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Abstract. The purpose of this paper is twofold. First, we give a survey
of the known methods of constructing lattices in complex hyperbolic space.
Secondly, we discuss some of the lattices constructed by Deligne and Mostow

and by Thurston in detail. In particular, we give a unified treatment of the
constructions of fundamental domains and we relate this to other properties
of these lattices.

1. Introduction

One may construct lattices in complex hyperbolic space in several different
ways. Nevertheless, it is often hard to do so and there are relatively few explicit
constructions known. The first aim of this paper is to outline the different ap-
proaches and give some links between them. Broadly speaking, there are four
major constructions: arithmetic constructions, use of moduli of different objects,
algebraic geometry and construction of fundamental domains. The second main
purpose of this article is to show how these four themes relate to one another for a
particular class of lattices, and in particular to give a uniform treatment of recent
research in this area. By understanding these lattices at a deeper level, we hope to
be able to isolate important features that will enable new lattices to be constructed.

The article is organised as follows. In Section 2, I begin by discussing complex
hyperbolic space, lattices and arithmeticity. I have attempted, in Section 2.2, to
summarise every construction of complex hyperbolic space that is known. In later
sections I specialise to the family of lattices constructed by Deligne, Mostow and
Thurston. In Section 3 I discuss the different approaches taken by Deligne and
Mostow, Section 3.1, and by Thurston, Section 3.2. Many of these lattices exhibit
three-fold symmetry. In Section 4 I discuss the classification and commensurability
among Deligne-Mostow-Thurston lattices with three fold symmetry and I also try
to show how the different methods of constructing these lattices are related. In
particular, in Section 5 I outline some recent constructions of fundamental domains
for these lattices. Finally, in Section 6 I give some open problems.

I am very grateful to the people who have read this article and who have given
me corrections and suggestions. In particular, I would like to thank Curt McMullen,
Domingo Toledo, Frank Johnson and Julien Paupert, as well as the referee.
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2. Background

2.1. Complex hyperbolic space. Complex hyperbolic space Hn
C is the nat-

ural complex analogue of (real) hyperbolic space Hn = Hn
R
. The Poincaré disc and

halfplane models of the hyperbolic plane are, in fact, complex hyperbolic 1-space
H1

C
and so complex hyperbolic space may be regarded as a generalisation of the

hyperbolic plane to higher complex dimensions. Background material on complex
hyperbolic geometry may be found in the books by Goldman [20] and Schwartz
[58]. A more elementary approach with emphasis on discrete groups of isometries
may be found in the forthcoming book of Parker [49].

Let Cn,1 be a complex vector space of dimension n+1 equipped with a Hermitian
form of signature (n, 1). In other words, this form corresponds to a non-singular
Hermitian matrix H with n positive eigenvalues and one negative eigenvalue. For
column vectors z and w in Cn,1, we write the Hermitian form as

〈z,w〉 = w∗Hz.

Here w∗ is the Hermitian transpose of A, that is the row vector which is the
transpose of the matrix whose entries are the complex conjugates of the entries of
w. Let U(H) denote the group of (n + 1) × (n + 1) complex matrices that are
unitary with respect to H. That is, A ∈ U(H) if and only if A∗HA = H and so
A−1 = H−1A∗H. Once again A∗ is the Hermitian transpose of A. Let SU(H) be
the subgroup of U(H) comprising matrices with determinant +1. For results that
do not depend on the particular form used but only on the signature (n, 1) we will
write U(n, 1) and SU(n, 1), respectively.

If z ∈ Cn,1 then 〈z, z〉 = z∗Hz is real. Let V−, V0 and V+ be the subsets of
Cn,1 − {0} consisting of vectors where 〈z, z〉 is negative, zero or positive respec-
tively. There is a natural complex projection P from Cn,1 − {0} to CPn obtained
by identifying all non-zero complex multiples of a given vector. Since

〈λz, λz〉 = (λz)∗H(λz) = |λ|2z∗Hz = |λ|2〈z, z〉
for λ ∈ C−{0}, we see that if z is in V−, V0 or V+ then so is λz. Hence the projection
map P respects V−, V0 and V+. The projective model of complex hyperbolic space

is Hn
C
= PV− and ∂Hn

C
= PV0. The metric on Hn

C
is the Bergman metric, given by

ds2 =
−4

〈z, z〉2 det

(
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)
.

The factor −4 means that the sectional curvatures of H2
C
are pinched between −1

and −1/4. Other authors use a different constant and so obtain other curvatures.
The holomorphic isometry group of Hn

C
is PU(H) = U(H)/{eiθI : θ ∈ [0, 2π)}.

The full isometry group of Hn
C
is generated by PU(H) and complex conjugation.

Clearly there are only n + 1 matrices in SU(H) of the form eiθI and for these
matrices θ = 2πk/(n+1) for k = 0, . . . , n. Thus SU(H) is an (n+1)-fold cover of
PU(H). This generalises the well known fact that the group of unimodular 2 × 2
matrices is the double cover of the corresponding Möbius group.

A lattice in a locally compact topological group G with Haar measure is a
discrete subgroup Γ of G so that the quotient Γ\G has finite volume. In particular,
when G is PU(H) then a lattice is a discrete subgroup Γ of PU(H) so that the
quotient Γ\Hn

C
has finite volume with respect to the Bergman metric. A lattice Γ

in PU(H) is called uniform or cocompact if the quotient Γ\Hn
C
is compact and is

called non-uniform or cofinite-volume otherwise.
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I will conclude this section by discussing the relationship between arithmetic
groups and lattices. This provides motivation for the study of complex hyperbolic
lattices. I will discuss arithmeticity, and give a definition, in the next section.

Like real hyperbolic space, complex hyperbolic space is an example of a rank 1
symmetric space of non-compact type. The other rank 1 symmetric spaces of non-
compact type are quaternionic hyperbolic space Hn

H
and the octonionic hyperbolic

plane H2
O
; see Chapter 19 of Mostow’s book [40]. (Quaternionic hyperbolic 1-space

H1
H
is canonically identified with H4

R
and octonionic hyperbolic 1-space H1

O
with

H8
R
.)
A fundamental problem in the study of symmetric spaces is the relationship

between arithmetic groups and lattices. On one hand, Borel and Harish-Chandra
[9] proved that in all symmetric spaces of non-compact type all arithmetic groups
are lattices. On the other hand, Margulis [36] showed that when the rank is at least
2 then all irreducible lattices are arithmetic. Likewise, Corlette [10] and Gromov
and Schoen [22] have shown that in Hn

H
for n ≥ 2 and in H2

O
all lattices are

arithmetic. Furthermore, Gromov and Piatetski-Shapiro [21] have given examples
of non-arithmetic lattices in Hn

R
for all n ≥ 2. Complex hyperbolic space is the

only class of symmetric spaces of non-compact type where this question has not
been settled. Mostow [41] constructed examples of non-arithmetic lattices in H2

C

and we shall discuss these examples below. Deligne and Mostow [11] found a non-
arithmetic lattice in H3

C
. For Hn

C
with n ≥ 4 the question is open and probably

represents the most important open question in complex hyperbolic geometry. The
fact that there are relatively few known constructions of complex hyperbolic lattices
may well account for the fact that this problem is still open. This gives some
motivation for studying complex hyperbolic lattices.

2.2. Methods of constructing lattices. In this section we outline the meth-
ods of construction of complex hyperbolic lattices that are known. As indicated
in the introduction, these broadly fall into four main categories. Inevitably there
is some overlap between these, and the same lattice may be viewed from different
points of view. Indeed, the purpose of many of the papers listed below is to use a
new technique to describe a lattice that is already known and therefore to obtain
new information about it. Other papers listed below show that lattices previously
constructed by very different methods are actually the same. Many of the construc-
tions listed below have been known for some time and I have given early references
where I am aware of them.

Before beginning this survey, there are two observations I would like to make.
First, I have attempted to make this section as wide ranging as possible, but in-
evitably there will be references I have missed. The bibliographies of the papers
listed below should fill the gaps I have left. Secondly, this discussion is quite superfi-
cial and I refer the reader to the cited papers for detailed definitions and statements
of theorems. In the case of Deligne-Mostow lattices in PU(2, 1) many of the details
of the different descriptions may be found in later sections of this paper.

The first technique involves using number theory to construct arithmetic lat-
tices. The natural inclusion of the integers in the real numbers is the most familiar
discrete subset of a continuous object. This may be extended to the inclusion of
the non-uniform lattice PSL(2,Z) in PSL(2,R) with its natural action on the upper
half plane model of H1

C
. This construction was generalised by Picard [52] in 1883
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and also in [53] a year later. Let d be a positive square-free integer and Q(i
√
d)

be the corresponding quadratic imaginary number field. The ring of integers Od

in Q(i
√
d) is either Z[i

√
d] if d ≡ 1, 2 (mod 4) or Z

[
1+i

√
d

2

]
if d ≡ 3 (mod 4). We

can easily see that Od is a discrete subring of C. Suppose that H is a Hermitian
matrix of signature (2, 1) with entries in Od. Let SU(H;Od) denote the subgroup
of SU(H) consisting of those matrices whose entries lie in Od. Then it is clear
that SU(H;Od) is a discrete subgroup of SU(H) and a little more work shows that
it is a non-uniform lattice. In [52], Picard considered the case where H is the
diagonal matrix with entries (1, 1,−1) and he studied PU(H;Od) acting on H2

C
.

These groups, called Picard modular groups, were further studied by Alezais [1]
who obtained generators for SU(H;O3). More recently Holzapfel [26], [27] has
studied these groups in great detail, using a combination of arithmetic methods
and algebraic geometry. The geometry of the group SU(H;O3) has been studied
by Falbel and Parker [17] and the geometry of SU(H;O1) has been studied by by
Francsics and Lax [18] and Falbel, Francsics and Parker [16]. There is an obvious
generalisation of Picard modular groups to higher complex dimensions.

These groups are examples of arithmetic groups; see Borel and Harish-Chandra
[9] or Chapter X of Raghunathan [56]. A linear algebraic group defined over Q is
a matrix group G ⊂ GL(m,C) that consists of all invertible matrices whose co-
efficients satisfy some set of polynomial equations on M(m,C) with rational co-
efficients. Let GZ be the intersection of G with GL(m,Z) and GR be the inter-
section of G with GL(m,R). Then GZ is an arithmetic subgroup of GR. Let
φ : GR −→ SU(H) be a continuous, surjective homomorphism with compact ker-
nel. Then Γ < SU(H) is said to be arithmetic if Γ is commensurable with φ(GZ).
See the notes by McReynolds [38] for more details about arithmetic subgroups of
SU(H).

Arithmetic lattices have been constructed by a variety of authors. For example
Mumford [45] used p-adic uniformization to construct a fake projective plane, that
is, the quotient of H2

C
by a torsion free uniform lattice in PU(H) with Euler charac-

teristic 3. Two more examples were constructed by Ishida and Kato [31]. Recently
Prasad and Yeung [55] have given a classification of possible fake projective planes.

Another recent example is due to Deraux [14], who used an arithmetic con-
struction to construct a lattice from a triangle group by imposing an extra relation.
The number field Deraux uses is on the list given by Prasad and Yeung [55]. Parker
and Thompson [51] have constructed a fundamental domain for Deraux’s lattice
and have shown that the Euler characteristic of its quotient orbifold is the same as
the maximal group over the same number field obtained by Prasad and Yeung in
[55].

The second major technique for constructing complex hyperbolic lattices is to
consider objects that are parametrised by complex hyperbolic space with the prop-
erty that the corresponding automorphism group is a complex hyperbolic lattice.
This generalises the well known fact that the upper half plane H1

C
is the projectivi-

sation of the parameter space of lattices in C with a prescribed basis, and different
bases for the same lattice are related by an element of PSL(2,Z). Thus PSL(2,Z) is
the monodromy group of elliptic functions. Moreover, H1

C
is the Teichmüller space

of the punctured torus and PSL(2,Z) is the mapping class group, and so is also the
Teichmüller modular group. Similarly, Schwarz [59] showed that any hyperbolic
triangle group can arise the monodromy group of a hypergeometric function. The
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first examples of this type of construction for higher complex dimensions are, once
again, due to Picard [54]. He considered the moduli space of certain multi-variable
hypergeometric functions and showed that their monodromy groups were lattices
in PU(2, 1). These functions were subsequently studied by Lauricella [33]. Le
Vavasseur [34] gave a complete list of 27 groups that satisfied Picard’s hypotheses.
Picard’s proof of discreteness was not complete and this mistake was corrected by
Deligne and Mostow [11]. The 27 groups on Le Vavasseur’s list and the 7 similar
examples in PU(3, 1) and one in each of PU(4, 1) and PU(5, 1) are described in
detail by Terada [62] and by Deligne and Mostow [11]. Picard’s criterion is called
INT by Deligne and Mostow [11]. In [70] Yoshida associated Coxeter graphs to
each of the 27 lattices described by Le Vavasseur, see Figure 1 and the related
discussion below.

The criterion INT implies that the monodromy group is discrete. Mostow
then asked about the discreteness of monodromy groups that fail condition INT.
In [42] he relaxed Picard’s criterion to obtain a condition ΣINT which applies to
monodromy groups with symmetry. In [44] Mostow discussed the groups satisfy-
ing ΣINT. An alternative but equivalent approach to these lattices was given by
Thurston [63] who gave a list of all 94 monodromy groups that satisfy ΣINT and
so give lattices in PU(n, 1). (This list also appeared in [44].) The values of n range
between 2 and 9. Thurston’s idea was to consider the space of Euclidean cone met-
rics on the sphere with prescribed cone angles, that is, Euclidean polyhedra with
prescribed total angle at the vertices. The branch points of the hypergeometric
functions correspond to the vertices of the polyhedra. Details of Thurston’s con-
struction were given by Weber [66] in his thesis and explicit constructions have been
given by Parker [47] for Livné’s lattices and Boadi [8] for some of Mostow’s lat-
tices. Thurston’s approach was generalised to other surfaces by Veech [65]. Special
cases of the Deligne-Mostow and Thurston construction have recently appeared in
work of McMullen [37] in connection with his investigation into moduli space and
unitary representations of braid groups.

Furthermore, in [44] Mostow investigated precisely which monodromy groups
lead to discrete lattices. He showed that for n ≥ 4 the criterion ΣINT precisely
characterises discreteness and when n = 3 there is exactly one discrete monodromy
group that fails ΣINT. The situation for n = 2 is more complicated. With nine
exceptions, Mostow was able to prove that all monodromy groups are either non-
discrete or satisfy ΣINT. In [57] Sauter then showed that each of these nine mon-
odromy groups in PU(2, 1) is commensurable with a monodromy group satisfying
ΣINT and hence is discrete. In their book [12] Deligne and Mostow extended
Sauter’s work on commensurability. In Section 3.3 below we discuss these com-
mensurability theorems. Further connections between these lattices are given by
Toledo [64] who lists all holomorphic maps between various orbifolds corresponding
to lattices satisfying ΣINT.

There are other examples of complex hyperbolic lattices that arise as automor-
phism groups of geometrical objects. Allcock [2] has constructed complex hyper-
bolic lattices in PU(5, 1), PU(9, 1) and PU(13, 1) by considering the automorphism
groups of Lorentzian lattices over the Eisenstein integers O3, the largest example
coming from the Leech lattice. Allcock’s lattice in PU(9, 1) is the same as the
one given by Deligne and Mostow [11]. In [3], Allcock used a related construction
to give several examples of lattices, including examples in PU(4, 1) and PU(7, 1)
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which do not appear on the list of Deligne and Mostow [11]. Furthermore, Allcock,
Carlson and Toledo [4] show that the moduli space of cubic complex surfaces is
isomorphic to the quotient of H4

C
by one of the lattices constructed in [3]. The

same three authors have also shown [5] that the moduli space of cubic complex
three manifolds is isomorphic to the quotient of H10

C
by a lattice.

One may also use algebraic geometry to construct complex hyperbolic lattices.
The uniformization theorem of Yau, later extended by Miyaoka, states that if M
is a compact complex 2-manifold whose Chern classes satisfy c21(M) = 3c2(M)
then either M is CP2 or M is the quotient of the unit ball in C2 by a group of
biholomorphisms. In other words, in the latter case, M is the quotient of H2

C
by

a uniform lattice in PU(2, 1). This theorem was originally proved by Yau [68]
for manifolds with ample canonical bundle. Later the restriction on the canonical
bundle was removed by Miyaoka, Theorem 4 of [39].

The Yau-Miyaoka uniformization theorem enables complex hyperbolic lattices
to be constructed using algebraic geometry. It may be thought of as a generalisation
of the well known fact that there is a natural correspondence between complex
algebraic curves and Riemann surfaces. It is generally not straightforward to pass
between these two descriptions. The first explicit examples of complex hyperbolic
lattices arising from this construction are due to Livné [35]. Subsequently, more
examples were given by Hirzebruch [24] and [25] and Shvartsman [60]; see also the
survey [23] and the book [6]. The connections between the constructions of Livné
and Hirzebruch is discussed in [30]. These examples involve line arrangements.
Consider k distinct complex lines L1, . . . , Lk in CP2. One may then construct an
algebraic surface branched along each of the lines Lj . It is clear that the groups
constructed by Deligne-Mostow and Thurston also fit into this general scheme. Here
the Lj are the complex lines where two of the cone points collide. We shall give
the associated line arrangements when we discuss the Deligne-Mostow-Thurston
groups. Sauter uses these line arrangements to calculate the Euler characteristic of
these orbifolds [57].

In [67] Yamazaki and Yoshida relate Hirzebruch’s examples to hypergeometric
functions. In [61] Shvartsman used algebraic geometry to describe one of the non-
arithmetic lattices from Deligne and Mostow [11] and a combination of algebraic
geometry and arithmetic has been used by Holzapfel [28]. Techniques from alge-
braic geometry are used alongside arithmetic methods in the construction of fake
projective planes by Mumford [45] and Prasad and Yeung [55] described above.

The final method of constructing a complex hyperbolic lattice Γ in PU(n, 1)
is to find a fundamental domain for its action on Hn

C
. In other words, one must

find an open connected set D ⊂ Hn
C
so that D ∩ A(D) = ∅ for all A ∈ Γ − {I}

and
⋃

A∈Γ A(D) = Hn
C
, where D is the closure of D inside Hn

C
. There are no

totally geodesic real hypersurfaces in Hn
C
for n ≥ 2. This makes the construction

of a fundamental domain D rather more complicated than for spaces of constant
curvature.

Typically, a fundamental domain is a locally finite polyhedron D with some
combinatorial structure. The codimension one faces of D, called sides, may be
contained in a wide variety of real hypersurfaces, but there should exist a set of
side pairing maps: each side should be mapped bijectively to another side (possibly
itself) by a map A in PU(n, 1). Given such data, Poincaré’s polyhedron theorem
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gives conditions under which the group generated by the side pairing maps is dis-
crete with D as a fundamental domain; see for example Theorem 6.3.1 of [41], or
Theorem 5.7 of [17]. Moreover, Poincaré’s theorem also gives a presentation for this
group. As we just indicated, the generators are the side pairing maps and there are
two kinds of relations. First, if A maps a side to itself then A2 is the identity and
the resulting relation is a reflection relation. Secondly, each codimension-2 face of
D is contained in two sides. Its images under the side pairing maps corresponding
to these two sides are also codimension-2 faces. By iterating, one obtains a cycle
of side pairing maps that sends a given codimension-2 face to itself. Some power
of this cycle is the identity and gives rise to a cycle relation. Poincaré’s theorem
asserts that all relations in the group may be obtained from the reflection relations
and cycle relations. A further consequence of Poincaré’s theorem is that one may
obtain the orbifold Euler characteristic of the quotient and so, using the complex
hyperbolic Gauss-Bonnet theorem, calculate its volume. We give examples of how
to do this below.

One method of building fundamental domains is to construct the Dirichlet

domain based at z0 ∈ Hn
C
. Assuming that z0 is not fixed by any non-trivial element

of Γ, the Dirichlet domain DΓ(z0) based at z0 is the set of points in Hn
C
that are

closer to z0 that to any other point in the Γ orbit of z0. The faces of DΓ(z0) are
contained in bisectors, that is the locus of points equidistant from a pair of points.
Complex hyperbolic Dirichlet domains were constructed by Giraud [19] (see also
Appendix A of Goldman [20]).

In his famous paper [41], Mostow constructed non-arithmetic complex hyper-
bolic lattices by building fundamental polyhedra whose sides are contained in bi-
sectors. There were some minor errors in Mostow’s construction; see Deraux [13].
An alternative construction of fundamental domains for the same groups was given
by Deraux, Falbel and Paupert [15]. We shall discuss their construction in detail
below. A related construction for Livné’s lattices was given by Parker [47]. The
method of [47] was followed by Boadi [8] for the Mostow lattices not treated in
[15]. A major aim of this paper is to show that the constructions of [15], [47]
and [8] are very closely related and to show that, together with commensurability
theorems of Sauter [57] and Deligne and Mostow [12], these constructions are suf-
ficient to give detailed information about all Deligne-Mostow-Thurston lattices in
PU(2, 1) with three-fold symmetry. Further explicit constructions of fundamental
domains have been given by Falbel and Parker for PU(2, 1;O3), by Francsics and
Lax [18] and Falbel, Francsics and Parker [16] for PU(2, 1;O1) and by Parker and
Thompson [51] for Deraux’s lattice. The fundamental domains constructed in [8],
[15], [17], [16], [47] are all generalisations of Dirichlet domains in the following
sense. Instead of taking z0 to be a point with trivial stabiliser in Γ, one takes it
to have a larger stabiliser, denoted Γ0. One then forms the Dirichlet domain for
all elements of Γ − Γ0 and intersects it with a fundamental domain for Γ0. Since
the Dirichlet domain is star-like about z0 we use a coning process to produce the
fundamental domain of Γ0. Its sides are then foliated by arcs of geodesics through
z0. This construction is used in [15].

A natural generalisation of the Dirichlet domain is the Ford domain, see Section
9.3 of [20]. Here the point z0 lies on ∂Hn

C
and the distance is replaced with a

Busemann function based at z0. The level sets of a Busemann function are horo-

spheres. The sides of the Ford domain are contained in bisectors called isometric
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spheres which are the locus where the given element of PU(n, 1) acts isometrically
on ∂Hn

C
−{z0} with respect to the Cygan metric, a natural metric on the Heisenberg

group. The stabiliser Γ0 of z0 is infinite, nevertheless one may again obtain a funda-
mental domain for Γ by intersecting the Ford domain for Γ−Γ0 with a fundamental
domain for Γ0. This construction is used in [17] and [16], the fundamental domain
for Γ0 is again produced using a coning process over z0.

A further generalisation of this process is to take a complex line L0 instead of
a point z0. Let Γ0 denote the stabiliser of L0 inside Γ. If the image of L0 under
an element of Γ− Γ0 is disjoint from L0 then the locus of points equidistant from
these two complex lines is a bisector (otherwise it is a fan or a Clifford cone). When
L0 does not intersect any of its images under Γ− Γ0 we can form a Dirichlet type
domain and then intersect it with a fundamental domain for Γ0. This is carried out
in [47].

3. Deligne-Mostow-Thurston lattices

In this section we outline the general constructions of Deligne and Mostow [11],
[42], [44] and Thurston [63] of lattices arising as monodromy groups of hypergeo-
metric functions or, equivalently, modular groups of flat cone metrics on the sphere.
There is a very nice survey article [43] by Mostow that outlines this construction
and gives some of its history.

3.1. Monodromy of hypergeometric functions. Define a ball N -tuple

µ = (µ1, . . . , µN ) to be a set of N real numbers satisfying:

(3.1)
N∑

j=1

µj = 2, 0 < µj < 1 for j = 1, . . . , N.

Suppose that µ = (µ1, . . . , µN ) is a ball N -tuple and let (z1, . . . , zN ) be N dis-

tinct points in Ĉ. For each pair of distinct a, b ∈ {1, . . . , N} we can define the
hypergeometric function

Fab(z1, . . . , , zN ) =

∫ zb

z=za

N∏

k=1

(z − zk)
−µk dz

where, apart from its end points, the path of integration lies in Ĉ− {z1, . . . , zN}.
If one of the zj = ∞ for some j then we omit the corresponding term (z − zj)

−µj

from the product. Notice that PSL(2,C) acts by Möbius transformations on the
space of variables and so we can define an equivalence relation via

Fab(z1, . . . , zN ) ∼ Fab(w1, . . . , wN )

if and only if there exists A ∈ PSL(2,C) so that wj = A(zj) for each j = 1, . . . , N .
We write [z1, . . . , zN ] for the equivalence class containing (z1, . . . , zN ). We may
take a canonical representative of this class by setting zN−2 = 0, zN−1 = 1 and
zN = ∞. Hence, up to Möbius equivalence, we obtain a function in N −3 variables
z1, . . . , zN−3.

Following Deligne and Mostow [11] we define Q to be the configuration space
of N distinct points on the Riemann sphere up to PSL(2,C) equivalence. That is,

Q =
{
[z1, . . . , zN ] ∈ ĈN : zi 6= zj for i 6= j

}
/PSL(2,C).
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Figure 1. On the left is Yoshida’s graph for the quintuple

(µ1, µ2, µ3, µ4, µ5). The edges are drawn using different styles of

lines as indicated on the right. From top to bottom the different

cases are 1/|p|+ 1/|q|+ 1/|r| > 1, = 1, < 1 respectively.

According to [11], the functions Fab form a vector space of dimension N − 2 and
we consider the corresponding projective space, which we canonically identify with
CPN−3. Moving along a loop around one of the points zj defines a linear map on
the vector space of the Fab and hence a map in PGL(N − 2,C) acting on CPN−3.
Each Fab is a multivalued map defined on Q and we may lift this to a single valued

map on Q̃, the universal cover of Q. This enables us to construct a single valued

map ωµ from Q̃ to CPN−3 which is equivariant with respect to π1(Q). Hence ωµ

induces an representation of π1(Q) to Γµ < PGL(N − 2,C), called the monodromy

action. Furthermore, the condition (3.1) implies that there is a Hermitian form

of signature (N − 3, 1) on Q̃ preserved by this action. Therefore, the monodromy
action Γµ corresponding to ωµ lies in PU(N−3, 1). In [42], Mostow gives a criterion
called ΣINT on ball N -tuples which implies that the image of the monodromy
representation is a lattice in PU(N − 3, 1). Let Σ be the subgroup of SN acting on
Q so that for each σ ∈ Σ then σ(zj) = zk only if µj = µk. In other words, Σ freely
permutes marked points with the same weight. Let Q′ be the subset of Q where Σ
acts without fixed points. The monodromy map can be extended to Q′/Σ and we
let ΓµΣ denote the image of the monodromy representation of π1(Q

′/Σ).

Definition 3.1. Let µ = (µ1, . . . , µN ) be a ball N -tuple satisfying (3.1).
Then µ is said to satisfy the condition ΣINT provided that there is a subset S of
{1, . . . , N} so that for any pair µj , µk with µj + µk < 1 either

(i) 1− µj − µk = 1/njk where njk ∈ Z, or
(ii) if j, k ∈ S then µj = µk and 1/2− µj = 1/mjk where mjk ∈ Z.

Theorem 3.2 (Mostow [42]). Let µ be a ball N -tuple satisfying ΣINT. Then
the associated monodromy representation ΓµΣ is a lattice in PU(N − 3, 1).
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The condition ΣINT generalises the condition INT given by Deligne and Mostow
[11] which characterises Le Vavasseur’s 27 lattices [34], see also Terada [62]. In
condition INT the quantity 1/(1−µj −µk) is required to be an integer for all j 6= k
with 0 < µj + µk < 1. To each ball quintuple (µ1, . . . , µ5) satisfying INT, Yoshida
[70] associated a Coxeter-type graph. This is a pentagon with labelled vertices and
edges; see Figure 1. The vertices are labelled with the integer 1/(1−µi−µi+1) with
indices taken cyclically. The edge joining the vertices with labels 1/(1− µi−1 − µi)
and 1/(1− µi − µi+1) is labelled with 2/|1− µi−1 − µi+1|. Moreover, Yoshida has
different ways of drawing each edge to indicate whether the corresponding triangle
group is spherical, fixing a point of H2

C
; is Euclidean, fixing a point of ∂H2

C
or is

hyperbolic, acting as a Fuchsian subgroup on a complex line.
The monodromy groups ΓµΣ constructed above are clearly related to the map-

ping class group of the sphere with N marked points. As is well known this mapping
class group is closely related to the spherical braid group on N strings; see Birman
[7]. The relationship between braid groups and monodromy groups is discussed
in detail in Mostow’s survey [43] and on pages 336 to 339 of Sauter [57]. This
mapping class group is generated by Dehn twists along curves passing through a
pair of the marked points. Performing a single Dehn twist swaps the points and its
square is a non-trivial self homeomorphism of the punctured sphere that maps each
marked point to itself. Because our marked points are not (in general) punctures
but the holonomy around them is finite, the monodromies corresponding to these
Dehn twists have (in general) finite order.

There is a further difference. It is usual to distinguish between the full mapping
class group, where one allows the marked points to be permuted, and the pure
mapping class group, where one insists that each marked point is sent to itself.
The groups we shall be interested in fall between these two extremes. Namely, we
only allow the permutations in the subgroup Σ of SN described above. Suppose zj
and zk are two of the marked points with associated weights µj and µk. If µj 6= µk

then we are not allowed to interchange zj and zk but if µj = µk then we are allowed
to interchange them.

3.2. Shapes of polyhedra. In [63] Thurston gave an alternative viewpoint
on the ball N -tuples considered by Deligne and Mostow and described in Section
3.1.

A cone singularity of a surface is a point where the total angle is different from
2π. The cone angle is the corresponding angle. In what follows we shall assume
that the cone angles lie in the interval (0, 2π). It is also quite standard to consider
cone angles greater than 2π; see Veech [65] for example. A neighbourhood of a
cone singularity with cone angle θ0 ∈ (0, 2π) may be modelled by taking the sector
Sα = {z = reiθ ∈ C : 0 ≤ θ ≤ θ0} with the edges identified by the map r ∼ reiθ0

for each r > 0. A flat cone metric on the sphere is a metric that is locally modelled
on the Euclidean metric of R2 except for finitely many points at which there is a
cone singularity. A simple example is a cube, which is has eight cone singularities
each with cone angle 3π/2. Other Euclidean polyhedra correspond to flat cone
metrics in the obvious way. We define the curvature at a cone singularity of angle
θ to be α = 2π − θ. Thus, away from cone singularities, the curvature is zero. It
is easy to see that for any flat cone metric on the sphere the sum of the curvatures
at all cone points is equal to 4π. (So for our example of the cube, there are eight
cone singularities each with curvature π/2.) Therefore, for any flat cone metric
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on the sphere with N cone singularities with cone angles in (0, 2π), the curvatures
α1, . . . , αN satisfy:

(3.2)
N∑

j=1

αj = 4π, 0 < αj < 2π for j = 1, . . . , N.

Comparing equations (3.1) and (3.2) we see that if α1, . . . , αN are the curvatures
at the singularities of a cone metric on the sphere then (α1/2π, . . . , αN/2π) is a
ball N -tuple and conversely, given a ball N -tuple (µ1, . . . , µN ) then there exists a
flat cone metric on the sphere with curvatures 2πµ1, . . . , 2πµN .

Thurston’s idea is to consider the space of all flat cone metrics on the sphere
with N cone singularities with prescribed curvatures. Allowing the locations of the
singularities to vary is equivalent to the way we allowed the points z1, . . . , zN to
vary on the sphere when constructing hypergeometric functions. By cutting along
a path joining the cone points, one may unfold a flat cone metric on the sphere
to obtain a Euclidean polygon with certain side identifications. Different ways of
doing this are described in [63], [66], [47] and [8]. The internal angles of such a
polygon are determined by the cone angles, but the side lengths may vary. However
paired sides must have the same length. Such a polygon may be described by N−2
complex parameters, for example the vectors along the sides. It is not hard to
show that the area of this polygon gives a Hermitian form of signature (1, N −3) in
these variables. We are only interested in these polygons up to Euclidean similarity.
Since a similarity scales all the side vectors, the resulting parameter space may be
identified with CPN−3. By cutting the sphere along different paths between the
cone points, we can obtain different polygons from the same cone metric. We can
pass from one of these polygons to another by a sequence of Euclidean cut and
paste operations. These polygons are related by projective linear transformations
in PGL(N − 2,C). Since these transformations preserve the area of the polygon,
in fact the projective linear transformations lie in PU(1, N − 3). This is just a new

way of viewing the monodromy action of π1(Q̃) described in the previous sections.
This idea has been extended to Euclidean cone metrics on other surfaces by Veech,
see Theorem 0.9 and Section 14 of [65].

One of Thurston’s main results in [63] is a geometric interpretation and refine-
ment of Mostow’s result, Theorem 3.2:

Theorem 3.3 (Theorem 0.2 of Thurston [63]). Let α1, . . . , αN with N > 3 be
a collection of real numbers in the interval (0, 2π) whose sum is 4π. Then the set
of Euclidean cone metrics on the sphere with cone points of curvature αj and total
area 1 forms a complex hyperbolic manifold whose metric completion is a complex
hyperbolic cone manifold M of finite volume. This cone manifold is an orbifold if
and only if any pair αj, αk whose sum is less than 2π satisfies either

(i) (2π − αj − αk) divides 2π, or
(ii) αj = αk and π − αj divides 2π.

We point out that the condition that M is an orbifold is stronger than requiring
that the holonomy of M is discrete. In [44] Mostow gave ten ball N -tuples which
fail the condition ΣINT but for which he was unable to prove that the holonomy
group was indiscrete. Mostow showed that some of these holonomy groups were
arithmetic and hence discrete and Sauter [57] showed that the remaining ones are
discrete.
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Motivated by Theorem 3.3 we make the following definition.

Definition 3.4. Let α1, . . . , αN be curvatures satisfying (3.2). Then the αj

are said to satisfy the orbifold condition if any pair αj , αk whose sum is less than
2π satisfies either

(i) (2π − αj − αk) divides 2π, or
(ii) αj = αk and π − αj divides 2π.

Lemma 3.5. Mostow’s condition ΣINT is equivalent to Thurston’s orbifold con-
dition.

Proof. As we have indicated above, we may pass between the ball N -tuple
(µ1, . . . , µN ) and the curvatures α1, . . . , αN by writing αj = 2πµj . In what follows
we use the µj to avoid having to deal with factors of 2π. We assume that we are
given a ball N -tuple satisfying (3.1).

We may restate the orbifold condition as follows. For any pair µj , µk with
µj + µk < 1 then either

(i) 1− µj − µk = 1/njk where njk ∈ Z, or
(ii) µj = µk and 1/2− µj = 1/mjk where mjk ∈ Z.

It is clear that ΣINT implies the orbifold condition. We claim the converse is also
true. The main difference between the two criteria concerns the pairs µj , µk where
(ii) is satisfied but not (i). In ΣINT all such µj take the same value, whereas in
the orbifold condition they could take any number of values.

Suppose that we can find a ball N -tuple satisfying the orbifold condition but
not ΣINT. Then (relabelling the indices if necessary) we can find µ1 = µ2 satisfying
condition (ii) but not condition (i); and we can find µ3 = µ4 also satisfying (ii) but
not (i) and also with µ1 6= µ3. In other words

1− µ1 − µ2 = 2(1/2− µ1) = 2/m12, 1− µ3 − µ4 = 2(1/2− µ3) = 2/m34

where m12 and m34 are odd integers. Note that if either of these integers is even
then the corresponding pair of µj satisfy (i). This means that

µ1 = µ2 = 1/2− 1/m12, µ3 = µ4 = 1/2− 1/m34.

Now consider the pair µ1 and µ3. We have µ1 + µ3 = 1− 1/m12 − 1/m34 < 1 and
µ1 6= µ3. Therefore they must satisfy (i). In other words

1− µ1 − µ3 = 1/n13

where n13 is an integer. Now

1− µ1 − µ3 = 1/m12 + 1/m34 = (m12 +m34)/m12m34.

Therefore n13 = m12m34/(m12 + m34). Since m12 and m34 are odd integers, the
numerator is odd and the denominator is even. Hence n13 cannot be an integer.
This contradiction shows that the orbifold condition implies ΣINT as required. �

Thurston considers what happens when two or more cone points coalesce. He
shows that the locus where this happens is a complex linear submanifold of CPN−3.
This complex submanifold is a cone singularity of the moduli space. The stratum
S where two cone points coalesce is a complex hyperplane and we can read off the
cone angle around S from the original cone points on the sphere. The principle is
that the total curvature should remain the same before and after the cone points
collide.
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Proposition 3.6 (Proposition 3.5 of Thurston [63]). Let S be a stratum where
two cone points with curvatures αi and αj collide. Then the cone angle γ(S) around
S is π − αi if αi = αj and 2π − αi − αj otherwise.

We can generalise this result to the case where more than two cone points
coalesce. If j + 1 cone points collide then there is an associated stratum S of
complex codimension j. The real link of S is the space of real lines normal to S,
and these are naturally grouped into complex lines, which form the complex link

of S. The complex link is a complex cone manifold one dimension lower than the
real link. The real link is a Seifert fibre space over the complex link. The generic
fibres are circles of the same length, and we call this length the scalar cone angle

of S and denote it by γ(S). Notice that when j = 1 this is just the cone angle. We
define the complex link fraction to be the ratio of the volume of the complex link
to the volume of CPj−1. This is the order of the stabiliser of S in PU(1, N − 3).
Thurston shows how these two quantities may be calculated.

Proposition 3.7 (Proposition 3.6 of Thurston [63]). Let S be a stratum of
complex codimension j where j + 1 cone points with curvature α1, . . . , αj collide.
Let m be the order of the subgroup of the symmetric group Sj that preserves these
numbers. Then

(i) the scalar cone angle is γ(S) = 2π −∑j
i=1 αi;

(ii) the complex link fraction is
(
γ(S)/2π

)j−1
/m.

Let S and S′ be strata where cone points {v1, . . . , vj} and {v′1, . . . , v′k} collide
respectively. Suppose that {v1, . . . , vj} ∩ {v′1, . . . , v′k} = ∅. If S and S′ intersect
then the holonomy maps around them commute. This means that the corresponding
link fraction is the product of the link fractions around S and S′.

3.3. Commensurability. Mostow found that there were some ball quintuples
that did not satisfy ΣINT but yet appeared to correspond to discrete groups. While
investigating these groups, Sauter discovered some commensurability theorems [57].
Namely, for each of these exceptional quintuples he found a quintuple satisfying
ΣINT so that the associated groups were commensurable. In fact in each case either
the groups were isomorphic or else one was isomorphic to a finite index subgroup of
the other. Subsequently, Deligne and Mostow discovered further commensurability
theorems and this is the main theme of their book [12]. In this paper we will show
that all the groups with three fold symmetry are commensurable to one whose
fundamental domain is well understood. We shall conclude this section by showing
that the same is true for almost all of the quintuples without three fold symmetry.

We begin with Deligne and Mostow’s main commensurability theorem. The
geometry behind this and the associated calculations are discussed in Chapter 10
of [12].

Theorem 3.8 (Theorem 10.6 of [12]). Let a and b be rational numbers with
0 < a < 1, 0 < b < 1 and 1/2 < a+ b < 1. Consider the following ball quintuples:

µ = (a, a, b, b, 2− 2a− 2b),

ν = (1− b, 1− a, a+ b− 1/2, a+ b− 1/2, 1− a− b).

Let Σ = Z2 ×Z2 be the symmetry group of µ and T = Z2 be the symmetry group of
ν. Then the resulting groups ΓµΣ and ΓνT are isomorphic.
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We can use this theorem to give the following result, which is due to Deligne
and Mostow, see Corollary 10.18 of [12]. Our formulation is closer to the one given
by Sauter on page 354 of Sauter [57], and which generalises Theorem 6.2 of [57]. We
have been deliberately ambiguous about the symmetry groups in operation here, see
(10.15.1) of [12] for the precise relationship. We give a more precise reformulation
of part of this result in Proposition 4.10 below.

Corollary 3.9 (Corollary 10.18 of [12]). The groups Γµ(j) with

µ(1) =

(
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,
4

p

)
,

µ(2) =

(
1

2
+

1

p
,
1

2
+

1

p
,
1

2
− 2

p
,
1

2
− 2

p
,
2

p

)
,

µ(3) =

(
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,
1

p
,
1

2
+

2

p

)

are commensurable. They correspond to lattices when p ∈ {5, 6, 7, 8, 9, 10, 12, 18}.

Proof. First putting a = b = 1/2 − 1/p in Theorem 3.8 gives µ(1) and
µ(2). Then putting a = 1/2 + 1/p and b = 1/2 − 2/p in Theorem 3.8 gives µ(2)

and µ(3). The quintuples µ(1) and µ(3) satisfy the orbifold condition whenever
p ∈ {5, 6, 7, 8, 9, 10, 12, 18}. However, µ(2) only satisfies the orbifold condition
when p ∈ {6, 8, 10, 12, 18}. �

Corollary 3.10. The groups Γµ(j) with

µ(1) =

(
1

2
− 1

k
,
1

2
− 1

k
,
1

4
+

1

k
,
1

4
+

1

k
,
1

2

)
,

µ(2) =

(
1

4
,
1

4
,
1

4
,
3

4
− 1

k
,
1

2
+

1

k

)

are commensurable. They correspond to lattices when k ∈ {3, 4, 5, 6, 8}.

Proof. We put a = 1/2 − 1/k and b = 1/4 + 1/k in Theorem 3.8. Both µ(1)

and µ(2) satisfy the orbifold condition when k ∈ {3, 4, 5, 6, 8}. �

There is another similar theorem due to Sauter, Theorem 6.1 of [57] (see also
Theorem 11.22 of [12]). Once again, we shall reformulate this result in Proposition
4.9 below.

Theorem 3.11 (Theorem 6.1 of [57]). The groups Γµ(j) with

µ(1) =

(
1

2
− 1

m
,
1

2
− 1

m
,
1

2
− 1

m
,
1

6
+

1

m
,
1

3
+

2

m

)
,

µ(2) =

(
1

6
,
1

6
,
1

6
,
5

6
− 1

m
,
2

3
+

1

m

)

are commensurable. They correspond to lattices when

m ∈ {4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 24, 42, ∞, −30, −12}.
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Note that the quintuple µ(2) in Theorem 3.11 satisfies the orbifold condition for
all the given values of m. On the other hand, µ(1) satisfies the orbifold condition
only when 3 divides 6m/(m − 6), that is when m ∈ {7, 8, 9, 10, 12, 18, ∞}. (In
the case m = ∞ we regard 6m/(m− 6) = 6/(1− 6/m) = 6.)

Finally, we list those ball quintuples that do not have three fold symmetry and
which are associated to lattices. This list may be found in Section 7 of Sauter [57].
For simplicity, we give the groups with three fold symmetry in terms of the pair
(p, k) as described in the next section. There are five groups that are not related
to a group with three fold symmetry. Of these five groups two pairs are related by
Theorem 3.8 and we have indicated these by (a) and (b). The fifth does not seem
to be related to any other group. We have labelled it (c). The last column indicates
which ones are arithmetic A or non-arithmetic N.

µ1 µ2 µ3 µ4 µ5 3.9 (p, k) 3.10 (p, k) 3.8
1/10 1/10 7/10 7/10 2/5 (5, 2) A
1/6 1/6 2/3 2/3 1/3 (6, 2) A
3/14 3/14 9/14 9/14 2/7 (7, 2) A
5/18 5/18 11/18 11/18 2/9 (9, 2) N
3/10 3/10 3/5 3/5 1/5 (10, 2) A
1/3 1/3 7/12 7/12 1/6 (12, 2) A
7/18 7/18 5/9 5/9 1/9 (18, 2) A
1/6 1/6 7/12 7/12 1/2 (4, 3) A
3/10 3/10 9/20 9/20 1/2 (4, 5) N
1/3 1/3 5/12 5/12 1/2 (4, 6) N
1/4 1/4 5/12 5/12 2/3 (a) A
1/6 1/6 1/2 1/2 2/3 (b) A
5/12 5/12 1/12 1/4 5/6 (3, 12) A
1/3 1/3 1/6 1/2 2/3 (6, 6) A
1/6 1/6 1/3 7/12 3/4 (a) A
1/6 1/6 1/3 1/2 5/6 (b) A
1/4 1/4 5/12 1/2 7/12 (c) N

4. Deligne-Mostow groups with three fold symmetry

In this section we consider Deligne-Mostow groups arising from ball quintuples
with µ1 = µ2 = µ3. Equivalently, we consider the modular group associated to
cone metrics on the sphere with five cone singularities, three of which have the
same angle.

4.1. Ball quintuples and cone metrics with three fold symmetry.
Suppose we have a ball quintuple µ = (µ1, µ2, µ3, µ4, µ5) where µ1 = µ2 = µ3.
The curvature at the cone point vj is αj = 2πµj . Using Proposition 3.7 we see
that the cone angle around each stratum where two of v1, v2, v3 have collided is
π − α1. We define p by requiring that this angle be 2π/p. Therefore we choose
µ1 = µ2 = µ3 = 1/2 − 1/p. From the orbifold condition, or equivalently ΣINT,
we see that p is an integer. Likewise, when α1 6= α4 the cone angle around each
stratum where one of v1, v2, v3 has collided with v4 is 2π−α1−α4. We define this
to be 2π/k and so µ4 = 1/2 + 1/p− 1/k. If µ satisfies the orbifold condition then
k will be an integer. It may be that α1 = α4. In this case the cone angle around
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L13
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L12
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L45

Figure 2. The line arrangement when l > 0 and d > 0. The

labels refer to the labels of the pair of cone points associated to

each stratum.

each of these strata will be 2π/p. For consistency in our formulae we still write
µ4 = 1/2 + 1/p − 1/k and so k = p/2. Note that in this case, even though k may
not be an integer, the quintuple µ still satisfies the orbifold condition. It has the
form of µ(1) in Corollary 3.9.

The condition that the µj should sum to 2 means that µ5 = 2/p + 1/k. In
other words, we have cone singularities vj with curvatures αj = 2πµj where

µ1 = µ2 = µ3 =
1

2
− 1

p
, µ4 =

1

2
+

1

p
− 1

k
, µ5 =

2

p
+

1

k
.

The cone angle around each stratum where one of v1, v2, v3 has collided with v5
is 2π − α1 − α5. Write this as 2π/l and so µ5 = 1/2 + 1/p − 1/l. In other words,
1/l = 1/2 − 1/p − 1/k. If l > 0 and µ satisfies the orbifold condition then l will
be an integer. The cone angle around the stratum where v4 and v5 have collided is
2π − α4 − α5. Write this as 2π/d and so 1/d = 1/2− 3/p. If d > 0 and µ satisfies
the orbifold condition then d will be an integer.

When two cone points vi and vj collide the associated stratum is a complex line,
which we call Lij . When three cone points vi, vj , vk collide the associated stratum
is a point, which we denote by zijk. In the following table we use Proposition 3.7
to list the strata corresponding to where various cone points have collided. There
are other strata corresponding to permuting v1, v2 and v3.

Stratum Cone points (Scalar) cone angle Link fraction
L12 v1, v2 π − α1 = 2π/p 1/p
L14 v1, v4 2π − α1 − α4 = 2π/k 1/k
L15 v1, v5 2π − α1 − α5 = 2π/l, (l > 0) 1/l
L45 v4, v5 2π − α4 − α5 = 2π/d, (d > 0) 1/d
z134 v1, v3, v4 2π − 2α1 − α4 = −2π/l, (l < 0) 1/2l2

z123 v1, v2, v3 2π − 3α1 = −2π/d, (d < 0) 1/6d2

Note that there are no strata corresponding to z125 and z145 as the scalar cone angles
would be −2π/k and −4π/p respectively. When {i, j} ∩ {k, l} = ∅ the holonomy
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p/2
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p

kd

l

2|   |l

k

2|   |l

2|   |k2|   |

Figure 3. Yoshida’s graph for the quintuple associated to p and

k. The edges are drawn using different styles of lines as indicated

in Figure 1.

map around Lij commutes with the holonomy map around Lkl. In this case we let
zij,kl denote Lij ∩ Lkl.

Using this table, we see that when l > 0 and d > 0 there are no strata associated
to the collisions of three cone points. In this case, there are ten complex lines, each
associated to the collision of two cone points. Each of these complex lines intersects
three of the others. Each intersection consists of two pairs of distinct cone points
and so the strata intersect orthogonally. We have indicated this in Figure 2, which
should be compared to the figure on page 78 of Deligne and Mostow [12], Figure
5.3 of Sauter [57] or Figure 1 of Toledo [64]. The associated Yoshida graph is given
in Figure 3. The edge joining the two vertices labelled p/2 is solid, bold or dashed
when 1/d < 0, = 0, > 0 respectively. The edge joining the vertices labelled p/2 and
k is solid, bold or dashed when 1/l < 0, = 0, > 0. The edge joining the vertices
labelled p/2 and l is solid, bold or dashed when 1/k < 0, = 0, > 0. Finally the
edges joining the vertex labelled d are solid, bold or dashed when 1/p < 0, = 0, > 0.

4.2. Monodromy groups and equilateral triangle groups. Consider the
map R1, which is the holonomy around L23. This is a complex reflection fixing L23

with angle 2π/p. Similarly, R2 and A1 are the holonomies around L13 and L14.
These are complex reflections with angles 2π/p and 2π/k.

Thinking of the cone points v1, . . . , v5 as marked points on the sphere, we can
think of R1, R2, A1 as elements of the mapping class group of the five punctured
sphere. There is a well known relation between the mapping class group and the
braid group; see Birman’s book [7]. Mostow uses this connection to write R1, R2

and A1 as elements of the braid group; see page 243 of [43] or page 337 of Sauter
[57]. A straightforward consequence of this is that R1 and A1 commute and R1

and R2 satisfy the braid relation. That is

(4.1) R1A1 = A1R1, R1R2R1 = R2R1R2.

In Figure 4 we show how to obtain J = R1R2A1 in terms of the braid picture. If
the points v4 and v5 are placed at the north and south poles of a sphere and the
points v1, v2 and v3 are equally spaced around the equator, then J is a rotation of
the sphere through an angle 2π/3 that fixes the poles; see Figure 15 of [43]. The
map J3 has the effect of rotating once about v5. This is clearly isotopic to the
identity. Thus J has order 3. In Figure 4 we have drawn the three cone points v1,
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R1

R2

A 1

4 5132

J=R R A1 2 1

Figure 4. The maps R1, R2, A1 and J as braids.

v2, v3 with curvature α1 as solid lines, the cone point v4 as a dotted line and the
cone point v5 as a dashed line. Each automorphism of the cone structure must map
v4 and v5 to themselves but is allowed to permute v1, v2 and v3.

As indicated above the map J = R1R2A1 has order 3. Moreover, using the
identities (4.1) we have

JR1J
−1 = R1R2A1R1A

−1
1 R−1

2 R−1
1 = R2.

Define R3 = JR2J
−1 = J−1R1J . Then R1, R2 and R3 are each complex reflections

in a complex lines. These complex lines form a triangle in complex hyperbolic space
and we say that 〈R1, R2, R3〉 is a complex hyperbolic triangle group. Because this
triangle has a symmetry J of order 3 we call it equilateral. To summarise:

(4.2) J3 = I, R2 = JR1J
−1, R3 = JR2J

−1 = J−1R1J.

We should point out that the symmetry J does not correspond to the obvious
three fold rotational symmetry of the line arrangement diagrams. That is, if
L23 is the mirror of R1 and L31 is the mirror of R2 then L12 is the mirror of
R−1

2 R1R2 = R1R2R
−1
1 and not of R3.

From the definition of J we have A1 = R−1
2 R−1

1 J . Following Mostow, [43]
equation (5.3), and Sauter, [57] equation (2.6), for indices j = 1, 2, 3 taken mod 3,
we define

(4.3) Aj = R−1
j+1R

−1
j J, A′

j = R−1
j−1R

−1
j J−1 = J−1R−1

j R−1
j+1.

These maps enable us to write down the holonomy around each of the strata Lij

and zijk described in the previous section. In the following table we summarise this
data. In each case we write down the stabiliser and its order. In each case the order
of the stabiliser is the reciprocal of the link fraction. The stabilisers of Ljk are all
cyclic. We discuss the group structure of the stabilisers of zjk in Propositions 4.4,
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4.5 and 4.6 below.

Stratum Cone points Stabiliser Order
L23 v2, v3 〈R1〉 p
L13 v1, v3 〈R2〉 p
L12 v1, v2 〈R−1

2 R1R2〉 p
L14 v1, v4 〈A1〉 k
L24 v2, v4 〈A2〉 k
L34 v3, v4 〈R−1

2 A1R2〉 k
L15 v1, v5 〈A′

1〉 l (l > 0)
L45 v4, v5 〈(R1R2)

3〉 d (d > 0)
z134 v1, v3, v4 〈R2, A1〉 2l2 (l < 0)
z123 v1, v2, v3 〈R1, R2〉 6d2 (d < 0)

Stabilisers of strata corresponding to distinct sets of cone points commute. Thus,
some obvious consequences of the above table are, for j 6= k,

RjAj = AjRj , RjA
′
j = A′

jRj , AjA
′
k = A′

kAj , Rj(RjRk)
3 = (RjRk)

3Rj .

Therefore, when {i, j} ∩ {k, l} = ∅, the stabilisers of the stratum zij,kl = Lij ∩Lkl

is simply the direct product of the stabilisers of Lij and Lkl.

Stratum Strata Stabiliser Order
z23,14 L23, L14 〈R1, A1〉 kp
z23,15 L23, L15 〈R1, A

′
1〉 lp (l > 0)

z24,15 L14, L25 〈A2, A
′
1〉 kl (l > 0)

z23,45 L23, L45 〈R1, (R1R2)
3〉 dp (d > 0)

We now briefly discuss the special case where k = p/2; see Theorems 5.6 and
6.2 of Sauter [57]. In this case

µ1 = µ2 = µ3 = µ4 =
1

2
− 1

p
, µ5 =

4

p
.

Because four of the µj are the same, we have the symmetry group Σ = S4 acting.
This means that for j = 1, 2, 3 the holonomy around Lj4 is a complex reflection
with angle 2π/p. This is a square root of Aj which we denote by R′

j . From the
braid group picture, it is clear that, for j 6= k, we have
(4.4)

R′2
j = Aj , R′

jRj = RjR
′
j , RjR

′
kRj = R′

kRjR
′
k, R′

jR
′
kR

′
j = R′

kR
′
jR

′
k.

As discussed above, complex reflections R1, R2, R3 with a symmetry J satisfy-
ing (4.2) form an equilateral complex hyperbolic triangle group. In [48] for the case
when the Rj have order two, and in [50] for the general case, Parker and Paupert
have shown that, up to conjugation, equilateral complex triangle groups may be
parametrised by τ = tr(R1J). Using a normalisation similar to that of Mostow [41]
they then show that we may take the Hermitian form H to be

(4.5) H =




2 sin(π/p) −i e−πi/3pτ i eπi/3pτ
i eπi/3pτ 2 sin(π/p) −i e−πi/3pτ

−i e−πi/3pτ i eπi/3pτ 2 sin(π/p)


 .
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This leads to the following matrices in SU(H) for R1, R2, R3 and J :

R1 =



e4πi/3p τ −e2πi/3pτ

0 e−2πi/3p 0
0 0 e−2πi/3p


 , R2 =




e−2πi/3p 0 0
−e2πi/3pτ e4πi/3p τ

0 0 e−2πi/3p


 ,

R3 =



e−2πi/3p 0 0

0 e−2πi/3p 0
τ −e2πi/3pτ e4πi/3p


 , J =



0 0 1
1 0 0
0 1 0


 .

The form H has signature (2, 1) provided

(4.6) det(H) = 8 sin3(π/p)− 6 sin(π/p)|τ |2 + 2Re
(
ie−iπ/pτ3

)
< 0.

Before continuing, we remark that this construction is consistent when p = ∞.
Here π/p = 0 and so H and R1 become

H =




0 −iτ iτ
iτ 0 −iτ
−iτ iτ 0


 , R1 =



1 τ −τ
0 1 0
0 0 1


 .

In this case R1 is unipotent with a two dimensional eigenspace. This means that it
is conjugate to a vertical Heisenberg translation (see Section 4.2 of Goldman [20]).
The form H has signature (2,1) provided det(H) = 2Re (iτ3) < 0.

Given an equilateral complex hyperbolic triangle group, as in equation (4.3) we
define Aj = R−1

j+1R
−1
j J = (JR−1

j J)2. This is a complex reflection fixing of order k.

(In the case where k = ∞ then Aj is conjugate to a vertical Heisenberg translation.)
Conjugating the identities (4.1) by powers of J leads to

RjAj = AjRj , RjRkRj = RkRjRk.

We now characterise this condition in terms of τ .

Proposition 4.1. Let J and Rj for j = 1, 2, 3 be defined by (4.2). Define

Aj = R−1
j+1RjJ = (JR−1

j J)2 and τ = tr(RjJ). The following are equivalent:

(i) Aj is a complex reflection or is conjugate to a vertical Heisenberg trans-
lation;

(ii) |τ | = 1;
(iii) Rj commutes with Aj;
(iv) Rj and Rk satisfy the braid relation RjRkRj = RkRjRk.

Proof.

• (i) and (ii) are equivalent. Assume that Aj either is a complex re-
flection or is conjugate to a vertical Heisenberg translation. In particu-
lar, Aj has a repeated eigenvalue. A matrix in SU(2, 1) has a repeated
eigenvalue if and only if its trace is a zero of the discrminiant function
f(z) = |z|4−4(z3+z3)+18|z|2−27; see page 207 of Goldman [20]. Since
τ = tr(RjJ) and Aj = J−1(RjJ)

−2J , an easy computation shows that

tr(Aj) = τ2 − 2τ.

(To see this, one may either multiply matrices in the standard form given
in [50] or else examine eigenvalues.) Putting this into the discriminant
function and simplifying we see that

f
(
tr(Aj)

)
=

(
|τ |2 − 1

)2(|τ |4 − 4(τ3 + τ3) + 18|τ |2 − 27
)
.
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This vanishes if and only if either |τ | = 1 or f(τ) = 0. If |τ | = 1
we have condition (ii). Therefore, we suppose that f(τ) = 0 and so
RjJ has a repeated eigenvalue. Using the standard form from [50],
it is easy to check that the eigenspace of RjJ corresponding to its re-
peated eigenvalue is one dimensional. Hence RjJ is parabolic. Therefore
Aj = J−1(RjJ)

−2J is also parabolic and, by hypothesis, is conjugate to a
vertical Heisenberg translation. In particular, tr(Aj) = 3 and so τ = −1
or τ = 3. Substituting in (4.6) we see that when τ = 3 then H does not
have signature (2,1). Thus τ = −1. Hence, if Aj is a complex reflection
or a Heisenberg translation then |τ | = 1.

Conversely, when |τ | = 1, the formula above implies f
(
tr(Aj)

)
= 0.

We need to show that Aj is neither a screw parabolic map nor conjugate
to a non-vertical Heisenberg translation. This follows by substituting for
|τ | in the normal form of [50] given above.

• (ii) and (iii) are equivalent. A similar calculation shows that

tr[Rj , Aj ] = 3 +
(
|τ |2 − 1

)2(|τ |2 − 2 sin2(π/p)
)
.

Therefore, if tr[Rj , Aj ] = 3 then either |τ | = 1 or |τ | = 2 sin(π/p). Using
the normal form of [50] given above, we see that if |τ | = 1 then [Rj , Aj ]
is the identity and if |τ | = 2 sin(π/p) then [Rj , Aj ] is parabolic.

• (iii) and (iv) are equivalent. This will follow from the following iden-
tity:

AjR
−1
j A−1

j Rj = R−1
j+1R

−1
j JR−1

j J−1RjRj+1Rj

= R−1
j+1R

−1
j R−1

j+1RjRj+1Rj .

�

Corollary 4.2. Using the notation of Proposition 4.1, if Aj is a complex

reflection with angle 2π/k then τ = −e−2πi/3k and if Aj is conjugate to a vertical
Heisenberg translation then τ = −1.

Proof. We have already seen that if Aj is a complex reflection then |τ | = 1
and tr(Aj) = τ2 − 2τ . Hence, we see that the angle of Aj is the argument of −τ3.
This gives the result. �

Putting in τ = −e−2πi/3k (including τ = −1 when k = ∞) in Parker and
Paupert’s expressions for R1, R2 and R3, we obtain:

R1 =



e4πi/3p −e−2πi/3k e2πi/3p+2πi/3k

0 e−2πi/3p 0
0 0 e−2πi/3p


 ,(4.7)

R2 =




e−2πi/3p 0 0
e2πi/3p+2πi/3k e4πi/3p −e−2πi/3k

0 0 e−2πi/3p


 ,(4.8)

R3 =




e−2πi/3p 0 0
0 e−2πi/3p 0

−e−2πi/3k e2πi/3p+2πi/3k e4πi/3p


 .(4.9)
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Using Aj = R−1
j+1R

−1
j J we obtain explicit formulae for the Aj .

A1 =



e−2πi/3k −e2πi/3p+2πi/3k e−2πi/3p

0 e4πi/3k + e−2πi/3k −e−4πi/3p+2πi/3k

0 e4πi/3p 0


 ,(4.10)

A2 =




0 0 e4πi/3p

e−2πi/3p e−2πi/3k −e2πi/3p+2πi/3k

−e−4πi/3p+2πi/3k 0 e4πi/3k + e−2πi/3k


 ,(4.11)

A3 =



e4πi/3k + e−2πi/3k −e−4πi/3p+2πi/3k 0

e4πi/3p 0 0
−e2πi/3p+2πi/3k e−2πi/3p e−2πi/3k


 .(4.12)

Lemma 4.3. The Hermitian form H given by (4.5) has signature (2, 1) when-
ever µ4, µ5 ∈ (0, 1).

Proof. Put τ = −e−2πi/3k in (4.6). In order to show that H has signature
(2, 1) we must show that the following expression is positive:

6 sin(π/p)− 8 sin3(π/p)− 2Re (−ie−πi/p−2πi/k)

= 2 sin(3π/p) + 2 sin(π/p+ 2π/k)

= 4 sin(π/2 + π/p− π/k) sin(2π/p+ π/k)

= 4 sin(πµ4) sin(πµ5).

This is positive whenever µ4 and µ5 are both in (0, 1). �

We know from Proposition 3.7 the complex link fractions at z123 and z134, and
hence the order of their stabilisers. Using the explicit matrices in equations (4.7)
to (4.12) we can give more information about the group structure; see Parker and
Paupert [50].

Proposition 4.4. Suppose that 1/2−3/p = 1/d < 0, so p = 3, 4 or 5. The sta-
biliser of z123 is the group 〈R1, R2〉. This group has order 24p2/(6−p)2 = 6d2. It is
a central extension of the orientation preserving subgroup of a (2, 3, p) triangle group
(which has order 12p/(6− p) = −6d) by a cyclic group of order 2p/(6− p) = −d.

Proof. The point z123 ∈ H2
C
may be lifted to a vector z123 ∈ C2,1. Let U

denote the linear subspace spanned by z123 and U⊥ its orthogonal complement with
respect to the Hermitian form H. By construction, U is a common eigenspace of
R1 and R2, and hence of all elements of 〈R1, R2〉. This means that 〈R1, R2〉 also
preserves U⊥ and PU⊥. Then PU⊥/〈R1, R2〉 is the complex link of z123. We now
list the eigenvalues of some elements of 〈R1, R2〉. In each case, the third eigenvalue
is the one that corresponds to U .

• R1 has eigenvalues e4πi/3p, e−2πi/3p, e−2πi/3p,
• R2 has eigenvalues e4πi/3p ,e−2πi/3p, e−2πi/3p,
• R1R2 has eigenvalues −e2πi/3+2πi/3p, −e−2πi/3+2πi/3p, e−4πi/3p,
• R1R2R1 has eigenvalues ieπi/p, −ieπi/p, e−2πi/p.

Observe that Rp
1 is the identity in PU(2, 1) (it is e−2πi/3I in SU(2, 1)) and that

(R1R2)
3 = (R1R2R1)

2 has eigenvalues −e2πi/p, −e2πi/p, e−4πi/p. Hence (R1R2)
3

acts as the identity on PU⊥. Thus 〈R1, R2〉 acts on U⊥ as the orientation preserving
subgroup of a (2, 3, p) triangle group. Finally, (R1R2)

3 = (R1R2R1)
2 generates the

centre of 〈R1, R2〉 and has order 2p/(6− p). This proves the result. �
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Proposition 4.5. Suppose that p = 6. The stabiliser Γ123 of z123 is the group
〈R1, R2〉 which has infinite order. This group is a Heisenberg lattice (almost crys-
tallographic group) obtained as a central extension of the orientation preserving sub-
group of a (2, 3, 6) triangle group ∆ by an infinite cyclic group of vertical Heisenberg
translations.

Proof. This is very similar to the proof of Proposition 4.4. The main differ-
ence is that z123 ∈ ∂H2

C
. We can calculate the eigenvalues as above:

• R1 has eigenvalues e2πi/9, e−πi/9, e−πi/9,
• R2 has eigenvalues e2πi/9 ,e−πi/9, e−πi/9,
• R1R2 has eigenvalues e−2πi/9, e4πi/9, e−2πi/9,
• R1R2R1 has eigenvalues e2πi/3, e−πi/3, e−πi/3.

In this case, (R1R2)
3 = (R1R2R1)

2 is conjugate to a vertical Heisenberg translation
and generates the centre of 〈R1, R2〉. �

Proposition 4.6. Suppose that 1/p+1/k− 1/2 = −1/l < 0. The stabiliser of
z134 is the group 〈A1, R2〉. This group has order 8p2k2/(2p + 2k − pk)2 = 2l2. It
is a central extension of the orientation preserving subgroup of a (2, p, k) triangle
group (which has order 4pk/(2p + 2k − pk) = −2l) by a cyclic group of order
2pk/(2p+ 2k − pk) = −l.

Proof. This is similar to the proof of Proposition 4.4. In this case we lift z134
to a vector z134 which spans U . This is a common eigenspace of R2 and A1. Once
again we list their eigenvalues, with the eigenvalue corresponding to U third.

• R2 has eigenvalues e4πi/3p, e−2πi/3p, e−2πi/3p,
• A1 has eigenvalues e4πi/3k, e−2πi/3k, e−2πi/3k,
• R2A1 has eigenvalues ieπi/3p+πi/3k,−ieπi/3p+πi/3k, e−2πi/3p−2πi/3k.

Hence Rp
2 and Ak

1 are the identity in PU(2, 1). Also, (R2A1)
2 has eigenvalues

−e2πi/3p+2πi/3k, −e2πi/3p+2πi/3k, e−4πi/3p−4πi/3k and acts as the identity on PU⊥.
Hence 〈R2, A1〉 acts as the orientation preserving subgroup of a (2, p, k) triangle
group on PU⊥. The centre of 〈R2, A1〉 is generated by (R2A1)

2 which has order
2pk/(2p+ 2k − pk). �

4.3. Classifying the lattices. In this section we give a classification of the
lattices associated to ball quintuples with three fold symmetry.

In his seminal paper [41] Mostow considered certain complex hyperbolic tri-
angle groups where p is one of 3, 4, 5. He labels these groups with a Coxeter
diagram (Figure 5) and a phase shift ϕ = exp(πit/3) where t = 1/p + 2/k − 1/2.
Using an explicit fundamental domain, he showed that for certain values of k the
group 〈R1, R2, R3〉 is a lattice in SU(2, 1). These included the first examples of
non-arithmetic complex hyperbolic lattices. We discuss these lattices in greater
detail in Sections 5.1 and 5.3.

Theorem 4.7 (Mostow [41]). Let R1, R2 and R3 be given by (4.7), (4.8) and
(4.9). Then 〈R1, R2, R3〉 is a lattice for the following values of p and k:

p 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5
k 4 5 6 7 8 9 10 12 3 4 5 6 8 2 3 4 5

A A A N N A N A A A N N A A A N A
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p

p

p
3

33

Figure 5. Mostow’s Coxeter diagram for his lattices. He also

specifies a phase shift ϕ = exp(πit/3) where t = 1/p+ 2/k − 1/2.

In the last line we have indicated which ones are arithmetic A or non-arithmetic
N .

In his thesis in 1981, Livné [35] used algebraic geometry to give a construction
of 8 lattices in SU(2, 1) parametrised by an integer p. We discuss these lattices in
more detail in Section 5.2. In language analogous to Mostow’s (which Livné did
not use) Livné’s groups correspond to the following values of p and k. We remark
that the groups in Theorems 4.7 and 4.8 with p = 5 and k = 2 are the same.

Theorem 4.8 (Livné [35]). Let R1, R2 and R3 be given by (4.7), (4.8) and
(4.9). Then 〈R1, R2, R3〉 is a lattice for the following values of p and k:

p 5 6 7 8 9 10 12 18
k 2 2 2 2 2 2 2 2

A A A A N A A A

In the last line we have indicated which ones are arithmetic A or non-arithmetic
N .

The groups described in Theorems 4.7 and 4.8 are all special cases of Deligne
and Mostow groups with 3-fold symmetry as described in Section 3.1. They may
also be described using Thurston’s method using shapes of polyhedra with five
vertices for which three of the cone angles are the same, as described in Section 3.2.

We now re-express Sauter’s embedding theorems in terms of p and k. We gave
these results in terms of the µi in Theorem 3.11 and Corollary 3.9. Sauter’s first
embedding theorem, Theorem 6.1 of [57] (see also Theorem 11.22 of [12]) states:

Proposition 4.9 (Theorem 6.1 of [57]). Suppose that

m ∈ {4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 24, 42, ∞, −30, −12}.
Let Γ be a Deligne-Mostow group of type p = 3, k = m generated by R1, A1 and
J . Write R2 = JR1J

−1. Then the subgroup Γ∗ of Γ generated by R∗
1 = A1,

A∗
1 = J(R1R2)

2J−1, J∗ = J−1 is a Deligne-Mostow group of type p = m, k = 3.
Moreover, Γ∗ is isomorphic to Γ when 3 does not divide 6m/(m− 6).

Sauter’s second embedding theorem concerns groups with k = p/2, Theorem
6.2 of [57] (see also Corollary 10.18 of [12]). Recall that in this case the holonomy
around Lj4 is a complex reflection R′

j of angle 2π/p satisfying the equations (4.4).
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Proposition 4.10 (Theorem 6.2 of [57]). Suppose that

m ∈ {5, 6, 7, 8, 9, 10, 12, 18}.
Let Γ be a Deligne-Mostow group of type p = m, k = 2 generated by R1, A1 and
J . Write R2 = JR1J

−1 and R3 = J−1R1J . Then the group Γ∗ generated by
R∗

1 = R−1
2 R1R2, R

′∗
1 = R3, J

∗ = J−1 is a Deligne-Mostow group of type p = m,
k = m/2. Moreover Γ∗ is isomorphic to Γ.

The following table gives a summary of the list of 46 Deligne-Mostow lattices
with three fold symmetry. Of these groups, 41 satisfy the orbifold condition and
the remaining 5 are related to a group satisfying the orbifold condition by a com-
mensurability theorem (the latter are the groups in the following table for which
d is not an integer). All other ball quintuples with three fold symmetry lead to a
non-discrete group. The specific values of all the parameters are taken from Sauter
[57], but we have reordered his list. The first two columns give p and k, as described
above. Notice that this includes the case of p = ∞. In this case, we take R1 to be
parabolic. The subsequent columns may be deduced from the first two. We now
summarise their significance.

• l is the order of A′
j . It is defined by 1/l = 1/2 − 1/p − 1/k. When l is

negative then A′
j is a complex reflection in a point; when l = ∞ then A′

j is
parabolic; when l is positive then A′

j is a complex reflection in a complex

line with angle 2π/l. Sending the pair (R1, J) to (R1, J
−1) has the effect

of swapping k and l. Therefore, without loss of generality, we suppose
that 1/k ≥ 1/l.

• d is the order of P 3 = (R1R2)
3 = (JA−1

1 )3. It is defined by 1/d = 1/2−3/p.
When d is negative then P 3 is a complex reflection in a point; when d = ∞
then P 3 is parabolic; when d is positive then P 3 is a complex reflection
in a complex line with angle 2π/d.

• If one of the commensurability theorems, Corollary 3.9, Corollary 3.10
or Theorem 3.11 respectively, gives a relation of the group on this line
with another group then we give the pair (p, k) for this new group in the
appropriate one of the next three columns. For some groups more than
one of these results applies and we list all of them.

• t is the parameter used by Mostow. It is defined by t = 1/p+ 2/k − 1/2.
Mostow’s phase parameter ϕ is defined by ϕ3 = eπit.

• µi for i = 1, 2, . . . , 5 are the elements of a ball quintuple. They are

µ1 = µ2 = µ3 =
1

2
− 1

p
, µ4 =

1

2
+

1

p
− 1

k
, µ5 =

2

p
+

1

k
.

Because of the three fold symmetry, µ1 = µ2 = µ3 and so we only write
µ1 in the table.

• The last column indicates whether the lattice is arithmetic A or non-
arithmetic N . Combining the information in this table and the table
at the end of section 3.3, we see that there are (at most) 15 commen-
surability classes of arithmetic Deligne-Mostow lattices and (at most)
9 commensurability classes of non-arithmetic Deligne-Mostow lattices.
Representatives of the arithmetic classes are the lattices labelled (a) and
(b) from the previous table and the lattices corresponding to the following
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values of (p, k):

(3, 4), (3, 5), (3, 6), (3, 9), (3, 12), (4, 4), (4, 8),

(5, 2), (5, 5), (6, 6), (7, 2), (10, 2), (12, 2).

Representatives of the non-arithmetic classes are the lattice labelled (c)
and the lattices corresponding to the following values of (p, k):

(3, 7), (3, 8), (3, 10), (4, 5), (4, 6), (5, 4), (6, 4), (9, 2).

The rows of the table are grouped as follows. There are six blocks divided by
horizontal lines. We give a fundamental domain and a presentation for each of the
groups in the first three blocks, except for p = 5 and k = 5/2. The groups with
an entry in one of the commensurability columns are isomorphic to subgroups of a
group in the first three blocks. Hence, in principle, we could produce a fundamental
domain and presentation for such groups. We now describe the different blocks.

• In the first block 1/l ≤ 0 and 1/d ≤ 0. This means that A′
j and P 3 are

complex reflections in a point or are parabolic. Hence these groups are
Mostow groups of the first type. We study these groups (except the case
p = 5, k = 5/2) in Section 5.1.

• In the second block 1/l > 0 and 1/d ≤ 0. This means that A′
j is a complex

reflection in a complex line and P 3 is a complex reflection in a point or
is parabolic. These groups are Mostow groups of the second type and we
study them in detail in Section 5.3.

• In the third block 1/l < 0 and 1/d > 0. Thus A′
j is a complex reflection

in a point and P 3 is a complex reflection in a line. These groups are of
Livné type and are studied in Section 5.2

• In the fourth block 1/l and 1/d are both positive. Indeed, k = 3 and
l = 3d. In this case, A′

j and P 3 are both complex reflections in complex
lines. Each of these groups is related to one of the previous groups by
Theorem 3.11, or equivalently Proposition 4.9.

• In the fifth block 1/l and 1/d are again both positive. Indeed, one of k, l is
p/2 and the other is d. These groups correspond to ball quintuples where
four of the µj are the same. In this case, A′

j and P 3 are both complex
reflections in a complex lines. Each of these groups is related to a group
of Livné type by Corollary 3.9 or equivalently Proposition 4.10. This also
applies to the groups with p = 5, k = 5/2; p = 6, k = 3 and p = 18, k = 3.

• The final block contains one group. This is an index two subgroup of the
Gauss-Picard modular group. This group is related to the group with
p = k = 4 using Corollary 3.10. This group is considered in Section 5.4

The first two blocks are related to Tables 1 and 2 on page 248 of Mostow [41].
The first difference is that Mostow only considers p = 3, 4, 5. We allow p = 6 as
well. In Table 1 Mostow considers the condition 0 ≤ t ≤ 1/2 − 1/p. The first
of these inequalities translates to 1/l ≤ 1/k and the second to 1/l ≥ 0. Thus
Table 1 corresponds to our second block but also includes those groups in the first
block with l = ∞ (that is 1/l = 0). In Table 2 Mostow considers the condition
1/2− 1/p < t < 3(1/2− 1/p). The first of these inequalities corresponds to 1/l < 0
and the second to µ5 < 1. This means that Table 2 corresponds to our first block.
Moreover, in the remark following Table 2, Mostow indicates that the group with
p = 5 and k = 5/2 can be included in this block.
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p k l d 3.9 3.10 3.11 t µ1 µ4 µ5

3 4 −12 −2 1
3

1
6

7
12

11
12 A

3 5 −30 −2 7
30

1
6

19
30

13
15 A

3 6 ∞ −2 1
6

1
6

2
3

5
6 A

4 3 −12 −4 (3, 4) 5
12

1
4

5
12

5
6 A

4 4 ∞ −4 1
4

1
4

1
2

3
4 A

5 2 −5 −10 7
10

3
10

1
5

9
10 A

5 5
2 −10 −10 (5, 2) 1

2
3
10

3
10

4
5 A

5 3 −30 −10 (3, 5) 11
30

3
10

11
30

11
15 A

6 2 −6 ∞ 2
3

1
3

1
6

5
6 A

6 3 ∞ ∞ (6, 2) (3, 6) 1
3

1
3

1
3

2
3 A

3 7 42 −2 5
42

1
6

29
42

17
21 N

3 8 24 −2 1
12

1
6

17
24

19
24 N

3 9 18 −2 1
18

1
6

13
18

7
9 A

3 10 15 −2 1
30

1
6

11
15

23
30 N

3 12 12 −2 0 1
6

3
4

3
4 A

4 5 20 −4 3
20

1
4

11
20

7
10 N

4 6 12 −4 1
12

1
4

7
12

2
3 N

4 8 8 −4 0 1
4

5
8

5
8 A

5 4 20 −10 1
5

3
10

9
20

13
20 N

5 5 10 −10 1
10

3
10

1
2

3
5 A

6 4 12 ∞ 1
6

1
3

5
12

7
12 N

6 6 6 ∞ 0 1
3

1
2

1
2 A

7 2 −7 14 9
14

5
14

1
7

11
14 A

8 2 −8 8 5
8

3
8

1
8

3
4 A

9 2 −9 6 11
18

7
18

1
9

13
18 N

10 2 −10 5 3
5

2
5

1
10

7
10 A

12 2 −12 4 7
12

5
12

1
12

2
3 A

18 2 −18 3 5
9

4
9

1
18

11
18 A

7 3 42 14 (3, 7) 13
42

5
14

13
42

13
21 N

8 3 24 8 (3, 8) 7
24

3
8

7
24

7
12 N

9 3 18 6 (3, 9) 5
18

7
18

5
18

5
9 A

10 3 15 5 (3, 10) 4
15

2
5

4
15

8
15 N

12 3 12 4 (3, 12) 1
4

5
12

1
4

1
2 A

15 3 10 10
3 (3, 15) 7

30
13
30

7
30

7
15 N

18 3 9 3 (18, 2) (3, 18) 2
9

4
9

2
9

4
9 A

24 3 8 8
3 (3, 24) 5

24
11
24

5
24

5
12 N

42 3 7 7
3 (3, 42) 4

21
10
21

4
21

8
21 N

∞ 3 6 2 (3,∞) 1
6

1
2

1
6

1
3 A

−30 3 5 5
3 (3,−30) 2

15
8
15

2
15

4
15 A

−12 3 4 4
3 (3,−12) 1

12
7
12

1
12

1
6 A

7 7
2 14 14 (7, 2) 3

14
5
14

5
14

4
7 A

8 4 8 8 (8, 2) (4, 8) 1
8

3
8

3
8

1
2 A

9 9
2 6 6 (9, 2) 1

18
7
18

7
18

4
9 N

10 5 5 5 (10, 2) 0 2
5

2
5

2
5 A

12 4 6 4 (12, 2) 1
12

5
12

1
3

5
12 A

∞ 4 4 2 (4, 4) 0 1
2

1
4

1
4 A
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Figure 6. The line arrangement when l ≤ 0 and d ≤ 0 corre-

sponding to Mostow groups of the first type.

5. Fundamental domains

In this section we summarise the construction of fundamental domains for
Mostow groups and Livné groups. We indicate how to use Poincaré’s theorem
to give a presentation for the lattice and we show how to calculate the orbifold
Euler characteristic.

5.1. Mostow groups of the first type. In this section we consider the
groups where l ≤ 0 and d ≤ 0. The values of p and k, together with l and d are:

p 3 3 3 4 4 5 5 6 6
k 4 5 6 3 4 2 3 2 3
−d 2 2 2 4 4 10 10 ∞ ∞
−l 12 30 ∞ 12 ∞ 5 30 6 ∞

In this case the four lines involving v5 in the complex line arrangement described
above have collapsed to a point. Instead there are four zero dimensional strata z123,
z124, z134 and z234, where the stratum zijk = Lij ∩ Ljk ∩ Lki. We illustrate this in
Figure 6. Algebraic geometers call this line arrangement the complete quadrilat-

eral. In [23] Hirzebruch gives a non-technical description of the algebraic surface
corresponding to one of these lattices; see also [24] or [6]. An explicit relation be-
tween Hirzebruch’s construction and Mostow’s construction is given by Yamazaki
and Yoshida [67].

For these groups Mostow constructed a fundamental domain in [41]. In his
thesis [8], Richard Kena Boadi gives a similar construction along the lines of that
in [47]. In Boadi’s construction, the fundamental domain D is made up of two four
dimensional simplices glued along a common three dimensional face. The vertices
of the simplices are the strata z123, z124, z134, z234, z23,14 and z13,24. The boundary
of D is made up of eight three dimensional simplices. Each side is contained in a
bisector and they are identified by the side pairing maps J , P , R1 and R2. We use
these maps to label the sides. Therefore J : S(J) −→ S(J−1) and so on. These
maps are illustrated in Figure 7. All the one dimensional simplices in the boundary
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Figure 7. The sides of the Mostow polyhedron and side pairings.

The bold lines denote the spines of the bisectors.
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of each side are arcs of geodesics, one of which is contained in the spine of the
bisector. Both the 2-simplices containing this 1-simplex are contained in meridians
of the bisector. One of the other 2-simplices in the boundary of the face is a triangle
in one of the complex lines L14, L24, L23 or L13. These complex lines are the fixed
lines of A1, A2, R1 and R2 respectively.

We can use the complex hyperbolic version of Poincaré’s polyhedron theorem
to give a presentation for the group in this case. The cycle relations are

Face Cycle element Cycle relation
F (J, J−1) = S(J) ∩ S(J−1) J J3 = I
F (R1, R

−1
2 ) = S(R1) ∩ S(R−1

2 ) R2P
−1R1 R2P

−1R1 = 1
F (P,R1) = S(P ) ∩ S(R1) P−1R−1

2 PR1 P−1R−1
2 PR1 = 1

F (J,R1) = S(J) ∩ S(R1) J−1R−1
2 JR1 J−1R−1

2 JR1 = 1
F (J, P ) = S(J) ∩ S(P ) P−1J (P−1J)k = 1
F (R1, R

−1
1 ) = S(R1) ∩ S(R−1

1 ) R1 Rp
1 = 1

F (R2, R
−1
2 ) = S(R2) ∩ S(R−1

2 ) R2 Rp
2 = 1

This means that the group has the following presentation:

(5.1) Γ =

〈
J, P, R1, R2 :

J3 = Rp
1 = Rp

2 = (P−1J)k = I,
R2 = PR1P

−1 = JR1J
−1, P = R1R2

〉
.

Using A1 = P−1J , we may rewrite this presentation as

〈
J, R1, A1, :

J3 = Rp
1 = Ak

1 = 1,
A1 = (JR−1

1 J)2, A1R1 = R1A1

〉

The case of p = 6 and k = 2 was considered by Falbel and Parker in [17]. This
group is the Eisenstein-Picard modular group PU(2, 1;O3). In [17] the standard
off-diagonal Hermitian form is used. In this case z123 is the point at infinity in the
Siegel domain model of complex hyperbolic space. Writing ω = (−1 + i

√
3)/2, the

corresponding matrices are

J =



0 0 1
0 −ω ω
1 1 ω


 , R1 =



1 0 0
0 −ω 0
0 0 1


 , A1 =



0 0 ω
0 −ω 0
ω 0 0


 .

Falbel and Parker construct the Ford domain and use Poincaré’s theorem to give a
presentation of this group, which is essentially the one given above. Other presen-
tations are given in Alezais [1] and Holzapfel [28].

By examining the fundamental domain D and its side pairings, we can calculate
the orbifold Euler characteristic χ(H2

C
/Γ). This is calculated in the same way as the

standard Euler characteristic of a cell complex. Namely one takes the alternating
sum of the number of cells of each dimension. The main difference is that now a cell
is counted with a weight, which is the reciprocal of the order of its stabiliser. In the
first block of the following table we list the orbits of vertices. The stabiliser given in
the second column is the stabiliser of the first point in the list in the first column.
Similarly in the second block we list the orbits on one dimensional simplices with
the stabiliser of the first one. These one dimensional simplices are given as a pair of
vertices in the obvious way. The next blocks do the same thing for the 2-simplices,



COMPLEX HYPERBOLIC LATTICES 31

3-simplices and finally the only four cell, the whole of D.

Orbit Stabiliser Order
z23,14, z13,24 〈R1, A1〉 kp
z134, z124, z234 〈R2, A1〉 2l2

z123 〈R1, R2〉 6d2

(z23,14, z123), (z13,24, z123) 〈R1〉 p
(z234, z123), (z134, z123), (z124, z123) 〈R1〉 p{

(z23,14, z124), (z23,14, z134),
(z12,24, z124), (z13,24, z234)

}
〈A1〉 k

(z23,14, z234), (z13,24, z134) 〈R1〉 p
(z124, z234), (z234, z134), (z134, z124) 〈R1J〉 2k
F (J, P ), F (J−1, P−1) 〈A1〉 k{

F (J,R1), F (J,R−1
1 ),

F (J−1, R2), F (J−1, R−1
2 )

}
1 1

{
F (P,R1), F (P,R−1

1 ),
F (P−1, R2), F (P−1, R−1

2 )

}
1 1

F (P,R2), F (P−1R−1
1 ), F (R1, R

−1
2 ) 1 1

F (J, J−1) 〈J〉 3
F (R1, R

−1
1 ) 〈R1〉 p

F (R2, R
−1
2 ) 〈R2〉 p

S(J), S(J−1) 1 1
S(P ), S(P−1) 1 1
S(R1), S(R

−1
1 ) 1 1

S(R2), S(R
−1
2 ) 1 1

D 1 1

Then the orbifold Euler characteristic χ(H2
C
/Γ) may be calculated by summing

the entries in the last column of the previous table, with alternating signs depending
on the dimension, that is depending on which block we are in. Using d = 2p/(p−6)
we obtain:

χ(H2
C/Γ) =

1

kp
+

1

2l2
+

1

6d2
− 1

p
− 1

p
− 1

k
− 1

p
− 1

2k

+
1

k
+ 1 + 1 + 1 +

1

3
+

1

p
+

1

p
− 1− 1− 1− 1 + 1

=
1

kp
+

1

8
− 1

2k
− 1

2p
+

1

2k2
+

1

kp
+

1

2p2

+
1

24
− 1

2p
+

3

2p2
− 1

p
− 1

2k
+

1

3

=
1

2

(
2

(
1

2
− 1

p

)
− 1

k

)2

.

Using 2/k = 1/2− 1/p+ t we see that this agrees with Sauter Theorem 5.2 of [57];
see also [69] for computations of Euler characteristics. (We have J in our group
so the volume of Sauter’s Ω is three times ours; see the discussion on page 361 of
[57].)
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Figure 8. The line arrangement when l ≤ 0 and d > 0 corre-

sponding to Livné groups.

5.2. Livné groups. In this section we consider the groups where l ≤ 0 and
d > 0. The values of p and k together with l and d are:

p 7 8 9 10 12 18
k 2 2 2 2 2 2
d 14 8 6 5 4 3
−l 7 8 9 10 12 18

Since l ≤ 0, the three lines L15, L25 and L35 have each collapsed to a point as in
the previous section. Again they are replaced by zero dimensional strata z234, z134
and z124. However, since d > 0 the line L45 has not collapsed. We illustrate this in
Figure 8 which should be compared with Figure 5.4 of Sauter [57].

These groups were constructed by Livné in [35]. Parker [47] constructed a
fundamental domain for them. Combinatorially, this fundamental domain is very
similar to that described in the previous section. Again, the polyhedron has eight
sides labelled by the side pairing maps J , P , R1 and R2. The main difference is that
the vertex z123 has been truncated with a triangle contained in the complex line
L45. This triangle has vertices z23,45, z13,45 and z12,45. The fundamental domain
still has eight codimension 1 sides and the side pairing maps are the same. However,
the sides are not all 3-simplices. Each side with a vertex z123 in the previous section
has this vertex blown up either to a 1-simplex or a 2-simplex. The stabiliser of z23,45
is the direct product of a cyclic group of order p generated by R1 and a cyclic group
of order d = 2p/(p − 6) generated by (R1R2)

3. Thus it has order dp. We can find
the stabilisers of z13,45 and z12,45 similarly.

We can use Proposition 4.6 to describe the structure of the stabiliser of z134.
Because k = 2 we see that −1/l = 1/p and the stabiliser of z134 is a central extension
of a dihedral group of order 2p by a cyclic group of order p generated by (R2A1)

2.
In Parker’s construction [47] the fundamental domain has eight sides, each of

which is contained in a bisector. The 1-simplices in the boundary of each side are
all arcs of geodesics. Two of the two dimensional simplices in the boundary of each
of S(P ) and S(P−1) are contained in complex lines. These are the fixed point sets
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Figure 9. The sides of the Livné polyhedron and side pairings.

The bold lines denote the spines of the bisectors.
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L14, L24 and L45 of A1, A2 and P 3 respectively. All the other sides have one of
the 2-simplices in their boundary contained in complex lines, namely the complex
lines L14, L24, L23 and L13 fixed by A1, A2, R1 and R2.

Proceeding as above, we can use Poincaré’s polyhedron theorem to give a pre-
sentation for the group. The cycle relations are

Face Cycle element cycle relation
F (J, J−1) = S(J) ∩ S(J−1) J J3 = I
F (R1, R

−1
2 ) = S(R1) ∩ S(R−1

2 ) R2P
−1R1 R2P

−1R1 = 1
F (P,R1) = S(P ) ∩ S(R1) P−1R−1

2 PR1 P−1R−1
2 PR1 = 1

F (J,R1) = S(J) ∩ S(R1) J−1R−1
2 JR1 J−1R−1

2 JR1 = 1
F (J, P ) = S(J) ∩ S(P ) P−1J (P−1J)2 = 1
F (R1, R

−1
1 ) = S(R1) ∩ S(R−1

1 ) R1 Rp
1 = 1

F (R2, R
−1
2 ) = S(R2) ∩ S(R−1

2 ) R2 Rp
2 = 1

F (P, P−1) = S(P ) ∩ S(P−1) P P 3d = 1

This means that we have the following presentation:

(5.2) Γ =

〈
J, P, R1, R2 :

J3 = P 3d = Rp
1 = Rp

2 = (P−1J)2 = I,
R2 = PR1P

−1 = JR1J
−1, P = R1R2

〉
.

Using A1 = P−1J we may rewrite this presentation as:
〈
J, R1, A1, :

J3 = Rp
1 = A2

1 = (JA−1
1 )3d = 1,

A1 = (JR−1
1 J)2, A1R1 = R1A1

〉

Once again, we can calculate the orbifold Euler characteristic.

Orbit Stabiliser Order
z23,14, z13,24 〈R1, A1〉 2p
z134, z124, z234 〈R2, A1〉 2p2

z23,45, z13,45, z12,45 〈(R1R2)
3, R1〉 pd

(z23,14, z23,45), (z13,24, z13,45) 〈R1〉 p
(z234, z23,45), (z134, z13,45), (z124, z12,45) 〈R1〉 p{

(z23,14, z124), (z23,14, z134),
(z13,24, z124), (z13,24, z234)

}
〈A1〉 2

(z23,14, z234), (z13,24, z134) 〈R1〉 p
(z124, z234), (z234, z134), (z134, z124) 〈R1J〉 4
(z23,45, z13,45), (z13,45, z12,45), (z12,45, z23,45) 〈R1R2R1〉 2d
F (J, P ), F (J−1, P−1) 〈P−1J〉 2
F (J,R1), F (J,R−1

1 ), F (J−1, R2), F (J−1, R−1
2 ) 1 1

F (P,R1), F (P,R−1
1 ), F (P−1, R2), F (P−1, R−1

2 ) 1 1
F (P,R2), F (P−1R−1

1 ), F (R1, R
−1
2 ) 1 1

F (J, J−1) 〈J〉 3
F (R1, R

−1
1 ) 〈R1〉 p

F (R2, R
−1
2 ) 〈R2〉 p

F (P, P−1) 〈P 〉 3d
S(J), S(J−1) 1 1
S(P ), S(P−1) 1 1
S(R1), S(R

−1
1 ) 1 1

S(R2), S(R
−1
2 ) 1 1

D 1 1
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Figure 10. The line arrangement when l > 0 and d ≤ 0 corre-

sponding to Mostow groups of the second type.

Then, using d = 2p/(p− 6), the orbifold Euler characteristic χ(H2
C
/Γ) is

χ(H2
C/Γ) =

1

2p
+

1

2p2
+

1

dp
− 1

p
− 1

p
− 1

2
− 1

p
− 1

4
− 1

2d

+
1

2
+ 1 + 1 + 1 +

1

3
+

1

p
+

1

p
+

1

3d
− 1− 1− 1− 1 + 1

=
1

2p
+

1

2p2
+

1

2p
− 3

p2
− 1

p
− 1

4
−−1

4
+

3

2p
+

1

3
+

1

6
− 1

p

=
p− 5

2p2
.

This agrees with Theorems 5.4 and 5.7 of Sauter. Note that in Theorem 5.4 Sauter
is computing the volume of H2

C
/Γµ which is six times the volume of H2

C
/ΓµΣ, which

is what we have; see pages 381–383 of [57].

5.3. Mostow groups of the second type. In this section we consider the
groups with l > 0 and d ≤ 0. The values of p and k and those of d and l are:

p 3 3 3 3 3 4 4 4 5 5 6 6
k 7 8 9 10 12 5 6 8 4 5 4 6
−d 2 2 2 2 2 4 4 4 10 10 ∞ ∞
l 42 24 18 15 12 20 12 8 20 10 12 6

In this case the line L45 has collapsed to a point z123. We have drawn the line
arrangement in Figure 10, which should be compared with the first figure on page
363 of Sauter [57].

A fundamental domain for these groups was constructed by Deraux, Falbel and
Paupert [15]. We describe this fundamental domain. From one point of view, it may
once again be obtained from the fundamental domain constructed in Section 5.1
by truncating various vertices. However, this process is more complicated and it is
perhaps easier to make a direct construction. In order to emphasise the similarities
with the previous two fundamental domains we try to use similar notation.
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Figure 11. The side pairings.
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The polyhedron D in the construction of Deraux, Falbel and Paupert [15] has
ten sides. Of these, six are contained in a bisector, but the remaining four are not.
The vertex z234 has been truncated to form a triangle and so gives rise to three new
vertices z23,15, z34,15 and z24,15. These are all contained in L15, the fixed complex

line of A′
1 = (J−1R−1

1 J−1)2 = J−1R−1
1 R−1

2 . There is a new side S(P−1
2 ) obtained

by taking a cone over this triangle to z123. Similarly, the vertex z134 is truncated
to give a triangle with vertices z13,25, z14,25, z34,25. There is a side that is the cone
over this triangle to z123. This side is S(P2). The side pairing map P2 = R2R1

sends S(P2) to S(P−1
2 ). This truncation process has a further effect. Consider the

triangle with vertices z234, z134, z124 from Figure 7. Because J maps this triangle to
itself and cyclically permutes the vertices, when we truncate the vertices z234 and
z134 to replace them with an edge, we must also replace z124 with an edge. Hence
this triangle gets replaced with a hexagon. Likewise, the triangle with vertices z234,
z134 and z23,14 in Figure 7 is replaced by a pentagon. Thus the side S(R1) is now
a cone over a pentagon. This is not contained in a bisector. The same is true of
S(R−1

1 ), S(R2) and S(R−1
2 ).

To summarise, the side pairings are J , P1, P2, R1 and R2 and the cycle relations
are:

Face Cycle element Cycle relation
F (J, J−1) = S(J) ∩ S(J−1) J J3 = 1
F (J,R1) = S(J) ∩ S(R1) J−1R−1

2 JR1 J−1R−1
2 JR1 = 1

F (J, P1) = S(J) ∩ S(P1) J−1P1 (J−1P1)
k = 1

F (J, P−1
2 ) = S(J) ∩ S(P−1

2 ) J−1P−1
2 (J−1P2)

l = 1
F (R1, R

−1
1 ) = S(R1) ∩ S(R−1

1 ) R1 Rp
1

F (R2, R
−1
2 ) = S(R2) ∩ S(R−1

2 ) R2 Rp
2

F (P1, R1) = S(P1) ∩ S(R1) P−1
1 R−1

2 P1R1 P−1
1 R−1

2 P1R1 = 1,
F (P−1

2 , R1) = S(P−1
2 ) ∩ S(R1) P2R

−1
2 P−1

2 R1 P2R
−1
2 P−1

2 R1 = 1
F (P1, R2) = S(P1) ∩ S(R2) R−1

2 R−1
1 P1 R−1

2 R−1
1 P1 = 1

F (P2, R1) = S(P2) ∩ S(R1) R−1
1 R−1

2 P2 R−1
1 R−1

2 P2 = 1

From this we obtain a geometrical presentation for the group:

(5.3) Γ =

〈
J, P1, P2, R1, R2 :

J3 = Rp
1 = Rp

2 = (P−1
1 J)k = (P2J)

l = I,
P1 = R1R2, P2 = R2R1,

R2 = P1R1P
−1
1 = P−1

2 R1P2 = JR1J
−1

〉
.

Writing P−1
1 J = A1 and J−1P−1

2 = A′
1 we obtain

〈
J, R1, A1, A

′
1, :

J3 = Rp
1 = Ak

1 = A′
1
l
= 1,

A1 = (JR−1
1 J)2, A′

1 = (J−1R−1
1 J−1)2,

A1R1 = R1A1, A′
1R1 = R1A

′
1

〉

We can use Propositions 4.4 and 4.5 to describe the stabiliser of z123. The
stabiliser of each other vertex is the direct product of a pair of cyclic groups. Using
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this fundamental domain, we compute the Euler characteristic as before:

Orbit Stabiliser Order
z23,14, z13,24 〈R1, A1〉 kp
z23,15, z13,25 〈R1, A

′
1〉 lp

z14,25, z14,35, z24,35, z24,15, z34,15, z34,25 〈A1, A
′
2〉 kl

z123 〈R1, R2〉 6d2

(z23,15, z123), (z13,25, z123) 〈R1〉 p
(z23,14, z123), (z13,24, z123) 〈R1〉 p{

(z14,25, z123), (z14,35, z123), (z24,35, z123),
(z24,15, z123), (z34,15, z123), (z34,25, z123)

}
1 1

(z34,15, z34,25), (z14,25, z14,35), (z24,35, z24,15) 〈JR1〉 2k
(z14,35, z24,35), (z24,15, z34,15), (z34,25, z14,25) 〈JR−1

1 〉 2l
(z23,14, z23,15), (z13,24, z13,25) 〈R1〉 p{

(z23,14, z14,25), (z23,14, z14,35),
(z13,24, z24,15), (z13,24, z24,35)

}
〈A1〉 k

{
(z23,15, z24,15), (z23,15, z34,15),
(z13,25, z14,25), (z13,25, z34,25)

}
〈A′

1〉 l

F (J, P1), F (J−1, P − 1−1) 〈A1〉 k
F (J, P−1

2 ), F (J−1, P2) 〈A′
1〉 l

F (R1, R
−1
1 ) 〈R1〉 p

F (R2, R
−1
2 ) 〈R2〉 p

F (J, J−1) 〈J〉 3
F (J,R1), F (J,R−1

1 ), F (J−1, R2), F (J−1, R−1
2 ) 1 1

F (P1, R1), F (P1, R
−1
1 ), F (P−1

1 , R2), F (P−1
1 , R−1

2 ) 1 1
F (P−1

2 , R1), F (P−1
2 , R−1

1 ), F (P2, R2), F (P2, R
−1
2 ) 1 1

F (P1, R2), F (P−1
1 , R−1

1 ), F (R1, R
−1
2 ) 1 1

F (P2, R1), F (P−1
2 , R−1

2 ), F (R2, R
−1
1 ) 1 1

S(J)S(J−1) 1 1
S(P1), S(P

−1
1 ) 1 1

S(P2), S(P
−1
2 ) 1 1

S(R1), S(R− 1−1) 1 1
S(R2), S(R

−1
2 ) 1 1

D 1 1

Then the orbifold Euler characteristic χ(H2
C
/Γ) is

χ(H2
C/Γ) =

1

kp
+

1

lp
+

1

kl
+

1

6d2
− 1

p
− 1

p
− 1− 1

2k
− 1

2l
− 1

p
− 1

k
− 1

l

+
1

k
+

1

l
+

1

p
+

1

p
+

1

3
+ 1 + 1 + 1 + 1 + 1− 1− 1− 1− 1− 1 + 1

=
1

kp
+

1

lp
+

1

kl
+

1

24
− 1

2p
+

3

2p2
− 1

2k
− 1

2l
− 1

p
+

1

3

=
1

2

(
1

2
− 1

p

)2

+
1

k

(
1

2
− 1

p
− 1

k

)

where we have used 1/l = 1/2−1/p−1/k on the last line. This agrees with Theorem
5.1’ of Sauter.
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5.4. The Gauss-Picard modular group. In this section we briefly discuss
the group with p = ∞ and k = 4. This group is an index two subgroup of the Gauss-
Picard modular group PU(2, 1;O1); see Example 4.6.6 and Section 5.3 of Holzapfel
[29], also Parker [46], Francsics and Lax [17] and Falbel, Francsics, Parker [16]. In
this case k = l and the extra holomorphic symmetry of order 2, denoted Q, has the
effect of swapping the cone points v2 and v3 and swapping v4 and v5. Therefore,
QR1Q

−1 = R1, QR2Q
−1 = R3 and QJQ−1 = J−1.

In [16] the standard off-diagonal Hermitian form was used. In this case L23

has collapsed to the point infinity in the Siegel domain model of H2
C
. The matrices

become:

J =



0 0 1
0 1 −1− i
1 1− i −1


 , R1 =



1 0 i
0 1 0
0 0 1


 ,

Q =



1 1− i −1
0 −1 1 + i
0 0 1


 ,

A1 =



−i −1− i 1 + i
0 1 −1− i
0 0 −i


 , A′

1 =



−i −1 + i 1 + i
0 1 1− i
0 0 −i


 .

Francsics and Lax [18] construct the Ford domain for this group and Falbel,
Francsics and Parker [16] use Poincaré’s theorem to give a presentation of the
group. In our notation, this is:

〈
J, R1, Q :

(JQ)2 = Q2 = J3 = (R1JQ)12 = (JR1)
8 = 1,

(JQR1)
3R1 = R1(JQR1)

3, QR1 = R1Q

〉

Taking the index two subgroup generated by J and R1 and substituting for A1, A
′
1

and P , the Deligne-Mostow group with p = ∞ and k = 4 has presentation
〈
J, R1, A1, A

′
1, P :

J3 = A4
1 = A′

1
4
= (JA−1

1 )6 = 1,
A1 = (JR−1

1 J)2, A′
1 = (J−1R−1

1 J−1)2,
A1R1 = R1A1, A′

1R1 = R1A
′
1

〉
.

6. Problems

I will conclude this article by giving a list of questions that, as far as I know,
are open. I expect these to be of varying levels of difficulty. In particular, the
first problem is fundamental, it is probably difficult and its solution would be of
widespread interest.

Problem 6.1. Do there exist non-arithmetic lattices in PU(n, 1) for n ≥ 4?

My guess (which I would not want to state as a conjecture) is that non-
arithmetic lattices exist in all dimensions. If this were so, then a possible reason
why such lattices have not yet been found is that we have very few methods of
constructing lattices.

Problem 6.2. Give a purely geometric description, for example via line ar-
rangements or the construction a fundamental domain, for the group associated to
Mumford’s fake projective plane.

Problem 6.3. Find the precise relationship between Deraux’s lattice and the
fake projective plane constructed by Prasad and Yeung over the same number field.
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Problem 6.4. Interpret the commensurability theorems in terms of funda-
mental domains. Thereby give fundamental domains and presentations for other
Deligne-Mostow groups.

Problem 6.5. Give fundamental domains for the Deligne-Mostow groups with-
out three fold symmetry, particularly those that are not commensurable with one that
does have three fold symmetry.

Problem 6.6. Construct fundamental domains for lattices in higher complex
dimension.
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[25] F. Hirzebruch; Chern numbers of algebraic surfaces: an example. Math. Ann. 266 (1984)
351–356.

[26] R.-P. Holzapfel; Invariants of arithmetic ball quotient surfaces. Math. Nachr. 103 (1981),
117–153.

[27] R.-P. Holzapfel; Geometry and Arithmetic Around Euler Partial Differential Equations.
Reidel, Dordrecht (1986).

[28] R.-P. Holzapfel; Symplectic representation of a braid group on 3-sheeted covers of the

Riemann sphere. Serdica Math. J. 23 (1997), 143–164.

[29] R.-P. Holzapfel; Ball and Surface Arithmetics. Aspects of Mathematics, Vieweg 1998.
[30] M. Ishida; Hirzebruch’s examples of surfaces with c2

1
= 3c2. Algebraic Geometry, ed:

M. Raynaud & T. Shioda. Lecture Notes in Mathematics 1016, Springer, 1983.

[31] M. Ishida & F. Kato; The strong rigidity theorem for non-Archimedean uniformization.
Tohoku Math. J. 50 (1998), 537–555.

[32] F. Kato; Arithmetic structure of Mumford’s fake projective plane. Preprint.
[33] G. Lauricella, Sulle funzioni ipergeometiche a piu variabili. Remd. Circ. Math. Palermo 7

(1893) 111–158.
[34] R. Le Vavasseur, Sur le système d’équations aux dérivées partielles simultanées auquelles
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