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Abstract

We prove a version of Shimizu’s lemma for quaternionic hyperbolic space. Namely, consider
groups of quaternionic hyperbolic isometries containing a parabolic map fixing infinity. We
show that any element of such a group not fixing infinity has an isometric sphere whose
radius is bounded by a function of the parabolic translation length at its centre.
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1 Introduction

1.1 The context

The hyperbolic spaces (that is rank 1 symmetric spaces of non-compact type) are Hi where
[F is one of the real numbers, the complex numbers, the quaternions or the octonions (and in
the last case n = 2), see Chen and Greenberg [5]. A map in Isom(Hy) is parabolic if it has
a unique fixed point and this point lies on 0Hy. Parabolic isometries of H% and H%, that is
parabolic elements of PSL(2,R) and PSL(2, C), are particularly simple: they are (conjugate to)
FEuclidean translations. In all the other cases, there are more complicated parabolic maps, which
are conjugate to Euclidean screw motions.

Shimizu’s lemma [22] gives a necessary condition for a subgroup of PSL(2,R) containing a
parabolic element to be discrete. If one normalises so that the parabolic fixed point is oo, then
Shimizu’s lemma says that the isometric spheres of any group element not fixing infinity have
bounded radius, the bound being the Euclidean translation length. Equivalently, it says that
the horoball with height the Euclidean translation length is precisely invariant (that is elements
of the group either map the horoball to itself or to a disjoint horoball). Shimizu’s lemma
was generalised to PSL(2,C) by Leutbecher [17] and to subgroups of Isom(Hg) containing a
translation by Wielenberg [24]. Ohtake gave examples showing that, for n > 4, subgroups of
Isom(HE) containing a more general parabolic map can have isometric spheres of arbitrarily
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large radius, or equivalently there can be no precisely invariant horoball [19]. Finally Waterman
[23] gave a version of Shimizu’s lemma for more general parabolic maps, by showing that each
isometric sphere is bounded by a function of the parabolic translation length at its centre.
Recently Erlandsson and Zakeri [6, 7] have constructed precisely invariant regions contained in
a horoball with better asymptotics than those of Waterman.

It is then natural to ask for versions of Shimizu’s lemma associated to other rank 1 symmetric
spaces. The holomorphic isometry groups of H¢ and Hp are PU(n,1) and PSp(n,1) respec-
tively. Kamiya generalised Shimizu’s lemma to subgroups of PU(n, 1) or PSp(n, 1) containing a
vertical Heisenberg translation [13]. For subgroups of PU(n, 1) containing a general Heisenberg
translation, Parker [20, 21] gave version of Shimizu’s lemma both in terms of a bound on the
radius of isometric spheres and a precisely invariant horoball or sub-horospherical region. This
was generalised to PSp(n, 1) by Kim and Parker [16]. Versions of Shimizu’s lemma for subgroup
of PU(2,1) containing a screw parabolic map were given by Jiang, Kamiya and Parker [10, 14].
Kim claimed the main result of [10] holds for PSp(2,1) [15]. But in fact, he failed to consider all
possible types of screw parabolic map (in the language below, he assumed p = 1). Our result
completes the project began by Kamiya [13] by giving a full version of Shimizu’s lemma for any
parabolic isometry of H or Hfj for all n > 2.

Shimizu’s lemma is a special case of Jgrgensen’s inequality [12], which is among the most
important results about real hyperbolic 3-manifolds. Jgrgensen’s inequality has also been gen-
eralised to other hyperbolic spaces. Versions for isometry groups of H% containing a loxodromic
or elliptic map were given by Basmajian and Miner [1] and Jiang, Kamiya and Parker [9]. These
results were extended to H% by Kim and Parker [16] and Kim [15]. Cao and Parker [3, 4] ob-
tained generalised Jgrgensen’s inequalities in Hp for groups containing a loxodromic or elliptic
map. Finally, Markham and Parker [18] obtained a version of Jorgensen’s inequality for the
isometry groups of H%) with certain types of loxodromic map.

1.2 Statements of the main results

The purpose of this paper is to obtain a generalised version of Shimizu’s lemma for parabolic
isometries of quaternionic hyperbolic n-space, and in particular for screw parabolic isometries.
In order to state our main results, we need to use some notation and facts about quaternions
and quaternionic hyperbolic n-space.

We will show in Section 2.3 that a general parabolic isometry of quaternionic hyperbolic space
H; can be normalised to the form

V2t (=[I7)? + t)p
V2rp , (1)
o

T =

oox
o g

where 7 € H" !, ¢ is a purely imaginary quaternion, U € Sp(n — 1) and y is a unit quaternion
satisfying
Ur=upr, U't=nqr, ur# 7o if 7 #0,
ut £t if =0 and p # +1, (2)
t#0 ifr=0and p==+1.
We call a parabolic element of form (1) a Heisenberg translation if U = I,,_1 and p = 1, and
we say that it is screw parabolic otherwise. We remark that even for n = 2 it is possible to find
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screw parabolic maps with u # £1 and 7 # 0. This is the point overlooked by Kim in [15].
If v is a unit quaternion and ¢ € H" !, the map ¢ — uCf is linear. For U and u as above,
consider the following linear maps:

By : ¢— U¢ —Cp, By : ¢ — pC = Cp.

Define Ny, and N, to be their spectral norms, that is

Nuy = max{[|Bu,Cl : ¢ € B and ¢ = 1}, 3)
No = max{||Bu¢l ¢ eH" T and ¢ =1} = 2[Tm(p)]. (4)

Note that U*¢ — (o = U*Cup—U*U(n = —U*(U¢ — (u)fi. Therefore Ny« z = Ny, We remark
that NV, = 0 if and only if 4 = &1, and Ny, = 0 if and only if 4 = £1 and U = pul,, .

We may identify the boundary of Hy with the 4n — 1 dimensional generalised Heisenberg
group, which is My,—1 = H*~! x ImH with the group law

(C1,01) - (C2,v2) = (C1 + Co, 01 4 v2 + 2Im(G5¢1)).

There is a natural metric called, the Cygan metric, on 94,—1. Any parabolic map 7' is a Cygan
isometry of My, 1. The natural projection from My, 1 to H* ™! given by IT : ({,v) — ( is
called vertical projection. The vertical projection of T is a Euclidean isometry of H" !,

An element S of Sp(n,1) not fixing oo is clearly not a Cygan isometry. However there is
Cygan sphere with centre S~!(c0), called the isometric sphere of S, that is sent by S to the
Cygan sphere of the same radius, centred at S(co). We call this radius rg = rg-1. Our first
main result is the following theorem relating the radius of the isometric spheres of S and S,
the Cygan translation length of T" at their centres and the Euclidean translation length of the
vertical projection of T at the vertical projections of the centres.

Theorem 1.1 Let I' be a discrete subgroup of PSp(n, 1) containing the parabolic map T given
by (1). Suppose that the quantities Ny, and N, defined by (3) and (4) satisfy N, < 1/4 and
Ny, < (3—242+ N,)/2. Define

1
R (12N T, ), ®

If S is any other element of I' not fixzing oo and with isometric sphere of radius rg then
- O (S71(00)) b1 (S(0)) N 4| TS5~ (00) — LS~ (00)|| [|[TIT'S (00) — T1S(c0)|| (©)
= K K(K —2Ny,,) '

r§

If 4 =1 then Theorem 1.1 becomes simpler and it also applies to subgroups of PU(n, 1):

Corollary 1.2 Let I' be a discrete subgroup of PU(n,1) or PSp(n,1) containing the parabolic
map T given by (1) with = 1. Suppose Ny = Ny defined by (3) satisfies Ny < (v/2 —1)2/2.
Define

1
K =5 (1+2N0 + /1 - 12Ny +4N2).
If S is any other element of I' not firing oo and with isometric sphere of radius rg then

tp(571(00))lr (S (c0)) N 4| TS~ (00) — LS (00) || || TIT'S (00) — ILS (o) ||
K K(K —2Ny) '

r%ﬁ
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We remark that if T' is a Heisenberg translation 7.; then Ny, = N, = 0. Therefore
K = 1. Moreover, ||IIT'S™!(c0) — IIS~!(c0)|| = ||IT'S(c0) — I1S(c0)|| = ||7|| and so Theorem
1.1, or Corollary 1.2, is just Theorem 4.8 of Kim-Parker [16]. If in addition 7 = 0 then
(7(S~1(00)) = £7(S(c0)) = |t|"/? and we recover Theorem 3.2 of Kamiya [13].

For a parabolic map T of the form (1), consider the following sub-horospherical region:

e {(C’“’“) eHp : u> TS 42K — N,)|1T(z) ~ H(2)? } ™

K—N, (K-N,)((K~-N,)(K-2Ny,)—2Ny,,K)
Also, using the definitions of Ny, N, and K one may check
(K — N,)(K —2Ny,) — 2Ny, K = (K — 4Ny ,)2Ny,, + K(K — 2NU,u)2,

which is positive since K — 4Ny, > (1 — 6Ny,,)/2 > 0. Note that when p = %1, including the
case of PU(n, 1), then we have the much simpler formula, generalising equation (3.1) of [21]:

tr(z)* | 8IIT(z) - H(z)HQ}
K K(K —4Np,) |-

Ur = {(C,U,u)EHﬁI Dou >

If H is a subgroup of G then we say a set U is precisely invariant under H in G if T(U) = U
forall T € H and S(U) NU = 0 for all S € G — H. Our second main result is a restatement of
Theorem 1.1 in terms of a precisely invariant sub-horospherical region.

Theorem 1.3 Let G be a discrete subgroup of PSp(n,1). Suppose that G the stabiliser of oo
in G is a cyclic group generated by a parabolic map of the form (1). Suppose that Ny, and N,
defined by (3) and (4) satisfy N, < 1/4 and Ny, < (3 —2+/2+ N,)/2 and let K be given by
(5). Then the sub-horospherical region Ur given by (7) precisely invariant under G in G.

1.3 Outline of the proofs

All proofs of Shimizu’s lemma, and indeed of Jgrgensen’s inequality, follow the same general
pattern, see [13, 10, 16]. One considers the sequence S;i; = SjTSj_ 1. From this sequence one
constructs a dynamical system involving algebraic or geometrical quantities involving S;. The
aim is to give conditions under which Sy is in a basin of attraction guaranteeing S; tends to T'
as j tends to infinity.

The structure of the remaining sections of this paper is as follows. In Section 2, we give the
necessary background material for quaternionic hyperbolic space. In Section 3 we prove that
Theorem 1.3 follows from Theorem 1.1. In Section 4 we construct our dynamical system. This
involves the radius of the isometric spheres of S; and Sj_l and the translations lengths of T" and its
vertical projection at their centres. We establish recurrence relations involving these quantities
for S;41 and the same quantities for S;. This lays a foundation for our proof of Theorem 1.1 in
Sections 5 and 6. In Section 5 we rewrite the condition (6) in terms of this dynamical system,
(Theorem 5.1) and show that it means we are in a basin of attraction. Finally, in Section 6, we
show this implies S; converges to 1" as j tends to infinity.
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2 Background

2.1 Quaternionic hyperbolic space

We give the necessary background material on quaternionic hyperbolic geometry in this section.
Much of the background material can be found in [5, 8, 16].

We begin by recalling some basic facts about the quaternions H. Elements of H have the form
2 = 21+ 29i+23j+ 24k € Hwhere z; € Randi? = j? = k? = ijk = —1. Let 7 = 2; — 20i— 23] — 4k
be the conjugate of z, and |z| = VZz = \/z% + 25 + zg + 22 be the modulus of z. We define
Re(z) = (2 + Z)/2 to be the real part of z, and Im(z) = (z — Z)/2 to be the imaginary part of
z. Two quaternions z and w are similar if there is a non-zero quaternion ¢ so that w = qzq~".

Equivalently, z and w have the same modulus and the same real part. Let X = (x;;) € Mpxq be
a p x q matrix over H. Define the Hilbert-Schmidt norm of X to be [|X|[| = />, . [%|*. Also

the Hermitian transpose of X, denoted X*, is the conjugate transpose of X in M.
Let H™! be the quaternionic vector space of quaternionic dimension n+1 with the quaternionic

Hermitian form
<Z, W> =w'Hz = W1Zp+1 + W29 + -+« + Wp2p + Wn121, (8)

where z and w are the column vectors in H™! with entries 21, ..., 2,41 and wy, ..., Wpit
respectively, and H is the Hermitian matrix

0 1
H=|0 I, 0
1 0 0

Following Section 2 of [5], let
Vo = {z cH™ — {0} : (2, z) = O}, Vo = {z cH™ : (z,2) < 0}.

We define an equivalence relation ~ on H™! by z ~ w if and only if there exists a non-zero
quaternion \ so that w = z\. Let [z] denote the equivalence class of z. Let P : H™!—{0} — HP"
be the right projection map given by P : z — [z]. If 2,41 # 0 then PP is given by

P(z1, ..., zn, zn_H)T = (le;il, e ,znz;il)T e H".

We also define
P(z1,0, ..., 0,0)7 = .

The Siegel domain model of quaternionic hyperbolic n-space is defined to be Hfj = P(V_)
with boundary 0Hp; = P(Vp). It is clear that oo € OHp. The Bergman metric on Hpj is given
by the distance formula

h? plz,w) = (2, w)(w, 2) where z,w € HY, z€ P !(2),w c P~ (w).

€08 2 (z, z)(w, w)’

This expression is independent of the choice of lifts z and w.
Quaternionic hyperbolic space is foliated by horospheres based at a boundary point, which
we take to be co. Each horosphere has the structure of the one point compactification of 4n — 1
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dimensional Heisenberg group Mu,—1 U{oo}. We define horospherical coordinates on H; — {oo}
as z = (¢, v,u) where u € [0,00) is the height of the horosphere containing z and (¢, v) € Myp—1
is a point of this horosphere. If u = 0 then z is in OH} — {oo} which we identify with 4,1
by writing (¢,v,0) = ({,v). Where necessary, we lift points of Hiﬁl written in horospherical

coordinates to Vo U V_ via the map v : (Myp—1 x [0, 00)) U {oo} — Vo U V_ given by

1
=lISI? = u+ v 0

w(QU)U) = \/ig ) w(oo) =
1

The Cygan metric on the Heisenberg group is the metric corresponding to the norm

¢ = [ICI2 + 07 = (I + o) 4.

It is given by

1/2

/
dp ((Gryv1), (G2,v2)) = | (CGrovr) 7N (Cav2) |,y = ’||C1 — QP+ v — v — QIm(CgCl)’

As on page 303 of [16], we extend the Cygan metric to HY; — {oo} by

/
di ((C1,v1,u1), (G2, v2,u2)) = ’||C1 — Gl + w1 — ua| +v1 —va — QIm(GQ)’l ’

2.2 The group Sp(n,1)

The group Sp(n, 1) is the subgroup of GL(n + 1, H) preserving the Hermitian form given by (8).
That is, S € Sp(n, 1) if and only if (S(z), S(w)) = (z, w) for all z and w in H™!. From this we

find S~ = H—1S*H. That is S and S~! have the form:

a ~v* b d p* b
S=|la A B |, St=[0s6 4 ~ |,
c 0 d c ot a

(9)

where a,b,c,d € H, Ais an (n—1) x (n — 1) matrix over H, and «, 3,7, J are column vectors in

H~ 1.
Using the identities I,,,1 = SS™! we see that the entries of S must satisfy:

1 = ad+~*6+e,

0 = ab+|y|?+ba,
0 = ad+ AS+ fe,
I,.1 = af*+ AA" + Ba’,
= ab+ Ay + Ba,

0 = cd+ |6+ de.
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Similarly, equating the entries of I,,11 = S™1S yields:

1 = da+ f*a+be,

0 = dv*+ B*A+bs*,
0 = db+|B|?+bd,
0

= da+ A*a+ e,
Ini = 07"+ A*A 46",
0 = ca+|al®+ac

An (n—1) x (n — 1) quaternionic matrix U is in Sp(n — 1) if and only if UU* = U*U = I,,_;.
Using the above equations, we can verify the following lemma.

Lemma 2.1 (c.f.[16, Lemma 1.1]) If S is as above then A — ac™16* and A — Bb~1v* are in
Sp(n —1). Also we have

B—acld = —(A—ac'5*)oc !,
y—dclta = —(A—ac 0 ac,
a—fbla = —(A— by,
§—b'd = —(A—Bb'y) Byt

It is obvious that V and V_ are invariant under Sp(n,1). This means that if we can show
that the action of Sp(n, 1) is compatible with the projection P then we can make Sp(n,1) act
on quaternionic hyperbolic space and its boundary. The action of S € Sp(n, 1) on Hf; U0H is
given as follows. Let z € V_ U V| be a vector that projects to z. Then

S(z) =PSz.
Note that if z is any other lift of z, then z = z\ for some non-zero quaternion A. We have
PSz = PSz\ = PSz = S(z)

and so this action is independent of the choice of lift. The key point here is that the group acts
on the left and projection acts on the right, hence they commute.

Let S have the form (9). If ¢ = 0 then from (15) we have [|d|| = 0 and so ¢ is the zero vector
in H?~!. Similarly, « is also the zero vector. This means that S (projectively) fixes co. On the
other hand, if ¢ # 0 then S does not fix co. Moreover, S~1(c0) and S(00) in MNyy,—1 = OHE — {00}
have Heisenberg coordinates

S7Hoo) = (671 /V2, Im(de ™)), S(c0) = (ac™!/V2, Im(ac™?)).

For any r > 0, it is not hard to check (compare Lemma 3.4 of [21]) that S sends the Cygan
sphere with centre S~!(co) and radius 7 to the Cygan sphere with centre S(co) and radius
7 = 1/|c|r. The isometric sphere of S is the Cygan sphere with radius rg = 1/|c['/? centred at
S~1(00). Tt is sent by S to the isometric sphere of S~!, which is the sphere with centre S(c0)
and radius rg. In particular, if » and 7 are as above, then 7 = r% /r.

We define PSp(n,1) = Sp(n, 1)/{£1,+1}, which is the group of holomorphic isometries of Hf.
Following Chen and Greenberg [5], we say that a non-trivial element g of Sp(n,1) is:
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(i) elliptic if it has a fixed point in Hi};
(i) parabolic if it has exactly one fixed point, and this point lies in OHJ;

(ili) loxodromic if it has exactly two fixed points, both lying in OHf.

2.3 Parabolic elements of Sp(n, 1)

The main aim of this section is to show that any parabolic motion 7' can be normalised as form
given by (1).

Lemma 2.2 (Johnson [11]) Consider the affine map on H given by Ty : z — vz + 7 where
T e H—{0} and p, v € H with |p| = |v| = 1.

(i) If v is not similar to u then Ty has a fixved point.
(ii) If v = p then Ty has a fixed point in H if and only if ur = 7.
We now characterise parabolic elements of Sp(n, 1) (compare Theorem 3.1(iii) of [2]).

Proposition 2.3 Let T € Sp(n, 1) be a parabolic map that fizes oo. Then T may be conjugated
into the standard form (1). That is

o —V2ru (=P +t)u
T=10 U N ,
0 0 o

where (1,t) € Mup—1, U € Sp(n — 1) and p € H with |u| = 1 satisfying (2). That is

Ur =pr, U't =fir, jr #73 if 740,
ut £t if =0 and p # £1,
t#0 if =0 and p = +£1.

Recall that if U = I,,_1 and g = 1 (or U = —I,_1 and p = —1) then T is a Heisenberg
translation. Otherwise, we say that U is screw parabolic.

Proof: Suppose that 7 is written in the general form (9). Then if T fixes oo, it must be
block upper triangular. That is ¢ = 0 and o = § = 0, the zero vector in H" 1. It easily follows
that ad = 1. If T' is non-loxodromic, then |a| = |d| = 1 and so a = d. We define y:=a=d € H
with |u| = 1.

If o = (0,0) is the origin in My,,—1, then suppose T maps o to (7,t) € MNyp—1. This means that

bd™' = —|r|*+t, Bd' =2

Hence b = (—||7||>+t)p and B = v27pu. Also, A € Sp(n —1) and so we write A = U. It is easy
to see from (14) that U~y + /27 = 0. Hence, T has the form

po =V2rU (=7l +t)p
T=10 U V271
0 0 7
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Since T fixes co and is assumed to be parabolic, we need to find conditions on U, p and 7 that
imply T' does not fix any finite point of M4, —1 = OHY — {oo}.

Without loss of generality, we may suppose that U is a diagonal map whose entries u; all
satisfy |u;| = 1. Writing the entries of  and 7 € H" ! as ¢; and 7; for i = 1, ..., n — 1, we see
that a fixed point (¢,v) of T is a simultaneous solution to the equations

—lCIP+v = u(=lI¢I? +v)E - 2r U — |I7]* + ,
G = wGp+ T

fori=1, ..., n— 1. If any of the equations (; = u;(;; + 7 has a solution, then conjugating by
a translation if necessary, we assume this solution is 0.
If all the equations (; = u;(;ix + 7 have a solution, then, as above, ( = 0 and so 7 = 0. The
first equation becomes
v = pvp + t.

By Johnson’s theorem, if 1 # 41 this has no solution provided ut # tf. Clearly, if 4 = 41 then
it has no solution if and only if ¢ # 0.

On the other hand, if there are some values of i for which {; = u;(;t + 7; has no solution, then
by Johnson’s theorem, for each such value of i, the corresponding u; must be similar to p (and
7i 7 0 else 0 is a solution). Hence, without loss of generality, we may choose coordinates so that
whenever 7; # 0 we have u; = p. In particular, u;7; = pu7; and so UT = pu7. Furthermore, again
using Johnson’s theorem, ur # 7.

Observe that u;7; = pur; implies

U Ty = ﬂi(/JTi)(TiilﬁTi) = ﬂi(uiTi)(TflﬁTi) = UT;.
Hence U*t = pur, or equivalently 7*U = 7% and so T has the required form. O

Note that if U7 = pu7 = 77 then ¢ = 7(1 — z?) ! is a fixed point of ¢ — U{fi + 7. Hence in
this case, we may take 7 = 0. Furthermore, if 7 = 0 and pt = ¢ then (¢, v) = (0,¢(1 — z*)™!)
is a fixed point of T (note that, when ut = tf, if ¢ is pure imaginary then so is ¢(1 — 7z%)~!).

The action of T on HE — {oo} is given by

T(Cv,u) = (UG + 7, ¢+ ot — 20m (7 uCr), ).

Observe that T" maps the horosphere of height u € [0, 00) to itself. The Cygan translation length
of T at ({,v), denoted ¢7(¢,v) = du (T(¢,v), (¢,v)) = du(T(¢,v,u), (¢,v,u)), is:

gT(Ca ’U)

(et = ¢t pom— v+ 2m((¢ - )W+ 7))|
/2
= |2V -2 ucE 2T — P 2P om0 (16)

The vertical projection of T acting on H" ! is ( — U(fi+7. Its Euclidean translation length
is [[TIT'(¢,v) — (¢, v)|| = UG + 7 — ¢||. It is easy to show:

Corollary 2.4 Let ((,v) € Mypn_1 and let 11 : Ny, — H*! be vertical projection given by
IT: ((,v) — (. If T is given by (1) then

|07 (¢, v) = TI(¢,v) || < Lr(¢,v).
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The following proposition relates the Cygan translation lengths of T" at two points of 9y, _1.
It is a generalisation of Lemma 1.5 of [21].

Proposition 2.5 Let T be given by (1). Let (¢,v) and (§,r) be two points in Nyp—1. Write
(¢, v)7 (& r) = (n,8). Then

Cr(&,1)? < lr(¢ )2+ 4[ITT(C, v) = TS ) [HInll + 2Nu,ullnl|* + Nals|
Proof: We write (¢,r) = ((,v)(n,s) = ((+n, v+ s+n*¢ —(*n). Then
26°UER — 27" pép + 2657 — ||7|* + ¢ = 2||é[* + prm — v
= 2(C+n) U+ i — 27 uw(C + )i+ 2(C+n)'r — ||7]]* + ¢
=2+ nl® + plo+ s+ 0" = CE—v—s =0+
= 2C°UCE — 27" uCp + 2" — ||7)1* + ¢ = 2|¢|f* + popr — v
+20"(UCa + 71— ) = 2(uC*U* + 7" = () Unp + 20" (Un — nup)i + (ps — sp).

Therefore, using (16),

brigr)? = [26°Ugn— 20 g+ 267 — |72 + ¢ — 2€)2 + i - v|
< |2 UGE = 2 G+ 20T = 172 4t = 2 + i — o
20" (UGH + 7 = Q)| + 2| (uC*U” + 7 = YU
+2[nll [[Ung = nll + |us — spl
< (¢ 0)? + Al 1UCE+ 7 = ¢l + 2Nuulinll? + Nals|.
The result follows since U( + 7 — ¢ = IIT((,v) — II(¢, v). O

3 A precisely invariant sub-horospherical region

In this section we show how Theorem 1.3 follows from Theorem 1.1. This argument follows
Lemmas 3.3 and 3.4 of [21].

Proof: (Theorem 1.3.) Let z = (¢, v,u) be any point on the Cygan sphere with radius r and
centre ((o, v, 0) = (Co,v0) € Map—1 C OHE and write (1, s) = (¢,v)"*({o,v0). Then we have

/
2 = i (G o), (G0,00,0)) = [l + - s| = (il + ) +1sf7)

In particular, 2 > ||n||?> + « and 72 > |s|. We claim that the Cygan sphere with centre (o, vo)
and radius r does not intersect Ur when r satisfies:
{7 (Co,v0)* | 4|[TIT(¢o, vo) — I1(o, vo) ||

2 < . 1
N K(K — 2Ny, (17)
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To see this, using Proposition 2.5 to compare ¢7((p, vg) with ¢ ({,v) = €p(z), we have

w < |yl
K 2 Ny

_ 2 _ 2

K r(Gosv0)* | 4ITIT (G, vo) — T1(Co, vo) 1 N,
= K-N, < K K(K —2Ny,) ) K —MNM sl = Il
< gy (B + AT ) ) Il + 2ol + Nl

4 2 N,

w2 (INTE) =@+ Nowlnl)” = == 15| = P

GG, ANTE) -NEP | aKITe) -1e)
K—N,  (K-NJE-2Ny,) (K- N)EK—2Ny,)
B (K — N,)(K —2Ny,) — 2Ny, K ||77||2
(K - Nu)(K - 2NU,#)

L 42K — N,)IT(2) ~ 1(2)|

K—N, (K_Nu)((K_Nu)(K_QNUw)_2NU7uK)’

where the last inequality follows by finding the value of ||n|| maximising the previous line. Hence,
when 7 satisfies (17) the Cygan sphere with centre ({y,vp) and radius r lies outside Uy .

Now suppose that the radius rg of isometric sphere of S satisfies the bound (6). Consider the
Cygan sphere with centre S~!(00) = (Co,vo) and radius r with equality in (17). That is

o lr(Co,v0)?* | 4ITIT(¢o,v0) — T(Co, vo) ||
e K(K —2Ny,,) ' (18)

We know that S sends this sphere to the Cygan sphere with centre S(o0) = (60,50) and radius
7 =r%/r. We claim that 7 satisfies (17). It will follow from this claim that both spheres are
disjoint from Up. Since S sends the exterior of the first sphere to the interior of the second, it
will follow that S(Ur) NUr = (.

In order to verify the claim, use (18) and (6) to check that:

72 o= rfé/r2
1 7(Co, v0) 01 (Co, To) N 4|17 (G, vo) — T(Co, v0)|| [T (o, T0) — 11(Co, o) | ’
2 K K(K —2Ng,.)

< 1(Co, To)? n AT (Co, Bo) — T1(Co, o) |12
- K K(K — QNU,#) '

Thus 7 satisfies (17) as claimed.

Therefore, if S € G — G4 then the image of Ur does not intersect its image under S. On the
other hand, clearly T" maps Uy to itself. Thus every element of Go, = (T') maps Ur to itself.
Hence U7 is precisely invariant under G in G. This proves Theorem 1.3. U
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4 The dynamical system involving S and T
4.1 The series Sj+1 = SJTS;l

We begin by developing some recurrence relations with Sp = S and S;11 = S;TS i ! with T in
the normal form (1). Write S; in the standard form (9) with subscript j. Then Sy is

aj4+1 ’Y;—s—l bjt1 a; ’Y; b; v —\/§T*M (_‘|T||2+t)ﬂ EJ’ B; b

ajrr Ajpr B | = o A B | (0 U V2rp 0 A7

G+ O djm ¢ 0 dj J \O 0 H G
(19)

Performing the matrix multiplication of (19), we have the recurrence relations:

a1 = U8 — V2,7 ub; + V2T — a; (|71 — ) pc; + ajud; + bjuic;, (20)
vir1 = AUy — V2Ajira; + V2airty; — a7l + t)a + aib; + Bima,  (21)
biv1 = YUy — V2a;7 wy; + V2yiTaay — a;(I7)* — t)pa; + ajub; + bjpa;, (22)
aji1 = AjUS; = V2057 u8; + V2A e — aj(|Ir|? =t + ajpd; + Bjuc;, (23)
Ajr = AUAS = V207" pAf + V245705 — oy (7117 = t)pe] + ajnf; + Binaj, (24)
B = AUy — V207w + V2A5rpa; — ag(Ir|* = Oua; + aubs + By, (25)
G = OUS; — 27 1d; + V205 — o5 (|I7|1? — )y + ¢jud; + djpue, (26)
0j1 = AU — V2A;77T; + V20,85 — (|7 + )& + BiEc; + ajfidy,  (27)
dip1 = 05U~ — V207" wy; + V28Tt — ¢ (I171]° — t) paj + cjpb; + djpa;. (28)

We also define §j+1 = Sj_lT S; and we denote its entries a;41 and so on. We will only need
Ciy1 = ajUay — V2e,7* o + ﬂa}fTucj —¢;(I7||> = e + ¢jpa; + a;pc;. (29)

Suppose Sj_l(oo) and S;(co0) have Heisenberg coordinates ((;,7;) and (wj, sj) respectively. So:

= 1 -1
X =GP + 7 djcjl —[laj|I* + s; a4c;
S; (OO) = \/igj = (Sjé; , SJ(OO) = \/iw]' = ozjc; . (30)
1 1 1 1

Then II(S™1(00)) = ¢, (TS~ Y(o0)) = U + 7, I(So0)) = wj and I(T'S(00)) = Uw,i + 7.
We also define

_ _ _ 1 1 e
& = (TS H(00)) —I(S™H(c0)) = UG+ T~ (5 = ﬁ(U‘SJ'Cj -85 1) +7, (31)
_ 1 1 -
n; = I(TS(c0)) —1I(S(00)) =Uwji+ 7 —wj = E(Uajcj 17— o;c; 1) +7, (32)
Bj = Aj - ajcj_ld;-‘. (33)
Note that Lemma 2.1 implies B; € Sp(n — 1). Also, using (26) and (29) we have
¢ lejnc !t = 20U — 27y + 20 i — ||| w4+t — 20| GlP A+ pry — rip,

Gl Ge = 2wl — 20wy + 2wt — |72+t — 2wy |+ s — s
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Lemma 4.1 If ¢;, ¢;, & and n; are given by (26), (29), (31) and (32), then

0= 2][&]* + 2Re(c; '¢j1; '), 0= 2|n;|1> + 2Re(c; 'Ejq1c; ).

Proof: We only prove the first identity. Writing out 2Re(c;16j+1E;1H) we obtain

2Re(c) ejiey B) = 2CUCH — 20 uCypi+ 237 — 72 + £ = 201G 12 + i — v
F2uC UG — 2uGam + 277G — |72 =t = 2| G1* — w1y
= 2(uGU + 7" = GIUGE+T — (),
where we have used 7" = 7*U. The result follows since §; = U + 7 — (. O
(Ig)gr)rilrrjlf;l;l;f Let Sj_l(oo) = (¢j,rj) and Sj(0c0) = (wj,s;). Let & and n; be given by (31) and
1

=—1 *¢ = =—1
Gl = ﬁ5j+1cj+1 = w; — BjU§jc5¢, 1, (34)
3 ——1 ——1——= ——1 * ke — ——1
—NGral?+ e = dichy = —lwill® + 55+ ¢ mEes ) + 205 (BiU e ,), (35)
1 _ _
Wji+1 = ﬁ%‘ﬂ%’h = wj+ngjMCjCjJi17 (36)
~1 1= 1 _
il + s = agacily = —llwjll® + 85+ el — 205 (Bigueierly).  (37)
In particular,
S = UGup+7— G = n —UBUGee, )i+ (BiU e e ), (38)
nir1 = i+ Uwini+71—win = UB&ueic; ) )i — (Biucic; ). (39)

Proof: We have
ajy1 = ;U0 — V2a,7* 16 + \/g'y;Tqu — aj(HTH2 — t)ucj + a;jpd; + bjuc;
= ajcj_lc]url + (’Yj — ajcj_lé;f)(UéjEj_lﬁ — 5jEj'_1 + \/§T)u5j
+(’Y;(5j5j_l — ajcj_lé;f(gjfj_l +bj — ajcj_ldj)/ﬁj,
= a;c; e +¢ e — ¢ ol Bi(US e T — 855 + V27) i
On the last line we used (10) and (15) to substitute for 77d; and §7d; and Lemma 2.1 to write
Vi — ajcj_lé;-‘ = —Ej_la;Bj. Now using the definitions of s;, w; and &; from (30) and (31) we
obtain (39).
The other identities follow similarly. When proving the identities for ¢j 1 and —||j41 >+ 741
we also use U*T = . g

The following corollary, along with Proposition 2.5, will enable us to compare the Cygan
translation length of T" at S]]_ll(oo) and Sjy1(oc0) with its Cygan translation lengths at S;l(oo)
and S;(00).

Corollary 4.3 Write Sj_l(oo) = (¢j,7j) and Sj(00) = (wj, s;) in Heisenberg coordinates. Then
(wjr$5) " (i1, mi1) = <_BJU*EJEJ6;—&1’ Im(Ejlﬁéjéfil))’

(Wi, 85) " (Wjs1,8541) = (ijjﬂ@jcj_ﬁp Im(éj_luéjcj_il))
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4.2 Translation lengths of 7" at Sj_l(oo) and S;(oc0)

We are now ready to define the main quantities which we use for defining the recurrence relation
between S;11 and S;. They are defined by:

x, 2 oS TS (e0) ~TIS; ()|
J rSj 9 Jj— T‘Sj R
5. _ tr(S8j(0)) > _ [0TS;(00) — T1S;(c0)|
I Tsj ’ J T‘Sj ’

Observe that Corollary 2.4 immediately implies Y; < X; and }7j <X j. Using (16), we see that
in terms of the matrix entries they are given by:

X7 = lej e lel
= ‘2C§UCj—27*qu+2C}‘w— (rlP = ) = 201G 1P + pr —Tju‘ lesl (40)
X: = [6 ' Cae ! ol

= |2t — 2wy + 205 — (71 = D) — 2y P+ oy — s el (41)
Y2 = gl = [1U¢GA+T - GIPlel, (42)
V2 = nlPlesl = Ui+ 7 —wjllesl (43)

In Section 6 we will show (6) implies that the sequence S = S;T S;l converges to T in the
topology induced by the Hilbert-Schmidt norm on PSp(n,1). To do so, we need the following
two lemmas giving X1, X1, Yj41 and Y44 in terms of X;, X;, Y, and Y;.

Lemma 4.4 We claim that

Xi < XJXF +4Y3Y) + 2Ny + Ny, (44)
X2, < X2X?+4Y;Y; + 2Ny, + Ny (45)

Proof: Writing Sj_l(oo) and S;(c0) in Heisenberg coordinates and using Proposition 2.5 and
Corollary 4.3, we have

tr(S51(00))”
< L7 (85(00))” + 4|[ITS;(00) — Sj(00)| |- BiU €z |
+2Ny,||=B;U*¢jejer 1P + N [Im (e ' aejes )|

< 0r(85(00))" + Al 11 el lejan | ™ + 2Null 12l Plejan |2 + Nlejsa| 7
Now, multiply on the left and right by |cj1i| = 1/7“‘29],+1 and use KT(S]-_l(oo)) = Xjrs, and
{r(Sj(00)) = X;rg;. This gives

X2 < Relesialles =+ A 15 bl + 2V &Pl Plega |~ 4 N

Finally, we use |cj41][ej| ™0 = X2, (|1 1ej|'/2 = ¥j and ||| |¢;|'/* = Y;. This gives

X2, < X7X7 +4Y;Y; + 2Ny, Y7 X2 + N,



5 CONVERGENCE OF THE DYNAMICAL SYSTEM 15

The inequality (44) follows since Y; < X;. The inequality (45) follows similarly. O

We now estimate Y; 41 and Yj41 in terms of X;, X; and so on.

Lemma 4.5 We claim that

~
_"_l\D
IN

Y2X? + 2Ny, Y;Y; + NE (46)
YA, < YPXZ 42Ny, YV, + Ni,. (47)
Proof: Using the definition of Y; from (42) and the identity for £;;1 from (38), we have:

Yier = lGalllel'?
Inj = UB;U*¢g5e; 1 )i + (BiU e, )l e |2

< Yjleg| T P leja 2 4 NuYile 2 ejn |72
v —1
= T+ N YX
Squaring and using Y; < X gives (46). A similar argument gives the inequality (47). O

Therefore we have recurrence relations bounding X1, X j+1, Yj41 and i;j+1 (that is transla-
tion lengths and radii) in terms of the same quantities for the index j. In the next section, we
find a basin of attraction for this dynamical system.

5 Convergence of the dynamical system

In this section we interpret the condition (6) of Theorem 1.1 in terms of our dynamical system
involving translation lengths, and we show that (6) means that Xj, )?j, Y; and }7] converge.
Broadly speaking the argument will be based on the argument of Parker in [21] for subgroups
of SU(n, 1) containing a Heisenberg translation. This argument was used by Kim and Parker in
[16] for subgroups of Sp(n, 1) containing a Heisenberg translation. For Heisenberg translations
Ny, = N, = 0, meaning that the inequalities from Lemmas 4.4 and 4.5 are much simpler (see
page 307 of [16]). Our proofs in the case when U # I,,_1 or p # 1 are more complicated.

Recall the definition of K from (5). The only properties of K that we need are that
(1+2Ny,)/2 < K <1-2Ny, <1 and that K satisfies the equation:

(K —2Ny,)(1 — K) = 2Ny, + N,.. (48)

Observe that (44), (45), (46) and (47) together with (48) imply
max{X?,, X21} < X2X?+4Y;Y; + (K — 2Ny,)(1 - K), (49)
max{Y7 ), Y} < XFVP 4+ 2Np, Y5+ Nuu(K = 2Ng,)(1- K)/2. - (50)

Our goal in this section is to prove the following theorem.
Theorem 5.1 Suppose X, )Afj, Y; and 37] satisfy (49) and (50). If

4Y,Yo
K — 2Ny,

then for all € > 0 there exists J. so that for all j > Jg:
max{XJZ, )?]2} <1-K +e¢, max{YjZ, 37]2} < Ny,(1-K)/2+e. (52)

XoXo + <K. (51)
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Note that (51) is simply the statement that (6) fails written in terms of X, Xo, Yo and Y.
Moreover, the case of Theorem 5.1 when Ny, = 0 is a restatement of Lemma 2.6 of [21] (see
also [16]) and is proved similarly. Therefore we only consider the case Ny, > 0 is what follows.
Our strategy for proving Theorem 5.1 will have three steps:

e We first show that (51) implies that for all j > 1

2 v2
4dmax{Y7, Y’}

2 2
max{X;, X7} + K —2Ny, < K.
e Then we show that for sufficiently large j we have
max{X?, X?} < K — 2Ny, max{Y?,Y?} < Ny, (K — 2Ny,,)/2. (53)

e Finally we show that for all € > 0 there exists J; so that (52) holds for all j > J..

We will need to work quite hard to obtain these bounds. In part, this is because the bound for
maX{YjQ, YJQ} in (53) is clearly false in the case Ny, = 0. The place we use Ny, > 0 is in the
proof of Proposition 5.6.

5.1 The initial bound

For j > 1 define N
4maX{Y]2, Y]Q}

_ 2 2
Observe that (49) and (50) imply
AKY;Y;
Zip < X 75+ ﬁ% + K(1 - K). (55)

We show that Z; < K for all j > 1.
Lemma 5.2 Suppose that (51) holds. Then Z; — K < K?=Y(Z; — K) <0 for all j > 1.

Proof: Suppose that (51) holds. Interchanging S and S, 1 if necessary, we also suppose that
XoYy < XoYy. We first show that 77 < K.

- - - - 4
7 < (ngg +4YoYo + 2Ny, + Nu) n ( X2V2 + 2Ny, Yo¥o + N(217M> S
- U,p
- . . - 4
< (XEXE +4YoYo + 2Nuy + Ny ) + (XoKoYoTo + 2N, Yo¥o + N, e
- U,p
< 4Y, Y, - 4KYYp 2K Nyr,,
= | XoXo+—20 ) XX r 4N
( 0 °+K—2NU7,J> RO K Ny, T K Ny,
= 4Y,Y 2K N, KN,
< K| XoXo+ 20 U 2
K — 2NU,;¢ K — 2NU7M K — 2NU7/L

< K4+ K(1-K).
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This shows Z; < K. We now suppose that Z; — K < K/='(Z; — K) < 0 for some j > 1. Then
IKY;Y,

Zj+1 < Z]X]2+m+K(1—K)

’/’ll
4Y;Y;

KX} +——22 |+ K(1-K

< <J+K—2NU,H + K( )
< K+K(Z;-K)
< K+ K/(Z) - K).

This proves the result. O

5.2 A better bound for large j

Note that a simple consequence of Lemma 5.2 is that X ]2 and X ]2 are bounded by K and that

Yj2 and 57].2 are bounded by K(K — 2Ny,,)/4. In this section we show that for large enough j
the improved bound (53) holds. In what follows, write

) o 4maX{Y;»2, 57]2}
vy = max{ X, K3}~ (K = 2Nuy), = —prghds
M

From the definition of Z;, we immediately have z; 4+ vy; = Z; — K, which is negative by Lemma
5.2. In order to prove (53) we must show x; and y; are both negative for large enough j.

— 2Ny .

Proposition 5.3 Suppose that (51) holds. There exists Jx so that x; <0 for all j > Jx.

Proof: Suppose for a contradiction that XJ2 > K — 2Ny, for all j. Now

_ K?

IN

4KY'}~/‘
7 )(2 J"J

ZiX:+ K(Z; - X7) - K?
(K + X3)(Z; - K)

(2K — 2Ny ) (Z; — K)
(2K — 2Ny,.) (Z1 — K).

In the penultimate line we used the hypothesis X]2 > K —2Ny,,. Since K > (1+2Ny,)/2 we
have (2K — 2Ny,,,) > 1. Together with (Z; — K) < 0, this implies there exists J > 0 so that

Zy1— K < (2K — 2Ny )" (71 — K) < —K.

Zipn — K

IN

IN N

Thus Zj+1 < 0 which is a contradiction. Hence, there exists J = Jx so that X?,X < K —2Ny,.
Suppose now that ng < K —2Ny,,. Then
Tj+1 = max{XfH, )?32+1} — (K —2Ny,.)
X7X7 +4Y;Y; — K(K — 2Ny,,)
(K — 2Ny, )X} +4Y;Y; — K (K — 2Ny,,.)
(K —2Ny,.)(Z; - K).

IN

IN A

Hence xj41 < 0. In particular, X ]2 1 < K — 2Ny, and so our result follows by induction. O
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Proposition 5.4 Ify; >0 then y;41 < (K —2Ny,)y; + 2Ny u(Z; — K).
Proof: Since y; > 0 we have z; = Z; — K — y; < 0. In particular, z;y; < 0. We have

maX{4Yj2+1a 4sz+1}

Yjir1 = K 9Ng, — 2Ny,
S
4y2 INAE
< X7 —2— 42Ny, —2 2 +2Ny,(1- K)—2N
= VK ey, T K —aNg, i ) = 2N
< (zj + K = 2Nuu)(y; + 2Nuy) + 2Nuu(y; + 2Nu ) — 2K Ny,

= ;y; + 2Ny + Ky;
(K —2Nuu)y; + 2Nuu(Z; — K),

IN

where we used z; +y; = Z; — K and z;y; < 0 on the last line. Thus, we obtain the result. [

By iterating the above inequalities we obtain:
Corollary 5.5 If yr, > 0 for all k < j then
yj < (K = 2Nuu) "'y + (K771 = (K = 2Ny, ) ~") (21 - K). (56)

Proof: The statement (56) is trivial when 7 = 1. Assume that (56) holds for some j > 1.
Since we know (Z; — K) < K'71(Z; — K) we have

Yir1 < (K —=2Nyu)y; +2Nuu(Z; — K)

< (K = 2Np) (K = 2N )~ + (K771 = (K = 2Nu, ) ™) (2 - K))
+2Ny K712, — K)

= (K —2Ny,)y + (K7 — (K — 2Ny,)) (21 - K).

Then (56) holds for j 4+ 1. The result follows by induction. O

We can now show that y; is eventually negative.

Proposition 5.6 Suppose that (51) holds and Ny, > 0. There exists Jy so thaty; <0 for all
JjzJdy.

Proof: Assume for a contradiction that y; > 0 for all j. Since K > K — 2Ny, > 0, we can
find J = Jy so that

K ! 1
- 1 > 1.
<K—2NU,”> = +K—Zl -
This means that
ys41 < (K —2Ny) "y + (K7 — (K = 2Ny,)7) (21 — K) < 0.

This contradicts our hypothesis that y; > 0 for all j.
Now suppose that y; < 0 for some j. We claim that y;41 < 0. If ; > 0 then, arguing as in
the proof of Proposition 5.4,

Yj+1 < 2y + (K = 2Ny )y + 2Nuu(Z; — K) < (K = 2Ny,u)y; + 2Ny,u(Z; — K) <0
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On the other hand, if z; < 0, using y; > —2Ny,,, arguing similarly gives
Yi+1 < x;(y; + 2Ny) + Ky; < Ky; <0.

In either case, y; < 0 implies ;11 < 0. O
Combining Propositions 5.3 and 5.6 proves (53).

5.3 Convergence of X, )?j, Y;, }7]
For j > 1 define
M; = max{X?, X2, 2Y}?/Ny,., 2Y}?/Nu,.}. (57)

Note that (53) implies that M; < K — 2Ny, for j > max{Jx, Jy}. Moreover, (49) and (50)

imply
Mj < M7 + 2Ny, M; + (K — 2Ny ,)(1 - K). (58)

Proposition 5.7 Suppose that (51) holds. If j > max{Jx, Jy} then
Mj+1 S max{l - K, M]}
Furthermore, for all € > 0 there exists J. so that M; <1 — K + ¢ for all j > J..

Proof: Consider some j > max{Jx, Jy}. Therefore M; < K —2Ny,.
Suppose first M; <1 — K then using (58)

Mjy1 < M§+2NyuMj + (K = 2Ny,)(1 - K)
(1-K)*+2Ny,(1 - K)+ (K —2Np,)(1 - K)
= 1-K.

IN A

Hence if M; <1 — K for some J then M; <1 — K for all j > J. This proves both parts of the
result in this case.
Now suppose M; > 1 — K then
M1 < M?+2Ny,M;+ (K —2Ny,)(1 - K)

= (Mj— (K —2Ny,)) (M; — (1 - K)) + M;

< Mj.
This proves the first part of the result in this case. For the second part, suppose M; > 1 — K
for some J > max{Jx, Jy}. Then M; < M for all j > J. Therefore, for j > J

Mj1—(1-K) < (Mj— (K —=2Ny,)+1)(M; — (1 - K))

(My — (K = 2Ny,) + 1) (M; = (1 - K))

j—J+1
< (My— (K —2Ny,) + 1) (M; - (1 - K)).

IN

Since J > max{Jx, Jy }, we have My — (K —2Ny,) +1 < 1. Hence, we can find J. so that
(M = (K = 2Nu) + 1) (M = (1= K)) <
for all j > J.. This proves the second part when M; > 1 — K. O
This completes the proof of Theorem 5.1.
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6 Convergence of S; to T

We are now ready to prove that the S; converge to 1" as j tends to infinity under the condition
(51). Observing that none of the S; fix oo we see that they are all distinct and so the group
(S, T') is not discrete. We show this convergence by showing convergence of the nine entries
of S; to the corresponding entries of 7. We divide our proof into subsections, each containing
convergence of certain entries. The main steps are:

e We will first show that c; tends to zero as j tends to infinity (Proposition 6.2).

o After showing ||ozjcj_1/2\|, |\5j6j_1/2|| are bounded (Lemma 6.3), we can show that o; and
§; both tend to 0 € H" ™! as j tends to infinity (Proposition 6.4).

e We then show the remaining matrix entries are bounded (Lemmas 6.6, 6.7 and Corollaries
6.8, 6.9).

e Using the results obtained so far, we can show that a; and d; both tend to u and A; tends
to U as j tends to infinity (Propositions 6.10 and 6.11).

e Finally, we show that 3;, v; and b; tend to v27u, —v/2fr and (—||7||? + ¢)u respectively
as j tends to infinity (Propositions 6.12 and 6.13).

Throughout this proof we use the fact that (52) holds for large enough j. We will repeatedly
use the following elementary lemma to show certain entries are bounded and others converge.

Lemma 6.1 Let A\, Ao, D be positive real constants with A\; <1 and M\ # Aa. Let C; € RT be
defined iteratively.

(Z) If Cj+1 < )\10]' + D for j >0 then
C; < D/(1— )+ N, <C’0 ~D/(1- )\1)>.
In particular, given € > 0 there exists J. so that for all j > J.
Cj < D/(l —)\1)4-5.
(i) If Ci11 < MCj+ XD for j >0 then
Cj < MCo + DX, = M)/(h2 = Av).
In particular, Cj < C’o)\{ + max{)\{, )\%}D/Ml — A2l

6.1 Convergence of c¢;

The easiest case is to show that c; tends to zero. Geometrically, this means that the isometric
spheres of S; have radii tending to infinity as j tends to infinity.

Proposition 6.2 Suppose that (51) holds. Then c; tends to zero as j tends to infinity.

Proof: Since K > 1/2 we can choose ¢ so that 0 < ¢ < K — 1/2. Then there exists J. so
that X]2 <(1—-K)+e<1/2forall j>J.. From (40) and (52) for j > J. we have

|Cj+1’ = X]2|cj‘ < ’Cj‘/Z < e <& ’CJE|/2j—Jg+1'

Thus that ¢; tends to zero as j tends to infinity. O
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6.2 Convergence of o; and J;

In this section we show that o; and ¢; both tend to the zero vector as j tends to infinity. To do
so, we first show their norms are bounded by a constant multiple of |¢;|'/2.

Lemma 6.3 Suppose that (51) holds. For any e > 0 there exists J. > 0 so that

oy V2 <« — V2 v2
J 1-vV1—-K 1

Proof: Given €1 > 0 we know from (52) that there exists Ji so that for j > J;
2 <

_—1/2
e e < +e.

1- - K

X

] (1—K)—|—El.

Observe that ajcj_l/ 2= \/§ch;/ ?. Therefore equation (36) implies that for j > J;

—1/2
lajarci Pl = V2lwjrall leja]?

\/5 ij + ijj,uéjcj_ilH ‘Cj+1|1/2

< V2)wjll lej+a V2 + V2011l ej] e |72

= ||ajc;1/2|| e 7 2 e V2 + V211 e leja| 712
= Xjllaje; )+ vav X

< VI-K +erlaje; I+ V2.

Therefore, using Lemma 6.1, given €2 > 0 we can find Jo > J; so that for j > Jo we have

—1/2 V2
ac; < + &9.
lese; < == T2
Given any € > 0 it is possible to find €1 > 0 and g2 > 0 so that
2 2
v2 +e9 < L +e.
1—V1—-—K+¢ 1-vV1-K
This proves the first part. A similar argument holds for H(Sjéj_l/ 2H O

Proposition 6.4 Suppose that (51) holds. Then o and &; both tend to 0 € H"™! as j tends to
mfinity.

—-1/2

Proof: Clearly laj]| = [laje; /| |e;|'/? and ||6]] = [|6;¢; "/?|/ej|"/2. Using Proposition 6.2

and Lemma 6.3 we see that ¢; tends to zero and Hajc;1/2|| and ||5jE;1/2|| are bounded. Thus
aj and §; both tend to 0 € H" ! as j tends to infinity. O

The following estimate will be useful later.

Corollary 6.5 Suppose that (51) holds. There exists Jy so that for j > Jy

2Ny,
(V2-1)?

2V2|aje; P2 < <1
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Proof: From (52) we have
2Y? < Nyu(1 - K) + &1,

and from Lemma 6.3 we have

2
(1—VI—K)

Given € > 0, combining these inequalities for suitable 1, €2 > 0, we obtain

—1/2
leje; )12 <

j + 9.

2Ny ., (1 — K
H2§ U,,LL( ) +e.

(1-VI-K)?

Since (1 — K) < 1/2 we can choose € > 0 so that

~1/2
2Y]2Hajcj /

2Ny, (1 — K) 2Ny, (1/2) 2Ny,

A-VI—K? “ 1= iR (R-1p

The final inequality follows since

322+ N, _ (V2 —1)2
2 - 2

NU,;L <

6.3 The remaining matrix entries are bounded

In this section we show that the norms of the remaining matrix entries are bounded. Later, this
will enable us to show they converge. We begin by showing |a;| and |b;| are bounded.

Lemma 6.6 Suppose that (51) holds. Given & > 0 there exists J. so that for all j > J.

2\/2Nu, 2\/2Nu
1

a;l <2+ +e, |dj| <2+ +e.
’ ]‘ \/§ - ‘ ]| \/§ 1
Proof: We use (37) to obtain
laji1| = ‘ajcj*lcjﬂ +¢; ey — \/iéglaj(ijjqu)‘

B _ —1/2
< lagllegaalleg ™! + 1+ V2018 g™ 2 llaze; )
= X2ay| 1+ VY lage; .

Using (52) and Corollary 6.5, since 1 — K < 1/2 we can find Jy so that for j > .Jy

1 ~1/2 V2Nu
X2 <= 2Y||ajc. <
J _25 f JHaJC] H— \/Q—l

Thus the bound for |a;| follows from Lemma 6.1. The bound for |d;| follows similarly. O

Lemma 6.7 Suppose that (51) holds. Then |bj| is bounded above as j tends to infinity.
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Proof: If a; = 0 then 7; = 0 and so bj;1 = 0. Hence we take a; # 0. Then (11) gives

0 = (ab; +~j +bjay)a; wa; = ajbja; ' pa; +;v5a;  paj + by,
lvll? = —(azbj +bja;) < 2|as| [by].

Hence, using (22), we have

biv1 = iU — V2a;mwy; + V2yiTua; — a;(||7))* — t)pa; + ajpb; + bjpa;
= % U(ya; )y — V2a;7 pyy + V2ryjra; — ai(|7)° = Opa; + ajp(bsa; a; + b
—; (via; uaj — aj(bja; ' pa; — bjpa;
= Y (Uya; " — yja; twa; — V2a;m iy + V2 rpag — ap(||7)|? — t)ua;
+aj(pbja; ' — bya; ' p)a;.
Then we have

il < Uyt —yia; | + V2|agr* py| + V2l Taag] + la (|7 - )]
+lag (ubjas ' — bjay ' u)aj|

Noglvill? +2v2lag 71 vl + lagP[I712 = ¢ + Nalag] (b5

< (2Nuy + Na)lagl o] + 4lag P27 b2 + lag P 711> — ¢

IN

A

Observe that our hypotheses N, < 1/4 and Ny, < (3 —24/2 + N,,)/2 imply that

2
2Nuy+ Ny < Ny +3-224 N, = (V2 N, = 1) <(3/2-12=1/4. (59)
Since /2Ny, < V2 — 1, there exists L with

1 V2N,
Sl MU o2 o
V2 -1

2
Hence, using Lemma 6.6, we can find .J;, so that for all j > J, we have |a;| < 4L2. In particular,
(2Nu + Ny)laj| < L2

Therefore, for j > Jy,

(i1l < L2|bj] + 32L7| 7| [b;/? + 16 L] ||| — ¢]
2
< (L|bj|1/2 +16L2| |17 — t\l/Q) .
In other words
1012 < Lby [/ + 1622 || ||? — ¢ />,
Since L < 1 we see that |b;| is bounded using Lemma 6.1. O

Corollary 6.8 Suppose that (51) holds. Then ||5;| and ||v;|| are bounded above as j tends to
nfinity.
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Proof: Note that [|v;]|> = —(a;b; + b;a;) < 2a;[|bj| and [|8;]]> = —(b;d; + d;b;) < 2|bj||d;|.
Thus Lemmas 6.6 and 6.7 imply that ||5;|| and ||v;| are bounded. O

Finally, we show that [|A;|| and ||A; — U|| are bounded.

Corollary 6.9 Suppose that (51) holds. Then ||A;|| and ||A; — U|| are bounded as j tends to
00.

Proof: Using (13) we have

In—l = A]A;k + Oéj,B; + 5]‘04;
= (Aj = U)(AS = U*) + U(AS = U*) + (A = U)U* + Lny1 + i B5 + B

Therefore
|45 = Ul < 2[|4; = Ul + 2[le ]l 151,

14 = Ul <141+ 2o [ 185]]- (60)

Hence ||[A; — U|| and [|A;|| are bounded. O

which implies that

6.4 Convergence of a; and d;

We now show a; and d; both tend to p.
Proposition 6.10 Suppose that (51) holds. Then both a; and d; tend to p as j tends to infinity.
Proof: Recall from (10) that 1 = a;d; + v7d; + bjc;. Using (20), we have

a1 —p = U8 = V2a;7" ud; + V2 e — aj (|71 — t)uicj + ajud; + b
—p; 85 — pajd; — pbjc;
= (WU = u})85 — V2a;7* ub; + V2y; ey — aj(|I7]1* — t) e

+((aj — pp — plaj — p))d; + (bjp — pb;)T;.

Hence

a1 — ol < Nullvl 16510+ V217l agl 1651+ V207 (e vl + 717 = ¢ lag] le;]

+Nyuldjllaj — pl + Nplbj| ;]

< Nyuldjlla; — pl + (NU,uH”er + V2|7 !aj!> [ IR

+ (V2 sl + 712 = ] s+ Nalb e -

Suppose that ¢ satisfies
2Ny,
V2-1

Then, using Lemma 6.6, we can find J; so that for j > J;

2. /2N
VUK L 9 <4,
V2-1

O<e<l1l-

‘dj| <24



6 CONVERGENCE OF S; TOT 25

Using N, < 1/4 this means that for j > J. we have N,|d;| < 1. Moreover, for j > J; we have
X? < 1/2. Therefore |cj| < |eg,|/2/771. Then using Lemma 6.1 with A\; = N,|d;| < 1 and
A2 = |¢;|1/% < 1/v/2 we see that |a; — p| tends to 0 as j tends to infinity.

Similarly |d; — p| tends to zero as j tends to infinity. O

6.5 Convergence of A;

We now show that A; tends to U.

Proposition 6.11 Suppose that (51) holds. Then A; tends to U as j tends to infinity.
Proof: Recall from Corollary 6.9 that ||A4;| and ||A; — U|| are bounded. Note that

AU =UAj = (A =) = u(A; = U)) + (u(A; = U) = (4; = U)p) — (U(Aj—U)—(Aj—U)u)-

Therefore
[A;U — UAj|| < 2Ny, + Ny A; = Ul

Hence

[A;UAS — UA; Al (AU = UA;)(A* = U*) + (AU — UA)U*||
1A;U = UA;(I(I14; = U +1)

(2Nu+ N[ A; = Ul (14 = Ul +1).

IN A

From (60) we have
(2Nu + Nu) (145 = Ull + 1) < (2Nyu + Ny <2 + /14 2yl ||BjH> :
Since 2Ny, + N, < 1/4 by (59), ||8;] is bounded and ||a;|| tends to zero, we can find J so that
for all 7 > J we have
2
14,045 —UA; A5 < 25 f||A ~ U,
Noting that U = U« 87 + UA; A} + UB;ja, we use (24) to find that
Ajy1—U = AUA] - V2a,7* pAS + \/iAjT/J/OZj; —a;(|I7]]* - t)ua + auB; + Bijua
—UA]'A;|f — Ua]ﬂ; - U,Bj()d;
= AUAL = UAGAS — V20 w(AS — U*) + V2(4; — U)rpa — o (||7])* = t) per
—V20;m* + V2U e — (Uaj — o) B — (UB; — Bip)es)
Note, we have used 7*U = 7*u. Thus for j > J,
451 — Ul < AU - UA A + 220 A5 — Ul g 1l + (7112 — ] g2
+2v2|| 7|l flas | + 2Noulla | 1185
2+ f

—1/212

145 = U1+ (112 = ¢ lage; 202 )
—-1/2
(M 145 = Ul I7ll + 2v2017 ) + 2Nu Bl lases 2 lesl 2

Suppose that J is large enough that for j > J we have |¢;| < |cs|/2/~7/. Now apply Lemma 6.1
with A = (2 ++/2)/4 and Ay = 1/v/2, and so ||A; — U|| tends to zero as j tends to infinity. O
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6.6 Convergence of 3; and v;
We are now ready to show convergence of 8; and ~;.

Proposition 6.12 Suppose that (51) holds. Then f;, and ; tend to V211 and —/20T respec-
tively as j tends to infinity.

Proof: Using UB;a; + UA;vj + Ua;b; = 0, which follows from (14), we have
Bjt1 — V2rp

AjUn; = V2057 vy + V2 A mpa; — o (|71 = t)pa; + ajuby + Bjua; — v2rp

= AUy — V2057w + V24 mpa; — oy (|I7|* — t)pa; + ayub; + Bipa; — V2ru
~UAjv; — Uajb; — UpBja;
= (AU = UAj)yy = V2aym*uy; — aj(|I7|]? = t)pa; — (Uey — aju)b;
+V2(4; - U)rpa; — (U(B; — V2rp) — (B — V2rp)p)a; + v2ru*(@; — i)
Therefore

1Bj41 — V2ru| <

= V2rull + (2l + V2lil sl )14, - Ul
—-1/2
+ (VR sl + 1712 = ] las| + Noales! ) lage; 2 s 2.

Suppose that j is large enough that Ny ,la;| < 1 (compare the proof of Lemma 6.7). Since
|c;|1/2 and ||A; — U|| are bounded by a constant multiple of 20~/)/2 we can apply Lemma 6.1
to show that [|3; — v/27u|| tends to zero as j tends to infinity. A similar argument shows that
|7 + V2[7|| tends to zero as j tends to infinity. This argument uses U*T = fir. O

6.7 Convergence of b;
Finally, we show that b; converges as j tends to infinity.

Proposition 6.13 Suppose that (51) holds. Then b; tends to —(HTHQ—t)M as j tends to infinity.

Proof: Note that if b; tends to —(||7/|? — ¢)u then b; tends to —g(||7||> +t).
Using 0 = vjvju + ajbjp + bja;p, we have
bjr1 + (|I7II* =)
= Uy — V2a;7* pry; + \/ivauﬁj - aj(||7'H2 — t)pa; + a;pb; + bjpa;
=ik = agbjp = b+ (I7* = )
= Uy + V207) = (3 + V2ET)p+ V2(7) + V2 wame — 2|7
—V2a;7u(v; + V27) + 2057 1* + V2 (@ — )
—a;(I71* = ) u(a; = m) — a; (711> = ) + aju(b; + BITIP + 1)) —a; (171> +¢)
+bju(@; — 1) — aj (b + m(IT1? + 1))+ agm (1711 + ) — bj(@; — u+ (71> — t)u
= 7 (U +V207) = (v + V2am)p) + V2(7; + V27" p)irp — V2a;7* u(y; + V27r)
+V2yirp(a; —m) — aj (|7)1° = t)u(a; — g) + b (u(@; — m) — (@, — mn)
+a — WA+ t) e+ aj (u(b; + E(IT1? + ) = (& +A(IT]® + 1)) ).
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Therefore

b+ (1712 = )| < (Nuwlvll + V2lril(as] + D) ||y + vV2rr|
+(V2] I+ 71 = ¢ (aj| + 1) + Nalbs])aj — p
+Nylag| b + (1711 = t) p-

We can take j large enough that N,|a;| < 1. Also, we know that H'yj + ﬂﬂTH and |a; — pl

are bounded by constant multiples of 20~7)/2. Therefore, we can apply Lemma 6.1 to conclude
that |b; + (||7]|* — ¢) | tends to zero. O

Propositions 6.2 to 6.13 imply that S; tends to 7" as j tends to infinity, which completes the
proof of Theorem 1.1.
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