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Abstract

We study the extension of coher-
ent lower previsions from the set
of bounded random variables to a
larger set. An ad hoc method in the
literature consists in approximating
an unbounded random variable by a
sequence of bounded ones. Its ‘ex-
tended’ lower prevision is then de-
fined as the limit of the sequence of
lower previsions of its approxima-
tions. We identify the random vari-
ables for which this limit does not
depend on the details of the approx-
imation, and call them previsible.
We thus extend a lower prevision
to previsible random variables, and
we study the properties of this ex-
tension. We also consider the spe-
cial case of super-modular lower
previsions.

Keywords: Coherence, imprecise
probabilities, Choquet integral,
Dunford integral, Lebesgue domi-
nated convergence theorem, lower
prevision, unbounded random
variable.

1 Introduction

In the literature, a number of theories are
available for modelling uncertainty [5]. From
a foundational point of view, the most sat-
isfactory of these seems to be Walley’s be-
havioural theory of imprecise probabilities

[12], which can be formulated in terms of so-
called coherent lower previsions.

One important shortcoming of the existing
theory is that it only deals with random vari-
ables that are bounded, whereas in engi-
neering, for instance, applications involving
unbounded random variables abound [10].
To give only a few examples, the follow-
ing classes of problems would certainly ben-
efit from an extension of imprecise proba-
bility theory able to deal with unbounded
random variables: (i) the estimation of un-
bounded quantities, such as the time to fail-
ure of a component in a system [11]; and (ii)
optimisation involving an unbounded (e.g.,
quadratic) cost [4].

Loosely speaking, an intuitive, ad hoc way
of dealing with an unbounded random vari-
able is to approximate it by a sequence of
bounded ones, and to use limit arguments
in order to extend notions defined in the
context of the bounded random variables to
their unbounded counterparts, in the hope
that the eventual result will not depend on
the exact form of the approximation. Simi-
lar types of construction exist in the theory
of integration—we shall use them as a source
of inspiration.

Our main objectives in this paper are: (i) to
construct an extension of coherent lower pre-
visions from bounded random variables to a
larger set; (ii) to study of the properties of
this extension in order to motivate that it can
be seen as a coherent lower prevision in its
own right; and (iii) to provide a justification
for the so-called cut-off method, where an un-
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bounded random variable is approximated by
a sequence of bounded cuts.

The paper is organised as follows. We give a
brief introduction to the theory of imprecise
probabilities in Section 2. In Section 3 we
outline the basic concepts of our theory, af-
ter a short survey of relevant results in the ex-
isting theory of integration. Important prop-
erties of our extension method are listed in
Section 4, and Section 5 contains a justifica-
tion of the cut-off method through a Lebesgue
dominated convergence theorem for coher-
ent lower previsions. Finally, in Section 6 we
show that for super-modular coherent lower
previsions, there is a Choquet integral rep-
resentation for their extension to unbounded
random variables.

Throughout, given the limitations of space,
we have preferred to stress the underlying
ideas rather than to present detailed proofs.
Readers interested in the proofs and in the ex-
act details of the mathematical reasoning, are
referred to [3].

2 Imprecise probabilities

We start with a brief introduction to the most
important aspects of the existing behavioural
theory of imprecise probabilities that are rele-
vant to the problem at hand. More details can
be found in [12].

Let us consider an agent who is uncertain
about something, say, the outcome of some
experiment. If the set of possible outcomes is
Ω, then a random variable is a mapping from
Ω to R, and it is interpreted as an uncertain
reward: if ω turns out to be the true outcome
of the experiment then the agent receives the
amount X (ω), expressed in units of some lin-
ear utility. Bounded random variables are also
called gambles. They play a very important
part in the existing theory. The set of all gam-
bles is denoted by L (Ω).

The information the agent has about the out-
come of the experiment will lead him to ac-
cept or reject transactions whose reward de-
pends on this outcome, and we can formu-
late a model for his uncertainty by looking
at a specific type of transaction: buying gam-

bles. The agent’s lower prevision (or supre-
mum acceptable buying price) P(X ) for a
gamble X is the highest price s such that he
is disposed to buy the gambleX for any price
strictly lower than s. If the agent assesses a
supremum acceptable buying price for every
gamble X in a subset K of L (Ω), the result-
ing mapping P : K → R is called a lower
prevision.

It can be argued that P must satisfy the fol-
lowing rationality constraint: for every n ∈
N, every λ0, . . . , λn ≥ 0, and every X0, . . . ,
Xn ∈ K we must have that1

sup

[
n∑

i=1

λiXi − λ0X0

]
≥

n∑
i=1

λiP(Xi)− λ0P(X0).

Here and elsewhere, we denote by sup[X] the
supremum value supω∈ΩX(ω) of the gamble
X (and similarly for inf[X]). If the lower pre-
vision P satisfies this constraint, we say that
it is coherent. IfK is a linear space, e.g., when
K = L (Ω), then P is coherent if and only if

P(X ) ≥ inf[X ], P(λX ) = λP(X ), and

P(X + Y ) ≥ P(X ) + P(Y ),

for all gambles X , Y in K and λ ≥ 0.

It can be shown that if P is coherent, there al-
ways exists a (unique) smallest coherent ex-
tension of P from its domain K to L (Ω).
This extension is called the natural extension
of P and it is given by

E (X ) = sup

{
inf

[
X −

n∑
i=1

λi(Xi − P(Xi))

]}

where X ∈ L (Ω) and the supremum runs
over n ∈ N, λ1, . . . , λn ≥ 0 and X1, . . . , Xn

in K. This shows that without loss of gener-
ality, we may from now on assume that P is
a coherent lower prevision defined on all of
L (Ω).

1For example, take n = 0 and λ0 = 1, then we
find that P(X ) ≥ inf[X ], which means that the agent
should be willing to pay at least the lowest possible re-
ward.
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P will denote the conjugate upper prevision
of P . It is defined by P(X ) = −P(−X )
for every X ∈ L (Ω). P(X ) represents the
agent’s infimum acceptable selling price for
the gamble X . The difference P(X )−P(X )
is a measure for the amount of imprecision in
the agent’s behavioural dispositions towards
the gamble X .

An event A is a subset of Ω. It will be identi-
fied with its indicator IA, which is a gamble.2

The lower probability P(A) is then defined as
the lower prevision P(IA) of its indicator IA,
and similarly for the upper probability P(A).

If it so happens that P(X ) = P(X ) for ev-
ery gamble X , then P is called a linear pre-
vision, and it is denoted by P . Linear previ-
sions are linear functionals on the linear space
L (Ω) that are positive and have unit norm
(P(IΩ) = 1). They are the fair prices or pre-
visions in the sense of de Finetti [6, 7]. The
restriction of a linear prevision P to events
is a finitely additive probability (also called
a probability charge, see Section 3.2) and
P(X ) is equal to the expected value of the
bounded random variable X with respect to
this probability charge (see Theorem 1 fur-
ther on). In this way, any Bayesian model can
be considered to be a linear prevision, which
is a special kind of lower prevision. The set
of all linear previsions on L (Ω) is denoted
by P(Ω).

M(P) will denote the set of all linear previ-
sions that dominate P point-wise on L (Ω):

M(P) = {Q ∈P(Ω): Q ≥ P} .

One can show that M(P) is a non-empty,
convex and compact3 subset of P(Ω), and
that P is the lower envelope of M(P), that
is,

P(X ) = min
Q∈M(P)

Q(X ),

for all X ∈ L (Ω). This equality, and the fact
that the lower envelope of any non-empty set

2IA is the random variable that takes the value 1 on
A and 0 elsewhere.

3We assume in this paper that P(Ω) is provided
with its topology of point-wise convergence: the rela-
tivisation to P(Ω) of the weak*-topology on the topo-
logical dual L (Ω)∗, where L (Ω) is provided with the
supremum norm topology.

of linear previsions is a coherent lower previ-
sion, gives rise to what is called the Bayesian
sensitivity analysis interpretation, or Quasi-
Bayesian interpretation of lower previsions:
specifying a coherent lower prevision is for-
mally equivalent to specifying a non-empty,
convex and compact set of linear previsions
(or probability charges).

3 Previsibility

In the previous section, we have seen that it is
possible to extend a given coherent lower pre-
vision to the set of all bounded random vari-
ables. We now investigate whether it can be
extended still further to unbounded random
variables.

3.1 Integration: a brief review

In the theory of integration [1, 9] one usu-
ally starts with a set Ω, a σ-field F on Ω,
and a measure µ on F.4 A random variable
X of the form

∑n
i=1 aiIAi with n ∈ N,

ai ∈ R, Ai ∈ F and µ(Ai) < ∞ whenever
ai 6= 0, is called simple. The integral of X
is then defined as

∫
X dµ =

∑n
i=1 aiµ(Ai).

A random variable Y is called measurable if
Y −1(M) ∈ F for every M in the Borel σ-
field B(R) on R.5 Obviously, every simple
random variable is measurable. A sequence
(Xn) of simple random variables is said to be
mean fundamental if

∫
|Xn −Xm| dµ → 0

as n,m → ∞. A sequence (Xn) of random
variables is said to converge in measure to a
measurable random variable Y if for every
ε > 0 we have that

µ({ω ∈ Ω: |Xn(ω)−Y (ω)| > ε})→ 0

as n → ∞. The measurability of Y guaran-
tees that {ω ∈ Ω: |Xn(ω)−Y (ω)| > ε} ∈
F.

A measurable random variable Y is called in-
tegrable if there is a mean fundamental se-

4F is a set of subsets of Ω that contains ∅ and that is
closed under the formation of complements and count-
able unions. µ is an extended real-valued, non-negative,
and countably additive set function, defined on F, such
that µ(∅) = 0.

5B(R) is the σ-field generated by all open sets of
R.

737



quence of simple random variables that con-
verges in measure to Y . The idea behind this
definition is that all mean fundamental se-
quences of simple random variables that con-
verge in measure to the same measurable ran-
dom variable, eventually have the same inte-
gral. In this way, one can define an integral
as a limit of integrals of simple random vari-
ables. This extended integral has all the prop-
erties that we expect from an integral, in par-
ticular, it is linear, positive and σ-additive.

3.2 Charges and linear previsions

When we relax the σ-additivity in the defi-
nition of a measure, and only require finite
additivity, we enter the domain of the theory
of charges, or finitely additive measures. It
turns out that the course of reasoning outlined
above can still be used, with minor modifica-
tions, to associate an integral with a charge.
Let us give a brief account of how this is
done, but restrict ourselves to the essentials
that are needed to understand this paper. In
particular, we shall focus on so-called proba-
bility charges on ℘(Ω) as we do not need the
more general theory. General and detailed ac-
counts can be found in [1] and [8].

A probability charge is a real-valued map-
ping on a field F on Ω such that µ(∅) = 0,
µ(Ω) = 1, µ(A) ≥ 0 whenever A ∈ F,
µ(A) + µ(B) = µ(A ∪ B) whenever A,
B ∈ F and A ∩ B = ∅. From now on, F

is assumed to be the power set ℘(Ω).

A random variable X of the form
∑n

i=1 aiIAi

with n ∈ N, ai ∈ R and Ai ⊆ Ω, is called
simple. The (Dunford) integral of X is then
defined as D

∫
X dµ =

∑n
i=1 aiµ(Ai).

A sequence of random variables (Xn) is said
to converge hazily (cf. convergence in mea-
sure) to a random variable Y if for every
ε > 0 we have that

µ({ω ∈ Ω: |Xn(ω)−Y (ω)| > ε})→ 0

as n → ∞. If there is a sequence of sim-
ple random variables that converges hazily to
Y , then Y is said to be T1-measurable. Fi-
nally, Y is called D-integrable if there is a se-
quence (Xn) of simple random variables that

converges hazily to Y , such that moreover

D
∫
|Xn −Xm| dµ→ 0

as n,m→∞. Any such sequence is called a
determining sequence for Y .

The idea behind this definition is that all de-
termining sequences for Y eventually have
the same integral. In this way, one defines the
Dunford integral of Y as the limit of integrals
of simple random variables:

D
∫

Y dµ = lim
n→∞

D
∫

Xn dµ.

The Dunford integral has all the properties
that we expect from an integral, in particu-
lar, it is linear (and therefore finitely additive)
and positive.

The following theorem is a special case of [1,
Theorem 4.7.4].

Theorem 1. There is a canonical one-to-one
correspondence between probability charges
on ℘(Ω) and linear previsions on L (Ω). The
correspondence is given by µ(A) = P(IA)
for every A ⊆ Ω, and P(X ) = D

∫
X dµ for

every X ∈ L (Ω).

3.3 Extension of a lower prevision by a
limit procedure

If we carefully examine the ideas behind the
introduction of an integral in the preceding
sections, we see that the starting point is a
functional defined on some domain (the sim-
ple random variables) that is then extended by
a limit procedure, where the necessary care
is taken to ensure that it yields a unique re-
sult. Let us now show that the same ideas can
be used to extend a coherent lower prevision
P from L (Ω) to certain unbounded random
variables.

We define the P -norm of a gamble X by
‖X ‖P = P(|X |). Using the coherence of
P , we can show that ‖·‖P is a semi-norm
on L (Ω). A sequence (Xn) of gambles is
called P -fundamental (cf. mean fundamen-
tal) if it is Cauchy with respect to ‖·‖P , i.e.,
if ‖Xn −Xm‖P → 0 as n,m→∞.
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We say that a sequence of gambles (Xn) con-
verges P -hazily to the random variable X
(cf. convergence in measure, hazy conver-
gence) if for every ε > 0 we have that6

lim
n→∞

P({ω ∈ Ω: |X (ω)−Xn(ω)| > ε}) = 0.

Observe that we do not need to impose any
measurability conditions, since P(A) is de-
fined for every A ⊆ Ω. If there is a sequence
of simple random variables that converges P -
hazily to the random variable X , then X is
said to be P -measurable (cf. T1-measurable).
The following lemma is the basic result that
will guarantee the unicity of the extension in-
troduced in Definition 1.

Lemma 1. If (Xn) and (Yn) are P -
fundamental sequences of gambles converg-
ing P -hazily to the same random variable Z ,
then limn→∞ P(Xn) = limn→∞ P(Yn).

The proof of Lemma 1 is too long to be in-
cluded here. It should be mentioned, however,
that it is based on similar ideas as its counter-
part in the theory of charges (see for instance
the proof of Proposition 4.4.10 in [1]).

Definition 1. A random variable Z is said to
be P -previsible if there is a P -fundamental
sequence (Xn) of gambles that converges
P -hazily to Z . We then define Px(Z ) =
limn→∞ P(Xn), and (Xn) is called a deter-
mining sequence for Z .

By Lemma 1, the limit Px(Z ) is indepen-
dent of the details of the determining se-
quence (Xn). The set of all P -previsible ran-
dom variables contains all gambles (bounded
random variables) and it is a linear lattice
with respect to the point-wise order. It will
be denoted by L x

P (Ω).

Since L x
P (Ω) is a linear lattice, we know

that |Z | is P -previsible if Z is, and there-
fore we can extend the semi-norm ‖·‖P in-
troduced above to L x

P (Ω) through ‖Z‖P =
Px(|Z |) for all Z in L x

P (Ω). It is not dif-
ficult to show that ‖·‖P is also a semi-
norm on L x

P (Ω). Moreover, if (Zn) is
a sequence of P -previsible random vari-
ables and limn→∞ ‖Z − Zn‖P = 0 then

6Recall that we denote P(IA) by P(A).

limn→∞ Px(Zn) = Px(Z ). This shows that
topologically indistinguishable random vari-
ables are also behaviourally indistinguish-
able, that is, they have the same extended
lower (and upper) prevision.

4 Properties

Let us now study the properties of the exten-
sion Px. We shall see that they are similar to
the properties of coherent lower previsions.

4.1 Coherence

In particular, we have for X and Y in
L x

P (Ω), and for λ ≥ 0 that

Px(X ) ≥ inf[X ], Px(λX ) = λPx(X ), and

Px(X + Y ) ≥ Px(X ) + Px(Y ).

Actually, all of the properties of coherent
lower previsions listed in [12, Section 2.6.1]
remain valid for the extension Px.

4.2 Increasing domain under increasing
precision

Consider a coherent lower prevision Q that
dominates another coherent lower prevision
P on the domain K of P : Q(X) ≥ P(X)
for all gambles X in K. This means that an
agent with lower prevision Q is willing to pay
higher prices for the gambles inK, and there-
fore to take more risks, than an agent whose
lower prevision is P . We then also say that Q
is more precise or more informative than P . It
turns out that the extension Qx will then also
be more informative than Px.

Theorem 2. If Q dominates P , then
L x

Q(Ω) ⊇ L x
P (Ω), and Qx dominates Px.

Thus, as the precision of a coherent lower
prevision increases, more random variables
become previsible. For the vacuous prevision
Pv : X 7→ inf[X ], that is, in case of complete
ignorance, we have that L x

Pv
(Ω) = L (Ω).

Thus the set of all vacuously previsible ran-
dom variables is exactly the set of bounded
random variables.
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4.3 Weak∗-compactness and a lower
envelope theorem

Let PPx(Ω) denote the set of all real-valued
linear functionals on the linear space L x

P (Ω)
that dominate Px point-wise. These linear
functionals have all the properties of a linear
prevision—they are linear and positive, and
have unit norm. It turns out that PPx(Ω) is
non-empty, convex and compact with respect
to the weak∗ topology on the topological dual
L x

P (Ω)∗, where the topology on L x
P (Ω) is

induced by the semi-norm ‖·‖P . Moreover, it
is not so difficult to establish the following,
quite remarkable result.

Theorem 3. There is a canonical one-to-
one correspondence between M(P) and
PPx(Ω), given by

PPx(Ω)→M(P) : R 7→ R|L (Ω)

and

M(P)→PPx(Ω): Q 7→ Qx|L x
P (Ω)

Note that we denote by f |A the restriction
of a mapping f to the subset A of its do-
main. Through this correspondence, it is easy
to prove the following lower envelope theo-
rem.

Theorem 4. For any P -previsible random
variable X we have that

Px(X ) = min
Q∈M(P)

Qx(X ).

This shows that the Bayesian sensitivity anal-
ysis interpretation still holds for our exten-
sion. More details about the extensions of lin-
ear previsions will be given in Section 6, and
in particular in Theorems 7 and 8.

5 An ad hoc approximation

One very simple and intuitive way of approx-
imating an unbounded random variable Z is
by considering a sequence (Z ∗n) of so-called
cuts:

Z ∗n(ω) =


−an if Z (ω) < −an

Z (ω) if −an ≤ Z (ω) ≤ bn
bn if Z (ω) > bn.

where (an) and (bn) are non-negative se-
quences converging to +∞. It turns out that
Z is P -measurable if and only if at least
one (and therefore all) of its cut sequences
(Z ∗n) converges P -hazily to Z .7 We can show
that every P -previsible random variable is
P -measurable. In particular, every gamble is
P -measurable. It turns out that we may re-
strict our attention to approximations of the
form (Z ∗n) in order to investigate the P -
previsibility of Z .

The proof of this statement depends strongly
on a generalisation of the Lebesgue domi-
nated convergence theorem, which is of some
interest in itself.8

Theorem 5 (Lebesgue Dominated Con-
vergence). Let Y be a P -previsible ran-
dom variable. Let (Zn) be a sequence of
P -measurable random variables such that
|Zn| ≤ |Y | for every n ∈ N. Let Z be a ran-
dom variable. Then the following statements
are equivalent.

(i) (Zn) converges P -hazily to Z .

(ii) Z is P -previsible and moreover

lim
n→∞

‖Z − Zn‖P = 0

(whence Px(Z ) = limn→∞ Px(Zn)).

The proof of Theorem 5 is rather long, but
it is not very different from the proof of its
counterpart in the theory of charges (see The-
orem 4.6.14 in [1]). It is quite easy to show
that it implies the following.

Theorem 6. A random variable Z is P -
previsible if and only if one (and therefore all)
of its cut sequences (Z ∗n) is P -fundamental
and converges P -hazily to Z , i.e., if and only
if one (and therefore all) of its cut sequences
is a determining sequence for Z .

7By “one cut sequence” we mean a cut sequence for
a particular choice of (an) and (bn).

8A reader familiar with the Lebesgue dominated
convergence theorem will notice that this is a slightly
simplified version. We only mention that a stronger re-
sult holds, which requires the introduction of “almost
everywhere equality with respect to a coherent lower
prevision”, which is a quite interesting concept with a
direct behavioural interpretation.
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6 Examples

6.1 The linear case: charges and
Dunford integrals

As a special case of our theory, we recover the
theory of D-integrability with respect to prob-
ability charges.9 Indeed, let P be a linear pre-
vision on L (Ω). As described in Section 3.2,
this linear prevision is uniquely determined
through the probability charge µ defined by
µ(A) = P(IA). The linear prevision P(X )
of a gamble X is then the Dunford integral of
X with respect to µ.

But it is well known that the set of all random
variables that are D-integrable with respect to
µ is much larger. It is worth mentioning that it
is nothing but the set L x

P (Ω) of P -previsible
random variables, and that it coincides with
the so-called Lebesgue space L1(Ω, ℘(Ω), µ)
of those random variables X that are T1-
measurable and whose absolute value |X | is
D-integrable. This follows at once from the
following correspondence between the exten-
sion of a linear prevision P on L (Ω) and the
Dunford integral with respect to the probabil-
ity charge µ. It is an immediate consequence
of Theorems 1 and 6.

Theorem 7. Let P be a linear prevision on
L (Ω), and let µ be its restriction to the set of
events ℘(Ω). Then the following statements
hold.

(i) A random variable X is P -measurable
if and only if it is T1-measurable with
respect to µ.

(ii) A random variable X is P -previsible if
and only if it is D-integrable with re-
spect to µ, in which case

Px(X ) = D
∫

X dµ.

9This result can immediately be extended to all
bounded charges through application of Jordan’s De-
composition Theorem [1, Theorem 2.2.2(1)], by which
every bounded charge µ can be written as a linear com-
bination of probability charges, that is, µ = aµ+ −
bµ−, where µ+ and µ− are probability charges and a,
b ≥ 0.

6.2 The 2-monotone case: Choquet
integrals

Consider a coherent lower prevision P de-
fined on L (Ω) that is super-modular: for all
gambles X and Y ,

P(min{X,Y }) + P(max{X,Y })
≥ P(X) + P(Y ),

where the maximum and minimum are point-
wise. Its restriction to events is a coherent
lower probability that is 2-monotone:

P(A ∪B) + P(A ∩B) ≥ P(A) + P(B),

for all A and B in ℘(Ω). Moreover, it can be
shown that the natural extension of this lower
probability to L (Ω) is super-modular, and
that it coincides with P .10 In other words, a
coherent 2-monotone lower probability has a
unique coherent super-modular extension to
the set of all gambles. Using a result by Wal-
ley [12, Section 3.2.4] it can then be shown
that P is actually the Choquet integral asso-
ciated with the coherent 2-monotone lower
probability:

P(X ) = C
∫

Ω
X dP =

∫ sup[X ]

inf[X ]
x dFX (x),

for every X ∈ L (Ω), where FX (x) =
1−P({ω ∈ Ω: X (ω) ≥ x}) is the upper dis-
tribution function of X with respect to the
lower probability P , and the second integral
is a Riemann-Stieltjes integral. This formula
can be extended to L x

P (Ω), as the following
theorem states.
Theorem 8. Let P be a super-modular co-
herent lower prevision on L (Ω). If a random
variable X is P -previsible then C

∫
ΩX dP

and
∫ +∞
−∞ x dFX (x) exist, and

Px(X ) = C
∫

Ω
X dP =

∫ +∞

−∞
x dFX (x).

If in particular P is a linear prevision on
L (Ω), then for all X in L x

P (Ω),

Px(X ) =
∫ +∞

−∞
x dFX (x),

where FX (x) = P({ω ∈ Ω: X (ω) ≤ x}).
10An simple and elegant proof for this statement was

suggested to us by Hugo Janssen.
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7 Conclusions

The main message of this paper is that it is
possible to define an extension of a coher-
ent lower prevision to a linear space of pre-
visible, not necessarily bounded random vari-
ables, and that this extension still has proper-
ties similar to those of coherent lower previ-
sions. Previsibility coincides with the existing
notion of D-integrability when the coherent
lower previsions are linear, and an extended
lower prevision can be written as the lower
envelope of the extensions of the dominating
linear previsions of the original. Finally, we
have studied how the cut sequences of a ran-
dom variable can help us determine whether
or not it is previsible.
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