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Abstract—We argue that the theory of imprecise probabil-
ities can be used to represent expert information. We indi-
cate how conflicting assessments may be combined through
a second-order uncertainty model. As an illustration, we
show that our method can be used to deal with Poincaré’s
paradox.
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I. Introduction

WHEN modeling a system, one must often rely on ex-
pert information. Such information may be repre-

sented in various forms, and the modeler has to manipulate
it in such a way that he can represent it in a uniform man-
ner, combine it, and make inferences about the system.

It is clearly an impossible task to model all types of in-
formation that experts might use, but here we suggest a
representation that is able to model the ‘standard’ types
of expert assessment. Any reasonable representation of ex-
pert assessments should satisfy the following requirements:
• inference—it should enable us to infer useful conclusions
about the values of physical variables such as temperature,
pressure, distance, time, concentration, etc. In order to
stress that these variables are not always well-known we
call them random variables (random temperature, etc.).
• conditional inference—it should allow us to infer useful
conclusions about the values of physical, real-valued vari-
ables, conditional on observations of other variables.
• (independent) product—it should allow us to combine ex-
pert assessments about the values of two or more different
(independent) variables.
• conjunction—it should allow us to combine two or more
assessments about the value of a single variable.
A number of commonly used representations of expert as-
sessments, and in particular propositional logic and classi-
cal (Bayesian) probability theory, satisfy the first three of
these requirements. But they all have a problem with the
last requirement: conjunction rules easily lead to contradic-
tion, as is evidenced by Poincaré’s paradox in propositional
logic [1], and by conflicting priors in Bayesian probability
theory. In the present work, we propose a method for deal-
ing with such conflicts in a systematic way.

II. Lower Previsions

Our method is based on a powerful class of methods for
representing and handling uncertain information, namely
the fairly recent theory of imprecise probabilities [2]. Very
roughly speaking, it attempts to model a subject’s beliefs
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about the values of a random variable of interest, say a ∈ A,
through the assessment of a supremum buying price P(X )
for a bounded random utility X , also called a gamble, whose
value depends on a. The domain of P , i.e., the finite set
of those gambles X for which assessments P(X ) are given,
is denoted by K. The set of all gambles that depend on
the random variable a is denoted by L(A). The map P is
called a lower prevision. Examples of lower previsions are:
• If “a belongs to the set A ⊆ A” then PA(X ) =
infa∈A X (a): the lowest possible reward given that a ∈ A.
We call PA the vacuous lower prevision relative to A.
• If “a has probability density φ” we should pay P(X ) =∫
AX (a)φ(a)da, the expectation w.r.t. φ [3], [4]. This is

called the linear prevision induced by the density φ.
• Similarily, “a has conditional probability density
φ(·|b)” induces a conditional linear prevision P(X |b) =∫
AX (a)φ(a|b)da.
• If “a has a probability density that belongs to the set Φ”
we pay at most P(X ) = infφ∈Φ

∫
AX (a)φ(a)da.

These examples indicate that lower previsions are uncer-
tainty representations that are expressive enough to gen-
eralise both propositional logic and Bayesian probability
theory (for more details see [2]). We now introduce a
method of inference, associated with lower previsions, that
also generalises the inference methods of classical proposi-
tional logic and Bayesian probability theory.

A. Inference

Through a procedure called natural extension, we are
able to derive from the assessments embodied in P a supre-
mum buying price E (X ) for each gamble X in L(A); E is
the smallest (and therefore most conservative) lower previ-
sion that satisfies, for any gambles X and Y
• E (X ) ≥ inf[X] (avoiding sure loss)
• E (λX ) = λE (X ) whenever λ > 0 (scale independence)
• E (X + Y ) ≥ E (X ) + E (Y ) (super-additivity)
• E (X ) ≥ P(X ) (compatibility)
If E exists, P is said to avoid sure loss. The natural ex-
tension E (X ) can be easily calculated: it is equal to the
maximum achieved by the free variable α subject to

X (a)− α ≥
∑
Y∈K

λY
(
Y (a)− P(Y )

)
for each a ∈ A, with variables λY ≥ 0 for each Y ∈ K—if
A is finite, this is a linear program. If the maximum is
α = +∞, then the natural extension does not exist; this
identifies a conflict in the assessments. If E and P coincide
on K, then P is called coherent. All the above-mentioned
example lower previsions are coherent.

Inference about other variables, say a variable b, that
depend on a, is achieved through the pull-back of random
utilities X depending on b: E b(X ) = E (X ◦b). This returns



the supremum buying price E b for gambles X that depend
on b in terms of the natural extension E of a lower prevision
P defined on gambles depending on a.

B. Conditional Inference

If we have a coherent lower prevision P(·|b) on L(A),
conditional on the variable b ∈ B, and a coherent lower
prevision Q on L(B), the marginal extension theorem [2]
tells us that

E (X ) = Q(P(X |B)),

with P(X |B): b 7→ P(X |b), is the supremum buying price
for a gamble X ∈ L(A). Observe that this generalises
Kolmogorov’s definition of conditional probability [5].

C. Product

Given the coherent lower previsions P i on Ki ⊆ L(Ai)
for i ∈ {1, . . . , n}, the product of (P i)

n
i=1 gives supremum

buying prices for gambles which depend on all ai ∈ Ai.
It is defined as the smallest coherent lower prevision on
L(×ni=1Ai) with marginals P i. It is equal to the maximum
achieved by the free variable α subject to

X (a1, . . . , an)− α ≥
∑
i∈I

∑
Yi∈Ki

λYi

(
Yi(ai)− P i(Yi)

)
for each ai ∈ Ai, with variables λYi ≥ 0 for each Yi ∈ Ki. It
is possible, but beyond the scope of this extended abstract,
to take independence of the variables into account.

D. Conjunction

Given the coherent lower previsions P i on Ki ⊆ L(A)
for i ∈ {1, . . . , n}, the conjunction of (P i)

n
i=1 is defined

as the smallest coherent lower prevision on L(A) that is
compatible with all the P i. It is equal to the maximum
achieved by the free variable α subject to

X (a)− α ≥
∑
i∈I

∑
Yi∈Ki

λYi

(
Yi(a)− P i(Yi)

)
for each a ∈ A, with variables λYi ≥ 0 for each Yi ∈ Ki. If
the maximum is α = +∞, then the conjunction does not
exist: we say that the assessments (P i)

n
i=1 are conflicting.

III. Resolving Conflicting Assessments

We have just seen that conjunction need not always ex-
ist, because of conflicting assessments. The ultimate reason
for this is that we require the conjunction to be compatible
with all the assessments P i. If the conjunction does not
exist, our trust in at least one of the assessments is mis-
placed, and hence, we should rather drop one or more of
them. The problem is that it is not always clear which of
the assessments should be dropped.

In order to solve this problem we suggest associating a
degree of trust ti with each of the assessments P i (degrees
of trust can be given an operational, behavioural defini-
tion). Applying the techniques form the theory of imprecise

probabilities, it can be shown that the corresponding natu-
ral extension E 1(X ) is now given by the minimum achieved
by
∑
j∈J αjRj(X ) subject to

∑
j∈J αj = 1 and∑

j∈J
αjδPi

(Rj) ≥ ti,

for each i ∈ {1, . . . , n}, with variables αj ≥ 0 for each
j ∈ J , and where (Rj)j∈J denotes an enumeration of all
conjunctions of subsets of (P i)

n
i=1 and δP

i
(Rj) is equal to 1

whenever P i ≤ Rj , and is 0 otherwise. If there is no feasible
solution for (αj)j∈J , then the degrees of trust are too large
to resolve the inconsistencies. If all degrees of trust equal
1, we recover the usual formula for conjunction.

IV. Example: Poincaré’s Paradox

Poincaré’s paradox [1] arises when we consider three ob-
jects a, b and c, such that a cannot be distinguished from b,
b cannot be distinguished from c, but clearly a is not equal
to c. It thus consists of the assessments a = b, b = c and
a 6= c. We investigate to what extent these assessments are
consistent within the present approach.

To this end, we assign an equal degree of trust t to
each assessment. The conjunctions Rj and the coefficients
δP

i
(Rj) are listed in Table I. The corresponding linear pro-

gramming problem has a feasible solution only for t ≤ 2
3 .

This means that Poincaré’s paradox can be resolved only
if we trust each assessment up to a degree of 66, 7%. Since
this conclusion only depends on the values of the δP

i
(Rj),

any three conflicting assessments that are pair-wise consis-
tent, are actually consistent up to an equally distributed
degree of trust of 66, 7%.

TABLE I

δP
i
(Rj) for Poincaré’s Paradox

a = b b = c a 6= c
no assessment 0 0 0

a = b 1 0 0
b = c 0 1 0
a 6= c 0 0 1

a = b ∧ a 6= c 1 0 1
b = c ∧ a 6= c 0 1 1
a = b ∧ b = c 1 1 0
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