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Abstract

When aligning genetic sequences, we
have to rely on estimates of evolution-
ary distance between sequences and
their closest common ancestor. In
practice, many alignments are per-
formed on short sequences, and un-
fortunately, for such sequences it is
well-known that estimation of evolu-
tionary distance is subject to serious
errors. Without additional informa-
tion about the sequences, it is hardly
possible to improve existing estima-
tors. This paper addresses how im-
precise probability theory allows us
to substantially weaken assumptions
about the evolutionary distance, by us-
ing an interval rather than a point es-
timate. It is shown how under these
weaker assumptions a good alignment
still can be found, through a generali-
sation of the well-known Needleman-
Wunsch algorithm. In doing so, we
rely on an extension of dynamic pro-
gramming to the case where the gain is
described by an imprecise probability
model. Our approach also identifies
those cases in which insufficient in-
formation is available in order to con-
struct a good alignment.

Keywords: bioinformatics, imprecise
probabilities, Needleman-Wunsch al-
gorithm, substitution matrix, molecu-
lar evolution, dynamic programming,

sensitivity analysis

1 Introduction

Aligning genetic sequences is a very widely
used and important technique in bioinformat-
ics [6]. To give a few examples, through se-
quence alignment we can determine evolution-
ary relationships among species, and in partic-
ular, we can reconstruct phylogenetic trees. An
alignment may also reveal functional regions in
genetic sequences. Such information may for
example lead to the discovery of new or im-
proved drug treatments, or may help in decid-
ing what treatment is best fitted for a particular
patient genotype. Sequence alignment is also a
handy tool in predicting structural and biochem-
ical properties of sequences.

The alignment problem is usually formulated
as anoptimisation problem. Basically, posi-
tive scores are assigned to matches, and nega-
tive scores are assigned to mismatches and gaps.
These scores are summarised in what is called a
score matrix. We aim to find the alignment with
the highest total score. This approach has two
benefits: (i) it allows us to characterise the op-
timal (“best”) alignment from all possible align-
ments in an objective way, and (ii) the highest
score, corresponding to the best alignment, pro-
vides us with an objective measure of the qual-
ity of this alignment. Moreover, an efficient al-
gorithm to calculate the optimal alignment of a
small number of sequences (say, two or three
sequences) can be constructed through dynamic
programming [7]. In this article, we will fo-
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cus onpair-wisesequence alignment, that is, the
alignment of only two sequences.

Clearly, aligning genetic sequences relies heav-
ily on the choice of the score matrix: how should
we reward matches, and how should punish gaps
and mismatches? In practice, a large number
of score matrices are being used, and precise
choice of the score matrix relies on additional
assumptions about the sequences under study.
For example, when using PAM score matrices
[3], on which we will focus in this paper, the
following assumptions are made:1

• the evolutionary distance of the sequences
to their closest common ancestor is known,

• evolution is in an equilibrium point,

• in this equilibrium point, there is evolution-
ary reversibility—any point mutation is as
probable as its reverse,

• point mutations at different locations in the
sequence are i.i.d., and

• point mutations at different times are i.i.d.

Different evolutionary distances induce differ-
ent score matrices. These matrices are denoted
by PAM(T ), whereT denotes the evolutionary
distance between the sequences under study and
their closest common ancestor.

Obtaining this evolutionary distance is a major
issue in molecular evolution, especially when
comparing short sequences. Indeed, ‘estimation
bias usually occurs when the sequence length
is short so that stochastic effects are strong’
[14]. In many cases, one can only rely on the
sequences under study to estimate evolution-
ary distance—no additional information is avail-
able.

One approach is somehow to guess the evolu-
tionary distance from the similarity of the two
sequences. Typically, PAM250 is chosen if the
sequences are 20% similar, PAM120 if they are
40% similar, PAM60 if they are 60% similar, etc.

1This is not meant to be the current state of the art. A lot
of research in molecular evolution is on generalising these
assumptions.

It is however not entirely clear how in general
similarity percentages can be derived from two
sequences, prior to alignment.

Another approach to solve the optimisation
problem not for one, but for a set of PAM ma-
trices, or even with different other methods, and
then choose the method that returns the high-
est optimal score. The performance of different
alignment methods has been studied, and one of
the interesting results that have come out of such
studies is that ‘for different pairs many different
methods create the best alignments’, and hence,
that ‘if a method that could select the best align-
ment method for each pair existed, a significant
improvement of the alignment quality could be
gained’ [5]. However, in practice it is computa-
tionally unfeasible to try out a large numbers of
methods and to tune all parameters (such as evo-
lutionary distance, gap penalty, etc.) for each
one of them.

In this paper, it is investigated whether a bias
in the evolutionary distance also leads to a bias
in the optimal alignment. In particular, a gener-
alisation of the well-known Needleman-Wunsch
algorithm [7] is proposed in order to determine
whether an alignment, or parts of it, are insen-
sitive to the evolutionary distance in an inter-
val. In order to do so, we rely on an extension
of the dynamic programming formalism to the
case where the gain is described by an imprecise
probability model [4].

The paper is organised as follows. Section 2
discusses the standard approach to amino acid
sequence alignment, using score matrices, gap
penalties and dynamic programming. In Sec-
tion 3 we introduce and motivate a robustified
notion of sequence alignment, based on a sim-
ple imprecise probability model for evolution-
ary distance. Section 4 deals with generalising
the dynamical programming approach in order
to determine a robust optimal alignment.
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2 Optimal Sequence Alignment

2.1 What is Sequence Alignment?

A sequence alignment consists of writing two
(or more) sequences in rows, and writing similar
characters in the same column. In doing so, one
is allowed to introduce so-calledgaps, denoted
by a dash ‘-’ in either one of the sequences.
Assuming that the sequences are derived from
a common ancestor sequence, matches corre-
spond to conserved regions, mismatches corre-
spond to mutations and gaps correspond to dele-
tions or insertions, briefly calledindels, in either
one of the sequences. Figure 1 gives an example
of an amino acid alignment.

X 10 20
H-alpha V-LSPADKTNVKAAWGKVGAHAGEYGAEA

| | | | | | |||| | | ||
H-beta VHLTPEEKSAVTALWGKV--NVDEVGGEA

X 10 20

Figure 1: An extract from a possible alignment
of hemoglobin alpha and beta chains [8].

It is convenient to represent alignments in a grid,
as depicted in Figure 2. All paths from the up-
per left corner to the lower right corner represent
possible alignments. The path drawn in Figure 2
corresponds to the alignment given in Figure 1.
A diagonal move introduces no gaps, a down-
wards move introduces a gap in the upper se-
quence, a rightwards move introduces a gap in
the lower sequence.

When trying to explain evolutionary relation-
ships between sequences, we should identify the
alignment that has the highest chance of being
the result of an evolutionary process. That is,
we try to explain the alignment as the result of
evolution from a common ancestor.

We first show how evolutionary dynamics can
be described on the level of genetic sequences.
Then we show how a score matrix is obtained
from these dynamics, and how the resulting op-
timisation problem indeed identifies the align-
ment that has the highest chance of being the
result of evolution from a common ancestor.

-VLSPADKTNVKAAWGKVGAHAGEYGAEA
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Figure 2: Alignments can be conveniently rep-
resented in a grid.

2.2 Evolutionary Sequence Dynamics

The PAM (‘point accepted mutation’) matrices
are widely accepted as the standard scoring sys-
tem when looking for evolutionary relationships
in protein sequences. They are related to the
evolution of amino acid sequences described by
a Markov model for amino acid substitution [3].
Indels, which introduce alignment gaps, are not
modelled by PAM and are treated separately. We
will only give a very brief description of the ba-
sic ideas underlying the dynamics. For a more
extensive discussion and improvements of this
approach the reader is referred to the references
[3, 11, 1, 12].

Let At(i) denote the amino acid at sitei at (dis-
crete) timet of a sequence of lengthN . It is first
assumed that amino acids mutate independently
at each site of the sequence. This implies that
the probability of the sequenceAt to evolve to
the sequenceAt+s is equal to

P [At+s|At] =
∏N

i=1 P [At+s(i)|At(i)]. (1)

Hence, it suffices to know only the probabilities
P [At+s(i)|At(i)] at each sitei of the sequence.
It is also assumed that amino acids mutate inde-

573



pendently in time,

P [At+s(i)|At(i)] =
∏t+s−1

r=t P [Ar+1(i)|Ar(i)].
(2)

We thus only need to know the probabilities
P [Ar+1(i)|Ar(i)] at each sitei and timer.

Finally, assuming that the transition probabili-
ties are identically distributed in time and space,
P [Ar+1(i)|Ar(i)] does not depend on the ac-
tual values ofr and i, but only on the amino
acidsAr(i) and Ar+1(i). Hence, if we know
for any pair(a, b) of amino acids the probabil-
ity P [b|a] of a being substituted byb after one
unit of time, then we also know the probability
of any sequenceAt evolving toAt+s, through
Eqs. (1) and (2). Under the assumptions made
so far, this establishes that we can model evolu-
tion of amino acid sequences through a Markov
model.

It is convenient to assume that evolution from
ancestors to descendants is modelled by the
same Markov process as the evolution from de-
scendants to ancestors, that is, that the Markov
process istime-reversible. AssumingP [b|a] >

0 for all amino acid pairs(a, b), the Markov pro-
cess attains a stationary distributionπ after a suf-
ficient long time. Moreover,π is independent of
the initial distribution, and is the unique solution
of

∑

a

P [b|a]π[a] = π[b]. (3)

Assuming we attained this equilibrium, the pro-
cess is time-reversible if and only if [10]

P [b|a]π[a] = P [a|b]π[b]. (4)

Consider two amino acid sequences,B andC,
that have evolved from a common ancestorA in
t time units. Assuming time-reversibility, and
assuming that all amino acids inA are i.i.d. ac-
cording to the stationary distributionπ, evolu-
tion from A to B andC in t time units is equiv-
alent to evolution fromB to A in t time units,
and then fromA to C in t time units. But this is
equivalent to evolution fromB to C in 2t time
units. Hence, we can calculate the probability
of B andC having evolved from a common an-
cestor int time units simply by calculating the

probability of C having evolved fromB in 2t
time units.

In practice, the transition probabilitiesP [b|a]
of the Markov model are estimated using a
large dataset of sequences that are already
aligned (originally, sequences from closely re-
lated species were considered, that is, sequences
of at least 85% similarity). Many generalisa-
tions of this model have been developed, drop-
ping stationarity of the transition probabilities,
allowing different transition probabilities on dif-
ferent sites, etc.

2.3 A Log Likelihood Ratio Scoring

Using the Markov model for amino acid evolu-
tion, a scoring matrix is derived that has the in-
terpretation of a log likelihood ratio. The entries
of the matrix are roughly given by (up to a nor-
malisation factor)

st(a, b) = log
Levol[a, b](t)

Lrand[a, b]
, (5)

that is, the logarithm of the likelihood thata and
b are aligned as a consequence of the evolution-
ary Markov process from a common ancestort

time units ago, divided by the likelihood thata

andb are aligned ‘by chance’, that is, as a con-
sequence of a multinomial process, where amino
acid frequencies are obtained from the same data
used to construct the Markov model. A posi-
tive scorest(a, b) means thata andb are more
likely to be aligned by evolution than by chance,
a negative score means the opposite. Remark
thatst(a, b) = st(b, a).

To obtain a score for sequences, recall that we
assumed different sites on sequences to be inde-
pendent. Hence, the log likelihood ratio of two
aligned sequencesB and C—of equal length
and without gaps—is obtained by adding the log
likelihood ratios at each site of the sequences:

St(B,C) =
N

∑

i=1

st(B(i), C(i)) (6)

2.4 Gap Scoring

More general, letB be a sequence of lengthN ,
and letC be a sequence of lengthM . Consider
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any alignmentu of B and C, and denote the
characters (amino acids or gaps) at sitei in the
alignment byBu(i) andCu(i). The score of the
alignment is given by

St(B,C)(u) =
K

∑

i=1

st(Bu(i), Cu(i)), (7)

where K is the length of the alignment. If
both Bu(i) and Cu(i) are amino acids, the
st(Bu(i), Cu(i)) is given by the log likelihood
ratio (Eq. (5)). If either one of them, sayBu(i),
is a gap, then the score is given by minus thegap
opening penaltyg if Bu(i − 1) is not a gap, and
by minus thegap extension penaltyr if Bu(i−1)
is a gap (g andr are positive).

2.5 Choice of Score Matrix and Gap
Penalties

As argued before, the score for a pair of amino
acids is given by Eq. (5). This score rewards
alignments that are more likely by evolution than
‘by chance’, and punishes alignments that are
less likely by evolution than ‘by chance’.

Gap openings are less likely than gap extensions,
and therefore the gap opening penaltyg is cho-
sen substantially higher than the gap extension
penaltyr. The gap penalties should also be cho-
sen relative to the range of scores in the score
matrix. If the gap penalty is too high, gaps will
never appear in the optimal alignment. And if
it is too low, too many gaps will appear in the
optimal alignment.

Much research has been devoted to analysing
how the score matrix and gap penalties should
be chosen. The choice of the score matrix
is based mainly on the evolutionary dynami-
cal model and estimates of the evolutionary dis-
tance. Through statistical analysis, appropriate
gap opening and extension penalties have been
motivated for various score matrices (see for in-
stance [9]).

One result is that a good choice for the score ma-
trix, and consequently also a good choice for the
gap penalties, can be made based on the evo-
lutionary distance between sequences and their
closest common ancestor.

2.6 Needleman-Wunsch Algorithm

Finding the optimal alignment is at first sight an
extremely hard computational task. The num-
ber of possible alignments of two sequences of
lengthN grows exponentially withN . Even for
sequences of modest length, computing power is
far from able to compare that many sequences in
a reasonable amount of time.

Dynamic programming provides a method for
exponentially reducing the number of align-
ments that need to be considered in order to
find the optimal one [7]. Due to lack of space
the original algorithm is not discussed here. A
generalised version of the algorithm will be dis-
cussed in Section 4 further on.

3 An Imprecise Probability Model for
Evolutionary Distance

In Section 2, it was argued that a good choice
of the score matrix and the gap penalties can
be made based on the evolutionary distance be-
tween the sequences under study and their clos-
est common ancestor. Unfortunately, for short
sequences, estimation of evolutionary distance
is subject to serious bias due to stochastic ef-
fects [14]. Instead of somehow trying to im-
prove evolutionary distance estimates between
short sequences by reducing stochastic effects—
this may well be impossible—we propose a dif-
ferent approach.

Instead, does a bias in the evolutionary distance
also leads to a bias in the optimal alignment?
Or, how sensitive is the alignment to the evo-
lutionary distance? It is well-known that opti-
mal alignment is quite sensitive to the choice of
the score matrix, especially for long sequences
[5]. But for short sequences, this does not need
to be the case. To give an extreme example: if
we would find that the optimal alignment is in-
dependent of the evolutionary distance, we also
should not have to worry about it.

Recent developments in imprecise probability
theory provide the perfect tool for performing
such analysis. Let us briefly touch upon those
results and apply them to the alignment problem.
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Let T = {t ∈ R : t ≥ 0} be the space of
possible evolutionary distancest between two
sequencesB and C and their closest common
ancestor. Assume that the only information we
have aboutt ∈ T is that it takes a value in the
interval [t1, t2], for somet1 ≤ t2. In imprecise
probability theory, this information can be used
in order to construct a partial preference order-
ing on alignments [13]:

Definition 1 (Preference). Let u and v be two
alignments (ofB andC). Then,u is said to be
strictly preferred tov, and we writeu >[t1,t2] v,
if

inf
t∈[t1,t2]

[St(B,C)(u) − St(B,C)(v)] > 0. (8)

If u >[t1,t2] v then there is anǫ > 0 such that
St(B,C)(u) > St(B,C)(v) + ǫ for everyt ∈
[t1, t2]. This means that, independently of the
evolutionary distance in[t1, t2], u is (uniformly)
a strictly better alignment ofB andC thanv. In
such a case, we should of course preferu overv.

The optimisation problem can now also be re-
stated. Usually, the partial order>[t1,t2] will
not have a greatest element. Therefore, it makes
more sense to look for undominated, or maximal
elements.

Definition 2 (Maximality). Say an alignmentu
is maximalwith respect to[t1, t2] if v 6>[t1,t2] u,
that is, if

sup
t∈[t1,t2]

[St(B,C)(u) − St(B,C)(v)] ≥ 0, (9)

for all possible alignmentsv of B andC.

The idea behind this definition is that, if we do
not prefer any other alignmentv overu, then we
should consideru as a good alignment candi-
date. The information we have does not allow us
to make a better choice thanu. An efficient al-
gorithm for finding all maximal alignments will
be given in Section 4. But let us first make a few
important remarks.

Firstly, the notion of maximality generalises the
classical notion of optimality. Indeed, ift1 =
t2 = t then any maximal alignment actually
maximises the scoreSt(B,C)(v) over all pos-
sible alignmentsv.

Secondly, it is often argued that it is important to
find the best alignment. But, when looking for
maximal alignments, we do not obtain a single
solution, but rather a set of solutions—perhaps
even a pretty large set. At first sight, this may
seem undesirable. Nevertheless, I believe even a
set of best possible alignments can be useful:

• If we obtain a large set, then this simply
means that we have insufficient information
in order to construct the best alignment.

• We might be lucky and find that there is
only one maximal alignment. If that is the
case, we actually also know that this align-
ment is insensitive to assumptions made
about evolutionary distance in the interval
[t1, t2].

• More generally, there may be certain con-
stant patterns in the set of maximal align-
ments, i.e., it may happen that certain
regions are consistently aligned over the
whole set of maximal alignments. We then
do not only know that these regions are op-
timally aligned, but also that they are in-
sensitive to assumptions made about evolu-
tionary distance in the interval[t1, t2].

4 Finding Maximal Alignments
Through Dynamic Programming

Recently, the algorithm of dynamic program-
ming [2] has been generalised in order to find all
maximal paths of a dynamical system, in case
maximality is defined in the sense of Defini-
tion 2 [4]. We briefly discuss how the algorithm
is implemented.

More general, letB be a sequence of lengthN ,
and let C be a sequence of lengthM . First,
finding maximal alignments ofB andC is re-
stated in terms of finding the maximal paths of a
dynamical system. This is done by interpreting
alignments as paths of a dynamical system, and
scores as gains associated with that path. Fig-
ure 2 shows how we can do that. The grid repre-
sents the state space. At each point in the grid we
can move either rightwards, downwards or di-
agonal (except at the right and bottom borders).
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The gain associated with a move from position
(i, j) if the previous move wasp, is given by

Gt(i, j, p, ↓) =

{

rt, if p =↓

gt, otherwise

Gt(i, j, p,→) =

{

rt, if p =→

gt, otherwise

Gt(i, j, p,ց) = St(B(i), C(j))

The gain associated with a path is simply given
by the sum of the gains of each move.

The gain depends on the evolutionary distance
t. Since the gain also depends on the previous
move we must extend the state space with an ad-
ditional state variablep at each point(i, j) in
order to remember our previous move. Other-
wise, we cannot apply the dynamical program-
ming formalism.

Let P(i, j, p) denote the set of all paths from
(i, j, p) to the right bottom corner. Observe that
p denotes the previous move,p ∈ {↓,→,ց},
which is needed in order to calculate the gain (in
order to tell the difference between a gap open-
ing and a gap extension). LetM(i, j, p) denote
the set of maximal paths from(i, j, p) to the bot-
tom right corner, that is,

M(i, j, p) = max>[t1,t2]
P(i, j, p) (10)

It is convenient to defineM(i, j, p) = ∅ when-
everi > N or j > M . Observe thatP(i, j, p)
is a finite set for every state(i, j, p). Hence, the
compactness condition under which the gener-
alised Bellman equation holds is trivially satis-
fied [4].

Theorem 1(generalised Bellman equation). For
any state(i, j, p) the following equality holds:

M(i, j, p) = max
>[t1,t2]

(i, j, p; ↓) ⊕M(i + 1, j, ↓)

∪(i, j, p;→) ⊕M(i, j + 1,→)

∪(i, j, p;ց) ⊕M(i + 1, j + 1,ց),

(11)

where(i, j, p; ↓) ⊕ M(i + 1, j, ↓) denotes the
set of all concatenations of the downward move
from state(i, j, p), with a maximal path from
state(i + 1, j, ↓), etc.

Eq. (11) yields an efficient recursive algo-
rithm to calculate the set of all maximal paths
M(0, 0,ց), and hence, all maximal align-
ments. It solves a global maximisation problem
by solving 3MN smaller maximisation prob-
lems (see Figure 3).

** initialisation **
for p=|,-,\
MAX(N,M,p)={(M,N,p)}
for i=0 to N
MAX(i,M+1,p)={}

next i
for j=0 to M
MAX(N+1,j,p)={}

next j
next p

** dynamic programming **
for i=N to 0
for j=M to 0
for p=|,-,\
if (i<N) or (j<M)

** Bellman **
MAX(i,j,p)=max{
(i,j,p;|)+MAX(i+1,j,|),
(i,j,p;-)+MAX(i,j+1,-),
(i,j,p;\)+MAX(i+1,j+1,\)

}
next p

next j
next i

Figure 3: The algorithm for calculating maximal
alignments.

5 Discussion and Future Research

We demonstrated one possible way of how im-
precise probabilities can be applied in bioinfor-
matics. Imprecise probability theory allows us
to substantially weaken assumptions we have to
make about data, for instance about the evolu-
tionary distance. In this paper, we did that by
means of an interval rather than using a point
estimate. It turns out that a good alignment
still can be found in an efficient way, through
a generalisation of the well-known Needleman-
Wunsch algorithm, and relying on an extension
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of dynamic programming to the case where the
gain is described by an imprecise probability
model. This generalisation could be particularly
useful in cases where the sequences under study
are rather short, or other cases where point esti-
mates of evolutionary distance are unreliable or
hard to obtain. An implementation of the algo-
rithm is currently in preparation.
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