and in terms of geographical coordinates g(α, β) (we omit the w
coordinates: since we are on the boundary it is equal to

√
2 cosα).

pST−1 =



−1/4 + i

√
15/4√

3/4 + i
√
5/4

1


 = g (arccos(1/4), π/2) ,

pS−1T =



−1/4 − i

√
15/4

−
√
3/4 + i

√
5/4

1


 = g (− arccos(1/4), π/2) ,

pTST =




−1
−3
√
3/4 + i

√
5/4

1


 = g

(
0,− arccos

(√
27/32

))
,

pSTS =




−1
3
√
3/4 + i

√
5/4

1


 = g

(
0, arccos

(√
27/32

))
. (25)

It follows from (21) that ϕ acts on these parabolic fixed points as follows:

· · · pT−1STST
ϕ−→ pTST

ϕ−→ pS−1T
ϕ−→ pST−1

ϕ−→ pSTS
ϕ−→ pSTSTS−1 · · · (26)

6.2 The Poincaré theorem for the limit group.

The limit group has extra parabolic elements. Therefore, in order to apply the Poincaré theorem, we
must construct a system of consistent horoballs at these parabolic fixed points (see Section 5.1).

Lemma 6.1. The isometric spheres I+1 and I−−1 are tangent at pST−1. The isometric spheres I+−1

and I−0 are tangent at pS−1T .

Proof. It is straightforward to verify that |〈pST−1 ,pBA〉| = |〈pST−1 , A(pB)〉| = 1, and therefore pST−1

belongs to both I−−1 and I+1 . Projecting vertically (see Remark 1), we see that the projections of I−−1

and I+1 are tangent discs and as they are strictly convex, their intersection contains at most one point.
This gives the result. The other tangency is along the same lines.

A consequence of Lemma 6.1 is that the parabolic fixed points are tangency points of isometric
spheres. The following lemma is proved in Section 7.1.
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View from the positive t-axis View from the negative y-axis

Figure 4: Various realistic views of the isometric spheres I±k for −1 6 k 6 1 for the limit group Γlim.

Lemma 6.2. For the group Γlim the triple intersection I+0 ∩ I−0 ∩ I−−1 contains exactly two points,
namely the parabolic fixed points pST−1 and pS−1T .

Applying powers of ϕ, we see that these triple intersections are actually quadruple intersections of
sides and triple intersections of ridges.

Corollary 6.3. The parabolic fixed point Ak(pST−1) lies on I−k−1 ∩ I+k ∩ I−k ∩ I+k . In particular, it

is the triple ridge intersection r−k ∩ r+k ∩ r−k+1. Similarly, Ak(pS−1T ) lies on I+−1 ∩ I−−1 ∩ I+0 ∩ I−0 . In

particular it is r+k−1 ∩ r−k ∩ r+k .

To construct a system of consistent horoballs at the parabolic fixed points we must investigate the
action of the side pairing maps on them. First, pS−1T ∈ I+−1 ∩ I−−1 ∩ I+0 ∩ I−0 , we have

σ(s+−1) = A−1SA : pS−1T 7−→ pT−1STST ,

σ(s−−1) = A−1S−1A : pS−1T 7−→ pTST ,

σ(s+0 ) = S : pS−1T 7−→ pST−1 ,

σ(s−0 ) = S−1 : pS−1T 7−→ pSTS.

Likewise pST−1 ∈ I−−1 ∩ I+0 ∩ I−0 ∩ I+1 . We have

σ(s−−1) = A−1S−1A : pST−1 7−→ A−2(pST−1),

σ(s+0 ) = S : pST−1 7−→ pSTS,

σ(s−0 ) = S−1 : pST−1 7−→ pS−1T ,

σ(s+1 ) = ASA−1 : pST−1 7−→ A2(pST−1).

We can combine these maps to show how the points Ak(pST−1) and Ak(pS−1T ) are related by the
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F0

F−1

I−0

I+0I+−1 I+1

I−1

∆ϕ

I−−1

Figure 5: Vertical projection of the isometric spheres for the parameter values α1 = 0, α2 = αlim
2 .

Compare with Figure 4.

side pairing maps. This leads to an infinite graph, a section of which is:

A−1SA // pST−1
ASA−1

//

S

((QQQQQQQQQQQQQQQ
A2(pST−1) //

pT−1STSToo

A−1SA
��

pS−1T
A−1SAoo

S

OO

pSTS
S

oo

ASA−1

��

A2(pS−1T )
ASA−1

oo

A2SA−2

OO

oo

// pTST
S

//
A−1SA

66lllllllllllllll

pSTSTS−1

A2SA−2

//
ASA−1

55kkkkkkkkkkkkkk

(27)

From this it is clear that all the cycles in the graph (27) are generated by triangles and quadrilaterals.
Up to powers of A, the triangles lead to the word S3, which is the identity. Up to powers of A the
quadrilaterals lead to words cyclically equivalent to the one coming from:

pS−1T
S−1

// pSTS
ASA−1

// pSTSTS−1
S−1

// pTST
A−1SA // pS−1T

In other words, pS−1T is fixed by (A−1SA)(S−1)(ASA−1)(S−1) = (T−1S)3. This is parabolic and so
preserves all horoballs based at pS−1T .

Therefore, we can define a system of horoballs as follows. Let U+
0 be a (sufficiently small) horoball

based at pS−1T . Now define horoballs U+
k and U−

k by applying the side pairing maps to U+
0 . Since

every cycle in the graph (27) gives rise either to the identity map or to a parabolic map, this process
is well defined and gives rise to a consistent system of horoballs. Therefore we can apply the Poincaré
polyhedron theorem for the two limit groups. Using the same arguments as we did for groups in the
interior of Z, we see that Γ has the presentation (17).

6.3 The boundary of the limit orbifold.

Theorem 6.4. The manifold at infinity of the group Γlim is homeomorphic to the Whitehead link
complement.

The ideal boundary of D is made up of those pieces of the isometric spheres I±k that are outside
all other isometric spheres in {I±k : k ∈ Z}. Recall that the (ideal boundary of) the side s±k is the
part of ∂I±k which is outside (the ideal boundary of) all other isometric spheres. In this section, when
we speak of sides and ridges in this section we implicitly mean their intersection with ∂H2

C
.

25



pAB

pSTS pTST

pST−1

r+0

r−0

pS−1T

pBA

Figure 6: Intersections of the isometric spheres I−0 , I−−1, I+1 and I+−1 with I+0 in the boundary of
H2

C
, viewed in geographical coordinates. Recall that r+0 = I+0 ∩ I−0 and r−0 = I+0 ∩ I−−1. Here

α ∈ [−π/2, π/2] is the vertical coordinates, and β ∈ [−π, π] the horizontal one. The vertical dash-
dotted segments β = ±π/2 are the two halves of the boundary of the meridian m. The bigon between
the two curves r+0 and r−0 is B+0 (see Proposition 6.5). Compare to Figure 2 of [6].

We will see that each isometric sphere in {I±k : k ∈ Z} contributes a side s±k made up of one
quadrilateral, denoted by Q±

k and one bigon B±k . A very similar behaviour of isometric spheres has
been observed by Deraux and Falbel in [6]. We begin by analysing the contribution of I+0 .

Proposition 6.5. The side s+0 of D has two connected components.

1. One of them is a quadrilateral, denoted Q+
0 , whose vertices are points pST−1, pS−1T , pSTS and

pTST (all of which are parabolic fixed points)

2. The other is a bigon, denoted B+0 , whose vertices are pST−1 and pS−1T

Proof. Since isometric spheres are strictly convex, the ideal boundaries of the ridges r+0 = I+0 ∩ I−0
and r−0 = I+0 ∩I−−1 are Jordan curves on I+0 . We still denote them by r±0 . The interiors of these curves
are respectively the connected components containing pAB and pBA. By Lemma 6.2 in Section 7.1, r+0
and r−0 have two intersection points, namely pS−1T and pST−1 , and that their interiors are disjoint. As
a consequence the common exterior of the two curves has two connected components, and the points
pS−1T and pST−1 lie on the boundary of both.

To finish the proof, consider the involution ι1 defined in the proof of Proposition 3.6. (Note that
since α1 = 0 this involution conjugates Γlim to itself.) In Heisenberg coordinates it is defined by
ι1 : [z, t] 7−→ [−z,−t] and is clearly a Cygan isometry. As in Proposition 3.6, ι1 fixes pA and pB
and it interchanges pAB and pBA. Thus it conjugates S to T−1 and so it interchanges pST−1 and
pS−1T and it interchanges pSTS and pTST . Moreover, since it is a Cygan isometry, ι1 preserves I+0 and
interchanges I−−1 and I−0 and thus it also exchanges the two curves r+0 and r−0 . Again, since it is a
Cygan isometry, it maps interior to interior and exterior to exterior for both curves. As a consequence,
the two connected components of the common exterior are either exchanged or both preserved.

Now consider the point with Heisenberg coordinates [i, 0]. It is fixed by ι1, and belongs to the
common exterior of both r+0 and r−0 This implies that both connected components are preserved.
Finally, since pSTS ∈ I+0 ∩ I−0 and pTST ∈ I+0 ∩ I−−1 are exchanged by ι1, these two points belong to
the closure of the same connected component. As a consequence, one of the two connected components
has pST−1 , pS−1T , pSTS and pTST on its boundary. This is the quadrilateral. The other one has pST−1

and pS−1T on its boundary. This is the bigon.
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We now apply powers of A to get a result about all the isometric sphere intersections in the
ideal boundary of D. Define Q−

0 = ϕ(Q−
0 ) and B−0 = ϕ(B−0 ). Then applying powers of A we define

quadrilaterals Q±
k = Ak(Q±

0 ), and bigons B±k = Ak(B±0 ). The action of the Heisenberg translation A
and the glide reflection ϕ are:

pTST pST−1 pSTSTS−1

pTST pSTSTS−1

pT−1S pSTS

Q+
1

Q−1

Q+
0

pT−1STST

Q+
−1 B−−1

B+
−1 Q−−1 B+

0 Q−0

B−0

B+
1

F0

pST−1

c−0

c+0

A

F−1

c−−1

c+−1

Figure 7: A combinatorial picture of ∂D. The top and bottom lines are identified.

Corollary 6.6. For the group Γlim, the (ideal boundary of) the side s±k the quadrilateral Q±
k and the

bigon B±k . The action of A and ϕ are as follows.

(1) A maps Q±
k to Q±

k+1, and B±k to B±k+1.

(2) ϕ maps Q+
k to Q−

k , Q−
k to Q+

k+1, B+k to B−k and B−k to B+k+1.

In order to understand the combinatorics of the sides of D, we describe the edges of the faces
lying in I+0 . The three points pS−1T , pST−1 , pSTS lie on the ridge r+0 = I+0 ∩I−0 . Likewise, the points
pST−1 , pS−1T , pTST lie in the ridge r−0 = I+0 ∩I−−1. Indeed, these points divide (the ideal boundaries of)
these ridges into three segments. We have listed the ideal vertices in positive cyclic order (see Figure
6). Using the graph (27), the action of the cycle transformations ρ(s+0 ) = S and ρ(r−0 ) = A−1S = T−1

on these ideal vertices, and hence on the segments of the ridges, is:

pS−1T
S // pST−1

S // pSTS
S // pS−1T ,

pST−1
A−1S // pS−1T

A−1S // pTST
A−1S // pST−1 .

Furthermore, S maps pTST to pSTSTS−1 .
The quadrilateral Q+

0 has two edges [pS−1T , pTST ] ∪ [pTST , pST−1 ] in the ridge r−0 and two edges
[pST−1 , pSTS ] ∪ [pSTS, pS−1T ] in the ridge r+0 . It is sent by S to the quadrilateral Q−

0 with two edges
[pST−1 , pSTSTS−1 ]∪[pSTSTS−1 , pSTS] in r−1 and two edges [pSTS, pS−1T ]∪[pS−1T , pST−1 ] in r+0 . Similarly,
the edges of the bigon B+0 are the remaining segments in r−0 and r+0 , both with endpoints pS−1T and
pST−1 . It is sent by S to the bigon B−0 with vertices pST−1 and pSTS.

Applying powers of A gives the other quadrilaterals and bigons. As usual, the image under Ak can
be found by adding k to each subscript and conjugating each side pairing map and ridge cycle by Ak.
The combinatorics of D is summarised on Figure 7.

Lemma 6.7. The line ∆ϕ given in (22) is contained in the complement of D.
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Proof. As noted above, A acts on ∆ϕ as a translation through
√
3/2. We claim that the segment of

∆ϕ with parameter x ∈ [−
√

3/8,
√

3/8] in contained in the interior of I+0 . Applying powers of A we
see that each point of ∆ϕ is contained in I+k for some k. Hence the line is in the complement of D.

Consider δϕ(x) ∈ ∆ϕ with x2 ≤ 3/8. The Cygan distance between pB and δϕ(x) satisfies:

dCyg(pB , δϕ(x))
4 =

∣∣∣−x2 − 5/32 + ix
√

5/8
∣∣∣
2
= x4 + 15x2/16 + 25/1 − 24 ≤ 529/1024.

Since dCyg(pB , δϕ(x)) < 1 this means δϕ(x) is in the interior of I+0 as claimed.

The following result, which will be proved in Section 7.5, is crucial for proving Theorem 6.4.

Proposition 6.8. There exists a homeomorphism Ψ : R3 −→ ∂H2
C
− {q∞} mapping the exterior of

S1 × R, that is
{
(x, y, z) : x2 + y2 ≥ 1

}
, homeomorphically onto D and so that Ψ(x, y, z + 1) =

AΨ(x, y, z), that is Ψ is equivariant with respect to unit translation along the z axis and A.

As a consequence of Proposition 6.8, D admits an A invariant 1-dimensional foliation, the leaves
being the images of radial lines

{
(r cos(θ0), r sin(θ0), z0) : r ≥ 1

}
that foliate the exterior of S1 × R.

Each of these leaves is a curve connecting a point of ∂D with q∞. We can now prove Theorem 6.4.

Proof of Theorem 6.4. The union Q+
0 ∪ B+0 ∪ Q−

0 ∪ B−0 is a fundamental domain for the action of A
on the boundary cylinder ∂D. As the foliation obtained above is A-invariant, the cone to the point
q∞ built over it via the foliation is a fundamental domain for the action of A over D, and thus, it is
a fundamental domain for the action of Γlim on the region of discontinuity Ω(Γlim).

This fundamental domain is the union of two pyramids P+ and P−, with respective bases Q+
0 ∪B−0

and Q−
0 ∪ B+0 , and common vertex q∞ = pST . The two pyramids share a common face, which is a

triangle with vertices pSTS, pT−1S and pST . Cutting and pasting, consider the union P+ ∪ S−1
(
P−

)
.

It is again a fundamental domain for Γlim. The apex of S−1(P−) is S−1(q∞) = pB = pTS. The image
under S−1 of Q−

0 is Q+
0 , and the bigon B+0 is mapped by S−1 to another bigon connecting pT−1S to

pSTS. Since B−0 = S(B+0 ), this new bigon is the image of B−0 under S−2 = S.
The resulting object is a is a polyhedron (a combinatorial picture is provided on Figure 8), whose

faces are triangles and bigons. The faces of this octahedron are paired as follows.

pTS

S−1(P−)

B−0

P+

pSTS

S−1(B+
0 )

pST−1

pT−1SpTST
Q+

0

pST

pST

pST

pSTS

pST

pTSpST−1

pTST

pT−1S

pST

Figure 8: A combinatorial picture of the octahedron.
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TS : (pTS , pT−1S , pSTS) 7−→ (pTS , pTST , pTS−1),

ST : (pST , pTST , pT−1S) 7−→ (pST , pST−1 , pSTS),

T : (pST , pTST , pST−1) 7−→ (pTS , pT−1S, pTST ),

S : (pTS , pS−1T , pSTS) 7−→ (pST , pSTS, pS−1T ),

S : (pST−1 , pSTS) 7−→ (pSTS, pS−1T )

The last line is the bigon identification between B−0 and S−1(B+0 ). As the triangle (pTS , pS−1T , pSTS)
and the bigon B−0 share a common edge and have the same face pairing they can be combined into
a single triangle, as well as their images. Thus the last two lines may be combined into a single side
with side pairing map S. We therefore obtain a true octahedron. The face identifications given above
make the quotient manifold homeomorphic to the complement of the Whitehead link (compare for
instance with Section 3.3 of [35]).

7 Technicalities.

7.1 The triple intersections: proofs of Proposition 4.5 and Lemma 6.2.

In this section we first prove Proposition 4.5, which states that the triple intersection must contain
a point of ∂H2

C
and then we analyse the case of the limit group Γlim, giving a proof of Lemma 6.2.

First recall that the isometric spheres I−0 and I−−1 are the unit Heisenberg spheres with centres given
respectively in geographical coordinates by (see 2.5)

pAB = S(∞) = g
(
−α1,−α1/2 + α2,

√
2 cos(α1)

)

pBA = A−1S(∞) = g
(
−α1,−α1/2− α2 + π,

√
2 cos(α1)

)
.

Consider the two functions of points q = g(α, β,w) ∈ I+0 defined by

f [0]
α1,α2

(q) = 2 cos2(α/2 − α1/2) + cos(α− α1) (28)

−4wx1 cos(α/2 − α1/2) cos(β + α1/2− α2) + w2x21,

f [−1]
α1,α2

(q) = 2 cos2(α/2 − α1/2) + cos(α− α1)

+4wx1 cos(α/2 − α1/2) cos(β + α1/2 + α2) + w2x21. (29)

These functions characterise those points on I+0 that belong to I−0 and I−−1.

Lemma 7.1. A point q on I+0 lies on I−0 (respectively in its interior or exterior) if and only if it

satisfies f
[0]
α1,α2

(q) = 0 (respectively is negative or is positive). Similarly, a point q on I+0 lies on I−−1

(respectively in its interior or exterior) if and only if it satisfies f
[−1]
α1,α2

(q) = 0 (respectively is negative
or is positive).

Proof. A point q ∈ I+0 lies on I−0 (respectively in its interior or exterior) if and only if its Cygan
distance from the centre of I−0 , which is the point pAB, equals 1 (respectively is less than 1 or
greater than 1). Equivalently (see Section 2.4), the following quantity vanishes, is positive or negative
respectively,

∣∣〈q,pAB〉
∣∣2 − 1 =

∣∣∣−e−iα + wx1e
−iα/2+iβ−iα2 − e−iα1

∣∣∣
2
− 1

=
∣∣∣−2 cos(α/2 − α1/2) + wx1e

iβ+iα1/2−iα2

∣∣∣
2
− 1

= 4 cos2(α/2− α1/2)− 1− 4 cos(α/2 − α1/2)wx1 cos(β + α1/2− α/2) + w2x21

= f [0]
α1,α2

(q).
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On the last line we used 2 cos2(α/2−α1/2) = 1+cos(α−α1). This proves the first part of the Lemma
and the second is obtained by a similar computation.

Corollary 7.2. For given (α1, α2), if the sum f
[0]
α1,α2

+ f
[−1]
α1,α2

is positive for all q, then the triple
intersection I+0 ∩ I−0 ∩ I−−1 is empty.

See Figure 6. We can now prove Proposition 4.5.

Proof of Proposition 4.5. To prove the first part, note that a necessary condition for a point q ∈ I+0
to be in the intersection I−0 ∩ I−−1 is that f

[0]
α1,α2

(q)− f
[−1]
α1,α2

(q) = 0. This difference is:

f [0]
α1,α2

(q)− f [−1]
α1,α2

(q) = −4wx1 cos(α/2 − α1/2)
(
cos(β + α1/2− α2) + cos(β + α1/2 + α2)

)

= −8wx1 cos(α/2 − α1/2) cos(β + α1/2) cos(α2).

Since α1 and α2 lie in (−π/2, π/2) and α ∈ [−π/2, π/2], the only solutions are cos(β + α1/2) = 0 or
w = 0. Thus either p = g(α, β,w) lies on the meridian m, or on the spine of I+0 , and hence on every
meridian, in particular on m (compare with Proposition 2.9).

To prove the second part of Proposition 4.5, assume that the triple intersection contains a point
q = g

(
α, (π/2 − α1/2), w

)
inside H2

C
, that is such that w2 < 2 cos(α), and

f [0]
α1,α2

(q) + f [−1]
α1,α2

(q) = 0.

In view of Corollary 7.2, we only need to prove that there exists a point on ∂m where the above sum
is non-positive, and use the intermediate value theorem. To do so, let α̃ be defined by the condition
2 cos(α̃) = w2 and such that α̃ and α1 have opposite signs. Since w2 < 2 cos(α), these conditions
imply that |α̃| > |α|. We claim that the point q̃ = g

(
α̃, (π − α1)/2, w

)
is satisfactory. Indeed, the

conditions on α̃ give
|α− α1| ≤ |α|+ |α1| < |α̃|+ |α1| = |α̃− α1|

where the last inequality follows from the fact that α̃ and α1 have opposite signs. Therefore

cos(α̃/2− α1/2) < cos(α/2 − α1/2). (30)

On the other hand, we have

f [0]
α1,α2

(q) + f [−1]
α1,α2

(q)

= 4 cos2(α/2 − α1/2) + 2 cos(α− α1)− 8wx1 cos(α/2 − α1/2) sin(α2) + 2w2x21

= 8cos2(α/2 − α1/2)− 2− 8wx1 cos(α/2 − α1/2) sin(α2) + 2w2x21. (31)

We claim this is an increasing function of cos(α/2 − α1/2). In order to see this, observe that its
derivative with respect to this variable is

16 cos(α/2 − α1/2) − 8wx1 sin(α2) > 16 cos(α/2 − α1/2)− 16
√

cos(α) cos(α1) ≥ 0,

where we used x1 =
√

2 cos(α1), w <
√

2 cos(α) and sin(α2) ≤ 1. Therefore,

0 = f [0]
α1,α2

(q) + f [−1]
α1,α2

(q)

= 8 cos2(α/2 − α1/2) − 2− 8wx1 cos(α/2 − α1/2) sin(α2) + 2w2x21

> 8 cos2(α̃/2− α1/2) − 2− 8wx1 cos(α̃/2− α1/2) sin(α2) + 2w2x21

= f [0]
α1,α2

(q̃) + f [−1]
α1,α2

(q̃).

This proves our claim.
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We now prove Lemma 6.2 which completely describes the triple intersection at the limit point.

Proof of Lemma 6.2. From the first part of Proposition 4.5 we see that any point q = g(α, β,w) in
I+0 ∩ I−0 ∩ I−−1 must lie on m, that is β = (π − α1)/2. For such points it is enough to show that

f
[0]

0,αlim

2

(q) + f
[−1]

0,αlim

2

(q) = 0. Substituting α1 = 0 and sin(α2) =
√

5/8, this becomes:

f
[0]

0,αlim

2

(q) + f
[−1]

0,αlim

2

(q) = 4 cos2(α/2) + cos(α)− 4
√
5w cos(α/2) + 4w2

=
(
2 cos(α/2) −

√
5w

)2
+

(
2 cos(α)− w2

)
.

In order to vanish, both terms must be zero. Hence w2 = 2cos(α) and 2 cos(α/2) =
√
5w =

√
10 cos(α)

(noting w cannot be negative since α ∈ [−π/2, π/2]). This means α = ± arccos(1/4) and w =√
2 cos(α) = 1/

√
2. Therefore, the only points in I+0 ∩ I−0 ∩ I−−1 have geographical coordinates

g
(
± arccos(1/4), π/2, 1/

√
2
)
. Using (25), we see these points are pST−1 and pS−1T .

7.2 The region Z is an open disc in the region L: Proof of Proposition 4.4.

Consider the group Γα1,α2
and, as usual, write x41 = 4cos2(α1) and x42 = 4cos2(α2). Recall, from

Proposition 3.7, that (α1, α2) is in L (respectively P) if G(x41, x42) > 0 (respectively = 0) where:

G(x, y) = x2y4 − 4x2y3 + 18xy2 − 27. (32)

Recall this means [A,B] is loxodromic (respectively parabolic). Also (α1, α2) is in the rectangle R if
and only if (x41, x

4
2) ∈ [3, 4]× [3/2, 4]. From Proposition 4.3, the point (α1, α2) ∈ R is in Z (respectively

∂Z) if D(x41, x42) > 0 (respectively = 0) where:

D(x, y) = x3y3 − 9x2y2 − 27xy2 + 81xy − 27x− 27. (33)

Lemma 7.3. Suppose (α1, α2) ∈ R. Then (α1, α2) ∈ L ∪ P. Moreover, (α1, α2) ∈ P if and only if
(α1, α2) = (0,±αlim

2 ).

Proof. We first claim that the function G(x, y) has no critical points in (0,∞) × (0,∞). Indeed, the
first partial derivatives of G(x, y) are

Gx(x, y) = 2y2(xy2 − 4xy + 9), Gy(x, y) = 4xy(xy2 − 3xy + 9).

These are not simultaneously zero for any positive values of x and y. As a consequence, the minimum
of G on [3, 4] × [3/2, 4] is attained on the boundary of this rectangle. We then have:

G(x, 3/2) = 27

16
(4− x) (5x− 4) , G(x, 4) = 9(32x − 3),

G(3, y) = 9 (y − 1)
(
y3 − 3y2 + 3y + 3

)
, G(4, y) = (2y + 1)(2y − 3)3.

It is a simple exercise to check that under the assumptions that 3 ≤ x ≤ 4 and 3/2 ≤ y ≤ 4 all
four of these terms are positive, except for when (x, y) = (4, 3/2) in which case G(4, 3/2) = 0. Then
(x41, x

4
2) = (4, 3/2) if and only if (α1, α2) = (0,±αlim

2 ); compare to Figure 3.

Lemma 7.4. The region Z is an open topological disc in R symmetric about the axes and intersecting
them in the intervals {α2 = 0, −π/6 < α1 < π/6} and {α1 = 0, −αlim

2 < α2 < αlim
2 }. Moreover, the

only points of ∂Z that lie in the boundary of R are (α1, α2) = (0,±αlim
2 ) and (α1, α2) = (±π/6, 0).
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Figure 9: The null locus of D(x, y) in the rectangle [3, 4] × [3/2, 4].

Proof. First we examine the values of D(x, y) on the boundary of [3, 4] × [3/2, 4]:

D (x, 3/2) = 27
8 (x− 4)(x2 − 2x+ 2), D(x, 4) = (x− 3)(3 + 8x)2,

D(3, y) = 27(y − 4)(y − 1)2, D(4, y) = (16y − 15)(2y − 3)2.
(34)

We claim that, for any y0 ∈ [3/2, 4] the polynomial D(x, y0) has exactly one root in [3, 4]. Indeed,
we have D(3, y0) ≤ 0 ≤ D(4, y0) and thus D(x, y0) has at least one such root. The x-derivative of D is

∂xD(x, y) = 3(x− 3)y2(xy + 3y − 6) + 27(y − 1)3,

which is positive when x ∈ [3, 4] and y ∈ [3/2, 4]. Thus D(x, y0) is increasing, and the root is unique.
Similarly, we claim that, for any x0 ∈ [3, 4], the polynomial D(x0, y) has a unique root in [3/2, 4].

It is clear from (34) when x0 = 4 (there the root is y = 3/2). Now suppose 3 ≤ x0 < 4. Arguing
as before, we have D(x0, 3/2) < 0 ≤ D(x0, 4). However, it is not true that D(x0, y) is a monotone
function of y. The partial derivative of D(x, y) with respect to y is

∂yD(x, y) = 3x(x2y2 − 6xy − 18y + 27).

Therefore, for a fixed x0 ∈ [3, 4) we have ∂yD(x0, 3/2) = 27x20(x0− 4)/4 < 0. Since D(x0, y) is a cubic
with leading coefficient x30 > 0, such that both D(x0, 3/2) and ∂yD(x0, 3/2) are negative we see that
D(x0, y) has exactly one zero in (3/2,∞). Since D(x0, 4) ≥ 0 this zero must lies in (3/2, 4] as claimed.

Thus the zero-locus of D(x, y) in [3, 4] × [3/2, 4] is the graph of a continuous bijection connecting
the two points (3, 4) and (4, 3/2). The polynomial D(x, y) is positive in the part of [3, 4] × [3/2, 4]
above the zero-locus, that is containing the point (x, y) = (4, 4) (see Figure 9). Likewise, it is negative
in the part below the zero locus, that is containing the point (x, y) = (3, 3/2). Changing coordinates
to (α1, α2), we see that the zero locus of D

(
4 cos2(α1), 4 cos

2(α2)
)
in the rectangle [0, π/6]× [0, αlim

2 ] is
the graph of a continuous bijection connecting the points (α1, α2) = (π/6, 0) and (0, αlim

2 ). Moreover,
D is positive on the part below this curve, in particular on the interval α1 = 0 and 0 ≤ α2 < αlim

2 and
the interval α2 = 0 and 0 ≤ α1 < π/6. The region Z is the union of the four copies of this region by
the symmetries about the horizontal and vertical coordinate axes. It is clearly a disc and contains the
relevant parts of the axes. This completes the proof.

Combining Lemmas 7.3 and 7.4 proves Proposition 4.4.

7.3 Condition for no triple intersections: Proof of Proposition 4.3.

In this section we find a condition on (α1, α2) that characterises the set Z where the triple intersection
of isometric spheres I+0 ∩ I−0 ∩ I−−1 is empty.
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Lemma 7.5. The triple intersection I+0 ∩ I−0 ∩ I−−1 is empty if and only if fα1,α2
(α) > 0 for all

α ∈ [−π/2, π/2] where

fα1,α2
(α) = 4 cos2(α/2 − α1/2) + 2 cos(α− α1) + 8 cos(α) cos(α1) (35)

−16
√

cos(α) cos(α1) cos(α/2 − α1/2)
∣∣sin(α2)

∣∣.

Proof. By Corollary 7.2, it is enough to show that f
[0]
α1,α2

+ f
[−1]
α1,α2

> 0. This sum is made explicit in
(31). In view of the second part of Proposition (4.5), we can restrict our attention to showing that the
triple intersection I+0 ∩I−0 ∩I−−1 contains no points of ∂H2

C
. That is, we may assume w = ±

√
2 cos(α).

Using the first part of Proposition 4.5 we restrict our attention to points m in the meridian m where

β = (π−α1)/2. The triple intersection is empty if and only if the sum f
[0]
α1,α2

(q)+ f
[−1]
α1,α2

(q) is positive
for any value of α, where q = g

(
α, (π − α1/2),±

√
2 cos(α)

)
. When w sin(α2) is negative all terms in

(31) are positive. Therefore we may suppose w sin(α2) =
√

2 cos(α1)
∣∣sin(α2)

∣∣ ≥ 0. Substituting these

values in the expression for f
[0]
α1,α2

(q) + f
[−1]
α1,α2

(q) given in (31) gives the function fα1,α2
(α) in (35).

We want to convert (35) into a polynomial in a function of α. The numerical condition given in
the statement of Proposition 4.3 will follow from the next lemma.

Lemma 7.6. If α ∈ [−π/2, π/2] is a zero of fα1,α2
then Tα = tan(α/2) ∈ [−1, 1] is a root of the

quartic polynomial Lα1,α2
(T ), where

Lα1,α2
(T ) = T 4

(
2x41x

4
2 − 4x21x

4
2 + x41 + 10x21 + 1

)
− 8T 3 sin(α1)

(
x21x

4
2 − x21 − 1

)

−2T 2
(
2x41x

4
2 + 3x41 − 9

)
+ 8T sin(α1)

(
x21x

4
2 − x21 + 1

)

+
(
2x41x

4
2 + 4x21x

4
2 + x41 − 10x21 + 1

)
(36)

Proof. Squaring the two lines of (35) and using
√

2 cos(α1)
∣∣sin(α2)

∣∣ ≥ 0, we see that the condition
fα1,α2

(α) = 0 is equivalent to

(
2 cos2(α/2− α1/2) + cos(α− α1) + 4 cos(α) cos(α1)

)2
= 64 cos(α) cos(α1) cos

2(α/2− α1/2) sin
2(α2).

After rearranging and expanding, we obtain the following polynomial equation in cos(α) and sin(α).

0 = 4
(
8 cos2(α1) cos

2(α2) + 2 cos2(α1)− 1
)
cos2(α) + 4 cos(α1)

(
8 cos2(α2)− 5

)
cos(α)

+8 cos(α1) sin(α1)
(
4 cos2(α2)− 1

)
cos(α) sin(α) + 4 sin(α1) sin(α) − 4 cos2(α1) + 5.

Substituting tan(α/2) = T , 2 cos(α1) = x21 and 2 cos(α2) = x22 into this equation gives Lα1,α2
(T ).

Before proving Proposition 4.3, we analyse the situation on the axes α1 = 0 and α2 = 0.

Lemma 7.7. Let Lα1,α2
(T ) be given by (36).

1. When α2 = 0 and −π/6 < α1 < π/6 then Lα1,0(T ) has two real double roots T− and T+ where
T− < −1 and T+ > 1, and no other roots.

2. When α1 = 0 and 0 < α2 < αlim
2 or −αlim

2 < α2 < 0 the polynomial L0,α2
(T ) has no real roots.

Proof. First, substituting α2 = 0 in (36) we find L(α1,0) = Mα1
(T )2, where

Mα1
(T ) = T 2(3x21 − 1)− 4T sin(α1)− (3x21 + 1).

33



The condition on α1 guarantees that 3x21 − 1 > 0 and so as T tends to ±∞ so Mα1
(T ) tends to +∞.

On the other hand,

Mα1
(−1) = 4 sin(α1)− 2 < 0, Mα1

(1) = −4 sin(α1)− 2 < 0.

Therefore Mα1
(T ) has two real roots T− < −1 and T+ > 1 as claimed. Since Mα1

(T ) is quadratic, it
cannot have any more roots. In particular, it is negative for −1 ≤ T ≤ 1.

Secondly, we substitute α1 = 0 in (36), giving:

L0,α2
(T ) =

(
5T 2 − 8x42 + 3

5

)2

+
32

25
(2x42 − 3)(4− x42).

When α2 ∈ (−αlim
2 , αlim

2 ) and α2 6= 0, we have x42 = 4cos2(α2) ∈ (3/2, 4). In particular, this means
that (2x42 − 3)(4 − x42) > 0 and so L0,α2

(T ) has no real roots, proving the second part.

We note that when α1 = α2 = 0 then L0,0(T ) has double roots at T = ±
√

7/5 and when α1 = 0
and α2 = ±αlim

2 then L0,±αlim

2

(T ) has double roots at T = ±
√

3/5.

Lemma 7.8. If (α1, α2) ∈ Z then the polynomial Lα1,α2
(T ) has no roots T in [−1, 1].

Proof. We analyse the number, type (real or non-real) and location of roots of the polynomial Lα1,α2
(T )

when (α1, α2) ∈ R. As Lα1α2
(T ) has real coefficients, whenever it has only simple roots, its root set

is of one of the following types:

(a) two pairs of complex conjugate non real simple roots,

(b) a pair of non-real complex conjugate simple roots and two simple real roots,

(c) four simple real roots.

But the set of roots of a polynomial is a continuous map (in bounded degree) for the Hausdorff distance
on compact subsets of C. In particular, the root set type of Lα1,α2

(T ) is a continuous function of α1

and α2. This implies that it is not possible to pass from one of the above types to another without
passing through a polynomial having a double root.

We compute the discriminant ∆α1,α2
of Lα1,α2

(T ) (a computer may be useful to do so):

∆α1,α2
= 216x41

(
x41 + 1

)2(
2x21(2− x21)(4− x42) + (3x21 − 1)2

)(
4− x42

)2 · D
(
x41, x

4
2

)
(37)

where D(x, y) is as in Proposition 4.3, and xi =
√

2 cos(αi). The polynomial Lα1,α2
(T ) has a multiple

root in C if and only if ∆α1α2
= 0. Let us examine the different factors.

• The first two factors x41 and (x41 + 1)2 are positive when (α1, α2) ∈ (−π/2, π/2)2 .

• Note that (2 − x21)(4 − x42) ≥ 0 and (3x21 − 1)2 > 0 when
√
3 ≤ x21 ≤ 2 and x42 ≤ 4, and so the

third factor is positive.

Thus, the only factors of ∆α1,α2
that can vanish on R are (4 − x42)

2 = 16 sin4 α2 and D(x41, x42). In
particular Lα1,α2

(T ) has a multiple root in C if and only if one of these two factors vanishes. We
saw in Proposition 4.4 that the subset of R where D(x41, x42) > 0 is a topological disc Z, symmetric
about the α1 and α2 axes and intersecting them in the intervals {α2 = 0, −π/6 < α1 < π/6} and
{α1 = 0, −αlim

2 < α2 < αlim
2 }. Therefore, the rectangle R contains two open discs on which ∆α1,α2

> 0,
namely

Z+ = {(α1, α2) ∈ Z : α2 > 0}, Z− = {(α1, α2) ∈ Z : α2 < 0}.
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These two sets each contain an open interval of the α2 axis. We saw in the second part of Lemma 7.7
that on both these intervals Lα1,α2

(T ) has no real roots, that is its roots are of type (a). Therefore it
has no real roots on all of Z+ and Z−.

The only points of Z yet to be considered are those in the interval {α2 = 0, −π/6 < α1 < π/6}.
We saw in the first part of Lemma 7.7 that for such points Lα1,α2

(T ) has no roots with −1 ≤ T ≤ 1.
This completes the proof of Proposition 4.3.

7.4 Pairwise intersection: Proof of Proposition 4.6.

Proposition 4.6 will follow from the next lemma.

Lemma 7.9. If 0 < x ≤ 4 and D(x, y) ≥ 0 then xy ≥ 6 with equality if and only if (x, y) = (4, 3/2).

Proof. Substituting y = 6/x in (33) and simplifying, we find D(x, 6/x) = −27(x− 4)(x− 9)/x. When
0 < x ≤ 4 we see immediately that this is non-positive and equals zero if and only if x = 4. This
means that xy− 6 has a constant sign on the region where D(x, y) > 0. Checking at (x, y) = (4, 4) we
see that it is positive.

Proof of Proposition 4.6. To prove the disjointness of the given isometric spheres we calculate the
Cygan distance between their centres. Since all the isometric spheres have radius 1, if we can show
their centres are a Cygan distance at least 2 apart, then the spheres are disjoint. (Note that the Cygan
distance is not a path metric, so it maybe the distance is less than 2 but the spheres are still disjoint.
This will not be the case in our examples.)

The centre of I+k is Ak(pB) =
[
kx1x

2
2/
√
2, kx21x

2
2 sin(α2)

]
; see Proposition 4.1. We will show that

dCyg

(
Ak(pB), pB

)4
> 16 when k2 ≥ 4 and (α1, α2) ∈ R, that is (x41, x42) ∈ [3, 4] × [3/2, 4]:

dCyg

(
Ak(pB), pB

)4
=

k4x41x
8
2 + k2x41x

4
2(4− x42)

4

≥ 27k4

16
.

This number is greater than 16 when k ≥ 2 or k ≤ −2 as claimed.
Again using Proposition 4.1, the centre of I−k is Ak(pAB) =

[
(kx1x

2
2 + x1e

iα2)/
√
2,− sin(α1)

]
. We

suppose (x41, x
4
2) ∈ [3, 4] × [3/2, 4] satisfies x41x

4
2 ≥ 6, which is valid for (α1, α2) ∈ Z by Lemma 7.9.

dCyg

(
Ak(pAB), pB

)4
=

(
k(k + 1)x21x

4
2 + x21

)2
+ 4− x41

4

= 1 +
k2(k + 1)2x41x

8
2 + 2k(k + 1)x41x

4
2

4

≥
(
3k(k + 1)

2
+ 1

)2

.

This number is at least 16 when k ≥ 1 or k ≤ −2 as claimed. Moreover, we have equality exactly
when k = 1 or k = −2 and when x41x

4
2 = 6 and x42 = 3/2; that is when (x41, x

4
2) = (4, 3/2).

7.5 ∂∞D is a cylinder: Proof of Proposition 6.8.

To prove Proposition 6.8, we adopt the following strategy.
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• Step 1. First, we intersect D with a fundamental domain DA for the action of A on the
Heisenberg group. The domain DA is bounded by two parallel vertical planes F−1 and F0 that
are boundaries of fans in the sense of [18]. These two fans are such that A(F−1) = F0 (see Figure
5 for a view of the situation in vertical projection). We analyse the intersections of F0 and F−1

with D, and show that they are topological circles, denoted by c−1 and c0 with A(c−1) = c0.

• Step 2. Secondly, we consider the subset of the complement of D which is contained in DA,
and prove that it is a 3-dimensional ball that intersects F−1 and F0 along topological discs
(bounded by c−1 and c0). This proves that D∩DA is the complement a solid tube in DA, which
is unknotted using Lemma 6.7. Finally, we prove that, gluing together copies by powers of A of
D ∩DA, we indeed obtain the complement of a solid cylinder.

We construct a fundamental domain DA for the cyclic group of Heisenberg translations 〈A〉. The
domain DA will be bounded by two fans, chosen to intersect as few bisectors as possible. The fan
F0 will pass through pST−1 and will be tangent to both I+1 and I−−1; compare Figure 5. Similarly,
F−1 = A−1(F0) will pass through A−1(pST−1) = pTST and be tangent to both I+0 and I−−2. We first
give F0 and F−1 in terms of horospherical coordinates and then we give them in terms of their own
geographical coordinates (see [18]). In horospherical coordinates they are:

F0 =
{
[x+ iy, t] : 3x

√
3− y

√
5 =
√
2/2

}
, (38)

F−1 =
{
[x+ iy, t] : 3x

√
3− y

√
5 = −4

√
2
}
. (39)

This leads to the definition of DA:

DA =
{
[x+ iy, t] : −4

√
2 ≤ 3x

√
3− y

√
5 ≤
√
2/2

}
. (40)

We choose geographical coordinates (ξ, η) on F0: the lines where ξ is constant (respectively η
is constant) are boundaries of complex lines (respectively Lagrangian planes). These coordinates
correspond to the double foliation of fans by real planes and complex lines, which is described in
Section 5.2 of [18]. The particular choice is made so that the origin is the midpoint of the centres of
I+0 and I−0 . Doing so gives the fan F0 as the set of points f(ξ, η):

f(ξ, η) =

{[√
5ξ +

√
3 + 3i

√
3ξ + i

√
5

4
√
2

, η − ξ/4

]
: ξ, η ∈ R

}
.

The standard lift of f(ξ, η) is given by

f(ξ, η) =



−ξ2 −

√
15ξ/4− 1/4 + iη − iξ/4√

5ξ/4 +
√
3/4 + 3i

√
3ξ/4 + i

√
5/4

1


 .

Using the convexity of Cygan spheres, we see that their intersection with F0 (or F−1) is one of:
empty, a point or a topological circle. For the particular fans and isometric spheres of interest to us,
the possible intersections are summarised in the following result:

Proposition 7.10. The intersections of the fans F−1 and F0 with the isometric spheres I±k are empty,
except for those indicated in the following table.

⋂ I−−2 I+−2 I−−1 I+−1 I−0 I+0 I−1 I+1
F0 ∅ ∅ {pST−1} ∅ a circle a circle ∅ {pST−1}
F−1 {pTST } ∅ a circle a circle ∅ {pTST } ∅ ∅
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Moreover, the point pS−1T belongs to the interior of DA. The parabolic fixed points Ak(pST−1) lie
outside DA for all k ≥ 1 and k ≤ −1; parabolic fixed points Ak(pS−1T ) lie outside DA for all k 6= 0.

A direct consequence of this proposition is that the only point in the closure of the quadrilateral
Q−

−1 and the bigon B−−1 that lie on F0 is their vertex pTST .

Proof. The part about intersections of fans and isometric spheres is proved easily by projecting ver-
tically onto C, as in the proof of Proposition 4.6 (see Figure 5). Note that as isometric spheres are
strictly convex, their intersections with a plane is either empty or a point or a topological circle. The
part about the parabolic fixed points is a direct verification using (38) as well as (25).

We need to be slightly more precise about the intersection of F0 with I+0 and I−0 .

Proposition 7.11. The intersection of F0 with I+0 ∪I−0 (and thus with ∂D) is a topological circle c0,
which is the union of two topological segments c+0 and c−0 , where the segment c±0 is the part of F0 ∩I±0
that is outside I∓0 . The two segments c+0 and c−0 have the same endpoints: one of them is pST−1, and
we will denote the other by q0. Moreover, the point q0 lies on the segment [pSTS, pS−1T ] of I+0 ∩ I−0 .

The point q0 appears in Figures 10, 11 and 12

Proof. The point f(ξ, η) of the fan F0 lies of I+0 whenever 1 =
∣∣〈f(ξ, η),pB〉

∣∣ and on I−0 whenever
1 =

∣∣〈f(ξ, η),pAB〉
∣∣. We first find all points on F0 ∩ I+0 ∩ I−0 . These correspond to simultaneous

solutions to:
1 =

∣∣〈f(ξ, η),pB〉
∣∣ =

∣∣〈f(ξ, η),pAB〉
∣∣ (41)

Computing these products and rearranging, we obtain

∣∣〈f(ξ, η),pB〉
∣∣2 = (ξ2 + 1/4)2 + ξ2 + η2 + ξ

(√
15ξ2 +

√
15/4− η

)
/2,

∣∣〈f(ξ, η),pAB〉
∣∣2 = (ξ2 + 1/4)2 + ξ2 + η2 − ξ

(√
15ξ2 +

√
15/4− η

)
/2.

Substracting, we see that solutions to (41) must either have ξ = 0 or η =
√
15(ξ2 +1/4). Substituting

these solutions into 1 =
∣∣〈f(ξ, η),pB〉

∣∣2 we see first that ξ = 0 implies 1 = η2 + 1/16; and secondly

that η =
√
15(ξ2 + 1/4) implies

1 = (ξ2 + 1/4)2 + ξ2 + 15(ξ2 + 1/4)2 = (4ξ2 + 1)2 + ξ2.

Clearly the only solution to this equation is ξ = 0. So both cases lead to the solutions (ξ, η) =
(0,±

√
15/4). Thus the only points satisfying (41), that is the points in F0 ∩ I+0 ∩ I−0 , are

f(0,
√
15/4) =

[√
3 + i

√
5

4
√
2

,

√
15

4

]
and f(0,−

√
15/4) =

[√
3 + i

√
5

4
√
2

,
−
√
15

4

]
.

Note that the first of these points is pST−1 . We call the other point q0.
These two points divide F0 ∩ I+0 and F0 ∩ I−0 into two arcs. It remains to decide which of these

arcs is outside the other isometric sphere. Clearly
∣∣〈f(ξ, η),pB〉

∣∣ >
∣∣〈f(ξ, η),pAB〉

∣∣ if and only if

ξ
(√

15ξ2 +
√
15/4 − η

)
> 0. Close to η = −

√
15/4 we see this quantity changes sign only when ξ

does. This means that if f(ξ, η) ∈ I−0 with ξ > 0 then f(ξ, η) is in the exterior of I+0 . Similarly, if
f(ξ, η) ∈ I+0 with ξ < 0 then f(ξ, η) is in the exterior of I−0 . In other words, c+0 is the segment of
F0 ∩ I+0 where ξ < 0 and c−0 is the segment of F0 ∩ I−0 where ξ > 0.

Finally, consider the involution I2 = SI1 in PU(2, 1) from the proof of Proposition 3.6. (Note
that since α1 = 0 this involution conjugates Γlim to itself.) The involution I2 preserves F0, acting on
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Q′+
0

pS−1T

T +
0

q0

F0 ∩ I+0
pSTS

pST−1

pTST

Figure 10: The intersection of F0 with I+0 drawn on I+0 , in geographical coordinates.

it by f(ξ, η) to f(−ξ, η), and hence interchanging the components of its complement. In Heisenberg
coordinates I2 is given by

I2 :
[
x+ iy, t

]
←→

[
−x− iy +

√
3/8 + i

√
5/8, t−

√
5/2x+

√
3/2 y

]
. (42)

As I2 is elliptic and fixes the point q∞, it is a Cygan isometry (see Section 2.4). Since it interchanges
pB and pAB , it also interchanges I+0 and I−0 . Hence their intersection is preserved setwise. The
involution I2 also interchanges pS−1T and pSTS contained in I+0 ∩ I−0 (but not on F0). Therefore,
these two points lie in different components of the complement of F0. Hence there must be a point of
F0 on the segment [pS−1T , pSTS ]. This point cannot be pST−1 , and so must be q0 (see Figure 10).

Let Dc denote closure of the complement of D in ∂H2
C
− {q∞}.

Proposition 7.12. The closure of the intersection Dc ∩DA is a solid tube homeomorphic to a 3-ball.

Proof. We describe the combinatorial cell structure of Dc∩DA; see Figure 12. Using Proposition 7.11,
it is clear Dc intersects F0 in a topological disc whose boundary circle is made up of two edges, c±0
and two vertices pST−1 and q0. Combinatorially, this is a bigon. Applying A−1 we see Dc intersects
F−1 in a bigon with boundary made up of edges c±−1 and two vertices pTST and q−1.

Moreover, Proposition 7.11 immediately implies that c0 cuts Q±
0 into a quadrilateral and a triangle,

which we denote by Q′±
0 and T ±

0 . Since DA contains pS−1T and pTST we see that DA contains Q′+
0 and

T −
0 . These have vertex sets {pST−1 , pTST , pS−1T , q0} and {pS−1T , pST−1 , q0} respectively. Applying

A−1 we see that c−1 cuts Q±
−1 into a quadrilateral an a triangle. Of these the quadrilateral Q′−

−1 and
the triangle T +

−1 lie in DA. Finally, the bigons B+0 and B−−1 also lie in DA.
In summary, the boundary of Dc ∩ DA has a combinatorial cell structure with five vertices

{pST−1 , pS−1T , pTST , q0, q−1} and eight faces.

{Q′+
0 , Q′−

−1, T −
0 , T +

−1, B+0 , B−−1, F0 ∩Dc, F−1 ∩Dc}.

These are respectively two quadrilaterals, two triangles and four bigons. Therefore, in total the cell
structure has (2× 4+2× 3+4× 2)/2 = 11 edges. Therefore the Euler characteristic of ∂(Dc ∩DA) is

χ
(
∂(Dc ∩DA)

)
= 5− 11 + 8 = 2.

Hence ∂(Dc ∩DA) is indeed a sphere. This means Dc ∩DA is a ball as claimed.
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pST−1

I−0 ∩ F0

c+0

c−0

I+0 ∩ F0

q0

Figure 11: The intersection of F0 wit I+0 ∩ I−0 .
The disc D0 is the interior of c0 = c+0 ∩c−0 . The
two segments c+0 and c−0 are the thicker parts
of F0 ∩ I+0 and F0 ∩ I−0 .

Q′+
0

Q′−
−1

B+0

B−−1

c−−1

c+−1

c−0

c+0

q−1 q0

pTST

pTST pST−1

pST−1

T +
−1

T −0

pS−1T

Figure 12: A combinatorial picture of the inter-
section of ∂D with DA . The top and bottom
lines are identified. The curve c0 corresponds
to the right hand side of the figure.

Remark 2. The combinatorial structure described on Figure 12 is quite simple. However, the geometric
realisation of this structure is much more intricate. As an example, there are fans F parallel to F0

and F−1 whose intersection with Dc is disconnected. This means that the foliation described right
after Proposition 6.8 that is used in the proof of Theorem 6.4 is actually quite “distorted”.

We are know ready to prove Proposition 6.8.

Proposition 7.13. There is a homeomorphism ΨA : R2 × [0, 1] −→ DA that satisfies ΨA(x, y, 1) =
AΨA(x, y, 0) and so that ΨA restricts to a homeomorphism from the exterior of S1 × [0, 1], that is{
(x, y, z) : x2 + y2 ≥ 1, 0 ≤ z ≤ 1

}
, to D ∩DA.

Proof. We have shown Proposition 7.12 that Dc ∩DA is a solid tube homeomorphic to a 3-ball and
(using Proposition 7.11) that Dc intersects ∂DA in two discs, one in F0 bounded by c0 and the other
in F−1 bounded by c−1. This means we can construct a homeomorphism Ψc

A from the solid cylinder{
(x, y, z) : x2 + y2 ≤ 1, 0 ≤ z ≤ 1

}
to Dc ∩ DA so that the restriction of Ψc

A to S1 × [0, 1] is a
homeomorphism to ∂D ∩DA, with Ψc

A : S1 × {0} 7−→ c−1 and Ψc
A : S1 × {1} 7−→ c0. Adjusting Ψc

A if
necessary, we can assume that Ψc

A(x, y, 1) = AΨc
A(x, y, 0).

Furthermore, in Lemma 6.7, we showed that Dc contains the invariant line ∆ϕ of ϕ. This means
that the cylinder Dc∩DA is a thickening of ∆ϕ∩DA and so, in particular, it cannot be knotted. Hence
we can extend Ψc

A to homeomorphism ΨA : R2×[0, 1] −→ DA satisfying ΨA(x, y, 1) = AΨA(x, y, 0). In
particular, Ψ maps

{
(x, y, z) : x2 + y2 ≥ 1, 0 ≤ z ≤ 1

}
homeomorphically to D ∩DA as claimed.

Finally, we prove Proposition 6.8 by extending ΨA : R2 × [0, 1] −→ DA equivariantly to a homeo-
morphism Ψ : R3 7−→ ∂H2

C
− {q∞}. That is, if (x, y, z + k) ∈ R

3 where k ∈ Z and z ∈ [0, 1], we define
Ψ(x, y, z + k) = Ak(x, y, z). Since Ψ(x, y, 1) = AΨ(x, y, 0) there is no ambiguity at the boundary.
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