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1 Introduction

1.1 Background and motivation

Let Γ be a discrete subgroup of PSL(2,C) and suppose that Γ∞, the stabiliser of∞ in Γ,
contains the translation A(z) = z+ t where, without loss of generality, t is a positive real
number. The Margulis lemma implies that there is a universal ε > 0 so that the horoball
in H3

R where the hyperbolic translation length of A is less than ε has the property that
this horoball is disjoint from all its images under elements of Γ not fixing ∞. That
is, this horoball is precisely invariant under Γ∞ in Γ. The Shimizu-Leutbecher lemma,
which is a particular case Jørgensen’s inequality, quantifies this statement. Specifically,
it says that if Γ∞ contains A(z) = z + t then the horoball Ht =

{
(x1, x2, x3) : x3 > t

}
is precisely invariant under Γ∞ in Γ.

In higher dimensions there are parabolic isometries fixing∞ that are not translations.
These screw motions translate along an axis and rotate the orthogonal complement of
this axis. Of particular interest are those where the rotation has infinite order. Given
such a screw motion A acting on Hn

R with n ≥ 4, Ohtake [8] showed that for any horoball
H in Hn

R, one may construct a discrete group Γ containing A and an element B so that
B(H) ∩ H 6= ∅. The key point is the centre of the isometric sphere of B must be a
long way from from the axis of rotation of A. Waterman [11] quantified this and showed
that the permissible radius R of an isometric sphere is bounded by a function that
asymptotically is a linear function of the distance r from the axis of rotation. It is then
straightforward to use this result to construct a precisely invariant sub-horospherical
region whose boundary function is asymptotically a linear function of the distance from
the axis of rotation as well; see Proposition 3.8.

In a beautiful paper, Erlandsson and Zakeri [2], following earlier work by Susskind
[10], have considered the case of real hyperbolic 4-space H4

R. They consider discrete
groups containing a screw parabolic map A with rotation angle 2πα, where α is irra-
tional. By examining the continued fraction expansion of α, they are able to show that
there is a precisely invariant sub-horospherical region whose boundary function grows
asymptotically like the square root of the distance to the rotation axis.

Roughly speaking, the argument is the following. The sub-horospherical regions
corresponding to a power Aq of A is a bowl whose cross-section is a hyperbola. As the
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powers q of A increase, so the heights of the centres of these bowls increase. However,
the closer 2πqα comes to being a multiple of 2π, the flatter the bowls become. Therefore,
very far from the axis of A, a better bound may be obtained by considering extremely
flat bowls that may be very high (see Figure 1 of Susskind [10] for example). The precise
relationship between the size of q with the height and the degree of flatness of the bowls
is determined by the continued fraction expansion of the irrational number α.

The sub-horospherical region constructed by Erlandsson and Zakeri is quite compli-
cated and depends heavily on the continued fraction expansion of the rotation angle.
Therefore, they are only able to give the asymptotic behaviour of the boundary of their
sub-horospherical region, mostly without constructing actual functions or constants. The
purpose of this paper is to give a sub-horospherical region that is slightly smaller than
the one constructed by Erlandsson and Zakeri, but which is given by a reasonably well
behaved function. This enables us to give much better information about the asymptotic
behaviour of such a region.

Precisely invariant sub-horospherical regions coming from generalisations of Shimizu’s
lemma in complex hyperbolic space H2

C have been given by Cao and Parker [1] (see also
Jiang and Parker [6] and Kamiya and Parker [7] for different statements along similar
lines). It is natural to ask whether Erlandsson and Zakeri’s methods can be applied in
this case. This was done by Ren, Wang and Xie [9], who give a sub-horospherical region
whose boundary is asymptotically linear in the distance to the axis. We use similar
methods to the real hyperbolic case to give complex hyperbolic estimates which improve
those given by Ren, Wang and Xie. We also exhibit an unbounded sequence of points
in the Margulis region that all lie on the same horosphere.

1.2 Summary of results for real hyperbolic 4-space

Define A = Aα,t : H4
R −→ H4

R by

A = Aα,t : (r, θ, v, u) 7−→ (r, θ + 2πα, v + t, u). (1)

Note that this differs from equation (7) of [2] since Erlandsson and Zakeri assume that
t = 1. We prefer to keep t arbitrary and to give formulae that are homogeneous in r, v
(that is in t) and u. Let Uqα,qt be the region in H4

R where, for an integer q ≥ 1, the map
A±q moves points by a hyperbolic distance at most ε. This region is given by:

Uqα,qt =
{

(r, θ, v, u) ∈ H4
R : u > c(ε)

√
4 sin2(πqα)r2 + q2t2

}
where c(ε) = 1/2 sinh(ε/2); compare equation (9) of [2]. We take ε to be (at most) the
Margulis constant for H4

R (see Section 3.1 for detailed definitions of the above quantities).
Following Erlandsson and Zakeri (equation (10) of [2]) define the boundary function

Bα,t(r) by

Bα,t(r) = c(ε) inf
q≥1

√
4 sin2(πqα)r2 + q2t2 (2)
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(Note that this formula is homogeneous in r, v and u since t behaves like v and Bα,t(r)
behaves like u.) From this, we define the sub-horospherical region

Tα,t =
⋃
q≥1

Uqα,qt =
{

(r, θ, v, u) ∈ H4
R : u > Bα,t(r)

}
.

The geometrical meaning of Tα,t is that the point (r, θ, v, u) lies in Tα,t if and only if
there is a power Aq of A moving this point a hyperbolic distance at most ε. In other
words, Tα,t is one component of the corresponding Margulis region. Erlandsson and
Zakeri prove the following theorem about the boundary function:

Theorem 1.1 (Theorem A of Erlandsson and Zakeri [2]) (1) For every irrational
α and t > 0, the boundary function Bα,t satisfies the asymptotic upper bound

Bα,t(r) ≤ const.
√
r

for large r. Moreover, when r ≥
√

2 q27 one can take the constant to be at most

c(ε)

√
(8π2 + 1)24πt/

√
3 < 1000

√
t

where ε is the Margulis constant and c(ε) = 1/
(
2 sinh(ε/2)

)
.

(2) If α is Diophantine of exponent ν ≥ 2, then Bα,t satisfies the following lower bound
for large r

Bα,t(r) ≥ const. r1/(2ν−2).

Note that in both cases the constant depends on t, but this is not immediately
apparent from [2] since the authors have normalised t = 1. Using scaling by loxodromic
maps fixing ∞ it is clear how to make the constants depend on t so that the formulae
are homogeneous.

As well as the Margulis region, we want to have a region which does not depend
on ε. We show, Proposition 3.8, that for any discrete group Γ with Γ∞ = 〈A〉, for
all q ∈ Z − {0} with 4| sin(πqα)| < 1/2 the sub-horospherical region Ûqα,qt is precisely
invariant under Γ∞ in Γ where

Ûqα,qt =

{
(r, θ, v, u) ∈ H4

R : u >

√
4 sin2(πqα)r2 + q2t2

∆R
(
4| sin(πqα)|

) .

}
where ∆R(X) is the following function of X ∈ [0, 1/2]:

∆R(X) =

(
1 +
√

1− 2X
)2 −X2

4
,

Now let T̂α,t be the union of the regions Ûqα,qt over all q ≥ 1 for which 4| sin(πqα)| < 1/2.
That is

T̂α,t =
⋃
q

Ûqα,qt =
{

(r, θ, v, u) ∈ H4
R : u > B̂α,t(r)

}
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where

B̂α,t(r) = inf
q

√
4 sin2(πqα)r2 + q2t2

∆R
(
4| sin(πqα)|

) . (3)

and the infimum is taken over all integers q ≥ 1 for which 4| sin(πqα)| < 1/2.

Theorem 1.2 Let ε denote the Margulis constant for H4
R and let c(ε) = 1/

(
2 sinh(ε/2)

)
.

Let A = Aα,t : H4
R −→ H4

R be given by (1) where α is irrational and t > 0. Let pn/qn
for n ∈ N be the rational convergents of α. Suppose that λN ∈ (0, 1] is a constant for
which qn/qn+1 ≤ λN for all n ≥ N . Let Bα,t(r) and B̂α,t(r) be the boundary functions
defined by (2) and (3). Then

(1) For all r ≥ q2N t/2π we have

Bα,t(r) < c(ε)
√

(1 + λ2N )2πt
√
r.

(2) Let α be Diophantine of exponent ν ≥ 2 and let K be the associated constant
defined in (12) below. Then

Bα,t(r) >
c(ε)(4K)1/νν1/2t(ν−1)/ν

(ν − 1)(ν−1)/2ν
r1/ν .

In particular, if ν = 2 then

Bα,t(r) > c(ε)
√

8Kt
√
r.

(3) Suppose that N is chosen so that qN > 8π. Then for all r ≥ q2N t/2π we have

B̂α,t(r) <

√
(1 + λ2N )2πtr

∆R
(
2
√

2πt/r
)

=
√

1 + λ2N

(√
2πt
√
r + 2πt+O(r−1/2)

)
.

(4) Let r0 > 0 be any positive constant. Then there exists a discrete group Γ for which
Γ∞ = 〈A〉 and a point (r, θ, v, u) ∈ H2

R with r > r0 and u >
√
t/2
√
r that cannot

lie in any precisely invariant sub-horospherical region for Γ.

We prove the different parts of this theorem in separate sections. Part (1) is Proposi-
tion 3.3, part (2) is Proposition 3.5, part (3) is Proposition 3.9 and part (4) is Proposition
3.6.

Remark 1.3 (1) Comparing the constants from Theorem 1.1 (1) and Theorem 1.2 (1)
with λN = 1, we have√

(8π2 + 1)24πt/
√

3
√

4πt
=

√
(8π2 + 1)2

√
3 = 9.51454 . . . .

Therefore Theorem 1.2 (1) improves Theorem 1.1 (1) by a factor of 9.51454 . . ..
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(2) Note that for ν > 2 we have r1/ν > r1/(2ν−2) for all r > 1, and so, for Diophan-
tine α with exponent greater than 2, Theorem 1.2 (2) improves the power of r in
Theorem 1.1 (2).

(3) The example in Theorem 1.2 (4) and the upper bound from Theorem 1.2 (1) both
give a power of r1/2. Thus this exponent is sharp.

(4) The examples in Theorem 1.2 (4) only gives points (r, 0, 0, u) lying outside all
precisely invariant sub-horospherical regions for certain values of r. For ν > 2, the
discrepancy between the exponents of r in Theorem 1.2 (2) and (4) is a measure
of how the boundary function Bα,t(r) oscillates.

1.3 Summary of results for complex hyperbolic 2-space

Define A = Aα,t : H2
C −→ H2

C by

A = Aα,t : (r, θ, v, u) 7−→ (r, θ + 2πα, v + t, u). (4)

Because of the way horospherical coordinates in complex hyperbolic space scale, we
now need formulae that are homogeneous in r2, v and u. We consider the following
sub-horospherical region

UC
qα,qt =

{
(r, θ, v, u) ∈ H2

C : u > c(ε/2)2
(
4 sin(πqα)r2 + qt

)}
.

This is contained in the region where Aq has Bergman translation length at most ε.
Taking the union over such regions for all powers of A gives

TC
α,t =

⋃
q≥1

UC
qα,qt =

{
(r, θ, v, u) ∈ H2

C : u > BCα,t(r)
}

where BCα,t is the complex hyperbolic boundary function

BCα,t(r) = c(ε/2)2 inf
q≥1

(
4 sin(πqα)r2 + qt

)
. (5)

We also have versions of these sets that do not depend on ε. Define

T̂C
α,t =

{
(r, θ, v, u) ∈ H2

C : u > B̂Cα,t(r)
}

where B̂Cα,t is the boundary function

B̂Cα,t(r) = inf
q

4 sin(πqα)r2 + qt

∆C(4| sin(πqα)|)
(6)

and the infimum is taken over all integers q ≥ 1 for which 4| sin(πqα)| < (
√

2−1)2. Here

∆C(X) =
1− 3X +

√
1− 6X +X2

2
.

Ren, Wang and Xie gave the following complex hyperbolic version of Theorem 1.1:
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Theorem 1.4 (Theorem 5 of Ren, Wang, Xie [9]) For every irrational α and t >
0 the boundary function BCα,t satisfies the asymptotic upper bound

BCα,t(r) ≤ const. r.

Moreover, one can take the constant to be at most 1.7× 106
√
t when r ≥ 21/4 q7.

Our main results can be combined as:

Theorem 1.5 Let ε > 0 be the Margulis constant for H2
C and let c(ε/2) = 1/

(
2 sinh(ε/4)

)
.

Let A = Aα,t : H2
C −→ H2

C be given by (4) where α is irrational and t > 0. Let pn/qn be
the rational convergents of α and let λN ∈ (0, 1] be a constant for which qn/qn+1 ≤ λN
for all n ≥ N . Let BCα,t and B̂Cα,t be the boundary functions defined by (5) and (6). Then

(1) For all r ≥ qN
√
t/4π we have

BCα,t(r) < c(ε/2)2(1 + λN )2
√
πt r.

(2) Let u0 = 4c(ε/2)2λN t. Then there is an unbounded sequence of points on the
horosphere Hu0 of height u0 that lie in the Margulis region. That is, for any
positive constant r0 there exists an integer q ≥ 1 and a point z = (r, θ, v, u0) on
Hu0 so that r > r0 and ρ

(
Aq(z), z

)
≤ ε.

(3) Let N be chosen so that qN > 4π/
(√

2− 1
)2

. For all r ≥ qN
√
t/4π we have

B̂Cα,t(x) <
(1 + λN )2

√
πt r

∆C(2
√
πt/r)

= (1 + λN )
(
2
√
πt r + 12πt

)
+O(r−1).

The proofs will be broken up into separate pieces. Part (1) is Proposition 4.3, part
(2) is Proposition 4.5 and part (3) is Proposition 4.7.

2 Continued fractions and Diophantine approximation

One of the main tasks in our proofs is to estimate | sin(πqα)| for fixed irrational α as
q ∈ N varies. Following Erlandsson and Zakeri, we do this using the rational convergents
coming from the continued fraction expansion of α. We now review the facts about
continued fractions and Diophantine approximation that we need. This material is well
known and may be found in many books. Our main reference is Hardy and Wright [4].

For any real number α the continued fraction expansion of α is

α = a0 +
1

a1 + 1
a2+

1
a3+···
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where an ∈ Z and an ≥ 0 for all n ≥ 1. We write this expansion as

α = [a0; a1, a2, a3, . . .].

The real number α is rational if and only if the continued fraction expansion has finitely
many terms, that is some aN = 0. In what follows, we always assume α is irrational.
That is, α has an infinite continued fraction expansion and so an ≥ 1 for all n ≥ 1.

Given an irrational number α we can construct a sequence of rational numbers pn/qn,
called the rational convergents of α, by truncating the continued fraction expansion
α = [a0; a1, a2, a3, . . .] after finitely many steps. That is

pn/qn = [a0; a1, a2, . . . , an]. (7)

In particular, p0/q0 = a0 and p1/q1 = a0 + 1/a1 = (a0a1 + 1)/a1. Thus q0 = 1 and
q1 = a1 ≥ 1. The rational convergents oscillate around α. In particular, Theorems 152
and 154 of Hardy and Wright [4] imply that for all m ≥ 1

p2m
q2m

<
p2m+2

q2m+2
< α <

p2m+1

q2m+1
<
p2m−1
q2m−1

. (8)

It is straightforward to verify that the rational convergents satisfy the following recursion
relations for n ≥ 2:

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

The following lemma is a simple consequence of the above recursion property:

Lemma 2.1 (1) q2m ≥ 2m and q2m+1 ≥ 2m for all m ≥ 0.

(2) If an ≥ a ≥ 2 for all n ≥ N then qn/qn+1 < 1/a ≤ 1/2 for all n ≥ N .

The significance of rational convergents is that they provide extremely good approx-
imations to α. We will make use of the following strong approximation property.

Lemma 2.2 (Theorem 182 of Hardy and Wright [4]) Let α be an irrational num-
ber. Then for all rational convergents pn/qn of α and all rational numbers p/q with
1 ≤ q < qn+1

|qnα− pn| ≤ |qα− p|

with equality if and only if p/q = pn/qn.

We remark that the statement of Theorem 182 of Hardy and Wright [4] only gives
this result for q < qn. However, in the proof they show that if qn−1 < q < qn then
|qα− p| > |qn−1α− pn−1|. This implies our statement by changing n to n+ 1.

The following estimate of the error in approximating α by pn/qn will be crucial to
our arguments below.
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Proposition 2.3 (Dirichlet, Theorem 171 of Hardy and Wright [4]) Let α be an
irrational number and let pn/qn denote the rational convergents of α. Then for all n ≥ 1
we have: ∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1

qnqn+1
. (9)

We also need a similar lower bound. This result follows from Theorem 163 and
equation (10.7.4) of Hardy and Wright [4], see also Lemma 2.7 (ii) of Erlandsson and
Zakeri [2]:

Lemma 2.4 Let α be an irrational number and let pn/qn denote the rational convergents
of α. Then for all n ≥ 1 we have:∣∣∣∣α− pn

qn

∣∣∣∣ > 1

2qnqn+1
.

Our main application of Diophantine approximation will be to estimate the sine of
small angles. We use the following elementary lemma.

Lemma 2.5 For all 0 < x ≤ π/2 we have

2x/π ≤ sin(x) < x.

Thus we have:

Lemma 2.6 Let α be irrational and let pn/qn, with n ∈ N, be its rational convergents.
Then ∣∣2 sin(πqnα)

∣∣ < 2π/qn+1. (10)

Proof: Multiplying the inequality (9) from Dirichlet’s theorem by πqn, for n ≥ 1
we have ∣∣πqnα− πpn∣∣ ≤ π

qn+1
≤ π

2
.

Since sin(x) is monotone increasing for 0 ≤ x ≤ π/2 we see that∣∣2 sin(πqnα)
∣∣ = 2 sin

∣∣πqnα− πpn∣∣ ≤ 2 sin(π/qn+1) < 2π/qn+1.

The last inequality follows from Lemma 2.6. 2

Since (8) implies α−p2m−1/q2m−1 < 0 < α−p2m/q2m, we can get information about
the sign of sin(πqnα). Combining this information with Lemma 2.6 yields:

−2π/q2m < 2 sin(πq2m−1α) < 0 < 2 sin(πq2mα) < 2π/q2m+1.

We also want to find lower bounds on the sine of small angles.
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Lemma 2.7 Let α be irrational and let pn/qn, with n ∈ N, be its rational convergents.
Then ∣∣2 sin(πqnα)

∣∣ ≥ 1/qn+1. (11)

Proof: Using a similar argument to Lemma 2.6 only using the lower bound for
|α− pn/qn| from Lemma 2.4 gives:

| sin(πqnα)| > sin(π/2qn+1) > (2/π) · (π/2qn+1) = 1/qn+1.

2

A rational number is said to be a Diophantine number of exponent ν ≥ 2 if there
exists a constant K = K(α) > 0 only depending on α so that∣∣∣∣α− p

q

∣∣∣∣ > K

qν
(12)

for every rational p/q (where without loss of generality we take q > 0). Since (12) holds
for the case where q = 1, which is |α− p| > K for all p ∈ Z, we see that K < 1/2.

We define Dν to be the set of Diophantine numbers of exponent ν. A theorem of
Liouville (Theorem 191 of Hardy and Wright [4]) says that when α is an algebraic number
α is Diophantine and the exponent ν may be taken to be the degree of its minimum
polynomial. For example, if α is a quadratic irrational then there exists an integer a ≥ 1
so that an ≤ a for all n ≥ 1. It is then not hard to show (see Theorem 188 of Hardy and
Wright [4]) that for any rational p/q we have∣∣∣∣α− p

q

∣∣∣∣ > 1

(a+ 2)3q2
.

Lemma 2.8 Let α be Diophantine of exponent ν ≥ 2 and let K be the constant from
equation (12). Then for every q ∈ N

|2 sin(πqα)| > 4K

qν−1
.

Proof: From equation (12) we see that for all rationals p/q

|πqα− πp| > πK

qν−1
.

Since this is valid for all p ∈ Z we may assume the left hand side is at most π/2. Using
the monotonicity of the sine function on the interval (0, π/2] and Lemma 2.6, we have

|2 sin(πqα)| = 2 sin |πqα− πp| > 2 sin

(
πK

qν−1

)
≥ 2 · 2

π
· πK
qν−1

=
4K

qν−1
.

2
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3 Real hyperbolic 4-space

3.1 Sub-horospherical regions

We use the upper half space model of real hyperbolic 4-space H4
R and we give it cylindrical

polar coordinates (r, θ, v, u), which correspond to
(
r cos(θ), r sin(θ), v, u

)
∈ R4. In these

coordinates:
H4

R =
{

(r, θ, v, u) : u > 0
}
.

The (Poincaré) hyperbolic distance ρ
(
x1, x2) between points x1 = (r1, θ1, v1, u1) and

x2 = (r2, θ2, v2, u2) in H4
R is given by

cosh2

(
ρ(x1, x2)

2

)
=

∣∣r1eiθ1 − r2eiθ2∣∣2 + (v1 − v2)2 + (u1 + u2)
2

4u1u2
. (13)

For u0 > 0 the horosphere Hu0 and horoball Bu0 of height u0 are defined by:

Hu0 =
{

(r, θ, v, u) ∈ H4
R : u = u0

}
, Bu0 =

{
(r, θ, v, u) ∈ H4

R : u > u0

}
.

Let f(r, θ, v) be a positive function bounded away from 0. Then the sub-horospherical
region with boundary function f is the subset of H4

C given by{
(r, θ, v, u) ∈ H4

R : u > f(r, θ, v)
}
.

Let A = Aα,t : H4
R −→ H4

R be the screw parabolic isometry of H4
R defined by (1),

that is:
A = Aα,t : (r, θ, v, u) 7−→ (r, θ + 2πα, v + t, u)

Then for any q ∈ Z the qth power of A is

Aq : (r, θ, v, u) 7−→ (r, θ + 2πqα, v + qt, u) (14)

In what follows we will be especially interested in the case where α is irrational.
Let Γ be a discrete subgroup of Isom(H4

C) and write Γ∞ for the stabiliser of ∞ in Γ.
Using Theorem 2.5 of Erlandsson and Zakeri [2], if Γ∞ contains a screw parabolic map
Aα,t whose rotation angle 2πα is an irrational multiple of π then Γ∞ is cyclic. Without
loss of generality, we may take A = Aα,t to be a generator of Γ∞ and, swapping to A−1

if necessary, we assume t > 0.
A set V is said to be precisely invariant under Γ∞ in Γ if A(V ) = V for all A ∈ Γ∞

and B(V ) ∩ V = ∅ for all B ∈ Γ − Γ∞. For any group Γ with Γ∞ = 〈Aα,t〉, our aim
is to construct a sub-horospherical region depending only on α and t that is precisely
invariant under Γ∞ in Γ. To that end, the we will consider sub-horospherical regions
Vf whose boundary functions fα,t depend only on r and not on θ or v. If Vf is a
precisely invariant sub-horosherical region with boundary function fα,t(r) and if gα,t(r)
is a function of r ≥ 0 depending on α and t for which gα,t(r) ≥ fα,t(r) for all r ≥ 0 then
the sub-horospherical region Vg with boundary function gα,t is contained in Vf . Thus
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B(Vg)∩Vg = ∅ for all B ∈ Γ−Γ∞. Since g is independent of α and t then Aqα,t(Vg) = Vg
for all q ∈ Z and so Vg is also precisely invariant under Γ∞ in Γ.

For any k > 0 the Euclidean dilation Dk : H4
R −→ H4

R given by Dk(r, θ, v, u) =
(kr, θ, kv, ku) is a loxodromic isometry of H4

R. We want to give formulae that are in-
variant under such dilations. Therefore, we want to find formulae that are homogeneous
in r, v and u. In particular, fα,t(r) should be r times a function of r/t. We note that
Erlandsson and Zakeri normalise t = 1 and so produce inhomogeneous formulae. These
can be made homogeneous by inserting suitable powers of t according to this recipe.

3.2 The Margulis region and the Erlandsson-Zakeri boundary function

A celebrated result of Margulis says (in the case of H4
R) the following. There is a universal

constant ε > 0 so that for any discrete group Γ of isometries of H4
R and any x ∈ H4

R if

Σε,x =
{
A ∈ Γ : ρ

(
A(x), x

)
< ε
}

then the subgroup Γε,x of Γ generated by the the set Σε,x contains a nilpotent subgroup
of finite index. Of course, for many points x ∈ H4

R the group Γε,x is trivial (or finite).
Let M be the orbifold Γ\H4

R and Π : H4
R −→ M = Γ\H4

R the canonical projection.
The ε-thin part Mε of the orbifold M is the set of points Π(x) ∈ M where Γε,x is
infinite. Geometrically this means that there is a homotopically non-trivial path from
Π(x) to itself with length at most ε. Margulis’s theorem says that, again for this universal
constant ε, the ε-thin part Mε of M is the union of Margulis tubes around short geodesics
or Margulis cusps around parabolic fixed points.

We will be interested in the case of Margulis cusps where the group Γε,x contains a
screw-parabolic map A = Aα,t given by (1) with α irrational and t > 0. In this case the
parabolic fixed point is ∞ and Γε,x = Γ∞ is the cyclic group generated by A. Hence the
Margulis cusp is Γ∞\Tα,t where

Tα,t =
{
x = (r, θ, v, u) : ρ

(
Aq(x), x

)
< ε for some q ∈ Z

}
.

Using equation (13) we see that the hyperbolic translation length of Aq at the point
x = (r, θ, v, u) is given by

sinh

(
ρ
(
Aq(x), x

)
2

)
=

√
4 sin2(πqα)r2 + q2t2

2u
. (15)

Hence, if Aq translates by a hyperbolic distance less than ε then

u > uqα,qt =

√
4 sin2(πqα)r2 + q2t2

2 sinh(ε/2)
.

We write c(ε) = 1/
(
2 sinh(ε/2)

)
. Note that since A is an isometry, the translation

lengths of Aq and A−q are the same; which may also be seen by sending q to −q in the

11



above formula. Thus, for a given q ∈ Z, the set on which Aq and A−q have translation
length less that ε is

Uqα,qt =

{
(r, θ, v, u) ∈ H4

R : u > c(ε)

√
4 sin2(πqα)r2 + q2t2

}
.

The set on which there exists a non-zero integer q so that Aq has translation length less
that ε is

Tα,t =
⋃
q≥1

Uqα,qt =

{
(r, θ, v, u) ∈ H4

R : u > c(ε) inf
q≥1

√
4 sin2(πqα)r2 + q2t2

}
.

This sub-horospherical region is sent by the projection map Π to the the Margulis cusp
around ∞ associated to ε. Thus, it is enough to study the boundary function Bα,t(R)
associated to this region; see equation (10) of Erlandsson and Zakeri:

Bα,t(r) = c(ε) inf
q≥1

√
4 sin2(πqα)r2 + q2t2.

Following Susskind [10], Erlandsson and Zakeri show that if Γ is any group of isometries
of H4

R containing A = Aα,t then Tα,t is precisely invariant under Γ∞ in Γ.
For each value of r ≥ 0 the infimum of Bα,t(r) is attained for some value of q.

Erlandsson and Zakeri give a detailed and beautiful analysis of how the value of q where
the minimum is attained varies with q. Their starting point is the following lemma,
which gives the link to continued fractions:

Lemma 3.1 (Susskind [10]; Lemma 3.1 of Erlandsson and Zakeri [2]) If q ≥ 1
attains the infimum in Bα,t(r) for some r ≥ 0 then q = qn is the denominator of some
rational convergent pn/qn of α.

3.3 An upper bound for the boundary function Bα,t(x)

The problem with the results in [2] is that the exact pattern of which rational conver-
gents correspond to q = qn attaining the minimum for some r is very complicated and
depends heavily on the arithmetic properties of α. It is then hard to extract geometrical
information. In contrast, we seek to give a universal upper bound on Bα,t(r) and so
produce a smaller sub-horospherical region, but one that works for all irrational α. As
in Erlandsson and Zakeri’s paper [2], we concentrate on what happens when r > r0 > 0
for some r0 (which depends on α). One can always fill in the solid cylinder where r ≤ r0
with the function corresponding to a particular value of q, say q = 1. Since our focus is
on the behaviour of Bα,t(r) for large r, we do not go into details of this process here.

The following simple lemma is the main tool we use to produce our estimates.

Lemma 3.2 Let t > 0. Let α be irrational and let pn/qn, with n ∈ N, be its rational
convergents. Then for all r with

q2nt

2π
≤ r ≤

q2n+1t

2π

12



Figure 1: The graphs of the function from Proposition 3.3 (green) and the functions from
[2] (red) in the case of α =

(√
5 + 1

)
/2 = [1; 1, 1, 1, . . .]. In this case we take qN = 2,

λN = qN/qN+1 = 2/3 and t = 1. (Compare Figure 2 of [2].)

we have

4 sin2(πqnα)r2 + q2nt
2 <

(
1 +

q2n
q2n+1

)
2πtr.

Proof: Using Lemma 2.6 we have

4 sin2(πqnα)r2 + q2nt
2 <

4π2r2

q2n+1

+ q2nt
2

=

(
1 +

q2n
q2n+1

)
2πtr +

(
2πr

q2n+1

− t
)

(2πr − q2nt)

≤
(

1 +
q2n
q2n+1

)
2πtr.

The last inequality is a consequence of (2πr/q2n+1 − t) ≤ 0 ≤ (2πr − q2nt) for the given
range of r. 2

Therefore we have:

13



Proposition 3.3 Suppose that λN ∈ (0, 1] is a constant for which qn/qn+1 ≤ λN for all
n ≥ N . Then for all r ≥ q2N t/2π we have

Bα,t(r) < c(ε)
√

(1 + λ2N )2πt
√
r.

In particular, for all r ≥ q21t/2π we have

Bα,t(r) < c(ε)
√

4πt
√
r.

Proof: Let r ≥ q2N t/2π. Since {qn} is a strictly increasing sequence of positive
integers, then there is an n ≥ N for which q2nt/2π ≤ r ≤ q2n+1t/2π. Therefore, using
Lemma 3.2, we have:

Bα,t(r) = c(ε) inf
q≥1

√
4 sin2(πqα)r2 + q2t

≤ c(ε)

√
4 sin2(πqnα)r2 + q2nt

< c(ε)

√(
1 +

q2n
q2n+1

)
2πt
√
r

≤ c(ε)
√

(1 + λ2N )2πt
√
r.

This is the desired result. 2

The only way the bound in Proposition 3.3 depends on α is through the constant
λN , which may always be taken to be λN = 1. Given arithmetical information about α
we can often give a value of λN strictly smaller than 1. Here are four typical examples.

(1) Suppose α = [a0; a1, a2, . . .] with an ≥ a ≥ 2 for all n ≥ N . From Lemma 2.1 we
have qn/qn+1 < 1/a and so then we can take λN = 1/a.

(2) Similarly, if α = (
√

5+1)/2 = [1; 1, 1, 1, . . .] then q0 = q1 = 1 and qn+1 = qn+qn−1.
It is easy to see that for all m ≥ 1:

1

2
=
q1
q2
≤ q2m−1

q2m
<

√
5− 1

2
<

q2m
q2m+1

≤ q2
q3

=
2

3
.

Thus, for all n ≥ 2 we have qn/qn+1 ≤ q2/q3 = 2/3. So we take λ2 = 2/3. We use
this in Figure 1. Note that we could decrease λ to q2M/q2M+1 by only considering
n ≥ N = 2M and hence we can take λ2M arbitrarily close to

(√
5− 1

)
/2.

(3) On the other hand, if α =
(√

21 + 3
)
/6 = [1; 3, 1, 3, . . .] then q0 = 1, q1 = 3,

q2m = q2m−1 + q2m−2 and q2m+1 = 3q2m + q2m−1. We can then check that for all
m ≥ 0:

√
21− 3

6
<

q2m
q2m+1

≤ q0
q1

=
1

3
<

3

4
=
q1
q2
≤ q2m+1

q2m+2
<

√
21− 3

2
.

14



Figure 2: The graphs of the function from Proposition 3.3 (green) and the functions
from [2] (red) in the case of α =

(√
21 + 3

)
/6 = [1; 3, 1, 3, . . .]. In this case we take

qN = 4, λN =
(√

21− 3
)
/2 and t = 1. (Compare Figure 3 of [2].)

Therefore, we take λN =
(√

21 − 3
)
/2. We use this in Figure 2. In this case,

q2m+1/q2m+2 tends to
(√

21− 3
)
/2 as m tends to infinity, so there is no possibility

of decreasing λN .

(4) It is not always possible to improve λN = 1. For example, consider α = [a0; a1, a2, . . .]
where a2m = m and a2m+1 = 1. Then

q2m = mq2m−1 + q2m−2 > mq2m−1, q2m+1 = q2m + q2m−1 < q2m + q2m/m.

Thus q2m/q2m+1 > m/(m+ 1) and so the minimum possible value of λN is 1.

3.4 A lower bound on the boundary function Bα,t(r)

We give a lower bound on Bα,t(r) when α is Diophantine of exponent ν ≥ 2. In particular,
this holds for algebraic numbers α with minimum polynomial of degree ν. Our lower
bound has better asymptotic behaviour than the lower bound from [2] whenever the
Diophantine exponent ν is greater than 2.
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Lemma 3.4 Let t > 0 and let α be Diophantine of exponent ν ≥ 2 with K the constant
from (12). Then for all q ∈ N and all r > 0:

4 sin2(πqα)r2 + q2t2 >

(
4K
)2/ν

νt2(ν−1)/ν

(ν − 1)(ν−1)/ν
r2/ν .

Proof: Using Lemma 2.8, for all q ∈ N, we have

4 sin2(πqα)r2 + q2t2 >
16K2r2

q2ν−2
+ q2t2.

The weighted arithmetic-geometric mean inequality (equation (2.5.2) of Hardy, Little-
wood and Pólya [5]) states that if ai > 0, pi > 0 with p1 + p2 = 1 then

p1a1 + p2a2 ≥ ap11 a
p2
2 .

We choose the weights p1 and p2 so that the powers of q cancel. That is

p1 =
1

ν
, p2 =

ν − 1

ν
, a1 =

16K2νr2

q2ν−2
, a2 =

q2t2ν

ν − 1
.

Then

16K2r2

q2ν−2
+ q2t2 =

(
16K2νr2

q2ν−2

)
1

ν
+

(
q2t2ν

ν − 1

)
ν − 1

ν

≥
(

16K2νr2

q2(ν−1)

)1/ν

·
(
q2t2ν

ν − 1

)(ν−1)/ν

=
(4K)2/ννt2(ν−1)/ν

(ν − 1)(ν−1)/ν
r2/ν .

This gives the result. 2

Using the definition of Bα,t(r) the following proposition follows directly from Lemma 3.4.

Proposition 3.5 Let t > 0 and let α be Diophantine of exponent ν ≥ 2 with K be the
constant from (12). Then

Bα,t(r) >
c(ε)(4K)1/νν1/2t(ν−1)/ν

(ν − 1)(ν−1)/2ν
r1/ν .

In particular, if ν = 2 then
Bα,t(r) > c(ε)

√
8Kt

√
r.
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3.5 An example

The following example is inspired by the work of Ohtake [8]. He constructed discrete
groups generated by a screw parabolic map A fixing ∞ and an involution B not fixing
∞ with isometric sphere S of arbitrarily large radius R. To do so, the distance r of
the centre of S from the axis of A must be large as well. We quantify the relationship
between R and r in terms of the Diophantine exponent ν of the rotation angle of A.

Proposition 3.6 Suppose that the screw parabolic map A = Aα,t has the form (1). Let
r0 > 0 be any positive constant. Then there exists a discrete group Γ for which Γ∞ = 〈A〉
and a point (r, θ, v, u) ∈ H2

R with r > r0 and u >
√
t/2
√
r that cannot lie in any precisely

invariant sub-horospherical region for Γ.

Proof: Consider the (Euclidean) hemisphere S of radius R whose centre, written in
cylindrical polar coordinates, is

(
r, θ, v, 0

)
∈ ∂H4

R. For q ∈ Z, the image of S under Aq

is the hemisphere Aq(S) with radius R and centre
(
r, θ + 2πqα, v + qt, 0

)
. The distance

between the centres of S and Aq(S) is√
4 sin2(πqα)r2 + q2t2.

If this distance is at least 2R then S and Aq(S) are disjoint or tangent. That is, we
want:

4R2 ≤ 4 sin2(πqα)r2 + q2t2.

Let pn/qn be a rational convergent of α. Choose rn and Rn so that

Rn =
qn+1t

2
, rn =

qn+1t

2| sin(πqnα)|
=

Rn
| sin(πqnα)|

. (16)

Let Sn be the hemisphere with centre (rn, 0, 0, 0) ∈ ∂H4
R and radius Rn. Note that

rn =
qn+1t

2| sin(πqnα)|
>
q2n+1t

2π

and so given r0 > 0 we can find n so that q2n+1t/2π > r0 and hence rn > r0.
We claim that Sn is disjoint from Aq(Sn) for all q ∈ Z− {0}:

(1) For all q ∈ Z with q ≥ qn+1 we have

4 sin2(πqα)r2n + q2t2 ≥ q2t2 ≥ q2n+1t
2 = 4R2

n.

Therefore Sn is disjoint from A±q(Sn).

(2) For all q ∈ Z with 1 ≤ q < qn+1 and for all p, Lemma 2.2 implies

|qnα− pn| ≤ |qα− p|.
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We may assume that the right hand side is at most 1/2 and so

| sin(πqnα)| = sin |πqnα− πpn| ≤ sin |πqα− πp| = | sin(πqα)|.

Therefore

4 sin2(πqα)r2n + q2t2 ≥ 4 sin2(πqα)r2n ≥ 4 sin2(πqnα)r2n = 4R2
n.

Therefore Sn is disjoint from A±q(Sn).

Let Bn be an involution fixing (at least) the point zn = (rn, 0, 0, Rn) ∈ Sn and mapping
the exterior of Sn to its interior and vice versa. Since Sn is disjoint from Aq(Sn) for all
q ∈ Z−{0}, a combination theorem argument shows that 〈A,Bn〉 is discrete. The point
zn = (rn, 0, 0, Rn) cannot lie in any precisely invariant sub-horospherical region since it
is fixed by Bn.

The point zn = (rn, 0, 0, Rn) lies on the horosphere of height u = Rn satisfying:

u2 = R2
n

= | sin(πqnα)|rn · qn+1t/2

≥ rn
qn+1

· qn+1t

2

=
rnt

2
.

The inequality follows using Lemma 2.7. This completes the proof. 2

3.6 An explicit bound using Waterman’s theorem

In [11] Waterman gives a version of Shimizu’s lemma for real hyperbolic space of dimen-
sion at least 4. He uses 2×2 matrices over a Clifford algebra. For H4

R these are matrices
over the quaternions. In Waterman’s language, the point x ∈ H4

R with cylindrical polar
coordinates (r, θ, v, u) corresponds to the quaternion v + r cos(θ)i + r sin(θ)j + uk and
the map A given by (1) is

AH =

(
λ λt
0 λ

)
where λ = cos(πα)+k sin(πα) (compare page 101 of Waterman [11]). Waterman denotes
the imaginary part of λ by λC . Thus, in our case, λC = k sin(πα) and |λC | = | sin(πα)|.
In our language, Waterman’s result says:

Theorem 3.7 (Theorem 8 of Waterman [11]) Let Γ be a discrete subgroup of Isom(H4
R)

containing a screw-parabolic map A written in the form (1). Suppose that 4| sin(πα)| <
1/2. Let B be any element of Γ not fixing∞. Suppose that the isometric spheres of B and
B−1 have radius RB and centres B−1(∞) = (r+, θ+, v+, 0) and B(∞) = (r−, θ−, v−, 0)
respectively. Then

R2
B ≤

2
√

4 sin2(πα)r2+ + t2

1 +
√

1− 8| sin(πα)|
·

2
√

4 sin2(πα)r2− + t2

1 +
√

1− 8| sin(πα)|
.
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We now convert Waterman’s theorem into a statement about a precisely invariant
sub-horospherical region. For 0 < X < 1/2 define

∆R(X) =

(
1 +
√

1− 2X
)2 −X2

4
. (17)

Note that for ∆R is a decreasing function for 0 < X < 1/2

Proposition 3.8 Let Γ be a discrete subgroup of Isom(H4
R) containing a screw-parabolic

map A written in the form (1). Let ∆R be defined by (17). Suppose that 4| sin(πα)| <
1/2. Define

Ûα,t =

{
(r, θ, v, u) ∈ H4

R : u2 >
4 sin2(πα)r2 + t2

∆R
(
4| sin(πα)|

) .} (18)

Then Ûα,t is precisely invariant under Γ∞ in Γ.

Proof: The centres B−1(∞) = (r+, θ+, v+, 0) and B(∞) = (r−, θ−, v−, 0) of the
isometric spheres of B and B−1 may have very different values of r+ and r−. However,
we want a radius that only depends on the r coordinate of the centre of the sphere.
An elementary geometrical argument shows that, for any R > 0, the map B sends the
exterior of a sphere of radius R centred at B−1(∞) to the interior of a sphere of radius
R2
B/R centred at B(∞). Therefore, we define the function Φα,t(r) by

Φα,t(r) =
2
√

4 sin2(πα)r2 + t2

1 +
√

1− 8| sin(πα)|
.

Then Theorem 3.7 says that

R2
B ≤ Φα,t(r+)Φα,t(r−).

Thus, B sends the exterior of a sphere S+ of radius R+ = Φα,t(r+) centred at B−1(∞)
to the interior of a sphere of radius R2

B/R+ = R2
B/Φα,t(r+) centred at B(∞). By

Waterman’s theorem,
R2
B/Φα,t(r+) ≤ Φα,t(r−).

Hence B sends the exterior of S+ to the interior of a sphere S− of radius R− = Φα,t(r−)

with centre (r−, θ−, v−, 0). Thus, it suffices to find a sub-horospherical region Ûα,t so

that for all (r0, θ0, v0, 0) ∈ ∂H4
R − {∞}, the region Ûα,t is contained in the exterior of

the sphere S0 with radius R0 = Φα,t(r0) centred at (r0, θ0, v0, 0). Consider such a sphere
S0. Then for all (r, θ, v, u) ∈ H4

R on S0 we have

R2
0 = |reiθ − r0eiθ0 |2 + (v − v0)2 + u2.
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Then

u2 = R2
0 − |reiθ − r0eiθ0 |2 − (v − v0)2

≤ R2
0 − |reiθ − r0eiθ0 |2

=
4
(
4 sin2(πα)r20 + t2

)(
1 +

√
1− 8| sin(πα)|

)2 − |reiθ − r0eiθ0 |2
≤

4
(
4 sin2(πα)

(
r + |reiθ − r0eiθ0 |

)2
+ t2

)(
1 +

√
1− 8| sin(πα)|

)2 − |reiθ − r0eiθ0 |2.

The last line is a quadratic polynomial in |reiθ − r0eiθ0 | with negative second derivative.
A brief calculation shows that this expression takes its maximum value when

|reiθ − r0eiθ0 | =
16 sin2(πα)r(

1 +
√

1− 8| sin(πα)|
)2 − 16 sin2(πα)

.

Substituting this value back in, we find that

u2 ≤ 16 sin2(πα)r2(
1 +

√
1− 8| sin(πα)|

)2 − 16 sin2(πα)
+

4t2(
1 +

√
1− 8| sin(πα)|

)2
≤

4
(
4 sin2(πα)r2 + t2

)(
1 +

√
1− 8| sin(πα)|

)2 − 16 sin2(πα)

=
4 sin2(πα)r2 + t2

∆R
(
4| sin(πα)|

) .
Thus, the sphere S0 with centre (r0, θ0, v0, 0) and radius R0 = Φα,t(r0) lies in the exterior

of Ûα,t as required. 2

We now apply Proposition 3.8 to all powers Aq of A with 4| sin(πqα)| < 1/2. In
particular, if if pn+1/qn+1 is a rational convergent of α with qn+1 > 8π then we have
4| sin(πqnα)| ≤ 4π/qn+1 < 1/2.

Proposition 3.9 Let N be a positive integer so that qN > 8π. Suppose that λN ∈ (0, 1]
is a constant for which qn/qn+1 ≤ λN for all n ≥ N . Let ∆R be defined by (17). Then
for all r ≥ q2N t/2π we have

B̂α,t(r) <

√
(1 + λ2N )2πtr

∆R
(
2
√

2πt/r
)

=
√

1 + λ2N

(√
2πtr + 2πt+O(r−1/2)

)
.

Proof: For each r ≥ q2N t/2π there is an n ≥ N so that

q2nt

2π
≤ r ≤

q2n+1t

2π
.
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Using Lemma 3.2, for r in this interval we have

4 sin2(πqnα)2r2 + q2nt
2 ≤ (1 + q2n/q

2
n+1)2πtr ≤ (1 + λ2N )2πtr.

Since qn+1 ≥
√

2πr/t, we also have

4| sin(πqnα)| < 4π/qn+1 ≤ 2
√

2πt/r.

Also, since r ≥ q2N t/2π > 32πt we have 2
√

2πt/r < 1/2. This means that 2
√

2πt/r is
in the domain of definition of ∆R. Since ∆R is a decreasing function, this means:

∆R
(
4| sin(πqnα)|

)
> ∆R

(
2
√

2πt/r
)
.

Therefore, again for r in this interval, we have

B̂α,t(r) = inf
q

√
4 sin2(πqα)r2 + q2t2

∆R
(
4| sin(πqα)|

)
≤

√
4 sin2(πqnα)r2 + q2nt

2

∆R
(
4| sin(πqnα)|

)
≤

√
(1 + λ2N )2πtr

∆R
(
2
√

2πt/r
) .

Finally, we give the asymptotic behaviour of this function as r tends to ∞. It is easy to
see that ∆R(X) = 1−X +O(X2) and so 1/

√
∆R(X) = 1 +X/2 +O(X2). Thus√

(1 + λ2N )2πtr

∆R
(
2
√

2πt/r
) =

√
1 + λ2N

(√
2πtr + 2πt+O(r−1/2)

)
.

2

4 Complex hyperbolic space

4.1 Background on complex hyperbolic space

The Siegel domain model of complex hyperbolic space (see Goldman [3]) is given in polar
horospherical coordinates by

H2
C =

{
(r, θ, v, u) ∈ C× R2 : u > 0

}
.

If z1 and z2 in H2
C have coordinates z1 = (r1, θ1, v1, u1) and z2 = (r2, θ2, v2, u2) then the

complex hyperbolic (Bergman) distance ρ(z1, z2) between them is given by

cosh2

(
ρ(z1, z2)

2

)
=

∣∣r21 − 2r1r2e
iθ1−iθ2 + r22 + u1 + u2 − iv1 + iv2

∣∣
4u1u2

.
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We define complex hyperbolic horospheres, horoballs and sub-horospherical regions in a
manner similar to their real hyperbolic counterparts (see Goldman [3]).

In what follows we want to consider discrete subgroups of complex hyperbolic isome-
tries containing the screw parabolic map A given by:

A : (r, θ, v, u) 7−→ (r, θ + 2πα, v + t, u) (19)

where t > 0 and α is irrational. For such a map its Bergman translation length ρ
(
A(z), z

)
at z = (r, θ, v, u) is given by

cosh

(
ρ
(
A(z), z

)
2

)
=

∣∣2(1− e2πiα)r2 + 2u− it
∣∣

2u
. (20)

4.2 A sub-horospherical region contained in the Margulis region

The Bergman translation length of a screw parabolic map acting on complex hyperbolic
space is rather more complicated than the analogous Poincaré translation length in the
real case. Therefore, we use the following lemma to find a smaller precisely invariant
sub-horospherical region.

Lemma 4.1 Suppose that z = (r, θ, v, u) ∈ H2
C satisfies

u >
4| sin(πqα)|r2 + |qt|

4 sinh2(δ/4)

for some δ > 0. Then ρ
(
Aq(z), z

)
< δ.

Proof: Using (20) we have

cosh

(
ρ
(
Aq(z), z

)
2

)
=

∣∣2(1− e2πiqα)r2 + 2u− iqt
∣∣

2u

≤ 4| sin(πqα)|r2 + 2u+ |qt|
2u

<
4 sinh2(δ/4)u+ 2u

2u
= cosh(δ/2).

2

Let ε be the Margulis constant for H2
C and, as before, let c(ε/2) = 1/2 sinh(ε/4).

Then we define

UC
qα,qt =

{
(r, θ, v, u) ∈ 2

C : u > c(ε/2)2
(
4| sin(πqα)|r2 + |qt|

)}
.
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Using Lemma 4.1 we see that for all z ∈ UC
qα,qt the screw parabolic map Aq has Bergman

translation length strictly smaller than ε. Hence UC
qα,qt is contained in the Margulis

region and the Margulis region also contains:

TC
α,t =

⋃
q≥1

UC
qα,qt =

{
(r, θ, v, u) ∈ H2

C : u > BCα,t(r)
}

with boundary function

BCα,t(r) = c(ε/2)2 inf
q≥1

(
4| sin(πqα)|r2 + qt

)
.

This is the boundary function we want to estimate. The following simple lemma is
analogous to Lemma 3.2.

Lemma 4.2 Let t > 0. Let α be irrational and let pn/qn, with n ∈ N, be its rational
convergents. Then for all r with

qn

√
t

4π
≤ r ≤ qn+1

√
t

4π

we have

4| sin(πqnα)|r2 + qnt <

(
1 +

qn
qn+1

)
2
√
πt r.

Proof: Using Lemma 2.6, we have:

4| sin(πqnα)|r2 + qnt <
4πr2

qn+1
+ qnt

=

(
1 +

qn
qn+1

)
2
√
πt r +

(
2r
√
π

qn+1
−
√
t

)(
2r
√
π − qn

√
t
)

≤
(

1 +
qn
qn+1

)
2
√
πt r.

The final inequality follows from the range of r we have chosen. 2

Therefore, we can prove our main theorem in the complex case, which is analogous
to Proposition 3.3.

Proposition 4.3 Let λN ∈ (0, 1] be a constant for which qn/qn+1 ≤ λN for all n ≥ N .
Then, for all r ≥ qN

√
t/4π we have

BCα,t(r) < c(ε/2)2(1 + λN )2
√
πt r.

In particular, for all for all r ≥ q1
√
t/4π we have

BCα,t(r) < c(ε/2)24
√
πt r.
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Proof: Once again, for each r ≥ qN
√
t/4π there is an n ≥ N so that qn

√
t/4π ≤

r ≤ qn+1

√
t/4π. On this interval we have

BCα,t(r) = c(ε/2)2 inf
q≥1

(
4 sin(πqα)r2 + qt2

)
≤ c(ε/2)2

(
4 sin(πqnα)r2 + qnt

)
≤ c(ε/2)2(1 + qn/qn+1)2

√
πt r

≤ c(ε/2)2(1 + λN )2
√
πt r.

This gives the first estimate. The second follows by using λN ≤ 1. 2

We could also use an argument similar to Proposition 3.5 to give a lower bound on
BCα,t(r) that grows like r2/ν when α is Diophantine of exponent ν. However, unlike in

the real hyperbolic case, BCα,t(r) does not represent the boundary of the Margulis region,
but only an upper bound. In the next section we show that when estimating a lower
bound, one cannot do better than a constant function of r.

4.3 Points in the Margulis region on the same horosphere

In this section we construct a horosphere containing an unbounded sequence of points
in the Margulis region. Therefore, any lower bound on the Margulis region in terms of r
can be at best constant. This construction is based on the following phenomenon. When
sin(πα) and t have opposite signs, the Bergman translation length of A = Aα,t is not
a monotone function of r. (Such a screw-parabolic map is sometimes called negatively
oriented, see Kamiya and Parker [7].) Since α− pn/qn < 0 when n = 2m− 1 is odd, we
see that sin(πq2m−1α) is negative; that it, it has the opposite sign to q2m−1t, which we
always assume is positive.

Qualitatively, the Bergman translation length of Aq2m−1 on a given horosphere whose
height is small compared with q2m−1 has the following behaviour. As r ranges from 0
to ∞, the translation length initially decreases to a minimum at some r = rmin

m and
then grows. As m increases, so the value of rmin

m tends to infinity. But crucially, as this
happens, the minimum translation length of Aq2m−1 remains uniformly bounded. Our
goal will be to show that there is a horosphere Hu0 so that this translation length is at
most the Margulis constant. Do do so, we will find a sequence of points zm in Hu0 that
leaves every compact set, and so that for each zm the translation length of Aq2m−1 at zm
is at most the Margulis constant. To make the calculations slightly simpler we choose
zm = (rm, θm, vm, u0) so that rm is not rmin

m but some nearby value where the translation
length is still uniformly bounded. This will not affect the conclusion.

We begin with a simple lemma.

Lemma 4.4 Let α be irrational and let pn/qn be its rational convergents. Then for
n ≥ 3 we have

| tan(πqnα)| ≤ 4/qn+1.
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Proof: This is proved in a similar way to Lemma 2.6. We use

|πqnα− πpn| ≤ π/qn+1.

For n ≥ 3 we have qn+1 ≥ 4 and so the right hand side is at most π/4. Finally, for
0 < x ≤ π/4 we have 0 < tan(x) ≤ 4x/π. 2

Now we can make the main construction of this section.

Proposition 4.5 Let u0 = 4c(ε/2)2λN t. For any positive constant r0 there exists an
integer q ≥ 1 and a point z = (r, θ, v, u0) on the horosphere Hu0 of height u0 so that
r > r0 and ρ

(
Aq(z), z

)
≤ ε.

Proof: Using (20) we have

cosh

(
ρ
(
Aqn(z), z

)
2

)
=

∣∣2(1− e2πiqnα)r2 + 2u− iqnt
∣∣

2u
.

We have

2(1− e2πiqnα)r2 + 2u− iqnt = 2
(
1− cos(2πqnα)

)
r2 + 2u− 2i sin(2πqnα)r2 − iqnt

= 4 sin2(πqnα)r2 + 2u− 4i sin(πqnα) cos(πqnα)r2 − iqnt.

Choose r so that
(
2(1 − e2πiqnα)r2 + 2u − iqnt

)
is real. This necessarily means that

4 sin(πqnα) cos(πqnα)r2 < 0 and so n = 2m − 1 is odd. Specifically, it means that
r = rm where:

r2m =
q2m−1t

−4 sin(πq2m−1α) cos(πq2m−1α)
=

q2m−1t

4| sin(πq2m−1α) cos(πq2m−1α)|
. (21)

Note that

r2m =
q2m−1t

2| sin(2πq2m−1α)|
>
q2m−1q2mt

4π
.

Hence, by choosing m large enough, we can make rm > r0 for any r0 > 0. Moreover,

2(1− e2πiq2m−1α)r2m + 2u− iq2m−1t = 4 sin2(πq2m−1α)r2m + 2u

=
4 sin2(πq2m−1α)q2m−1t

4| sin(πq2m−1α) cos(πq2m−1α)|
+ 2u

= | tan(πq2m−1α)|q2m−1t+ 2u.

Let zm = (rm, θ, v, u0) where rm is given by (21) and

u0 = 4c(ε/2)2λN t =
λN t

sinh2(ε/4)
.
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Assume n = 2m− 1 ≥ 3, then using Lemma 4.4, we have

2 sinh2

(
ρ
(
Aq2m−1(zm), zm

)
4

)
= cosh

(
ρ
(
Aq2m−1(zm), zm

)
2

)
− 1

=

∣∣2(1− e2πiq2m−1α)r2m + 2u0 − iq2m−1t
∣∣− 2u0

2u0

=
| tan(πq2m−1α)|q2m−1t

8c(ε/2)2λN t

≤ 4q2m−1/q2m
8c(ε/2)2λN

≤ 1

2c(ε/2)2

= 2 sinh2(ε/4).

Here λN ∈ (0, 1] is a constant so that q2m−1/q2m ≤ λN for all 2m − 1 ≥ N . Thus
ρ
(
Aq(z), z

)
≤ ε as claimed. 2

4.4 An explicit bound using the region of Cao and Parker

This section follows the ideas in Section 3.6 where Waterman’s bound on the radii of
isometric spheres is replaced by the following analogous statement for H2

C. In Theorem
1.3 of [1], Cao and Parker define

K =
1 + 2|e2πiα − 1|+

√
1− 12|e2πiα − 1|+ 4|e2πiα − 1|2

2
.

and then show that the sub-horospherical region defined by

u >
|2(e2πiα − 1)r2 + it|

K
+

8|e2πiα − 1|2r2

K(K − 4|e2πiα − 1|)

is precisely invariant. This follows from their bound on the radii of isometric spheres
analogous to Theorem 3.7.

We choose to weaken the bound of this sub-horospherical region. We have

|2(e2πiα − 1)r2 + it|
K

+
8|e2πiα − 1|2r2

K(K − 4|e2πiα − 1|)

≤ 4| sin(πα)|r2 + t

K
+

32 sin2(πα)r2

K(K − 8| sin(πα)|)

=
4| sin(πα)|r2

K − 8| sin(πα)|
+

t

K

≤ 4| sin(πα)|r2 + t

K − 8| sin(πα)|
.

26



Therefore, we choose to use the region where

u >
4| sin(πα)|r2 + t

K − 8| sin(πα)|
.

Note that

K − 8| sin(πα)| = 1− 12| sin(πα)|+
√

1− 24| sin(πα)|+ 16 sin2(πα)

2
.

For 0 < X <
(√

2− 1
)2

define

∆C(X) =
1− 3X +

√
1− 6X +X2

2
=

(
1 +
√

1− 6X +X2
)2 −X2

4
(22)

so that K − 8| sin(πα)| = ∆C
(
4| sin(πα)|

)
. We note that ∆C is a decreasing function of

X in the interval 0 < X <
(√

2− 1
)2

. Therefore the following theorem is a corollary of
Theorem 1.3 of [1]:

Proposition 4.6 Let Γ be a discrete subgroup of PU(H2) containing A of the form (19).

Suppose that t > 0 and 4| sin(πα)| <
(√

2− 1
)2

where α is irrational. If ∆C(x) is given
by (22) then define

ÛC
α,t =

{
(r, θ, v, u) ∈ H2

C : u >
4 sin2(πα)r2 + t

∆C
(
4| sin(πα)|

) .} .
Then ÛC

α,t is precisely invariant under Γ∞ in Γ.

Therefore, we define

B̂Cα,t(r) = inf
q

4 sin2(πqα)r2 + qt

∆C
(
4| sin(πqα)|

)
where the infimum is taken over all positive integers q with 4| sin(πqα)| <

(√
2− 1

)2
.

Proposition 4.7 Let Γ be a discrete subgroup of PU(H2) containing A of the form (19),
where t > 0 and α is irrational. Let ∆C(X) is given by (22). Let N be a positive integer

so that qN > 4π/
(√

2− 1
)2

. Let λN ∈ (0, 1] be a constant so that qn/qn+1 ≤ λN for all

n ≥ N . Then for all r ≥ qN
√
t/4π we have:

B̂Cα,t(r) <
(1 + λN )2

√
πt r

∆C(2
√
πt/r)

= (1 + λN )
(
2
√
πt r + 12πt

)
+O(r−1).
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Proof: Consider the interval

qn

√
t

4π
≤ r ≤ qn+1

√
t

4π

where n ≥ N . Using Lemma 4.2 we have

4| sin(πqnα)|r2 + qnt ≤
(

1 +
qn
qn+1

)
2
√
πt r ≤ (1 + λN ) 2

√
πt r.

We also have
4| sin(πqnα)| < 4π/qn+1 < 2

√
πt/r.

Since qN > 4π/
(√

2− 1
)2

we have

2
√
πt

r
≤ 2

√
πt

qn
√
t/4π

=
4π

qn
≤ 4π

qN
<
(√

2− 1
)2
.

Therefore 2
√
πt/r is in the domain of definition of ∆C and since ∆C is a decreasing

function,
∆C
(
4| sin(πqnα)|

)
> ∆C

(
2
√
πt/r

)
.

Then:

B̂Cα,t(r) = inf
q

4 sin2(πqα)r2 + qt

∆C(4| sin(πqα)|)

≤ 4 sin2(πqnα)r2 + qnt

∆C(4| sin(πqnα)|)

≤ (1 + λN )2
√
πt r

∆C(2
√
πt/r)

.

This gives the first statement. For the second, we want to estimate the asymptotic
behaviour of this function. It is easy to see that ∆C(X) = 1 − 3X + O(X2) and so
1/∆C(X) = 1 + 3X +O(X2). Hence

2
√
πt(1 + λN )r

∆C(2
√
πt/r)

= (1 + λN )
(
2
√
πt r + 12πt

)
+O(r−1).

2
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