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Summary. In this paper, we investigate the conditions under which dynamic pro-
gramming yields a solution to simultaneous learning and optimal control of a Markov
decision process. First, we introduce a new optimality criterion that allows act-state
dependence. This criterion is based on a partial preference ordering induced by an
imprecise probability model of the dynamics of the system, updated by observations
of the state and control history of the system. Then, we show that dynamic pro-
gramming yields the set of all optimal solutions if the imprecise probability model
satisfies particular properties. When we model learning of the system dynamics by
an imprecise Dirichlet model, these properties turn out to be satisfied.

1 Introduction

Already early in the development of the theory of Markov decision processes,
it was recognised that the transition probabilities themselves are often subject
to uncertainty, simply because they are often hard to measure. Two solutions
have been suggested and studied in the literature: (i) learning—update the
transition probabilities as we observe transitions [4, 5], and (ii) sets—only
assume the transition probabilities belong to some convex set [5, 7, 2, 3].

Unfortunately, the learning-based solution relies heavily on prior informa-
tion about the transition probabilities. If this prior information is incorrect,
the optimal policy can be subject to serious bias in the initial phase of the
process. A drawback of the set-based solution is that it does not involve learn-
ing, ignoring possibly useful information that is often available. Moreover, it
has a problematic relation with optimality: working with a set of transition
probabilities, we can only associate an interval for the expected reward with
each control law. Most authors therefore have considered only extreme so-
lutions, developing algorithms to find control laws that either maximise the
minimal expected gain (pessimistic), or that maximise the maximal expected
gain (optimistic), ignoring solutions not relying on such extreme assumptions.
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One notable exception is in [3], where an algorithm is suggested to find the
set of all maximal elements with respect to a partial preference order, based
on comparing intervals. In that way, not only the extreme solutions are recov-
ered. However, in [3] it is not questioned in what sense the proposed dynamic
programming method leads to optimal policies. In this article we approach
the problem from a more logical side: we first define a notion of optimality
and investigate whether the dynamic programming argument holds for this
notion of optimality, instead of blindly “generalising” Bellman’s algorithm.

We have previously shown in [1] that dynamic programming works if and
only if our notion of optimality satisfies two conditions: (i) the principle of
optimality, and (ii) insensitivity with respect to omission of non-optimal ele-
ments. Unfortunately, the first condition does not hold when using the partial
order of [3] (see counterexample in [1]). Hence, the algorithm of [3] actually
does not result in optimal control laws in the sense of maximality with re-
spect to the suggested order. In [1], a different partial order is suggested for
deterministic systems with uncertain gain, which does satisfy the principle of
optimality and the insensitivity property. However, this order does not simply
generalise to non-deterministic systems. The reason is act-state dependence.

Our goal is combining the learning-based solution with the set-based so-
lution, overcoming the problems from which each method separately suffers.
Basically, we update the set of transition probabilities based on observations
of previous transitions, e.g., through an imprecise Dirichlet model. First, we
generalise the orders used in [1, 3] to the case of act-state dependence. Then
we show that there are fairly general conditions under which the principle of
optimality and the insensitivity property still hold.

Section 2 introduces some aspects of imprecise probabilities [6] used fur-
ther on. Section 3 motivates a new partial preference order allowing act-state
dependence. Section 4 defines the systems studied and describes how to com-
pare control laws. Section 5 states conditions for the principle of optimality
to hold, and considers simultaneous learning and control of a Markov decision
process by an imprecise Dirichlet model. Section 6 concludes the paper.

2 Lower Previsions and Marginal Extension

Let X be a random variable (such as the state of a system at a particular
time) taking values in a set X . A particular value of X is denoted by x. A
gamble f on X is a bounded X–R map. It is an uncertain reward: if x turns
out to be the true value of X, we receive an amount f(x) of utility. L(X)
denotes the set of all gambles on X. We may write f(X) to emphasise that f
is a gamble on X. We define the gamble IX=x′ as IX=x′(x) =

{ 1, x=x′,
0, x6=x′.

Define the lower prevision P (f) of the gamble f as the supremum buying
price for f : for any s < P (f), we are willing to pay s prior to observation of
X, if we are guaranteed to receive f(x) when x turns out to be the value of
X. We can also interpret f as an uncertain loss: if x turns out to be the true
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value of X, we lose f(x). The upper prevision P (f) of the gamble f is the
infimum selling price for f : for any s > P (f), we are willing to receive s prior
to observation of X, if we are guaranteed to lose f(x) when x turns out to be
the value of X. Since a reward r is a loss −r it holds that P (f) = −P (−f).

If P is defined on all gambles in L(X), it should satisfy for all f , g ∈ L(X):

• P (f) ≥ infx∈X [f(x)] (accepting sure gain)
• P (λf) = λP (f), whenever λ ∈ R and λ > 0 (scale independence)
• P (f + g) ≥ P (f) +P (g) (price of sum at least sum of prices of each term)

In such a case we call P coherent. If it also holds that

• P (f + g) = P (f) +P (g) (price of sum equal to sum of prices of each term)

then we call P linear. Linear lower previsions are expectations in the sense of
classical probability theory, and satisfy P (f) = P (f) for all f ∈ L(X). There-
fore the bars are usually dropped and P is simply called a linear prevision.

Let us now consider two variables, say X and Y . The supremum buying
price of a gamble f on X conditional on the value y of Y is denoted by P (f |y).
Through separate coherence, the coherent conditional lower previsions P (·|y)
on L(X), defined for all y ∈ Y, jointly extend to a L(X,Y )–L(Y )-map P (·|Y ):

P (f(X,Y )|Y )(y) := P (f(X, y)|y), (1)

for any gamble f(X,Y ). Here, f(X, y) denotes a gamble on X by fixing the
value y of Y in f , i.e., f(X, y)(x) := f(x, y).

In case of n variables X1, . . . , Xn, conditional lower previsions P (·|x1)
on L(X2), P (·|x1x2) on L(X3), . . . , and P (·|x1 . . . xn−1) on L(Xn) extend
through separate coherence to a L(X1, X2)–L(X1)-map, a L(X1, X2, X3)–
L(X1, X2)-map, . . . , and a L(X1, . . . , Xn)–L(X1, . . . , Xn−1)-map. Concate-
nating these, we end up with a L(X1, . . . , Xn)–L(X1)-map, which is in fact a
coherent lower prevision on all variables, conditional on X1:

P (f(X1, X2, . . . , Xn)|X1)
= P (·|X1) ◦ P (·|X1X2) ◦ · · · ◦ P (·|X1X2 . . . Xn−1)(f(X1, X2, . . . , Xn)) (2)

This lower prevision is the marginal extension of P (·|X1), P (·|X1X2), . . . ,
and P (·|X1 . . . Xn−1). In the classical theory of probability (2) is Bayes rule.

3 Optimality in Case of Partial Act-State Dependence

We have a set of actions A and want to characterise the optimal actions.
One way to do this is through a preference order on the actions, selecting as
optimal the set of actions that are maximal with respect to this partial order:

Definition 1. Let > be a strict partial order on A. Then a∗ ∈ A is said to be
maximal with respect to > if there is no a ∈ A such that a > a∗.
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Assume that X = (Ξ,Θ), and acts a ∈ A do not influence the value of Θ.
Thus, we model our knowledge about Θ by a coherent lower prevision P on
L(Θ), independent of the action a we take. Now assume that the act dependent
information is modelled through a coherent conditional lower prevision P a(·|θ)
on L(Ξ), for each action a ∈ A and each value θ of Θ. If

P (P a(fa|Θ)− P b(fb|Θ)) > 0. (3)

then we should prefer action a over action b. Indeed, by (3) we are willing
to pay a strictly positive price prior to observation of Θ in order to receive
P a(fa|θ) and to lose P b(fb|θ), if θ turns out to be the value ofΘ, independently
of the action we take. Hence, for some ε > 0, we are, prior to observing Θ,
willing to pay a strictly positive price in order to receive P a(fa|θ)− ε and to
lose P b(fb|θ) + ε if θ has been observed. Suppose now θ has been observed.
Then, using the behavioural interpretation of P a(fa|θ), for any ε > 0 we are
willing to lose P a(fa|θ)− ε prior to observation of Ξ, in order to take action
a and receive fa(ξ, θ) after observation of Ξ = ξ. But, we are also willing
to take action b and lose fb(ξ′, θ) after observation of Ξ = ξ′, if we receive
P b(fb|θ)+ε prior to observation of Ξ. Combining all, prior to any observation
of Ξ and Θ we are willing to pay a strictly positive price in order to exchange
action b for a along with their rewards fb(ξ, θ) and fa(ξ′, θ).

For example, if there is no partial act-state independence, we can iden-
tify Ξ with X, recovering the order used by [3]: P a(fa) > P b(fb). On the
other hand, in case of full act-state independence, we can identify Θ with X,
recovering the order discussed in [6, Sect. 3.9] and used in [1]: P (fa− fb) > 0.

4 Imprecise Statistical Decision Processes

Let X be the finite set of states the system can assume, and U the finite set
of controls we can apply. The system state at time k is denoted by Xk, and
xk denotes a particular value of Xk. We are not interested in dynamics of the
system beyond time N . Consider the system at time k and imagine

• observing Xk = xk,
• applying µk(xk) ∈ U and observing Xk+1 = xk+1,
• applying µk+1(xkxk+1) ∈ U and observing Xk+2 = xk+2,
• etc.,
• applying µN−1(xkxk+1 . . . xN−1) ∈ U and observing XN = xN .

This operation is characterised by a finite sequence of functions πk =
(µk, µk+1, . . . , µN−1), where µ` : X `−k+1 → U . We call πk a control law from
time k, and Πk denotes the set of all control laws from time k. For each control
law πk we have a gain gamble from time ` after observation of xk . . . x`−1,

Jπk(xk...x`−1)(x`, . . . , xN ) =
∑N−1
q=` gq(xq, µq(xk . . . xq), xq+1) + gN (xN ) (4)
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It is a gamble on (X`, . . . , XN ). Each transition incurs a gain: starting at time q
in xq, applying uq and arriving in xq+1, we receive an amount gq(xq, uq, xq+1).
Arriving in the final state xN at time N , we receive an additional gain
gN (xN ). Jπk(xk...x`−1) depends on πk only through µ`(xk . . . x`−1X`), . . . ,
µN−1(xk . . . x`−1X` . . . XN−1). This sequence corresponds to the control law
πk after observation of xk . . . x`−1 and is denoted by πk(xk . . . x`−1).

Our goal is to find optimal control laws, that is, control laws that maximise
their corresponding gain gamble. In order to do so, we construct a strict partial
order on gain gambles, as in (3). This order is derived from conditional lower
previsions that describe the uncertain dynamics of the system.

A simple way to describe uncertain dynamics, including learning, is as
follows. Suppose at time k we select πk, and applying πk up to time ` we
observe xk . . . x`. We can now model our knowledge about the state at time
`+1 by a lower prevision on L(X`+1), conditional on xk . . . x`, and depending
on the control history µk(xk), . . . , µ`−1(xk . . . x`−1) and the current control
µ`(xk . . . x`). The lower previsions may depend on the full system history, and
not only on the current control and state as is the case with Markov decision
processes. This allows us to adapt our model according to observations of the
system history, and hence, to incorporate learning the system dynamics.

As in Sect. 3 we separate those variables Θ which are not influenced by
the control law. Hence, we describe the dynamics by a lower prevision P on
L(Θ), and conditional lower previsions Pπk(·|xk . . . x`θ) on L(X`+1), for each
πk ∈ Πk, each k ≤ ` < N , each state sequence xk . . . x` and each value of
θ.The conditional lower previsions are allowed to depend on the control law
πk, but the parameters θ are assumed not to be influenced by the control law.

The separation of act independent variables may appear to be merely a
technical assumption. But from Theorem 1 it follows that this separation is
essential for the principle of optimality to hold. Not separating those variables
we recover the weaker order of [3] which violates the principle of optimality.

How to identify act independent variables? Looking at the example invok-
ing the imprecise Dirichlet model for learning dynamics at the end of Sect. 5,
these variables naturally arise as the hyper-parameters of the model because
they only model prior information. Thus in general, the parameters which are
used to represent prior information are act independent.

The conditional lower previsions Pπk(·|xk . . . x`θ) combine to

Eπk(·|xk . . . x`θ) = Pπk(·|xk . . . x`θ) ◦ Pπk(·|xk . . . x`X`+1θ) ◦ · · ·
· · · ◦ Pπk(·|xk . . . x`X`+1 . . . XN−1θ) (5)

on L(X`+1, . . . , XN ), as in (2). We can now use (3) to compare control laws
after observation of a state sequence. Of course, after such observation it
only makes sense to compare control laws with the same control history. Let
Πk(xk . . . x`, uk . . . u`−1) denote the set of those elements πk of Πk for which

πk(xk) = uk, πk(xkxk+1) = uk+1, . . . , π`−1(xk . . . x`−1) = u`−1. (6)
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It is convenient to identify Πk(xk) with Πk.

Definition 2. Let πk, ρk ∈ Πk(xk . . . x`, uk . . . u`−1). We say that πk is pre-
ferred to ρk after observation of state sequence xk . . . x` and application of
control sequence uk . . . u`−1, and we write πk >xk...x`,uk...u`−1 ρk, if

P (Eπk(Jπk(xk...x`)|xk . . . x`Θ)− Eρk(Jρk(xk...x`)|xk . . . x`Θ)) > 0. (7)

Using Definition 1, we may select as optimal the set of those control laws
which are maximal with respect to the partial order (7).

Definition 3. A control law πk ∈ Πk is said to be optimal if it is maximal
in Πk(xk) with respect to >xk for each each xk ∈ X . Let k ≤ ` < N −
1. The control law πk is said to be optimal from time ` if it is maximal
in Πk(xk . . . x`, µk(xk) . . . µ`−1(xk . . . x`−1)) with respect to the partial order
>xk...x`,µk(xk)...µ`−1(xk...x`−1) for each state sequence xk . . . x`.

5 The Principle of Optimality
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Fig. 1. A simple sequential decision process

Consider the sequential decision process depicted in Fig. 1. At each time k
we can choose between actions u and v. We make no assumption on the con-
nection between actions and dynamics. Consider the control law π0 applying
v at time 0, and u if x1 = x and v if x1 = y at time 1: µ0(x) = v, µ1(xx) = u
and µ1(xy) = v. The principle of optimality stipulates that if π0 belongs to
the set of optimal control laws from time 0, then the control law π0(x) apply-
ing u if x1 = x and v if x1 = y at time 1, should belong to the set of optimal
control laws from time 1. As a consequence, we can significantly reduce the
number of laws we need to consider. To see how this works, assume for in-
stance that ρ1, specified by ν1(x) = v and ν1(y) = u, is not optimal from time
1. By the principle of optimality, σ0 and σ′0 specified by κ0(x) = u, κ′0(x) = v,
κ1(xx) = κ′1(xx) = ν1(x) = v, and κ1(xy) = κ′1(xy) = ν1(y) = u, cannot be
optimal from time 0, because otherwise ρ1 would be optimal. Hence, know-
ing optimal control laws from time ` + 1 can help reducing the search space
when looking for optimal control laws from time `. Of course, we can do this
only if reducing the search space does not change the set of optimal elements
we end up with: our notion of optimality must be insensitive to omission of
non-optimal elements. Fortunately, the insensitivity property holds: it suffices
that every non-optimal element is dominated by an optimal element [1].

146



Theorem 1 (Principle of Optimality). Let k < N and πk ∈ Πk. For any
k ≤ ` < N , it holds that if πk is optimal from time ` then it is optimal from
time `+ 1, whenever all of the following conditions are satisfied:

• The conditional lower previsions Pπk(·|xk . . . x`θ) are linear, for all k ≤
` < N , all values of θ, and all state sequences xk . . . x`.

• There is a T ⊆ Θ such that P (f(Θ)) = infθ∈T f(θ) for any gamble f(Θ).
• For any x`+1 ∈ X it holds that

P (Pπk(IX`+1=x`+1 |xk . . . x`Θ)) > 0. (8)

In short, the principle of optimality holds if the imprecision is concentrated
on the act independent variable Θ, and if it is of the following type: θ is only
known to belong to some set T ⊆ Θ. Thus, whenever the imprecise model
is described by a set of precise models {Pπk(·|xk . . . x`θ) : θ ∈ T} and these
precise models are connected through a conditioning variable θ, the principle of
optimality applies when using the preference order (7). Imprecise probability
models are often expressed as a set of precise models. The theorem says that
we should look for an act independent variable which parametrises this set.

This situation obtains exactly when we use an imprecise Dirichlet model
in order to represent learning: the conditional linear previsions are

Pπk(f |xk . . . x`θ) =
∑
x`+1∈X f(x`+1)

sθ
µ`(xk...x`)
x`x`+1 +n

µ`(xk...x`)
x`x`+1 (xk...x`,πk)

s+N
µ`(xk...x`)
x`

(xk...x`,πk)
(9)

for any gamble f on X`+1, and the unconditional lower prevision is

P (g) = inf{g(θ) : θuxy > ε,
∑
y∈X θ

u
xy = 1} (10)

for all gambles g on Θ. Let’s briefly explain these expressions.
nuxy(xk . . . x`, πk) denotes the number of transitions from state x to y by

applying u, in the sequence xk . . . x` subject to πk, and Nu
x (xk . . . x`, πk) =∑

y∈X n
u
xy(xk . . . x`, πk). Equation (9) is the predictive lower prevision on

X`+1 which arises from an independent product of precise Dirichlet mod-
els on the transition probabilities from state x` applying µ`(xk . . . x`) after
having observed xk . . . x` subject to control law πk [4]. Observation of tran-
sitions from one state do not influence our knowledge about transitions from
another state. This motivates the use of an independent product of Dirichlet
models, each model modelling transitions from a particular state.

The variable s > 0 determines the adaptivity (lower s means faster learn-
ing), and θuxy > 0,

∑
y∈X θ

u
xy = 1, determine the prior transition probabilities

from state x to y applying control u. Equation (10) says we only know a pri-
ori that the lower probability of any transition is at least ε > 0 (such that
(8) holds). S and Θ determine prior information about the dynamics and are
obviously not influenced by πk: they are act independent.
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6 Discussion and Conclusions

The principle of optimality (together with the insensitivity property) yields an
efficient recursive algorithm, dynamical programming, that calculates optimal
control laws, reducing the global optimisation problem which requires a search
over all Πk, to a sequence of local optimisation problems requiring only a
search over U . In this way we achieve an exponential speedup in determining
the set of optimal control laws. Unfortunately, we have to omit an exact
description due to lack of space. Its construction is well described in [1].

Since control laws depend on the full system history, the algorithm runs
over all possible histories, and not simply over all possible states as in the case
without learning. As a result, we still need an exponential time (but even so,
the search space remains exponentially smaller than Πk). This is inevitable
also in the classical approach, even considering sufficient statistics. Thus, a
direct implementation is only feasible for small systems. On the other hand, in
our learning approach precision increases with time. Hence, with longer time
horizon the incomparability of control laws will be less likely, and the size of
the optimal set will tend to stabilise, unlike the methods proposed in [3, 1].
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