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Hoofdstuk 1

Een Nederlandstalige

samenvatting van dit

proefschrift

(A Dutch Summary of this

Dissertation)

If you can read English, please skip this chapter and proceed to p. 35.

Kun je geen Engels lezen, dan heb je het geluk om in dit hoofdstuk—in na-

volging van Artikel 102 van het FTW-reglement voor het doctoraatsexamen

in de toegepaste wetenschappen—een korte Nederlandstalige samenvatting

te vinden, die je in staat stelt om inzicht te krijgen in het volledige proef-

schrift en die voldoende gedetailleerd is om de essentie, de originaliteit, en

de wetenschappelijke waarde van dit proefschrift te kunnen begrijpen.

1.1 Inleiding

Het doel van dit proefschrift is tweevoudig. Ten eerste, willen we onder-

zoeken in hoeverre onderprevisies andere bekende onzekerheidsmodellen

verenigen en uitbreiden, en hoe ze tot een aanvaardbare notie van optimali-

1
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teit leiden. Ten tweede, willen we onderzoeken hoe een dynamisch systeem,

waarvan de onzekerheid beschreven wordt door zo’n geünificeerd model,

optimaal geregeld kan worden, en we willen eveneens onderzoeken of het

mogelijk is deze optimale regeling te vinden met behulp van een efficiënte

methode, namelijk, dynamisch programmeren.

We verwijzen naar Tabel 1.1 voor een vertaling van de technische termen.

1.2 Onderprevisies en optimaliteit

In deze paragraaf introduceren we de basisconcepten van de theorie van de

onderprevisies, die vooral ontwikkeld werd door Walley [86]. We demon-

streren eveneens het unificerend karakter van deze theorie, en we geven aan

hoe onderprevisies aanleiding geven tot een aantal welbekende noties van

optimaliteit.

1.2.1 Een gedragsgericht onzekerheidsmodel

Toevallige veranderlijken, gokken, en prijzen

Een toevallige veranderlijke is een, mogelijk onzekere, maar waarneembare

eigenschap van een systeem. Je kunt bijvoorbeeld denken aan de nog niet

gekende uitkomst van een experiment. De verzameling vanwaarden die een

toevallige veranderlijke X kan aannemen, noteren we met een kalligrafische

letter X, en een bepaalde waarde van X noemen we een realisatie van X en
wordt genoteerd door een kleine letter x. Observeren we dat de realisatie

van X gegeven is door x, dan schrijven we X = x.

We willen optimale regeling onder onzekerheid bestuderen. Specifieker,

we willen onze kennis over de onzekere realisatie van de winst van een

systeem modelleren, en beslissingen nemen—optimale regeling reduceert

uiteindelijk tot het nemen van een beslissing—gebaseerd op deze kennis. In

wat volgt zullen we een gedragsgericht onzekerheidsmodel suggereren. De-

ze modelleerkeuze is uitermate geschikt met het oog op optimale regeling,

gezien optimale regeling op zichzelf natuurlijk een vorm van gedrag is. Bij-

gevolg leidt elk voldoend gesofistikeerd gedragsgericht kennismodel op een

natuurlijke wijze tot een notie van optimaliteit. Dit zullen we demonstreren

in paragraaf 1.2.4. Deze manier om naar kennis, en in het bijzonder, onze-

kerheid, te kijken, is natuurlijk niet nieuw: zie bijvoorbeeld Ramsey [65],
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Tabel 1.1: Vertaling van de technische termen

Engels Nederlands
behavioural gedragsgericht
random variable toevallige veranderlijke
realisation realisatie
gamble gok
random quantity reëelwaardige functie
event gebeurtenis
lower prevision onderprevisie
upper prevision bovenprevisie
prevision previsie
conjugate upper prevision toegevoegde bovenprevisie
self-conjugate zelftoegevoegd
avoiding sure loss zeker verlies vermijden
incuring sure loss zeker verlies oplopen
coherent coherent
vacuous niets-zeggend
probability charge waarschijnlijkheidslading
measure maat
set function verzamelingenfunctie
inner set function binnenverzamelingenfunctie
possibility measure possibiliteitsmaat
p-box p-doos
natural extension natuurlijke uitbreiding
linear extension lineaire uitbreiding
lower envelope onderomhullende
extended lower prevision veralgemeende onderprevisie
act-state (in)dependence actie-kennis(on)afhankelijkheid
Markov decision process markovbeslisproces
Markov chain markovketen
update herzien
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De Finetti [26], von Neumann en Morgenstern [83], Savage [69], Anscombe

en Aumann [2], Khaneman en Tversky [47], Walley [85], von Winterfeld en

Edwards [84], Seidenfeld, Schervish, en Kadane [72], en vele anderen.

We beginnen met een definitie: een gok f op een toevallige veranderlijke

X is een reëelwaardige winst, uitgedrukt in een eenheid van utiliteit die vast

verondersteld wordt, die begrensd is als functie vanX. Wiskundig is een gok

f opX een begrensdeX–R-afbeelding, en een gokwordt dus geı̈nterpreteerd
als een begrensde onzekere winst: als X = x, ontvangen we f (x). Wanneer

meerdere toevallige veranderlijken in het spel zijn, dan schrijven we soms

ook f (X) in plaats van f om te benadrukken dat f een gok is op de toeval-

lige veranderlijke X. De verzameling van alle gokken op X noteren we als

L(X). De beperking om alleen naar begrensde onzekere winsten te kijken is
tot op zekere hoogte een wiskundig gemak. We zullen verderop de theorie

grotendeels veralgemenen om ook over onbegrensde onzekere winsten iets

te kunnen zeggen. Een reëel getal a ∈ R kan bijvoorbeeld geı̈dentificeerd
worden met een constante gok a(x) := a voor alle x ∈ X. Een andere speciale
klasse van gokken zijn deze die corresponderen tot zogenaamde gebeurtenis-

sen. Een gebeurtenis opX is een deelverzameling vanX. Met een gebeurtenis
A opX kunnen we een {0, 1}-waardige gok IA associëren, die ons één eenheid
utiliteit geeft als de realisatie x van X tot A behoort, en anders niets. Deze

gok IA noemen we de indicator van A.

De onderprevisie P( f ) van een gok f is gedefinieerd als de supremum

koopprijs voor f : P( f ) is de hoogste prijs s zodat voor elke t < s, we bereid

zijn t te betalen alvorens X te observeren, als we garantie krijgen f (x) te

ontvangen na observatie van X = x. Wiskundig is een onderprevisie op X

een reëelwaardige afbeelding gedefinieerd op een deelverzameling domP,

het domein van P, van L(X). Een onderprevisie hoeft niet op alle gokken
gedefinieerd te zijn. Verderop zullen we beschrijven hoe een onderprevisie

kan uitgebreid worden tot de verzameling van alle gokken.

We kunnen een gok f natuurlijk ook interpreteren als een onzeker be-

grensd verlies. De bovenprevisie P( f ) van f is dan de infimum verkoopprijs

voor f : het is de laagste prijs s zodat voor elke t > s, we bereid zijn t te

ontvangen alvorens X te observeren, als we garantie krijgen f (x) te verliezen

na observatie van X = x. Gezien een winst r equivalent is met een verlies −r,
moet er gelden dat P( f ) = −P(− f ): voor elke onderprevisie P bestaat er een
zogenaamde toegevoegde bovenprevisie P op domP = −domP die hetzelfde
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gedrag modelleert. We kunnen ons daarom beperken tot de studie van on-

derprevisies, en we spreken af dat als P een onderprevisie voorstelt, P altijd

zijn toegevoegde voorstelt.

Het kan gebeuren dat P zelftoegevoegd is: dit gebeurt precies wanneer

domP = domP en P( f ) = P( f ) voor alle gokken f ∈ domP. In dat geval
schrijven we P in plaats van P of P, als het duidelijk is uit de context of we het

over aankoopprijzen of over verkoopprijzen hebben. Een zelftoegevoegde

onderprevisie noemen we ook gewoonweg een previsie, in navolging van De

Finetti [26], die previsies gebruikte om een gedragsgerichte interpretatie te

geven voor de klassieke waarschijnlijkheidsleer, gebaseerd op de notie van

verwachtingswaarde.

Het vermijden van zeker verlies, en coherentie

Onderprevisies impliceren dus een bereidheid bepaalde gokken te kopen

voor eenbepaaldeprijs. Indienhetmogelijk is omeen combinatie vangokken

indomP te vinden, en aanvaardbare aankoopprijzenvoordezegokken (strikt

lager dan hun supremum aankoopprijs), zodanig dat we met zekerheid een

strikt positieve hoeveelheid utiliteit verliezen als we die gokken kopen voor

die aanvaardbare aankoopprijzen, dan zeggen we dat P zeker verlies oploopt.

Zo’n combinatie van gokken en aankoopprijzen wordt in het Engels ook wel

een ‘Dutch book’ genoemd. In het andere geval zeggen we dat P zeker verlies

vermijdt. Uiteraard willen we dat onderprevisies zeker verlies vermijden; dit

idee werd voor het eerst geopperd door Ramsey [65, p. 182].

Het kan ook gebeuren dat we bereid zijn een gok f voor een hogere prijs

te kopen dan P( f ), na overweging van andere combinaties van gokken en

aanvaardbare aankoopprijzen. Is dit nimmer het geval, dan zeggen we dat P

coherent is; dit idee is afkomstig vanWilliams [92]. Coherente onderprevisies

voldoen aan een hele resem mooie eigenschappen; je kunt die vinden op

blz. 55 (Theorem 3.5). Indien het domein van P een lineaire ruimte is, dan is

P coherent als en slechts als ze de afbeelding inf (die een gok f afbeeldt op

zijn infimum) puntsgewijs domineert, positief homogeen is, en superadditief

is. Coherentie impliceert eveneens het vermijden van zeker verlies.
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Voorbeelden van coherente onderprevisies

Als belangrijkste voorbeelden van coherente onderprevisies, vermelden we

de volgende:

• waarschijnlijkheidsladingen—dit zijn eindig additieve waarschijnlijk-
heidsmaten, enwaarschijnlijkheidsmaten zelf zijn hier dus een speciaal

geval van: zij µ een waarschijnlijkheidslading, en definieer Pµ(IA) :=

−Pµ(−IA) := µ(A) voor alle A in het domein van µ, dan is Pµ een cohe-
rente previsie.

• 2-monotone verzamelingenfuncties—hierbij is een verzamelingenfunc-
tie een [0, 1]-waardige monotone afbeelding ν, gedefinieerd op een

veld van gebeurtenissen op X, waarbij ν(∅) = 0 en ν(X) = 1, en de-
ze wordt 2-monotoon genoemd als ze voldoet aan de ongelijkheid

ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B) voor alle A en B in haar domein. Zij ν
een 2-monotone verzamelingenfunctie en definiëren we Pν(IA) := ν(A)

voor alle A in het domein van ν, dan is Pν een coherente onderprevisie.

• possibiliteitsmaten—dit zijn gewoonweg supremumbehoudende ver-
zamelingenfuncties. Zij π een possibiliteitsmaat, en definiëren we

Pπ(IA) := π(A) voor alle A in het domein van π, dan is Pν een cohe-

rente bovenprevisie.

Andere voorbeelden van coherente onderprevisies zijn:

• niets-zeggende onderprevisies ten opzichte van een niet-lege deelver-
zameling A van X—zij zijn gedefinieerd door PA( f ) := infx∈A f (x) voor
alle gokken f op X.

• geneste verzamelingenfuncties—dit zijn verzamelingenfuncties gede-
finieerd op een ketting van gebeurtenissen. Deze induceren coherente

previsies.

• minitieve en maxitieve verzamelingenfuncties—dit zijn minimum- en
maximumbehoudende verzamelingenfuncties. Minitieve induceren

coherente onderprevisies, en maxitieve induceren coherente bovenpre-

visies.

• cumulatieve distributiefuncties op een gesloten interval [a, b]—zij F
een reëelwaardige functie op [a, b], en definiëren we PF(I[a,x]) := F(x)
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voor alle x in [a, b], dan is PF een coherente previsie als en slechts als

0 ≤ F(x) ≤ F(b) = 1 voor alle x in [a, b], en Fmonotoon stijgend is.

• p-dozen—zij F∗ en F∗ twee reëelwaardige functies op een gesloten in-
terval [a, b], en definiëer P(F∗,F∗)(I[a,x]) := F∗(x) en −P(F∗,F∗)(−I[a,x]) := F

∗(x)

voor alle x in [a, b]. Dan is P(F∗,F∗) een coherente onderprevisie als en

slechts als 0 ≤ F∗(x) ≤ F∗(x) ≤ F∗(b) = F∗(b) = 1 voor alle x in [a, b], en
zowel F∗ als F∗ monotoon stijgend zijn.

1.2.2 Natuurlijke uitbreiding

Definitie en voorbeelden

De natuurlijke uitbreiding, ingevoerd door Walley [86], zegt hoe een onder-

previsie uitbreidt naar een groter domein, i.e., naar een grotere verzameling

gokken, en is essentieel om besluiten te trekken omtrent systemen waarvan

de onzekerheid beschrevenwordt door onderprevisies, zoals optimaliteitsbe-

sluiten. Indien een onderprevisie zeker verlies vermijdt, dan is haar natuur-

lijke uitbreiding naar een verzameling gokken gedefinieerd als haar meest

conservatieve coherente uitbreiding naar die verzameling; in geval ze zeker

verlies oploopt, heeft ze geen enkele coherente uitbreiding (zie ook Walley

[86]). Als het domein van een onderprevisie eindig is, dan kan haar natuurlij-

ke uitbreiding berekendworden aan de hand van een lineair programma (zie

vergelijking (4.1) op blz. 96 voor details). Dit programma komt in essentie

neer op het vinden van de hoogst mogelijke aanvaardbare aankoopprijs voor

een bepaalde gok, op basis van aanvaardbare aankoopprijzen voor gokken

in het domein van de onderprevisie.

Walley [86] beschouwt enkel natuurlijke uitbreiding tot de verzameling

van alle gokken. We kunnen echter gemakkelijk aantonen dat natuurlijke

uitbreiding tot een arbitraire verzameling van gokken (die het domein van

de onderprevisie bevat) alle oorspronkelijke eigenschappen van natuurlijke

uitbreiding behoudt. Dit is het gevolg van de transitiviteit van natuurlijke uit-

breiding: een natuurlijke uitbreiding van een natuurlijke uitbreiding van een

onderprevisie is opnieuw een natuurlijke uitbreiding van een onderprevisie

(zie Corollary 4.9 op blz. 98 voor details).

Vele uitbreidingsmethoden uit de literatuur zijn speciale gevallen van na-

tuurlijke uitbreiding. Definiëren we de lineaire uitbreiding van een onderpre-
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visie als haar natuurlijke uitbreiding tot het grootst mogelijke domein waar

deze uitbreiding zelftoegevoegd is, dan heeft deze lineaire uitbreiding alle

eigenschappen van een (additieve) integraal. Dit nodigt uit tot de volgende

definitie: noem een gok P-integreerbaar indien hij behoort tot het domein van

de lineaire uitbreiding van de onderprevisie P. Dan kunnen we de volgende

nieuwe resultaten bewijzen:

• Zij µ een waarschijnlijkheidslading. Een gok is Pµ-integreerbaar als en
slechts als ze Dunford-integreerbaar is ten opzichte van µ, in welk ge-

val de natuurlijke uitbreiding van Pµ voor deze gok samenvalt met zijn

Dunford-integraal (de Dunford-integraal werd ingevoerd door Dun-

ford [31, p. 443, Sect. 3] en Dunford en Schwartz [30, Part I, Chapter III,

Definition 2.17, p. 112]). Merk echter op dat de Dunford-integraal niet

enkel gedefinieerd is voor gokken, maar ook voor mogelijk onbegrens-

de reëelwaardige functies.

• Zij µ een waarschijnlijkheidslading. De onder-S-integraal ten opzichte
van µ valt samen met de natuurlijke uitbreiding van Pµ (de S-integraal

werd ingevoerd, onder variërende voorwaarden, door Moore en Smith

[57, Section 5, p. 114, ll. 10–13], Kolmogoroff [50, Zweites Kapitel, §2,
p. 663, Nr. 12], Hildebrandt [42, Sect. 1(f), p. 869], Gould [37, Defini-

tion 4.3, p. 201, en Definition 6.1& Theorem 6.2, p. 213], en Bhaskara

Rao en Bhaskara Rao [9, Section 4.5]; wij gebruiken enkel de boven- en

onder-S-integraal zoals gedefinieerd door Bhaskara Rao en Bhaskara

Rao [9, Section 4.5]). Bijgevolg is een gok S-integreerbaar als en slechts

als hij Dunford-integreerbaar is, en vallen de twee integralen samen

op gokken (dit laatste feit was reeds bewezen op een compleet andere

manier door Bhaskara Rao en Bhaskara Rao [9, Section 4.5]).

• Riemann- en Riemann-Stieltjes-integratie zijn eveneens een bijzonder
geval vannatuurlijkeuitbreiding: de onder-Riemann-Stieltjes-integraal

ten opzichte van een coherente cumulatieve distributiefunctie F, ge-

definieerd analoog aan de manier waarop Darboux [14, Section II,

pp. 64–71] de onder-Riemann-integraal definieert (zie Hildebrandt [43,

Chapter II, pp. 27–32, in het bijzonder Definition 2.1, Definition 2.2,

Theorem 3.2 en Theorem 3.10] voor een discussie), valt samen met

de natuurlijke uitbreiding van de waarschijnlijkheidslading µF—die

gedefinieerd is op het veld (niet het σ-veld) gegenereerd door alle in-
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tervallen waarvan de indicator Riemann-Stieltjes-integreerbaar is, en

die uniek bepaald is door de identiteit µF([x, y]) = F(y) − F(x) voor
alle a ≤ x ≤ y ≤ b zodat I[x,y] Riemann-Stieltjes-integreerbaar is—als
en slechts als F in elk punt ofwel linkscontinu ofwel rechtscontinu is.

Noteer dat µF de restrictie is van de zogenaamde Lebesgue-Stieltjes-

maat (zie Halmos [40, Section 15.9]) tot het veld gegenereerd door

alle ‘Riemann-Stieltjes-integreerbare intervallen’. Het is mogelijk om

alle waarschijnlijkheidsladingen te karakteriseren waarvan de natuur-

lijke uitbreiding samenvalt met een gegeven onder-Riemann-Stieltjes-

integraal: zie Theorem 4.52 op blz. 145 voor details. Als een bijzonder

geval hiervan vermelden we dat de onder-Riemann-integraal over het

eenheidsinterval [0, 1] samenvalt met de natuurlijke uitbreiding van

de restrictie van de Lebesgue-maat tot het veld gegenereerd door alle

intervallen in [0, 1].

• Als een gevolg van het voorgaande puntje, kunnen we eveneens ge-
makkelijk bewijzen dat de natuurlijke uitbreiding van een coheren-

te cumulatieve distributiefunctie F op [a, b] samenvalt met de onder-

Riemann-Stieltjes-integraal als en slechts als F(a) = 0 en F rechtscontinu

is in elk punt van het interval [a, b).

• Eveneens als gevolg van de karakterisatie van de Riemann-integraal
als speciaal geval van natuurlijke uitbreiding, vinden we twee nieuwe

uitdrukkingen voor de Choquet-integraal (een niet-additieve integraal

voor 2-monotone verzamelingenfuncties, zie Choquet [11, Section 48.1,

p. 265] voor een algemene definitie), in termen van een Dunford-

integraal, en in termen van een S-integraal.

We vermelden eveneens een aantal belangrijke reeds gekende resultaten uit

de literatuur, betreffende 2-monotone verzamelingenfuncties en de Choquet-

integraal:

• DeChoquet-integraal van een 2-monotone verzamelingenfunctie ν valt
samen met de natuurlijke uitbreiding van Pν (Walley [85]).

• De binnenverzamelingenfunctie van een 2-monotone verzamelingen-
functie ν is 2-monotoon, en valt samen met de natuurlijke uitbreiding

van Pν tot de klasse van alle gebeurtenissen (Walley [85] en Walley [86,

Corollary 3.1.9, p. 127]).
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Al deze resultaten geven enerzijds aan hoe natuurlijke uitbreiding onder

bepaalde voorwaarden kan berekend worden met behulp van traditionele

integratietechnieken, en anderzijds hoe de theorie van de onderprevisies, en

natuurlijke uitbreiding in het bijzonder, vele gekende onzekerheidstheorie-

en (en aanverwante wiskundige modellen, zoals integralen) omvat. Dit

ondersteunt de visie op de theorie van de onderprevisies als unificerend

model. Uiteraard zijn er ook onzekerheidsmodellen die niet omvat worden

dooronderprevisies; wevermeldenhierbij als belangrijk voorbeeldhetmodel

gesuggereerd door Seidenfeld, Schervish, en Kadane [72].

Dualiteit

De natuurlijke uitbreiding van een onderprevisie valt samen met de onder-

omhullende van alle coherente previsies die haar domineren. Dit resultaat

werd bewezen door Walley [86, Sections 3.3.3&3.4.1, pp. 134–136] in geval

van natuurlijke uitbreiding tot alle gokken. We kunnen dit resultaat veral-

gemenen voor natuurlijke uitbreiding tot een kleinere verzameling gokken.

Een bijzonder interessant gevolg van deze veralgemening, is dat indien alle

gokken in het domein van een onderprevisie meetbaar zijn ten opzichte van

een veld, we de natuurlijke uitbreiding tot alle gokken kunnen schrijven als

een onderomhullende van onder-S-integralen ten opzichte van alle waar-

schijnlijkheidsladingen op dit veld waarvan de S-integraal de onderprevisie

domineert; zie Corollary 4.88 op blz. 195 voor details. Dit resulteert in een

eenvoudigere duale uitdrukking voor natuurlijke uitbreiding.

1.2.3 Cauchy-uitbreiding

Er is één welbekende interessante uitbreidingstechniek, ontwikkeld door

Dunford [31] in integraaltheorie, die niet door natuurlijke uitbreiding ge-

dekt wordt. Deze uitbreidingstechniek verdient onze aandacht omdat hij

uitbreidt tot reëelwaardige functies die niet noodzakelijk begrensd zijn. Vele

problemen in regeltheorie vereisen de behandeling van onbegrensde reële

veranderlijken: bijvoorbeeld, een kwadratische kostenfunctie is onbegrensd

als functie van de toestand en de regeling van het systeem. Daarwij optimale

regeling op het oog hebben, dringt een studie van onbegrensde veranderlij-

ken zich op. De uitbreiding van Dunford’s idee (oorspronkelijk ontworpen

ter uitbreiding van integralen tot onbegrensde functies, en gebaseerd op
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Cauchy-rijen) tot onderprevisies laten we achterwege in deze samenvatting,

en we beperken ons tot een losse formulering van de belangrijkste resultaten

van deze studie:

• De theorie van de onderprevisies kanworden uitgebreid tot supremum
aankoopprijzen voor reëelwaardige functies die niet noodzakelijk be-

grensd zijn, als we ook −∞ en +∞ als mogelijke supremum aankoop-
prijs beschouwen (−∞ betekent nooit aankopen ongeacht de prijs, en
+∞ betekent altijd aankopen ongeacht de prijs). Een afbeelding van
een verzameling reëelwaardige functies tot supremum aankoopprijzen

noemen we een veralgemeende onderprevisie. De begrippen ‘zeker

verlies vermijden’, ‘coherentie’, en ‘natuurlijke uitbreiding’ veralgeme-

nen op een bijna voor de hand liggende wijze. Het dualiteitsresultaat,

i.e., natuurlijke uitbreiding als onderomhullende van veralgemeende

previsies, veralgemeent slechts in beperkte mate: technische beperkin-

gen op het domein van de veralgemeende onderprevisies zijn vereist.

• De natuurlijke uitbreiding van een onderprevisie tot een veralgemeen-
de onderprevisie neemt dewaarde −∞ aan op elke reëelwaardige func-
tie die onbegrensd is naar onder. Dat betekent dat de natuurlijke uit-

breiding heel erg conservatief is: op basis van natuurlijke uitbreiding

zijn we nooit bereid een reëelwaardige functie aan te kopen die onbe-

grensd is naar onder, ongeacht de prijs.

• De uitbreiding van een onderprevisie tot een veralgemeende onder-
previsie met behulp van Cauchy-rijen (en die we daarom de Cauchy-

uitbreiding noemen) is een reëelwaardige coherente veralgemeende on-

derprevisie, en is niet even conservatief als de natuurlijke uitbreiding.

• De Cauchy-uitbreiding valt samen met de Choquet-integraal voor on-
begrensde veranderlijken, in het geval we vertrekken van een 2-mono-

tone verzamelingenfunctie.

• In het algemeen geval, kan de Cauchy-uitbreiding geschreven wor-
den als een onderomhullende van Dunford-integralen (naar analogie

met de onderomhullende van onder-S-integralen in geval van gewone

natuurlijke uitbreiding).
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1.2.4 Optimaliteit

Beschouw een statisch systeem, waaropwe een regeling a kunnen toepassen,

vrij te kiezenuit een verzamelingAvanbeschikbare regelingen. Elke regeling

a in A induceert een reëelwaardige winst Ja. Vaak worden de winsten Ja be-

invloeddoor veranderlijkendie niet goedgekendzijn. Inde onderstellingdat

we deze veranderlijken kunnenmodelleren door een toevallige veranderlijke

X, beschouwen we de winsten Ja dus als een reëelwaardige functie van X.

Een traditionele manier om optimaliteit te definiëren, in geval we onze-

ker zijn over de winst van een systeem, bestaat erin alle onzekerheden te

modelleren aan de hand van een waarschijnlijkheidsverdeling op X, en de

verwachte winst te maximaliseren. Deze aanpak leidt onder andere tot de

volgende problemen:

• Ongeacht de waarschijnlijkheidsverdeling, vinden we bijna altijd een
unieke optimale regeling, wat verwonderlijk is in geval we weinig

informatie hebben: maximaliseren van verwachte winst kan geen on-

beslistheid modelleren.

• Indien het niet duidelijk is hoe we een waarschijnlijkheidsverdeling
kunnen opstellen op basis van de gegevens, dan kan onze uiteindelijke

(en noodzakelijkerwijs arbitraire) keuze van deze verdeling een on-

identificeerbaar effect hebben op wat we optimaal noemen: het maxi-

maliseren van verwachte winst omvat geen robuustheid.

• Het maximaliseren van verwachte winst reflecteert niet noodzakelij-
kerwijs de symmetrie van het oorspronkelijke probleem, tenzij we

ons beperken tot een waarschijnlijkheidsverdeling die deze symmetrie

heeft. Helaas is er vaak geen waarschijnlijkheidsverdeling die zowel

de symmetrie van het probleem als de gegeven informatie reflecteert.

Beschouw bijvoorbeeld eenmuntstuk, waarvanwe enkel weten dat het

kop of munt kan vallen. De gegeven informatie is symmetrisch wat be-

treft kop en munt, en de enige verdeling die deze symmetrie reflecteert

is p(kop) = p(munt) = 12 . Deze verdeling weerspiegelt niet de gegeven

informatie, die niets zegt over de waarschijnlijkheid van kop en munt.

In deze paragraaf geven we een overzicht van de belangrijkste noties van

optimaliteit die we kunnen associëren met onderprevisies, om alternatieven
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te vinden die aan bovenstaande argumenten weerstaan. Om deze verschil-

lende noties met elkaar te kunnen vergelijken, veronderstellen we dat P een

reëelwaardige coherente veralgemeende onderprevisie is, gedefinieerd op

een lineaire tralie die op zijn minst de verzameling van alle constante gokken

en alle winsten Ja, a ∈ A, bevat. Het domein van P voorzien we van de topo-
logie bepaald door het volgende convergentiecriterium: we zeggen dat een

rij fn in het domein van P convergeert naar een element f in het domein van

P, indien fn(x) naar f (x) convergeert voor alle mogelijke waarden x van X, en

P(| fn − f |) naar nul convergeert. Noteer dat deze topologie een combinatie
is van de zwakke topologie en de topologie geı̈nduceerd door de semi-norm

P(|•|). De verzameling van alle veralgemeende previsies op het domein vanP
die P puntsgewijs domineren noteren we doorM: uit voorgaande resultaten
volgt datM niet-leeg, convex, en compact is ten opzichte van de topologie
van puntsgewijze convergentie op leden van het domein vanP, en bovendien

is P precies de onderomhullende vanM: P( f ) = minQ∈MQ( f ) (het minimum
wordt bereikt precies wegens de compactheid van M ten opzichte van de
topologie van puntsgewijze convergentie op leden van het domein van P).

P-maximaliteit

Dit criterium, ingevoerd door Walley [86, Section 3.9.2, p. 161], is gebaseerd

op paarsgewijze keuze. Voor twee regelingen a en b in A zeggen we dat we a

strikt verkiezen boven b, en we schrijven a >P b, indien P(Ja − Jb) > 0, of indien
Ja ≥ Jb en Ja , Jb. De eerste voorwaarde betekent dat we bereid zijn een strikt
positieve prijs te betalen om de winst Ja te krijgen en Jb te verliezen, wat

duidelijk wijst op een strikte voorkeur voor a ten opzichte van b. Anderzijds,

als Ja ≥ Jb en Ja , Jb, dan resulteert a in een hogere winst dan b, en daarom
zullen we ook in dat geval a strikt verkiezen boven b.

De relatie >P is een strikte partiële ordening, en er is veelal geen grootste

element in A ten opzichte van >P. In plaats van op zoek te gaan naar een

grootste element, gaan we dus beter op zoek naar ongedomineerde elemen-

ten: we noemen een regeling a P-maximaal in A indien er geen regeling in

A is die we strikt verkiezen boven a: max>P (A) = {a ∈ A : (∀b ∈ A)(a≮Pb)}.
Het bestaan van P-maximale elementen is gegarandeerd indien {Ja : a ∈ A}
compact is.
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M-maximaliteit

M-maximaliteit is een speciaal geval van wat Levi E-admissibiliteit noemt
[54, Section 4.8], en kan gezien worden als een robuuste versie van het maxi-

maliseren van verwachte winst: we noemen een regelingM-maximaal indien
ze Q-maximaal is voor minstens één Q inM.
Als we M interpreteren als een verzameling van mogelijke verwach-

tingsoperatoren—maar we weten niet precies welk model inM het correcte
is—dan selecteertM-maximaliteit precies die regelingen die maximaal zijn
onder één van de mogelijke modellen Q inM.
Deze notie van optimaliteit valt samen met P-maximaliteit indien A niet

meer dan twee elementen bevat, of indien de verzameling van alle win-

sten {Ja : a ∈ A} convex is. In het algemeen is de verzamelingM-maximale
regelingen een deel van de verzameling P-maximale regelingen.

P-maximin en P-maximax

Nog een populaire veralgemening van het maximaliseren van verwachte

winst bestaat uit het ordenen van regelingen volgens de onderprevisie (of

bovenprevisie) van hun winsten: noem een regeling P-maximin in A als ze

maximaal is ten opzichte van de ordening ⊐P gedefinieerd door a ⊐P b indien

P(Ja) > P(Jb), of indien Ja ≥ Jb en Ja , Jb. We noemen een regeling P-maximax
in A als ze maximaal is ten opzichte van de ordening ⊐P gedefinieerd door

a ⊐P b indien P(Ja) > P(Jb), of indien Ja ≥ Jb en Ja , Jb.
Een axiomatische studie van P-maximin werd gegeven door Gilboa en

Schmeidler [34].

Het is welbekend dat P-maximin en P-maximax regelingen eveneens P-

maximaal zijn. P-maximin regelingen zijn niet noodzakelijk M-maximaal,
maar P-maximax regelingen wel.

Intervaldominantie en zwakke P-maximaliteit

Een laatste veralgemening die we vermelden bestaat uit het ordenen van

regelingen op de volgende manier: noem een regeling zwak P-maximaal in A

als ze maximaal is ten opzichte van de ordening ⊃P gedefinieerd door a ⊃P b
indien P(Ja) > P(Jb), of indien Ja ≥ Jb en Ja , Jb.
De ongelijkheid P(Ja) > P(Jb) wordt ook wel intervaldominantie genoemd:

ze zegt dat het interval [P(Ja),P(Ja)] volledig rechts van [P(Jb),P(Jb)] ligt. Zoals
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de naam reeds doet vermoeden is zwakke P-maximaliteit zwakker dan P-

maximaliteit: elke P-maximale regeling is eveneens zwak P-maximaal.

Verbanden en belangrijkste eigenschappen

• In het algemeen gelden de volgende implicaties:

P-maximax P-maximin

M-maximaal P-maximaal

zwak P-maximaal

?

HHHHHHj ?
-

HHHHHHj ?

• Als P zelftoegevoegd is, dan is M = {P}, en alle optimaliteitscriteria
vallen samen met het maximaliseren van de verwachte winst (als we P

als verwachtingsoperator beschouwen):

P-maximax P-maximin

M-maximaal P-maximaal

zwak P-maximaal

?

HHHHHHj ?

6

-
HHHHHHj

HHHHHHY 6

�

?

6

HHHHHHY

• Alle criteria afgeleid uit paarsgewijze voorkeur (i.e., P-maximaliteit,
zwakke P-maximaliteit, P-maximin, en P-maximax) voldoen aan de

volgende eigenschap: als {Ja : a ∈ A} compact is, dan is er voor elke
niet-optimale regeling a een optimale regeling b zodat b strikt verkozen

wordt boven a. We zullen later zien dat deze eigenschap cruciaal is ter

veralgemening van dynamisch programmeren.

• Voor al deze criteria, behalve voor P-maximin en P-maximax, geldt: als
P puntsgewijs gedomineerd wordt door Q, dan impliceert optimaliteit

ten opzichte van Q eveneens optimaliteit ten opzichte van P. Dus,
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Figuur 1.1: Het optimaliteitsprincipe

hoe sterker onze disposities, i.e., hoe hoger onze aankoopprijzen, hoe

kleiner onze verzameling optimale regelingen, en dus, hoe éénduidiger

onze optimale beslissingen bepaald zijn. P-maximin enP-maximax vol-

doen hier niet aan: ze impliceren een duidelijke, vaak zelfs éénduidige

beslissing, zelfs als onze aankoopprijzen zeer laag zijn. Net zoals bij

het maximaliseren van verwachte winst, falen zij in het modelleren van

onbeslistheid.

1.3 Dynamisch programmeren

In deze paragraaf, beantwoorden we de tweede grote vraag van dit proef-

schrift: we onderzoeken inwelkemate dynamisch programmeren kan toege-

past worden op dynamische discretetijdssystemen waarvan de onzekerheid

omtrent winst en dynamica beschreven wordt door onderprevisies.

1.3.1 Het deterministische geval met onzekere winst

In geval enkel de winst onzeker is, kunnen we, in het algemeen, dynamisch

programmeren enkel gebruiken om P-maximale en M-maximale paden te
vinden (zie De Cooman en Troffaes [24, 23]). Eerst beschrijven we wat dyna-

misch programmeren precies inhoudt, en dan onderzoeken we onder welke

voorwaarden dit algoritme kan toegepast worden, en voor welke noties van

optimaliteit deze voorwaarden voldaan zijn.

Inleiding

Dynamisch programmeren is een efficiënte recursieve methode om optimale

paden van een systeem te bepalen, en werd ontworpen door Bellman [4]. De

werking vanhet algoritme is gebaseerd ophet optimaliteitsprincipe. Laat ons

dit principe uitleggen aan de hand van Figuren 1.1 en 1.2. Figuur 1.1 schetst
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Figuur 1.2: Dynamisch programmeren

een systeemdat op driemanieren van toestand a naar toestand c, via toestand

b, kan evolueren: via de paden αβ, αγ, of αδ. De winsten geassocieerd

met elk van deze paden noteren we door Jαβ, Jαγ, en Jαδ respectievelijk.

Onderstel dat αγ optimaal is: dus Jαγ > Jαβ en Jαγ > Jαδ. Dan volgt dat pad

γ optimaal is om van b naar c te gaan. Inderdaad, daar Jαν = Jα + Jν voor

ν ∈ {β, γ, δ} (we onderstellen dat winsten additief zijn langs paden) kunnen
we uit bovenstaande ongelijkheden afleiden dat Jγ > Jβ en Jγ > Jδ. Deze

eenvoudige observatie, die Bellman het optimaliteitsprincipe noemde, vormt

de basis voor de recursieve techniek van dynamisch programmeren.

Om te zien hoe dit in zijn werk gaat, beschouw Figuur 1.2. Onderstel

dat we een optimale weg om van a naar e te gaan willen vinden. Na één

tijdstap, kunnen we de toestanden b, c, en d bereiken vanuit a, en de optimale

paden vanuit deze toestanden naar de finale toestand e zijn gekend: α, γ en

η, respectievelijk. Om nu de optimale paden van a naar e te vinden, moeten

we enkel de winsten Jλ + Jα, Jµ + Jγ, en Jν + Jη van de optimale paden λα, µγ,

en νη vergelijken, gezien het optimaliteitsprincipe zegt dat de paden λβ, νδ,

en νǫ niet optimaal kunnen zijn: waren ze dat toch, dan zouden ook β, δ, en

ǫ optimaal moeten zijn. Deze observatie, is wat in essentie gekend is als de

Bellman-vergelijking, en stelt ons in staat een regelprobleem behoorlijk effici-

ent op te lossen aan de hand van een recursieve procedure, door achterwaarts

de optimale paden te berekenen vanuit de finale toestand.

Uiteraard gebeurt het vaak dat de winst onzeker is. Het is gebruikelijk

deze onzekerheid temodelleren aan de hand van eenwaarschijnlijkheidsver-

deling, en de verwachte winst te maximaliseren. Dynamisch programmeren

blijft dan nog steeds mogelijk, ten gevolge van de lineariteit van de verwach-

tingsoperator. We hebben echter reeds betoogd dat deze weg in sommige
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situaties niet tot de gewenste resultaten leidt. De vraag rijst dus of dynamisch

programmeren ook kan toegepast worden als we de onzekerheid, en dus ook

optimaliteit, beschrijven aan de hand van onderprevisies, die, zoals we even-

eens reeds betoogd hebben, de klassieke aanpak veralgemenen tot situaties

waar we te weinig informatie hebben om een verdeling te identificeren.

Op dit punt merken we op dat ook andere auteurs, zoals Satia en Lave

[68], White en Eldeib [90], Givan, Leach, en Dean [36], en Harmanec [41],

dynamisch programmeren veralgemeend hebben tot systemen met onzeke-

re winst en/of onzekere dynamica, waar onzekerheid gemodelleerd wordt

door onderprevisies (of, wat min of meer equivalent is, verzamelingen van

waarschijnlijkheidsverdelingen). Maar geen van deze auteurs vraagt zich af

in welke zin hun veralgemeende methoden tot optimale paden leidt. Wij be-

naderen het probleem vanuit een ander perspectief: we definiëren eerst een

notie vanoptimaliteit, enpasdanonderzoekenweofdynamischprogramme-

ren mogelijk is, in plaats van blindweg Bellman’s algoritme te veralgemenen

zonder aan te tonen in welke zin de gevonden paden optimaal zijn.

Discretetijdssystemen

Dynamica Voor a en b inN, noterenwe de verzameling van alle natuurlijke

getallen c die voldoen aan a ≤ c ≤ b als [a, b]. De vergelijking xk+1 = f (xk,uk, k)
beschrijft een discretetijdssysteem met k ∈ N, xk ∈ X, en uk ∈ U. De ver-
zameling X is de toestandsruimte, en U is de regelruimte De afbeelding
f : X×U ×N→ X beschrijft de evolutie van de toestand in de tijd: gegeven
toestand xk ∈ X en regeling uk ∈ U op tijdstip k ∈ N, geeft f (xk,uk, k) de
volgende toestand xk+1 van het systeem. We leggen een eindtijd N op: na

dit tijdstip zijn we niet meer geı̈nteresseerd in de dynamica van het systeem.

Het mag eveneens voorkomen dat niet alle toestanden en regelingen toege-

staan zijn op alle tijdstippen: we eisen dat xk behoort tot de verzameling van

toegestane toestanden Xk voor elk tijdstip k ∈ [0,N], en dat uk behoort tot
de verzameling van toegestane regelingenUk voor elk tijdstip k ∈ [0,N − 1],
waar Xk ⊆ X enUk ⊆ U uiteraard gegeven zijn.

Paden Een pad is een triplet (x, k,u•), waar x ∈ X een toestand is, k ∈ [0,N]
een tijdstip, en u• : [k,N − 1] → U een rij van regelingen. Deze gegevens
bepalen een uniek toestandstraject x• : [k,N] → X, recursief gedefinieerd
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door xk = x en xℓ+1 = f (xℓ,uℓ, ℓ) voor elke ℓ ∈ [k,N − 1]. Een pad is toelaatbaar
als xℓ ∈ Xℓ voor elke ℓ ∈ [k,N], en uℓ ∈ Uℓ voor elke ℓ ∈ [k,N − 1]. De unieke
afbeelding van de lege verzameling naar U noteren we als u∅. Als k = N,
dan doet u• niets, en is gelijk aan u∅. Het unieke pad dat vertrekt en eindigt

in toestand x op tijdstip k = N kunnen we dan noteren als (x,N,u∅).

De verzameling toelaatbare paden vanuit toestand x ∈ X op tijdstip k ∈
[0,N] noteren we als U(x, k). Bijvoorbeeld, U(x,N) = {(x,N,u∅)} als x ∈ XN,
enU(x,N) = ∅ in het andere geval.
We kunnen ook paden beschouwen met eindtijd M verschillend van N,

en we noteren die als (x, k,u•)M (in de onderstelling dat k ≤ M ≤ N). We
kunnen (x, k,u•)k identificeren met (x, k,u∅)k: het unieke pad, lengte nul, dat

op tijdstip k start en eindigt in x. Zij 0 ≤ k ≤ ℓ ≤ m. We kunnen twee paden
(x, k,u•)ℓ en (y, ℓ, v•)m aaneenschakelen als y = xℓ, en deze aaneenschakeling

noteren we als (x, k,u•, ℓ, v•)m of als (x, k,u•)ℓ ⊕ (y, ℓ, v•)m.
De verzameling van alle toelaatbare paden die vanuit x vertrekken op

tijdstip k en eindigen op tijdstip ℓ ∈ [k,N], noteren we alsU(x, k)ℓ. Voor een
pad (x, k,u•)ℓ ∈ U(x, k)ℓ en een verzameling padenV ⊆ U(xℓ, ℓ), noteren we
ook (x, k,u•)ℓ ⊕V = {(x, k,u•)ℓ ⊕ (xℓ, ℓ, v•) : (xℓ, ℓ, v•) ∈ V}.

Winstfuncties Het toepassen van regeling u ∈ U op het systeem in toe-
stand x ∈ X op tijdstip k ∈ [0,N − 1], resulteert in een reëelwaardige winst
g(x,u, k, ω). Bereiken we de toestand x ∈ X op het eindtijdstip N, dan krijgen
we eveneens een winst, gegeven door h(x, ω). De parameter ω verzamelt alle

veranderlijken die de winst beı̈nvloeden. Kenden we de exacte waarde van

ω, dan zouden we eveneens de exacte waarde van de winsten kennen. De

waarde vanω is echter onzeker, en dus beschouwenweω als de uitkomst van

een toevallige veranderlijkeΩ die waarden aanneemt in een verzamelingΩΩΩ.

De winsten zijn dus eveneens onzeker, en we beschouwen ze als reëelwaar-

dige functies van Ω. Het is belangrijk op te merken dat Ω enkel de winsten

beı̈nvloedt, en geen effect heeft op de systeemdynamica. We onderstellen

ook dat onze kennis over Ω niet beı̈nvloed wordt door de begintoestand

van het systeem, of de regelingen die we erop uitoefenen—dit noemt men

actie-kennisonafhankelijkheid.

We zullen eveneens enkel het belangrijke geval beschouwen waar de

winstfuncties additief zijn langs paden van het systeem: aan het pad (x, k,u•)

koppelen we een winstfunctie J(x, k,u•, ω) =
∑N−1
i=k g(xi,ui, i, ω) + h(xN, ω),
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voor elke ω ∈ ΩΩΩ. Als M < N, dan definiëren we eveneens J(x, k,u•, ω)M =
∑M−1
i=k g(xi,ui, i, ω). Aande lege regelingkoppelenwewinst nul: wedefiniëren

J(x, k,u•, ω)k = 0, voor éénder welk tijdstip k.

Gegeven een systeem in initiële toestand x ∈ X op tijdstip k ∈ [0,N],
kunnen we een regeling u• : [k,N − 1] → U vinden, die resulteert in een
toelaatbaar pad (x, k,u•), en zodat de winstfunctie J(x, k,u•, ω) optimaal is?

Is ω gekend, dan reduceert dit probleem zich tot een klassiek regelpro-

bleem, en kan opgelost worden met behulp van dynamisch programmeren.

We onderstellen hier dat de beschikbare kennis over Ω gemodelleerd wordt

aan de hand van een coherente veralgemeende onderprevisie P gedefiniëerd

op een voldoend grote verzameling domP van reëelwaardige functies opΩ.

Noteer dat voor een gegeven pad (x, k,u•), de winstfunctie J(x, k,u•, ω)

gezien kan worden als een reëelwaardige afbeelding op ΩΩΩ, die we noteren

als J(x, k,u•). Er geldt dat J(x, k,u•, ℓ, v•)m = J(x, k,u•)ℓ + J(xℓ, ℓ, v•)m voor k ≤
ℓ ≤ m ≤ N, en J(x, k,u•)k = 0. We definiëren eveneens de verzamelingJ(x, k)
van alle winstfuncties gekoppeld aan toelaatbare paden vanuit x ∈ Xk op
tijdstip k ∈ [0,N]: J(x, k) = {J(x, k,u•) : (x, k,u•) ∈ U(x, k)}. Dus onderstellen
we dat P een reëelwaardige coherente veralgemeende onderprevisie is, en

dat domP een lineaire tralie is die op zijn minst alle constante gokken bevat,

en alle winstfuncties g(xk,uk, k) en h(xN), voor alle k ∈ [0,N − 1], alle xk in Xk,
alle uk in Uk, en alle xN in XN. Het domein domP van P kunnen we dan
voorzien van de topologie beschreven in paragraaf 1.2.4.

Voorwaarden voor dynamisch programmeren onder een algemene notie

van optimaliteit

In paragraaf 1.2.4, hebbenwe vijf verschillendemanieren beschrevenwaarop

we met een onderprevisie een optimaal pad—een pad is een actie in de con-

text van dynamische systemen—kunnen associëren. We zoeken nu uit, voor

welke van deze verschillende types optimaliteit, we dynamisch programme-

renmogen toepassen ter oplossing van het corresponderende regelprobleem.

Laat ons daartoe Bellman’s analyse iets nauwkeuriger onderzoeken, en

uitvissen aanwelke eigenschappen een generieke notie van optimaliteitmoet

voldoen, om dynamisch programmeren mogelijk te maken. Beschouw een

eigenschap, genaamd ∗-optimaliteit, die een pad in een gegeven verzame-
ling P van paden ofwel heeft, ofwel niet heeft. Indien een pad in P deze
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Figuur 1.3: Een algemenere vorm van dynamisch programmeren

eigenschap heeft, dan zeggen we dat het ∗-optimaal is in P. We noteren de
verzameling van ∗-optimale elementen van P door opt∗ (P). Per definitie
geldt dat opt∗ (P) ⊆ P. Verderop zullen we onze bevindingen toepassen op
de reeds beschreven concrete optimaleitsnoties.

Het optimaliteitsprincipe Beschouw Figuur 1.3. We willen de ∗-optimale
paden van a naar e bepalen. Na één tijdstap kunnen we de toestanden

b, c, en d bereiken vanuit a. De ∗-optimale paden vanuit deze toestanden
zijn α, γ, en δ en η, respectievelijk. Opdat Bellman’s algoritme zou wer-

ken, moeten de ∗-optimale paden vanuit a naar e, a priori gegeven door
opt∗

({λα, λβ, µγ, νδ, νǫ, νη}), ook gegeven zijn door opt∗
({λα, µγ, νδ, νη}), i.e.,

de ∗-optimale paden in de verzameling van aaneenschakelingen van λ, µ, en
νmet de respectieve ∗-optimale paden α, γ, en δ en η. Wemoeten dus uitslui-
ten dat de aaneenschakelingen λβ en νǫ met de niet-∗-optimale paden β en
ǫ ∗-optimaal kunnen zijn. Dit komt neer op de vereiste dat de operator opt∗
aan een veralgemening van Bellman’s optimaliteitsprincipe moet voldoen,

en ons zodoende doet besluiten dat als β en ǫ niet ∗-optimaal zijn, dan λβ en
νǫ eveneens niet ∗-optimaal. Concreet zeggen we dat ∗-optimaliteit voldoet
aan het optimaliteitsprincipe indien voor alle k ∈ [0,N], x ∈ Xk, ℓ ∈ [k,N], en
(x, k,u•) ∈ U(x, k) de volgende implicatie geldt: als (x, k,u•) ∗-optimaal is
in U(x, k), dan is (xℓ, ℓ,u•) ∗-optimaal in U(xℓ, ℓ). Dit kan ook geschreven
worden als:

opt∗ (U(x, k)) ⊆
⋃

(x,k,u•)ℓ∈U(x,k)ℓ
(x, k,u•)ℓ ⊕ opt∗ (U(xℓ, ℓ)) .
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De Bellman-vergelijking zegt dat we gelijkheid krijgen als we de ∗-op-
timaliteitsoperator laten inwerken op het rechterlid. Dit wordt normaal

geformuleerd met ℓ = k + 1. Echter, en dit misschien tot de grote verwonde-

ring voor lezers die vertrouwd zijn met de traditionele vorm van dynamisch

programmeren, hiertoe moet opt∗ aan nog een eigenschap voldoen.

Ongevoeligheid voor het weglaten van niet-optimale paden Inderdaad,

het weglaten van de niet-∗-optimale paden λβ en νǫ uit de verzameling
van kandidaat ∗-optimale paden mag geen effect hebben op de uiteindelijke
verzameling ∗-optimale paden: er moet gelden dat

opt∗
({λα, λβ, µγ, νδ, νǫ, νη}) = opt∗

({λα, µγ, νδ, νη}) .

Dit is uiteraard voldaan voor de traditionele vorm van optimaliteit—maxi-

maliseren van verwachte winst—maar dit hoeft niet voldaan te zijn voor de

meer abstracte types optimaliteit die we zullen beschouwen. De gelijkheid

is gegarandeerd als opt∗ ongevoelig is voor het weglaten van niet-∗-optimale
elementen uit {λα, λβ, µγ, νδ, νǫ, νη}, in de volgende zin: beschouw een niet-
lege verzameling S en een optimaliteitsoperator opt∗ gedefinieerd op de ver-

zameling ℘(S) van deelverzamelingen van S zodat opt∗ (T) ⊆ T voor alle
T ⊆ S. Dan noemen we opt∗ ongevoelig voor het weglaten van niet-∗-optimale
elementen van S indien opt∗ (S) = opt∗ (T) voor alle T zodat opt∗ (S) ⊆ T ⊆ S.
In geval ∗-optimaliteit geassocieerd is met een (familie van) strikt partiële

ordening(en), dan is aan deze voorwaarde voldaan indien elk niet-∗-optimaal
pad gedomineerd wordt door een optimaal pad. Concreet, zij S een niet-lege

verzameling voorzien van een familie strikte partiële ordeningen > j, j ∈ J.
Definieer voor elke T ⊆ S de verzameling opt> j (T) :=

{

a ∈ T : (∀b ∈ T)(b 6> j a)
}

als de verzameling van maximale elementen van T ten opzichte van > j, en

zij optJ (T) :=
⋃

j∈J opt> j (T), en noem elementen van deze verzameling J-

optimaal in T. Dan zijn opt> j , j ∈ J en optJ optimaliteitsoperatoren. Boven-
dien, als voor j ∈ J

(∀a ∈ S \ opt> j (S))(∃b ∈ opt> j (S))(b > j a), (1.1)

dan is opt> j ongevoelig voor het weglaten van niet-> j-maximale elemen-

ten van S. Als bovenstaande eigenschap geldt voor alle j ∈ J, dan is optJ
ongevoelig voor het weglaten van niet-J-optimale elementen van S.
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De veralgemeende Bellman-vergelijking Zij k ∈ [0,N] en x ∈ Xk. Indien ∗-
optimaliteit voldoet aan het optimaliteitsprincipe, en indien opt∗ ongevoelig

is voor het weglaten van niet-∗-optimale elementen vanU(x, k), dan kunnen
we aantonen dat voor alle ℓ ∈ [k,N] geldt dat

opt∗ (U(x, k)) = opt∗

















⋃

(x,k,u)ℓ∈U(x,k)ℓ
(x, k,u)ℓ ⊕ opt∗ (U(xℓ, ℓ))

















,

dus, in dat geval is een pad ∗-optimaal als en slechts als ze een ∗-optimale
aaneenschakeling is van een toelaatbaar pad (x, k,u•)ℓ en een ∗-optimaal pad
inU(xℓ, ℓ).
Laat ons nu deze algemene resultaten toepassen op de concrete types

optimaliteit die we reeds behandeld hebben. Voor alle vijf optimaliteitsope-

ratoren opt>P , optM, opt⊐P , opt⊐P
, en opt⊃P , gaan we na of we de Bellman-

vergelijking kunnen gebruiken ter oplossing van het corresponderende re-

gelprobleem.

Onderzoek van de voorwaarden voor dynamisch programmeren bij een

aantal concrete vormen van optimaliteit

P-maximaliteit We beschouwen eerst de optimaliteitsoperator opt>P die uit

een verzameling paden, die paden selecteert, die maximaal zijn ten opzich-

te van de strikt partiële ordening >P. Merk eerst en vooral op dat >P een

vectorordening is op domP: als f >P g, dan f + h >P g + h, voor eender

welke reëelwaardige functies f , g, en h in domP. Uitgaande van deze ob-

servatie, is het is eenvoudig aan te tonen dat P-maximaliteit voldoet aan het

optimaliteitsprincipe.

In paragraaf 1.2.4 hebben we reeds vermeld dat alsJ(x, k) compact is, elk
niet-P-maximaal element inJ(x, k) gedomineerdwordt door eenP-maximaal
element in J(x, k), of wat equivalent is, elk niet-P-maximaal pad in U(x, k)
gedomineerd wordt door een P-maximaal pad inU(x, k). Bijgevolg, wegens
een eigenschap die we eveneens reeds vermeld hebben bij de behandeling

van ongevoeligheid voor het weglaten van niet-∗-optimale elementen, volgt
dat als J(x, k) compact is, dan is opt>P ongevoelig voor het weglaten van
niet-P-maximale paden vanU(x, k).
We besluiten: zij k ∈ [0,N] en x ∈ Xk, en onderstel dat J(x, k) compact is,
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dan geldt voor alle ℓ ∈ [k,N] dat

opt>P (U(x, k)) = opt>P

















⋃

(x,k,u)ℓ∈U(x,k)ℓ
(x, k,u)ℓ ⊕ opt>P (U(xℓ, ℓ))

















.

Deze Bellman-vergelijking voor P-maximaliteit resulteert in een recur-

sieve methode om alle P-maximale paden te bepalen. Inderdaad, neem

opt>P (U(x,N)) = {u∅} voor elke x ∈ XN, en opt>P (U(x, k)) kan recursief be-
paald worden uit de Bellman-vergelijking. Noteer dat deze vergelijking ook

eenmethode geeft ter constructie van een P-maximale terugkoppelwet: voor

elke x ∈ Xk, kies éénder welke (x, k,u∗•(x, k)) ∈ opt>P (U(x, k)). Dan realiseert
φ(x, k) = u∗

k
(x, k) een P-maximale terugkoppelwet.

M-maximaliteit Gelijkaardige overwegingen leiden tot het volgende be-
sluit: de optimaliteitsoperator optM voldoet aan het optimaliteitsprincipe,

en als J(x, k) compact is, dan is optM ongevoelig voor het weglaten van
niet-M-maximale paden van U(x, k). Bijgevolg kunnen we ook voor M-
maximaliteit een Bellman-vergelijking neerschrijven.

P-maximin, P-maximax, en zwakke P-maximaliteit Als J(x, k) compact
is, dan is de optimaliteitsoperator opt⊐P ongevoelig voor het weglaten van

niet-P-maximin paden vanU(x, k), en gelijkaardige observaties gelden voor
opt⊐P

en opt⊃P . Maar helaas, zoals met tegenvoorbeelden kan aangetoond

worden, geldt het optimaliteitsprincipe noch voor P-maximin, noch voor

P-maximax, noch voor zwakke P-maximaliteit. Bijgevolg vinden we geen

Bellman-vergelijking. In essentie, komt dit omdat de strikt partiële ordenin-

gen ⊐P, ⊐P, en ⊃P geen vectorordeningen zijn—ze zijn niet verenigbaar met
de additiviteit van winstfuncties langs paden.

Dit toont ook aan dat de Bellman-vergelijking voorgesteld door Harma-

nec [41], op basis van zwakke P-maximaliteit, niet noodzakelijk tot zwak-P-

maximale paden leidt.

Toepassing: het aligneren van genetische sequenties onder onzekere evo-

lutionaire afstand

Het aligneren van genetische sequenties is een veel gebruikte techniek (zie

bijvoorbeeld Mount [58]). Om maar een paar voorbeelden te geven, aan de
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hand van het aligneren van sequenties kunnen we de evolutionaire relatie

tussen soorten bepalen, en evolutionaire bomen reconstrueren. Een aligne-

ring kan ook functionele gebieden in genetische sequenties onthullen, wat op

zijn beurt kan leiden tot nieuwe geneesmiddelen, of kan helpen te beslissen

welke behandeling het meest geschikt is voor een bepaalde patiënt met een

wel bepaald genotype. Het aligneren van genetische sequenties wordt ook

gebruikt ter voorspelling van structurele en biochemische eigenschappen

van de sequenties zelf.

Het aligneringsprobleem wordt over het algemeen geformuleerd als een

optimalisatieprobleem: positieve scores worden toegekend aan goede over-

eenkomsten, en negatieve scores aan slechte overeenkomsten en gaten. Deze

scores worden samengevat inwat een scorematrix genoemdwordt. Wewillen

dan die alignering vinden met de grootste totale score. Deze aanpak heeft

twee voordelen: (i) het stelt ons in staat op een objectieve manier de beste

alignering te vinden uit alle mogelijke aligneringen, en (ii) de hoogste score,

die correspondeert met de beste alignering, geeft ons een objectieve kwali-

teitsmaat voor deze alignering. Needleman en Wunsch [60] ontwikkelden

een efficiënt dynamisch programmeeralgorithme ter alignering van paren

van genetische sequenties.

De alignering hangt natuurlijk sterk af van de keuze van de scorematrix:

hoe moeten we goede overeenkomsten belonen, en slechte overeenkomsten

en gaten straffen? In de praktijk zijn er een hele resem scorematrices in

omloop, en de precieze keuze van de scorematrix hangt af van extra onder-

stellingen omtrent de bestudeerde genetische sequenties. Bijvoorbeeld, als

we PAM scorematrices gebruiken, die geı̈ntroduceerd werden door Dayhoff,

Schwartz, enOrcutt [15], enwaartoewij ons zullen beperken, danmaaktmen

de volgende—op het eerste gezicht ongetwijfeld absurde—onderstellingen:

• de evolutionaire afstand van de sequenties tot hun dichtste gemeen-
schappelijke voorouder is gekend,

• evolutie is in evenwicht,

• in dit evenwichtspunt is er evolutionaire omkeerbaarheid—eenderwel-
ke puntmutatie is even waarschijnlijk als haar inverse mutatie,

• puntmutaties op verschillende locaties in een sequentie zijn identiek en
onafhankelijk verdeeld, en
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• puntmutaties op verschillende tijdstippen zijn identiek en onafhanke-
lijk verdeeld.

Verschillende evolutionaire afstanden T induceren dan verschillende score-

matrices PAM(T). Uiteraard zijn bovenstaande onderstellingen niet courant:

veel onderzoek is gewijd aan het veralgemenen van deze onderstellingen.

Wij zullen ons concentreren op het veralgemenen van de eerste onderstel-

ling.

Inderdaad, het schatten van de evolutionaire afstand is een groot pro-

bleem, vooral wanneer men korte sequenties vergelijkt: ‘estimation bias

usually occurs when the sequence length is short so that stochastic effects

are strong’1 (Gu en Li [39, p. 5899, rechterkolom, ll. 25–27]). En vaak kunnen

we enkel steunen op de sequenties zelf ter schatting van de evolutionaire

afstand.

Één aanpak is de afstand te schatten op basis van de gelijkaardigheid van

de twee sequenties. Typisch kiest men PAM250 als de sequenties voor 20%

gelijk zijn, PAM120 als ze 40% gelijk zijn, PAM60 als ze 60% gelijk zijn, en-

zovoort. Het is echter niet helemaal duidelijk hoe het gelijkheidspercentage

kan afgeleid worden alvorens te aligneren, en zelfs dan nog riskeren we voor

korte sequenties een serieuze schattingsfout.

Een andere aanpak bestaat eruit het optimalisatieprobleem voor een ver-

zameling PAM-matrices op te lossen, of zelfs met andere methoden, en dan

die methode uit te kiezen die de hoogste score geeft. De prestatie van ver-

schillende aligneringsmethodes is reeds goed bestudeerd, en één van de

interessante resultaten uit deze studie is dat ‘for different pairs many diffe-

rent methods create the best alignments’, en daarom, ‘if a method that could

select the best alignment method for each pair existed, a significant improve-

ment of the alignment quality could be gained’2 (zie Elofsson [32]). Helaas

is het in de praktijk computationeel onmogelijk per sequentiepaar een groot

aantal methodes uit te proberen en alle parameters af te stemmen voor elk

van deze methodes.

In plaats daarvan, onderzoeken wij, met de dynamische programmeer-

methode ontwikkeld in dit proefschrift, of een fout in de schatting van evo-

1[. . . ] ’een schattingsfout komt gebruikelijk voor wanneer de sequenties kort zijn, waardoor
stochastische effecten sterk zijn’
2[. . . ] ‘voor verschillende paren, leiden verschillende methodes tot een beste alignering’,

en daarom, ‘ware er een methode ter selectie van de beste methode, zouden we een serieuze
vooruitgang boeken in aligneringskwaliteit’.
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lutionaire afstand ook leidt tot een fout in de optimale alignering. In het

bijzonder, veralgemenen we het welbekende Needleman-Wunsch algoritme

(zie Needleman enWunsch [60]) om te bepalen of een alignering, of delen er-

van, ongevoelig zijn voor variaties in evolutionaire afstand in een opgegeven

interval.

Het belangrijkste resultaat van deze veralgemening, na toepassing op een

aantal testgevallen, is dat de keuze van de PAM-matrix doorgaans irrelevant

is voor de alignering van de grootste delen van genetische sequenties. Met

andere woorden, vaak maakt het niet uit welke PAM-matrix je precies se-

lecteert, als je enkel in de alignering geı̈nteresseerd bent. Merk misschien

nog op dat, hoewel de alignering zelf doorgaans niet echt veel varieert, de

optimale score doorgaans wel sterk varieert.

1.3.2 Het niet-deterministische geval: optimaal sturen en te-

gelijk leren over de dynamica

We beschrijven nu hoe een systeem, met onzekere dynamica, optimaal ge-

stuurd kan worden terwijl we tegelijk leren over de dynamica, aan de hand

van conditionele onderprevisies, en een nieuwe notie van optimaliteit die

gedeeltelijke actie-kennisafhankelijkheid toelaat. De voorwaarden voor dy-

namisch programmeren zijn voldaan als we het leren voorstellen door een

imprecies Dirichlet-model.

Inleiding

Één van de belangrijkste modellen voor niet-deterministische systemen zijn

markovbeslisprocessen; dit zijn geregelde markovketens (zie Markov [55]).

Markovbeslisprocessen modelleren onzekerheid omtrent dynamica via zo-

genaamde transitiewaarschijnlijkheden. Onderstellen we de winst voor elke

transitie onder elke regelactie gekend, dan bekomen we een optimale rege-

ling door de verwachte winst te maximaliseren. Dit maximalisatieprobleem

(en vele varianten ervan) kan efficiënt opgelost worden met dynamisch pro-

grammeren; zie bijvoorbeeld Bertsekas [8] voor een uitstekend overzicht.

Reeds vroeg in de ontwikkeling van markovbeslisprocessen, realiseerde

men zich dat de transitiewaarschijnlijkheden zelf vaak onzeker zijn, omdat

ze in de praktijk vaak moeilijk te meten zijn. Om aan dit probleem hoofd te

bieden,worden inde literatuur twee aanpakkengesuggereerd enbestudeerd:
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(i) leren—we herzien onze kennis over de transitiewaarschijnlijkheden

naarmate we transities observeren; zie bijvoorbeeld Bellman [3], Martin

[56], en Satia en Lave [68].

(ii) verzamelingen—we onderstellen enkel dat de transitiewaarschijnlijk-

heden tot een bepaalde convexe verzameling behoren; zie bijvoorbeeld

Wolfe en Dantzig [93], Satia en Lave [68], White en Eldeib [90], Givan,

Leach, en Dean [36], Harmanec [41], en Kozine en Utkin [52].

Beide aanpakken hebben hun nadelen. De leeraanpak vergt a priori ken-

nis over de transitiewaarschijnlijkheden. Is deze kennis foutief, dan is de

optimale regelwet eveneens foutief in de initiële fase van het regelproces.

De verzamelingaanpak heeft als nadeel dat er niets geleerd wordt, en men

dus mogelijk interessante informatie over de dynamica negeert, die in vele

gevallen wel beschikbaar is. Bovendien heeft deze aanpak een ietwat proble-

matische relatie met optimaliteit: met een verzameling transitiewaarschijn-

lijkheden kunnen we enkel een interval voor de verwachte winst berekenen,

voor elke regelwet. Bijna alle auteurs beschouwen daarom enkel maximin of

maximax oplossingen. Ze ontwerpen algoritmes, gebaseerd op dynamisch

programmeren, die ofwel de minimaal verwachte winst maximaliseren (pes-

simistisch, maximin), ofwel de maximaal verwachte winst maximaliseren

(optimistisch, maximax), en dus alle tussenoplossingen negeren.

Een opmerkelijke uitzondering is Harmanec [41], die een dynamisch pro-

grammeeralgoritme voorstelt ter berekening van alle maximale regelwetten

ten opzichte van een partiële ordening, die wij hier intervaldominantie heb-

ben genoemd. Op diemanier beperkt hij zich niet tot enkel extreme oplossin-

gen. Helaas stelde Harmanec [41] zich niet de vraag in welke zin zijn dyna-

misch programmeermethode tot optimale regelwetten leidde—zoals reeds

vermeld, leidt zij zelfs niet eens tot maximale regelwetten ten opzichte van

de gegeven ordening. Dus, pakken we het probleem opnieuw aan vanuit

een ander perspectief: we definiëren eerst een notie van optimaliteit, en we

onderzoeken dan of er aan de voorwaarden voor dynamisch programmeren

voldaan is, zijnde (i) het optimaliteitsprincipe, en (ii) ongevoeligheid voor

het weglaten van niet-optimale elementen.

Voorheen hebben we reeds een partiële ordening gesuggereerd die aan

het optimaliteitsprincipe en aan de ongevoeligheidseigenschap voldeed (on-

der een compactheidsvoorwaarde). Zoals eveneens opgemerkt werd door



1.3 DYNAMISCH PROGRAMMEREN 29

Harmanec [41], veralgemeent deze partiële ordening niet zomaar tot niet-

deterministische dynamische systemen. Zoals we straks zullen aangeven, is

de reden dat er zogenaamde actie-kennisafhankelijkheid is in markovbeslis-

processen.

Ons doel is het combineren van de leeraanpak en de verzamelingaanpak

om de problemen te vermijden waaraan beide aanpakken elk lijden. We

willen de verzameling transitiewaarschijnlijkheden herzien op basis van ob-

servaties vanvoorgaande transities. Eenmarkovbeslisproces kanbeschouwd

worden als een verzameling onafhankelijke multinomiale samplemodellen

(zie Martin [56]), en we hebben een welbekende wiskundige methode om

zulke modellen te herzien: het imprecies Dirichlet-model, ontwikkeld door

Walley [87]. Hiertoe moeten we echter eerst de partiële preferentierelatie

veralgemenen tot het geval van actie-kennisafhankelijkheid.

We kunnen dan aantonen dat er behoorlijk algemene voorwaarden zijn

waaronder aan het optimaliteitsprincipe en aan de ongevoeligheidseigen-

schap voldaan is; echter, zoals in het klassieke geval, met gekende transi-

tiewaarschijnlijkheden, eveneens het geval is, moet de regelwet van de vol-

ledige toestandsgeschiedenis afhangen (zie Bertsekas [8]), en daarom blijft

een directe implementatie van de gesuggereerde techniek beperkt tot relatief

kleine systemen.

Een bijzonder geval: leren met het imprecies Dirichlet-model

In deze samenvatting beschouwen we enkel het geval waarin het leren ge-

modelleerd wordt aan de hand van het imprecies Dirichlet-model; alle ba-

sisideeën zijn hierin reeds aanwezig, en het laat ons eveneens toe de meeste

technische details—in het bijzonder, marginale uitbreiding en optimalisatie

onder gedeeltelijke actie-kennisonafhankelijkheid—grofweg over te slaan.

Het enige wat we nog aanmerken wat betreft het algemene geval, is dat

het optimalisatieprincipe niet altijd geldt: het leermodel moet aan bepaal-

de structurele eigenschappen voldoen. Als bij wonder zijn deze voldaan in

geval we het imprecies Dirichlet-model gebruiken.

Regelwetten en winstgokken Zij X de eindige toestandsruimte, en U de
eindige regelruimte. De toevallige veranderlijke die de toestand voorstelt op

tijdstip k noteren we als Xk. Na tijdstip N zijn we niet meer geı̈nteresseerd
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in de dynamica van het systeem. Beschouw het systeem op tijdstip k. We

kunnen

• Xk = xk observeren,

• de regeling µk(xk) ∈ U toepassen en Xk+1 = xk+1 observeren,

• de regeling µk+1(xkxk+1) ∈ U toepassen en Xk+2 = xk+2 observeren,

• etc.,

• de regeling µN−1(xkxk+1 . . . xN−1) ∈ U toepassen en XN = xN observeren.

Deze operatie wordt gekarakteriseerd door een eindige rij van functies πk =

(µk, µk+1, . . . , µN−1), waar µℓ : Xℓ−k+1 → U. We noemen πk een regelwet star-
tend op k. De verzameling van alle regelwetten startend op k noteren we als

Πk.

Met elke regelwet πk ∈ Πk associëren we een winstgok vanaf tijdstip ℓ na
observatie van xk . . . xℓ−1 (met ℓ ≥ k; als ℓ = k dan is xk . . . xℓ−1 een lege rij, i.e.,
er is geen observatie, en we schrijven ook Jπk (xk, . . . , xN) in dat geval),

Jπk(xk ...xℓ−1)(xℓ, . . . , xN) =
N−1
∑

q=ℓ

gq(xq, µq(xk . . . xq), xq+1) + gN(xN)

Dit is een gok op (Xℓ, . . . ,XN). Elke transitie leidt tot een winst: startend op

tijdstip q in toestand xq, en het toepassen van regeling uq ∈ U waarbij we in
toestand xq+1 ∈ X terechtkomen, krijgen we een winst gq(xq,uq, xq+1). Komen
we toe in de eindtoestand xN op tijdstip N, dan krijgen we een extra winst

gN(xN). Noteer dat Jπk(xk ...xℓ−1) enkel afhangt van πk via µℓ(xk . . . xℓ−1Xℓ), . . . ,

µN−1(xk . . . xℓ−1Xℓ . . .XN−1). Deze rij, die overeenkomt met de regelwet πk na

observatie van xk . . . xℓ−1, noteren we als πk(xk . . . xℓ−1).

We willen die regelwet vinden die de winstgok maximaliseert.

Leren van de dynamica via het imprecies Dirichlet-model Een eenvoudi-

ge manier om de dynamica te leren, is het Dirichlet-model (zie Martin [56]).

In dit model is de verwachtingswaarde van een gok f op Xℓ+1, na observatie

van xk . . . xℓ en onder regelwet πk, gegeven door

Eπk ( f |xk . . . xℓsθ) =
∑

xℓ+1∈X
f (xℓ+1)

sθ
µℓ(xk ...xℓ)
xℓxℓ+1 + n

µℓ(xk ...xℓ)
xℓxℓ+1 (xk . . . xℓ, πk)

s +N
µℓ(xk ...xℓ)
xℓ (xk . . . xℓ, πk)
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Het symbool nuxy(xk . . . xℓ, πk) stelt het aantal transities voor vanuit toestand

x naar y via regeling u, in de rij xk . . . xℓ onder regelwet πk, en het symbool

Nux (xk . . . xℓ, πk) stelt het aantal transities voor vanuit toestand x via regeling

u (ongeacht de eindtoestand):

nuxy(xk, πk) = 0,

nuxy(xk . . . xℓ+1, πk) = n
u
xy(xk . . . xℓ, πk)

+



















1, if xℓ = x, xℓ+1 = y en µℓ(xk . . . xℓ) = u

0, in het andere geval

en,

Nux (xk . . . xℓ, πk) =
∑

y∈X
nuxy(xk . . . xℓ, πk).

De hyperparameters van dit model zijn s en θuxy, voor elke x en y ∈ X en
elke u ∈ U. De hyperparameter s > 0 bepaalt de leersnelheid (lagere s
betekent sneller leren), en de hyperparameters θuxy,

∑

y∈X θ
u
xy = 1, modelleren

de initiële kennis over de transitiewaarschijnlijkheden; θuxy is de verwachte

transitiewaarschijnlijkheid om van toestand x naar y te gaan via regeling u.

Na het toepassen van de regel van Bayes, vinden we

Eπk ( f |xk . . . xℓsθ) = Eπk (•|xk . . . xℓsθ) ◦ Eπk (•|xk . . . xℓXℓ+1sθ) ◦ · · ·
· · · ◦ Eπk (•|xk . . . xℓXℓ+1 . . .XN−1sθ)( f )

als de verwachtingswaarde van een willekeurige gok f op (Xℓ+1, . . . ,XN) (zie

ook Bertsekas [8]).

Het imprecies Dirichlet-model (Walley [87]) bestaat er nu uit de verzame-

ling van alle Dirichlet-modellen te beschouwen voor alle mogelijke waarden

van de hyperparameters θuxy (de leerparameter s wordt constant veronder-

stelt). Om technische redenen zullen wij enkel waarden θuxy ≥ ǫ beschouwen,
voor een willekeurig kleine ǫ > 0: dit betekent dat de initiële verwachte

transitiewaarschijnlijkheden minstens ǫ zijn.

Optimaliteit Noteer dat de hyperparameters s en θuxy, die dus initiële infor-

matie over de dynamica voorstellen, niet beı̈nvloedworden door de regelwet

πk: zij zijn actie-kennisonafhankelijk. Deze observatie is feitelijk de reden waar-

om dynamisch programmeren mogelijk blijkt onder een robuuste versie van
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dit klassiekemodel. Inderdaad, op basis van bovenstaande uitdrukking voor

de verwachtingswaarde, kunnen we regelwetten ordenen—-uiteraard heeft

het enkel zin regelwetten te ordenen met dezelfde regelgeschiedenis. Noteer

dus Πk(xk . . . xℓ,uk . . . uℓ−1) als de verzameling van regelwetten πk in Πk die

voldoen aan

πk(xk) = uk, πk(xkxk+1) = uk+1, . . . , πℓ−1(xk . . . xℓ−1) = uℓ−1,

en laat ons Πk(xk) met Πk identificeren. Concreet, onderstel dat πk en ρk ∈
Πk(xk . . . xℓ,uk . . . uℓ−1). Dan verkiezen we πk boven ρk na observatie van

xk . . . xℓ en toepassing vanuk . . . uℓ−1, enwe schrijvenπk >xk ...xℓ ,uk ...uℓ−1 ρk, indien

inf
θuxy≥ǫ
(Eπk (Jπk(xk ...xℓ)|xk . . . xℓsθ) − Eρk (Jρk(xk ...xℓ)|xk . . . xℓsθ)) > 0. (1.2)

Eens xk . . . xℓ en uk . . . uℓ−1 vastliggen, hangt de ordening enkel af van πk en

ρk via πk(xk . . . xℓ) en ρk(xk . . . xℓ).

We bekomen een optimaliteitsoperator door die regelwetten te selecteren

die optimaal zijn ten opzichte van de bovenstaande strikte partiële ordening.

Concreet, noemenwe een regelwetπk optimaal indienhijmaximaal is inΠk(xk)

ten opzichte van >xk voor elke xk ∈ X. We noemen πk optimaal vanaf tijdstip ℓ
indien ze een maximaal element is van Πk(xk . . . xℓ, µk(xk) . . . µℓ−1(xk . . . xℓ−1))

ten opzichte van de partiële ordening >xk ...xℓ ,µk(xk)...µℓ−1(xk ...xℓ−1) voor elke xk . . . xℓ.

Deze definitie is zinvol: Πk is eindig, en het bestaan van maximale regel-

wetten ten opzichte van >xk ...xℓ ,µk(xk)...µℓ−1(xk ...xℓ−1) is dus gegarandeerd. Men kan

eveneens bewijzen dat er steeds regelwetten bestaan die simultaanmaximaal

zijn ten opzichte van >xk...xℓ ,µk(xk)...µℓ−1(xk ...xℓ−1) voor alle xk . . . xℓ.

Het optimaliteitsprincipe We kunnen nu het volgende bewijzen. Zij k < N

enπk ∈ Πk. Voor elke k ≤ ℓ < N, geldt de volgende implicatie: alsπk optimaal
is vanaf tijdstip ℓ dan is πk eveneens optimaal vanaf tijdstip ℓ + 1.

Dynamisch programmeren We beschrijven kort hoe dit optimaliteitsprin-

cipe leidt tot een dynamisch programmeeralgoritme. Beschouw hiertoe het

beslisproces geschetst in Figuur 1.4. Op tijdstip k kunnen we kiezen tussen

twee regelacties: u en v. Beschouw de regelwet π0 die v toepast op tijdstip 0,
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k = 0 k = 1 k = 2

u, v u, v

x

x x

yy

Figuur 1.4: Een eenvoudig beslisproces

en u als x1 = x en v als x1 = y op tijdstip 1:

µ0(x) = v,

µ1(xx) = u,

µ1(xy) = v.

Het optimaliteitsprincipe dicteert: als π0 optimaal is vanaf tijdstip 0, dan is

π0(x), die u toepast als x1 = x en v als x1 = y op tijdstip 1, optimaal vanaf

tijdstip 1.

Dit leidt tot een vereenvoudiging bij het berekenen van de optimale regel-

wetten vanaf tijdstip 0. Inderdaad, onderstel bijvoorbeeld dat ρ1, gegeven

door ν1(x) = v en ν1(y) = u, niet optimaal is vanaf tijdstip 1. Wegens het

optimaliteitsprincipe zullen σ0 en σ′0, gegeven door

κ0(x) = u, κ′0(x) = v

κ1(xx) = ν1(x) = v, κ′1(xx) = ν1(x) = v,

κ1(xy) = ν1(y) = u, κ′1(xy) = ν1(y) = u,

ook niet optimaal zijn vanaf tijdstip 0, gezien ρ1 anders optimaal zou moe-

ten zijn vanaf tijdstip 0. Dus, als we de regelwetten kennen die optimaal

zijn vanaf tijdstip ℓ + 1, dan kunnen we deze informatie gebruiken om de

verzameling van regelwetten die mogelijk optimaal zijn vanaf tijdstip ℓ te

reduceren.

Natuurlijk kunnen we dit enkel doen als een reductie in de zoekruimte

de uiteindelijke verzameling van optimale elementen niet wijzigt: onze notie

van optimaliteit moet ongevoelig zijn voor het weglaten van niet-optimale

elementen. De verzameling van winstgokken is eindig, en dus compact. Bij-

gevolg voldoet onze notie van optimaliteit, die gebaseerd is op een ordening,
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aan de ongevoeligheidseigenschap.

Het aantal regelwetten groeit exponentieel met de lengte van de paden

die we beschouwen, maar wegens het optimaliteitsprincipe en de ongevoe-

ligheidseigenschap moeten we de meeste van deze paden niet beschouwen:

dynamisch programmeren, zoals hier ruwweg beschrevenwerd, leidt tot een

exponentiële versnelling in het zoeken naar de verzameling van alle optimale

regelwetten.



Chapter 2

Introduction

The aim of this dissertation is two-fold. First, we wish to investigate to

what extent lower previsions unify and extend various other well-known

uncertainty models, and how they lead to an acceptable notion of optimality.

Secondly, we wish to investigate how a dynamical system, whose uncertain-

ties are described by such a unified uncertainty model, can be controlled in

an optimal way, and we want to find out whether it is possible to find such a

control policy through an efficient method, namely, dynamic programming.

Uncertainty and Optimality

In Part I, we introduce the basic concepts of the theory of lower previsions

(which was developed mainly by Walley [86]), we demonstrate the unifying

rôle of theory of lower previsions in uncertainty modelling, and we explain

how lower previsions naturally lead to various well-known notions of opti-

mality.

The first four sections of Chapter 3, Sections 3.1–3.4, are concerned with

the precise definition of random variables, gambles, lower previsions, avoid-

ing sure loss, and coherence, which are essential for a good understanding of

the remaining chapters. The remainder of this chapter, Section 3.5, presents

an overview of the most important uncertainty models that fall within the

theory of lower previsions. From a practical point of view, the most impor-

tant ones are probability charges, 2-monotone set functions, and possibility

measures.
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Chapter 4 is concerned solely with the technique of natural extension of

lower previsions: natural extension dictates whether and how a lower pre-

vision must extend to a larger domain, and is essential in making inferences

from lower previsions, such as optimality judgements. In Section 4.1 we

present a precise definition of natural extension, that generalises the notion

of natural extension given byWalley [86]. This section is essential for a good

understanding of the remaining chapters. In Section 4.2, we introduce a new

notion of integration based on natural extension, called linear extension.

Section 4.3 presents various examples of natural extension, and relates

them to other well-known extension procedures known from the literature.

Some of these results are new: in particular, we prove that the S-integral, the

Riemann integral, and the Riemann-Stieltjes integral (Darboux’s type), are

instances of linear extension, and that the corresponding lower and upper in-

tegrals are instances of natural extension (Sections 4.3.5&4.3.6); we show that

the natural extension of a cumulative distribution function is, under fairly

general assumptions, given by the Riemann-Stieltjes integral (Section 4.3.7);

and finally, we recover two new expressions of the Choquet integral in terms

of the S-integral, and in terms of the Dunford integral (Section 4.3.10). The

most important known results collected in Section 4.3 are that the linear ex-

tension of a probability charge corresponds to the Dunford integral restricted

to gambles, or equivalently, the S-integral (Section 4.3.2), and that the natu-

ral extension of a 2-monotone set function is given by the Choquet integral

restricted to gambles (Section 4.3.10).

In Section 4.4 we generalise a number of well-known results about sets of

probability measures and lower previsions: in particular, we show that if all

gambles in the domain of a lower prevision P are measurable with respect to

a field F , then that lower prevision P avoids sure loss if and only if there is
a probability charge on F whose S-integral dominates P, and that in such a
case, the natural extension of P to the set of all gambles is given by the lower

envelope of the lower S-integrals with respect to all probability charges on F
that dominate P; this new result yields a simpler representation of coherent

lower previsions, and a simpler expression for natural extension, in case all

gambles in the domain of P are measurable with respect to a non-trivial field,

i.e., a field smaller than the power set (Section 4.4.2).

There is onewell-known extension procedure, due toDunford [31], which

is not covered by natural extension, but which still deserves our attention,
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as it allows for an extension to random quantities that needn’t be bounded.

Many problems in optimal control concern unbounded random quantities:

for instance, a cost function is often chosen to be a quadratic (and hence,

unbounded) function of the state and of the control. Since we aim to study

optimal control in what follows, we must first extend the theory of lower

previsions, including natural extension, to random quantities that are not

necessarily bounded (Sections 5.1–5.2). The technical matter of porting Dun-

ford’s idea (originally devised to extend integrals to unbounded functions) to

lower previsions is dealt with in Section 5.4, but firstwe discuss a simpler and

less general method in Section 5.3, which at the same time introduces part

of the mathematical machinery required in Section 5.4. We provide a more

convenient characterisation of our extension in Section 5.5, we show that our

extension coincides with the Choquet integral for unbounded random quan-

tities, in case we start out with a 2-monotone set function (Section 5.5.4), and

we establish that our extension can always be written as a lower envelope

of Dunford integrals (Section 5.6). The main results of Chapter 5 have been

published by Troffaes and De Cooman [78, 79, 80].

As the results of Chapters 3–5 clearly identify the unifying character of

lower previsions and natural extension, we shall only consider uncertainty

modelled by lower previsions in the remaining chapters.

Chapter 6 presents an overview of various notions of optimality that can

be derived from a lower prevision and studies their properties (Sections 6.3–

6.6). An incentive for studying these generalisations of the classical max-

imising expected utility approach (which is briefly presented in Section 6.1)

is given in Section 6.2.1. The most important new result in this chapter is

a technical lemma about preorders in Section 6.2.3 (a slightly less general

version has already been published by De Cooman and Troffaes [24]), which

allows us to prove a property, called insensitivity to omission of non-optimal

elements, that turns out to be essential for the dynamic programming ap-

proach to work.

Dynamic Programming

In Part II, we set out to answer the second question: we investigate the appli-

cability of dynamic programming to dynamical systemswhose uncertainties,

in gain or dynamics, are described by lower previsions.
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Chapter 7 studiesdeterministic systemswhoseuncertain gain is described

by a lower prevision. In Section 7.2 we identify two conditions for the

dynamic programming approach to work: (i) the principle of optimality,

which is due to Bellman [4], and (ii) insensitivity to omission of non-optimal

elements, which is a new condition (in case the gain is not uncertain, this

condition is satisfied whenever an optimal solution exists). All notions of

optimality introduced in Chapter 6 satisfy the insensitivity property, but, as

we show in Section 7.2, only P-maximality and M-maximality satisfy the
principle of optimality. We present a simple example in Section 7.3, and

a more realistic example, robust sequence alignment, in Section 7.4, where

we find that the exact choice of the PAM matrix in (amino-acid) sequence

alignmentusuallydoesnotmatterwhenaligning short sequences, contrary to

what is often claimed (as for instance byMount [58]). The basic ideas behind

the dynamic programming method are due to De Cooman and Troffaes [24,

23]. The robust sequence alignment example has also been published earlier

by Troffaes [76].

In Chapter 8, we study systems whose dynamics is uncertain, and we de-

scribe a way to accomplish simultaneous optimal control and learning about

the dynamics, by means of conditional lower previsions (Section 8.2), and

a new notion of optimality, which allows for partial act-state dependence

(Section 8.3). In Section 8.4 we identify a fairly general class of dynamical

systems, whose uncertain dynamics is described by conditional lower previ-

sions; this allows us to model learning about the dynamics at the same time.

In Section 8.5 we state conditions for the principle of optimality to hold, and

we note that the insensitivity property is almost trivially satisfied for the

systems under study. As a result, we can construct a dynamic programming

algorithm: this is demonstrated in Section 8.7 through a numerical example,

where the learning is modelled through an imprecise Dirichlet model. The

results of this chapter, without proofs, were published earlier by Troffaes [77].

The appendix contains results about the extended real number system,

that are probably not new, but certainly very hard to find. We need these

results only in Chapter 5.
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Uncertainty and Optimality
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Chapter 3

Lower and Upper Previsions

PROBABILITY DOES NOT EXIST.

Bruno de Finetti [27], Volume I, p. x

In this and the next chapterwe introduce themain ideas behind the theory

of coherent lower and upper previsions. We refer to Walley [86] for a more

in depth discussion.

3.1 Random Variables

We call a random variable any, possibly uncertain, but observable property of

a system. One could think of a random variable as an experiment’s outcome

that is not necessarily known to the modeller. For example, the amount of

rainfall R(d,w) during a particular day d, measured at a particular weather

station w, is a random variable; it takes values in the set {r : r ∈ R, r ≥ 0}. But
also the statement “tomorrow, it will rain in Ghent” is a random variable,

with possible values “true” and “false”. The set of possible values of a

random variable X is denoted by a calligraphic letter X. A particular value
of X is called a realisation of X and it is denoted by a lower-case letter x. It

is convenient to denote the event of observing the realisation of X to be x as

X = x.

Let us now describe a few things one can do with random variables. At

the same time we fix some notation that will be used extensively further on.
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Any map f defined on the set of outcomes X of a random variable X
we can again consider as a random variable. We call such a mapping a

function of X, and it represents nothing but a relabelling (not necessarily one-

to-one) of the outcomes ofX. If those outcomes are observable, somust be, in

principle, any relabelling of them, and hence, the function f again constitutes

a random variable. For instance, “tomorrow, it will rain in Ghent” could be

defined as Boolean function of the amount of rainfall R(d,w) for d tomorrow

and measured at Ghent’s weather station w. If we consider more than one

random variable wemaywrite f (X) in order to emphasise that f is a function

of X only. The realisation of f is uniquely determined by the realisation x of

X and is therefore denoted by f (x).

Obviously, the composition g◦ f ofmappings f and g is a randomvariable
if f is defined on the set of outcomes of a random variable. As (g ◦ f )(x) is
defined as g( f (x)), we shall also write (g ◦ f )(X) as g( f (X)).
Considering the combined outcomes of a collection of random variables

X1, X2, . . . , and Xn we again obtain a random variable which we denote

by (X1,X2, . . . ,Xn) and whose possible outcomes are (not necessarily all)

elements of X1 × X2 × · · · × Xn and are generically denoted by (x1, . . . , xn).
Froma function f (X1,X2, . . . ,Xn)wemayobtain anew functionof for instance

(X1, . . . ,X j) (with j < n) by fixing the values of X j+1, . . .Xn at their respective

realisations x j+1, . . . , xn. This function is denoted by f (X1, . . . ,X j, x j+1, . . . , xn).

3.2 Belief, Behaviour and Optimality

Our aim in this work is to study optimal control under uncertainty. More

particularly, we wish to model our beliefs about the uncertain realisation of

the gain of a system andmake decisions—optimal control eventually reduces

to decisionmaking—basedon these beliefs. In the followingwe shall propose

a behavioural belief model. Before going into a detailed description of this

model, we first discuss very briefly a few important how’s, why’s, pro’s and

con’s of behavioural belief models: why are behavioural belief models well

suited for studying optimal control under uncertainty, andwhat are the limits

of behavioural belief models?

Beliefs about X can be modelled through behaviour. For instance, if we

strongly believe that the outcome of the random variable “tomorrow, it will

rain in Ghent” will be “true” then probably we will take an umbrella with us
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for tomorrow’s city-trip to Ghent (even thoughwemight not be 100% certain

of rain). Thus, clearly our behaviour is a reflection of our beliefs (possibly

involving uncertainty). This has lead some people, such as Ramsey [65], De

Finetti [26], von Neumann and Morgenstern [83], Savage [69], Anscombe

and Aumann [2], Khaneman and Tversky [47], Walley [85], von Winterfeld

and Edwards [84], Seidenfeld, Schervish and Kadane [72], and many others,

to the idea of taking behaviour—in whatever form—as the primitive notion

whenmodelling belief, de facto taking some form of behaviour as a definition

of belief. It is also the course we shall pursue.

Optimal control in itself is actually a form of behaviour, and hence, any

sufficiently sophisticated behavioural beliefmodel naturally leads to a notion

of optimality induced by belief. In optimal control we are presented with a

set of controls, for instance

U = {take umbrella,don’t take umbrella},

and we are faced with the problem of identifying the subset of best controls

opt (U) ⊆ U. Observe that this identification clearly reflects our beliefs: if
we strongly believe that the value of the random variable “tomorrow, it will

rain in Ghent” will be “true” then clearly

opt (U) = {take umbrella},

provided we prefer not to get wet. Thus, we might in fact take opti-

mality, or more precisely, the optimality operator, also called choice function,

opt : ℘(U) → ℘(U) that selects the best options from a set, as the primi-
tive notion when modelling belief. We shall however consider a simpler

way of modelling behaviour and derive optimality from it. It turns out that

the simple behavioural belief model we shall use still encompasses quite a

large number of uncertainty models and optimality operators that exist in

the literature.

A simple but fairly general way to model our beliefs about the ran-

dom variableX consists of considering our dispositions towards transactions

whose value depends on the outcome of X; such transactions occur typically

in optimal control problems: often, we want to optimise a gain whose value

is a function of a random variable X. Again, to see how such dispositions

relate to belief, assume for instance that we have strong belief that we shall
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observe X = x. We should then be inclined to accept, prior to observation of

X, any transaction that incurs a positive gain if X = x. On the other hand,

if we strongly believe that X = x will not be observed, we should not care

too much, prior to observation of X, about the gains or losses connected with

X = x. Hence, beliefs about X naturally translate into behavioural disposi-

tions towards transactions whose value depends on the outcome of X. In

the theory of lower previsions we shall consider a very particular type of

transactions: buying gains that are a bounded function of X.

Any behavioural belief model can be made operational since measuring

belief is simply obtained bymeasuring behaviour. We refer to vonWinterfeld

and Edwards [84] for an extensive discussion.

On the other hand, not all beliefs are reflected by behaviour, and cer-

tainly not by the restricted types of behaviour we shall study. Despite its

unifying character, this is a hard limit on the applicability of the theory used

in this work. This limit is at least three-fold. Firstly, we shall only express

belief regarding random variables. Secondly, it turns out that only using

transactions in describing optimality operators forces us to restrict to a very

particular type of optimality operators. Finally, we shall be concerned only

with transactions expressed in terms of a linear utility scale.

Indeed, not all our beliefs concern random variables. For instance, I

believe that most of my beliefs are not concerned at all with dispositions

towards transactions whose value depends on the outcome of a random

variable (although I usually have a lot of fun in trying to express my beliefs

by such transactions). This belief I cannot express as dispositions towards

transactions whose value depends on the outcome of a random variable.

More seriously, any belief concerning an entity whose value is not observable

falls beyond the scope of the behavioural belief models that are based on

random variables. For instance, what about a transaction whose outcome

depends on the fact whether or not the electron is a fundamental particle? Or,

what about Pascal’s [63] wager, who considers a transaction whose outcome

depends on the fact whether God exists or not? As Pascal puts it:

[...] — Examinons donc ce point, et disons: ≪ Dieu est, ou il n’est
pas. ≫ Mais de quel côté pencherons-nous? La raison n’y peut rien
déterminer: il y a un chaos infini qui nous sépare. Il se joue un jeu,
à l’extrémité de cette distance infinie, où il arrivera croix ou pile. Que
gagerez-vous? Par raison, vous ne pouvez défendre nul des deux. Ne
blâmez donc pas de fausseté ceux qui ont pris un choix; car vous n’en
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savez rien. — ≪ Non; mais je les blâmerai d’avoir fait, non ce choix,
mais un choix; car, encore que celui qui prend croix et l’autre soient en
paraille faute, ils sont tous deux en faute: le juste est de ne point parier [our
emphasis]. ≫ —Oui; mais il faut parier. [...]

Blaise Pascal [63, Vol. 1, Sect. 233-418, pp. 101–102]

Unless we have an experiment that determines an objective (or at least inter-

subjective) answer to such questions, transactions whose outcome depends

on these answers cannot be executed. Therefore, they fall beyond the scope

of behavioural belief models.

A second reason why not all beliefs are reflected by the restricted types of

behaviour we shall study, is that the optimality operator induced by trans-

actions is uniquely determined by its restriction to pairs of controls only.

That is, our best options within pairs of controls uniquely determine our best

options within any set of controls. There are reasonable optimality opera-

tors that do not satisfy this property; see for instance Schervish, Seidenfeld,

Kadane and Levi [71], and Chapter 6 of this work.

Finally, we shall only be concerned with transactions expressed in a fixed

and unique linear utility scale: this means roughly that twice executing a

transaction doubles its value. This is taken for granted if transactions only

involve a sufficiently small amount of money (see De Finetti [27, Volume I,

Section 3.2]) or an exchange of lottery tickets (see Walley [86, Section 2.2]).

However, they often fail when the results of transactions involve drinking

beer, eatinggnocci, sunbathing, ormaking love. So, there are behavioural dis-

positions, reflecting beliefs, which cannot be completely expressed in terms

of a linear utility scale. They fall beyond the scope of the behavioural belief

models we shall study.

3.3 Gambles and Prices

3.3.1 Definitions

A gamble f on a random variableX is a real-valued gain (expressed in units of

a linear utility scale which is assumed to be fixed) that is a bounded function

of X. In particular, it is a real-valued random variable. Mathematically, it is

a bounded X–R-mapping, and it is thus interpreted as a bounded uncertain
gain: if x turns out to be the realisation of X, then we receive an amount
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f (x) of utility. As before, when we consider gambles on different random

variables, we may write f (X) in order to emphasise that f is a gamble on X.

Restricting to bounded uncertain gains is to some extent a mathematical

convenience. We shall propose a way to generalise large parts of the theory

to the unbounded case further on.

The set of all gambles on X is denoted by L(X). It is a linear lattice—
an ordered linear space such that every two vectors have a supremum and

an infimum—with respect to the point-wise addition, the point-wise scalar

multiplication and the point-wise ordering, which are defined as

( f + g)(x) := f (x) + g(x), and

(λ f )(x) := λ f (x)

for any pair of gambles f and g on X, any real λ and all x ∈ X, and

f ≤ g if for all x ∈ X : f (x) ≤ g(x).

The supremum f ∨ g of two gambles f and g onX is given by their point-wise
maximum, and their infimum f ∧ g is given by their point-wise minimum:
for all x ∈ X,

( f ∨ g)(x) = max{ f (x), g(x)}, and
( f ∧ g)(x) = min{ f (x), g(x)}.

These operators should not be confused with the supremum sup f and

infimum inf f of a gamble f on X, which are defined as

sup f := min{a ∈ R : a ≥ f }, and
inf f := max{a ∈ R : a ≤ f }.

We also define the absolute value
∣

∣

∣ f
∣

∣

∣ of a gamble f as
∣

∣

∣ f
∣

∣

∣ (x) :=
∣

∣

∣ f (x)
∣

∣

∣ for all

x ∈ X, and the negation − f of f as (− f )(x) := −( f (x)) for all x ∈ X. As usual,
f + (−g) is abbreviated to f − g.
It is convenient to identify a real number a ∈ R with the constant gamble

a(x) := a for all x ∈ X. For instance, the expression a ≥ f , where f is a gamble
on X and a is a real number, means a ≥ f (x) for all x ∈ X; we already used
this in our definition of supremum. The set of constant gambles on Xwill be
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denoted by R(X).

Another special class of gambles are those that correspond to so-called

events. An event on X simply is a subset of X. With an event A on X we
can associate a {0, 1}-valued gamble IA that gives us one unit of utility if the
realisation x of X belongs to A, and nothing otherwise:

IA(x) =



















1, if x ∈ A,
0, otherwise.

This gamble IA is called the indicator of A. For a collectionA of events on X,
we define

IA := {IA : A ∈ A}.

The lower prevision P( f ) of a gamble f is defined as the supremum buying

price for f ; P( f ) is the highest price s such that for any t < s, we are willing

to pay t prior to observation of X, if we are guaranteed to receive f (x) when

observing X = x. Mathematically, we define a lower prevision on X as a

real-valued mapping defined on some subset domP, the domain of P, of

L(X). Indeed, we do not require a lower prevision to be defined on the set of
all gambles. Further on, we shall describe methods for extending any lower

prevision to the set of all gambles.

We can also interpret f as an uncertain bounded loss: if x turns out to

be the true value of X, we lose an amount f (x) of linear utility. The upper

prevision P( f ) of the gamble f is then the infimum selling price for f ; it is

the lowest price s such that for any t > s, we are willing to receive t prior to

observation of X, if we are guaranteed to lose f (x) when observing X = x.

Since a gain r is equivalent to a loss −r it should hold that P( f ) = −P(− f ):
from any lower prevision Pwe can infer a so-called conjugate upper prevision

P on domP = −domP which represents the same behavioural dispositions.
We can therefore restrict our attention to the study of lower previsions only,

without loss of generality. Also, if we use the notationP for a lower prevision,

P always denotes its conjugate.

It may happen that P is self-conjugate, that is, domP = domP and P( f ) =

P( f ) for all gambles f ∈ domP. In such a case, wemay simplywrite P instead
of P or P whenever it is clear from the context whether we are considering

either buying or selling prices (or both). We call a self-conjugate lower
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prevision P simply a prevision, and P( f ) represents a so-called fair price for

the gamble f : we are willing to buy f for any price s < P( f ), and we are

willing to sell f for any price s > P( f ). Previsions, interpreted as fair prices,

were introduced by De Finetti [26], who used them to provide a behavioural

foundation for probability theory based on expectation.

It is convenient to identify indicator gambles with their corresponding

events. In particular, we shall denote the lower prevision of an indicator

gamble P(IA) simply as P(A). We call P(A) the lower probability of the event

A, and if the domain of P only contains indicator gambles, we simply call P

a lower probability. Similarly, we denote P(IA) as P(A) and call it the upper

probability of A. If the domain of P only contains indicator gambles it is

called an upper probability. If P is a (self-conjugate lower) prevision then P(A)

is called the probability of A. If the domain of a prevision P only contains

indicator gambles along with their negations then P is called a probability .

3.3.2 Lower and Upper Previsions by Chance

As a simple example of lower and upper previsions, we illustrate how chance

(aleatory probability) can be related to lower and upper previsions of {0, 1}-
valued gambles, or, lower and upper probabilities.

Let’s for instance assume that X corresponds to the colour of a marble

randomly drawn from a bag of N marbles. For simplicity, assume that each

marble can be either red or blue, so X = {red, blue}. Let A be the event of
drawing a red marble, and suppose we learn somehow that at least n∗ of the

marbles are red. Now consider the gamble IA. If we assume that each marble

of the bag is equally likely to be drawn, then we gain one unit of utility

in at least n∗ of the N equiprobable cases; we could say that the statistical

chance of drawing red is at least n∗N . In an infinite sequence of independent

trials of the marble experiment, the relative frequency by which we draw

red will converge almost surely to the chance of drawing red by the strong

law of large numbers. Therefore, repeatedly buying IA for any price strictly

less than n∗N will result almost surely in a net gain in such a sequence. This

suggests P(A) = n∗N as a supremum buying price. In this example, the lower

probability of A is nothing but a lower bound for the chance of A.

Alternatively, suppose we learn that at most n∗ of the marbles are red and

consider the gamble −IA. We expect to lose one unit of utility in at most n∗ of
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theN equiprobable cases. In an infinite sequence of independent trials of the

marble experiment, again we should be disposed to buying −IA for any price
strictly less than − n∗N . This suggests P(−IA) = − n

∗

N , or equivalently, P(A) =
n∗

N .

The upper probability of A is nothing but an upper bound for the chance of

A.

We’ve shown how our belief about the chance of particular events trans-

lates naturally into lower and upper previsions. This is sometimes called the

principle of direct inference; see Walley [86, Section 7.2.4] for a more detailed

discussion and a different approach not relying on sequences of independent

trials. If the chance of an event A is exactly known, the fair price for IA is

exactly equal to this chance. Of course, lower and upper previsions can be

used as models for beliefs in far more general situations.

3.3.3 Inference Rules

Some behavioural dispositions are evident: for instance, an indicator gamble

does not take a negative value, and therefore, we should be disposed to buy it

(at least) for any strictly negative price. Also, some behavioural dispositions

imply other behavioural dispositions. To give a simple example, if we are

disposed to buy a gamble for a price, then we should also be disposed to

buy it for any lower price (we already used this implicitly in accepting the

supremum buying price as a summary of all our buying prices). We shall

accept the following axioms of rationality governing dispositions towards

buying and selling gambles.

Axiom 3.1 (Axioms of Rationality). For arbitrary gambles f and g on X and

arbitrary real numbers s and t the following should hold.

(i) We are disposed to buy f for any price strictly less than inf f (accepting

a sure gain).

(ii) We are disposed not to buy f for any price strictly larger than sup f

(avoiding a sure loss).

(iii) If we are disposed to buy f for s then we should be disposed to buy λ f

for λs, for any strictly positive λ ∈ R (scale independence).

(iv) If we are disposed to buy f for s and g for t then we should be disposed

to buy f + g for s + t (accepting combined transactions).
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(v) If we are disposed to buy f for s and g ≥ f then we should be disposed
to buy g for s (monotonicity).

The above axioms can easily be motivated through the linearity of the

utility scale in which gambles and prices are expressed; see for instance

Walley [86, Section 2.4.4] for a justification using probability currency as a

linear utility scale. Also see De Finetti [27, Volume I, Section 3.2.5] for a

simple solution in case gambles and prices are expressed in a precise but

non-linear utility scale.

3.4 Criteria of Rationality

3.4.1 Avoiding Sure Loss

Buying f (X) for a price strictly higher than sup f makes no sense: with cer-

tainty, such transaction incurs a strictly positive loss. For example, suppose

that for some non-empty subset A of X our lower prevision for IA is equal to
1.2; P(IA) = 1.2. This means that we are disposed to buy the uncertain gain

IA for a price 1.1 since 1.1 is strictly less than 1.2. But, the reward of IA is 1 at

most, so this behavioural disposition incurs a sure loss of at least 1.1−1 = 0.1.
This is irrational behaviour, so our lower prevision P(IA) should not be equal

to 1.2; in fact, it should not be strictly higher than 1.

More generally, a combined buy of a finite collection of gambles is not

acceptable if this transaction leads to a sure loss. For example, suppose we

have that P(IA) = 0.7 and P(IB) = 0.7, with A and B non-empty and disjoint

subsets of X. This means that we are disposed to buy both IA and IB for
0.6. Therefore, we are disposed to buy IA + IB = IA∪B for 0.6 + 0.6 = 1.2.

But again, the reward for IA∪B is 1 at most, so these behavioural dispositions

lead to a loss of at least 1.2 − 1 = 0.2. Again, this behaviour is irrational:
P(IA)+ P(IB) should not be equal to 1.2; it should not be higher than 1 in fact.

These examples call for the following definition, which apparently goes back

to Ramsey [65, p. 182].

Definition 3.2. Let P be a lower prevision on X. Then the following condi-

tions are equivalent; if any (hence all) of them are satisfied, then P is said to

avoid sure loss.
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(A) For any n ∈N \ {0}, and f1, . . . , fn in domP, it holds that

n
∑

i=1

P( fi) ≤ sup














n
∑

i=1

fi















. (3.1)

(B) For any n ∈N\{0}, non-negative λ1, . . . , λn inR, and f1, . . . , fn in domP,
it holds that

n
∑

i=1

λiP( fi) ≤ sup














λi

n
∑

i=1

fi















. (3.2)

Explanation. The equivalence of (A) and (B) is proved in Walley’s book [86,

Lemma 2.4.4]. Let’s explain (A).

Suppose that Eq. (3.1) does not hold for some n ∈N \ {0} and f1, . . . , fn in
domP. Define the strictly positive number

ǫ :=
n

∑

i=1

P( fi) − sup














n
∑

i=1

fi















> 0.

Let δ := ǫ
n+1 . Since δ > 0, we are disposed to buy each fi for P( fi) − δ. Hence,

by the axioms of rationality, Axiom 3.1(iv) in particular, we are disposed to

buy
∑n
i=1 fi for

∑n
i=1 P( fi) − nδ. But, this transaction always leads to a strictly

positive loss since

n
∑

i=1

P( fi) − nδ >
n

∑

i=1

P( fi) − ǫ = sup














n
∑

i=1

fi















by the definition of ǫ. This violates Axiom 3.1(ii). �

3.4.2 Coherence

It might occur that we are disposed to buy a gamble f for a higher price

than the one implied by P( f ) after consideration of buying prices of other

gambles. For example, consider the lower prevision P defined by P(IA) = 0.3,

P(IB) = 0.4 and P(IC) = 0.5, where A, B and C are non-empty subsets of X
with A ∩ B = ∅ and A ∪ B ⊆ C. This means for instance that we are disposed
to buy IA + IB = IA∪B for 0.25 + 0.35 = 0.6. But observe that IA∪B ≤ IC since
A∪B ⊆ C: IC gives us a reward at least as high as IA∪B. Therefore, we should
also be disposed to buy IC for 0.6; the supremum buying price P(IC) = 0.5 is
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too low. These observations are formalised and generalised in the following

definition, which apparently goes back to Williams [92].

Definition 3.3. Let P be a lower prevision on X. Then the following condi-

tions are equivalent; if any (hence all) of them are satisfied, then P is called

coherent:

(A) For any m ∈N, n ∈N, and gambles f0, f1, . . . , fm in domP, it holds that

n
∑

i=1

P( fi) −mP( f0) ≤ sup














n
∑

i=1

fi −mf0















. (3.3)

(B) For any n ∈N, non-negative λ0, λ1, . . . , λn in R, and gambles f0, f1, . . . ,
fn in domP, it holds that

n
∑

i=1

λiP( fi) − λ0P( f0) ≤ sup














n
∑

i=1

λi fi − λ0 f0















. (3.4)

Explanation. The equivalence of (A) and (B) is mentioned, but not proved,

in Walley [86, Lemma 2.5.4]. Let’s first explain (A), and then prove that

(A) =⇒ (B); the converse implication is immediate.
Suppose (3.3) is violated for some n ∈ N, m ∈ N, and gambles f0, f1, . . . ,

fn in domP. The case m = 0 means that P does not avoid sure loss. We

already demonstrated that this is irrational (see Section 3.4.1). So suppose

m , 0. Let

σ := sup















n
∑

i=1

fi −mf0















, ǫ :=
n

∑

i=1

P( fi) −mP( f0) − σ > 0,

and δ := ǫ
n+1 . Since δ > 0, we are disposed to buy each fi for P( fi) − δ.

Hence, by Axiom 3.1(iv), we are disposed to buy
∑n
i=1 fi for

∑n
i=1 P( fi)− nδ, or

equivalently, to buy
∑n
i=1 fi − σ for

∑n
i=1 P( fi) − nδ − σ. Now, observe that

n
∑

i=1

fi − σ =
n

∑

i=1

fi − sup














n
∑

i=1

fi −mf0















≤ mf0,

and hence, by Axiom 3.1(v), we should also be disposed to buy the larger re-

wardmf0 for the sameprice
∑n
i=1 P( fi)−nδ−σ, and therefore, byAxiom3.1(iii),
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also to buy f0 for
1
m

(

∑n
i=1 P( fi) − nδ − σ

)

. But

1

m















n
∑

i=1

P( fi) − nδ − σ














>
1

m















n
∑

i=1

P( fi) − ǫ − σ














= P( f0),

by the choice of δ, which means that P( f0) is too low.

(A) =⇒ (B) Assume that (A) holds:

n
∑

i=1

P( fi) −mP( f0) ≤ sup














n
∑

i=1

fi −mf0















,

for any n ∈ N, m ∈ N, and gambles f0, f1, . . . , fn in domP; and suppose ex
absurdo that

n
∑

i=1

λiP( fi) − λ0P( f0) > sup














n
∑

i=1

λi fi − λ0 f0















,

for a particular choice of n ∈N, non-negativeλ0, λ1, . . . , λn inR, and gambles
f0, f1, . . . , fn in domP. Define

δ :=
n

∑

i=1

λiP( fi) − λ0P( f0) − sup














n
∑

i=1

λi fi − λ0 f0















> 0

α := sup
[

∑n
i=0| f j|

]

+
∑n
i=0|P( f j)| ≥ 0 and, ǫ := δ

2α+1 > 0. Since Q is dense in R,

there are non-negative rational numbers ρi ∈ Q such that λi ≤ ρi ≤ λi + ǫ for
every i ∈ {0, . . . ,n}. By Lemma 3.4 we find that

ρi fi ≤ λi fi + ǫ| fi|,
−ρ0 f0 ≤ −λ0 f0 + ǫ| f0|,
−ρiP( fi) ≤ −λiP( fi) + ǫ

∣

∣

∣P( fi)
∣

∣

∣

ρ0P( f0) ≤ λ0P( f0) + ǫ
∣

∣

∣P( f0)
∣

∣

∣

for every j ∈ {1, . . . ,n}. Let k ∈N be a common denominator of ρ0, . . . , ρn and
let mi = kρi ∈N for every j ∈ {0, . . . ,n}. We find that

sup















n
∑

i=1

ρi fi − ρ0 f0















−














n
∑

i=1

ρiP( fi) − ρ0P( f0)
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≤ sup














n
∑

i=1

λi fi − λ0 f0 +
n

∑

i=0

ǫ| fi|














−














n
∑

i=1

λiP( fi) − λ0P( f0)














+

n
∑

i=0

ǫ
∣

∣

∣P( fi)
∣

∣

∣

≤ sup














n
∑

i=1

λi fi − λ0 f0















−
n

∑

i=1

λiP( fi) + λ0P( f0)

+ ǫ















sup















n
∑

i=0

| fi|














+

n
∑

i=0

∣

∣

∣P( fi)
∣

∣

∣















= −δ + ǫα < −δ/2.

We conclude that

sup















n
∑

i=1

mi fi −m0 f0















−














n
∑

i=1

miP( fi) −m0P( f0)














< −kδ/2 < 0.

We have reached a contradiction. �

Lemma 3.4. Let a, b and ǫ be real numbers and assume that ǫ ≥ 0. If a ≤ b ≤ a+ ǫ
then for every real number c we have that ac − ǫ |c| ≤ bc ≤ ac + ǫ |c|.

Proof. If c ≥ 0 then we have that ac ≤ bc ≤ (a + ǫ)cwhich implies that

ac − ǫ |c| ≤ ac ≤ bc ≤ (a + ǫ)c ≤ ac + ǫ |c| .

On the other hand, if c < 0 then we have that ac ≥ bc ≥ (a+ ǫ)cwhich implies
that

ac + ǫ |c| ≥ ac ≥ bc ≥ (a + ǫ)c ≥ ac − ǫ |c| .

In both cases we find that ac − ǫ |c| ≤ bc ≤ ac + ǫ |c|. �

Coherence is the minimal requirement we shall impose on lower previ-

sions. Clearly, avoiding sure loss is weaker than coherence. So, why did

we introduce avoiding sure loss, separately from coherence? Because it is

sufficient for a lower prevision to avoid sure loss: in Theorem 4.3 on p. 96,

we shall see that, any lower prevision that avoids sure loss, can be corrected

to a behaviourally equivalent coherent lower prevision. This statement will

be made precise in Section 4.1.
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For previsions—self-conjugate lower previsions—avoiding sure loss and

coherence are equivalent. De Finetti actually defines coherence for previsions

as avoiding sure loss; see De Finetti [27, Vol. I, p. 87, Sect. 3.3.5]. Regarding

terminology,Walley [86, Section 2.8.1, p. 86] calls a coherent prevision a linear

prevision—but his definition is slightly more general: it extends to lower

previsions that are not self-conjugate. We shall say that a lower prevision is

linear if it is coherent and self-conjugate. Denote the set of all linear previsions

with domain K ⊆ L(X) by PK (X). The set PL(X)(X) is simply denoted by
P(X).
Coherence has the following implications; we refer to Walley [86, Theo-

rem 2.6.1] for a proof.

Theorem 3.5. Let P be a coherent lower prevision. Let f and g be gambles on X.

Let a be a constant gamble. Let λ and κ be reals with λ ≥ 0 and 0 ≤ κ ≤ 1. Let fα
be a net of gambles. Then the following statements hold whenever every term is well

defined.

(i) inf f ≤ P( f ) ≤ P( f ) ≤ sup f

(ii) P(a) = P(a) = a

(iii) P( f + a) = P( f ) + a, P( f + a) = P( f ) + a

(iv) f ≤ g + a =⇒ P( f ) ≤ P(g) + a and P( f ) ≤ P(g) + a

(v) P( f ) + P(g) ≤ P( f + g) ≤ P( f ) + P(g) ≤ P( f + g) ≤ P( f ) + P(g)

(vi) P(λ f ) = λP( f ), P(λ f ) = λP( f )

(vii) κP( f )+ (1− κ)P(g) ≤ P(κ f + (1− κ)g) ≤ κP( f )+ (1− κ)P(g) ≤ P(κ f + (1−
κ)g) ≤ κP( f ) + (1 − κ)P(g)

(viii) P
(| f |) ≥ P( f ), P

(| f |) ≥ P( f )

(ix)
∣

∣

∣P( f ) − P(g)
∣

∣

∣ ≤ P (| f − g|) ,
∣

∣

∣P( f ) − P(g)
∣

∣

∣ ≤ P (| f − g|)

(x) P
(| f + g|) ≤ P (| f |) + P (|g|) , P

(| f + g|) ≤ P (| f |) + P (|g|)

(xi) P( f ∨ g) + P( f ∧ g) ≤ P( f ) + P(g) ≤ P( f ∨ g) + P( f ∧ g),
P( f ) + P(g) ≤ P( f ∨ g) + P( f ∧ g) ≤ P( f ) + P(g), and
P( f ) + P(g) ≤ P( f ∨ g) + P( f ∧ g) ≤ P( f ) + P(g).

(xii) limα P
(| fα − f |

)

= 0 =⇒ limα P( fα) = P( f ) and limα P( fα) = P( f ).
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(xiii) P and P are uniformly continuous with respect to the topology of uniform

convergence on their respective domains: for any ǫ > 0 and any f and g in

domP, if sup| f − g| < ǫ, then |P( f ) − P(g)| < ǫ.

If the domain of a lower prevision is a linear space, then we can char-

acterise coherence in a simpler way. Again, we refer to Walley [86, Theo-

rem 2.5.5, p. 75] for a proof.

Theorem 3.6. Let P be a lower prevision on X, and assume that domP is a linear

subspace of L(X). Then P is coherent if and only if for any gambles f and g in
domP and any strictly positive real number λ the following conditions are met.

(i) P( f ) ≥ inf f

(ii) P(λ f ) = λP( f )

(iii) P( f + g) ≥ P( f ) + P(g)

For previsions, the characterisation is even simpler; see De Finetti [27,

Sect. 3.5.1, p. 74] or Walley [86, Theorem 2.8.4, p. 88] for a proof.

Theorem 3.7. Let P be a prevision onX, and assume thatdomP is a linear subspace

ofL(X). Then P is a linear prevision (i.e., P is coherent) if and only if for any gambles
f and g ∈ domP the following conditions are met.

(i) P( f ) ≥ inf f

(ii) P( f + g) = P( f ) + P(g)

Because the conditions on linear subspaces are much easier to check, a

very commonmethod for proving coherence of lower previsions (or linearity

of previsions) defined on arbitrary subsets of L(X) consists in proving that
it is the restriction of a coherent lower prevision (or linear prevision) on a

linear subspace of L(X). This simple observation is sufficiently important to
call it a lemma.

Definition 3.8. Let P and Q be lower previsions on X. Then P is said to be a

restriction ofQ, andQ is said to be an extension ofP, whenever domP ⊆ domQ
and P( f ) = Q( f ) for all f ∈ domP.

Lemma 3.9. The following statements hold.

(i) The restriction of a lower prevision avoiding sure loss also avoids sure loss.
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(ii) The restriction of a coherent lower prevision is also coherent.

(iii) The restriction of a linear prevision to a prevision is also linear.

Proof. Immediately from Definition 3.2 and Definition 3.3. �

Lemma 3.9 will be useful in particular for proving the coherence of (lower

and upper) probabilities, that is, lower previsions defined on indicator gam-

bles. Typically, a lower probability is extended to a lower prevision on a

linear space by means of an integral.

Another way to prove coherence of a lower prevision is to express it

as a convex combination, a lower envelope, or a point-wise limit of lower

previsions that are already known to be coherent.

Lemma 3.10. Suppose Γ = {P1,P2, . . . ,Pn} is a finite collection of lower previsions
defined on a common domain K . Let Q be a convex combination of Γ:

Q( f ) :=

n
∑

i=1

λiPi( f ), for all f ∈ K ,

for some λ1, . . . , λn ≥ 0 and
∑n
i=1 λi = 1. Then the following statements hold.

(i) If all lower previsions in Γ avoid sure loss, then Q avoids sure loss.

(ii) If all lower previsions in Γ are coherent, then Q is coherent.

(iii) If all lower previsions in Γ are linear previsions, then Q is a linear prevision.

Proof. SeeWalley [86, Theorem 2.6.4, p. 79] for a proof of (i) and (ii). To prove

(iii) it suffices to check self-conjugacy of Q:

Q(− f ) =
n

∑

i=1

λiPi(− f ) = −
n

∑

i=1

λiPi( f ) = −Q( f ).

�

Lemma 3.11. Suppose Γ is a collection of lower previsions defined on a common

domain K . Let Q be the lower envelope of Γ:

Q( f ) := inf
P∈Γ
P( f ), for any f ∈ K .

Then the following statements hold.
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(i) If all lower previsions in Γ avoid sure loss, then Q avoids sure loss.

(ii) If all lower previsions in Γ are coherent, then Q is coherent.

(iii) If all lower previsions in Γ are linear, then Q is coherent but not linear, unless

Γ is a singleton.

Proof. SeeWalley [86, Theorem 2.6.3] for a proof of (i) and (ii). To prove (iii) it

suffices to check that Q is not self-conjugate whenever Γ contains more than

one element. Choose two distinct linear previsions P1 and P2 in Γ. Since they

are distinct, there is a gamble f ∈ K such that for instance P1( f ) < P2( f ). This
means that

Q( f ) ≤ P1( f ) < P2( f ) ≤ Q( f ),

therefore Q is not self-conjugate, which establishes the proof. �

Lemma 3.12. Suppose Pα is a net of lower previsions defined on a common domain

K . Suppose that Pα converges point-wise to a lower prevision Q defined onK . Then
the following statements hold.

(i) If all Pα avoid sure loss then Q avoids sure loss.

(ii) If all Pα are coherent then Q is coherent.

(iii) If all Pα are linear then Q is linear.

Proof. SeeWalley [86, Theorem 2.6.5, p. 79] for a proof of (i) and (ii). To prove

(iii) it suffices to check self-conjugacy of Q:

Q( f ) = lim
α
Pα( f ) = limα

−Pα(− f ) = − limα Pα(− f ) = −Q(− f ) = Q( f ).

This establishes the lemma. �

Finally, continuity may also help in proving that a lower prevision is

coherent. This establishes a partial converse of Lemma 3.9.

Lemma 3.13. Suppose P is continuous on its domain with respect to the topology

of uniform convergence, and coherent on a dense subset K of domP. Then P is
coherent.
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Proof. Let ǫ > 0. Since K is dense in domP, we have that for any gamble
f ∈ domP there is an fǫ ∈ K such that sup

∣

∣

∣ f − f ǫ
∣

∣

∣ < ǫ. Therefore, for any

m ∈N, n ∈N \ {0} and f0, f1, . . . , fn in domP it holds that

n
∑

i=1

P( fi) −mP( f0) ≤ (n +m)ǫ +
n

∑

i=1

P( f ǫi ) −mP( f ǫ0 )

≤ (n +m)ǫ + sup














n
∑

i=1

f ǫi −mf ǫ0















≤ 2(n +m)ǫ + sup














n
∑

i=1

fi −mf0















.

Since this holds for any ǫ > 0, it must also hold for ǫ = 0. Coherence

follows. �

The following is a variation on the same theme.

Lemma 3.14. Let P be a coherent lower prevision. Then P has a unique extension

to a coherent lower prevision defined on the uniform closure of domP. Moreover, if

P is self-conjugate, then also this unique extension is self-conjugate.

Proof. In Chapter 4, Section 4.1, Theorem 4.3, on p. 96, it will be proved that

any coherent lower prevision P has a coherent extension to an arbitrary (but

larger) domain. Since the proof is so much shorter using this result, we shall

cheat, and use it; of course, Theorem 4.3 does not rely on this lemma. So,

there are coherent extensions Q of P to the uniform closure of domP.

Let Q
1
and Q

2
be two coherent lower previsions defined on the uniform

closure of domP, and suppose that Q
1
( f ) = Q

2
( f ) = P( f ) for all f in domP.

We must show that Q
1
(g) = Q

2
(g) for all g in domQ

1
= domQ

2
. For every

such g, there is a sequence fn in domP that converges uniformly to g. Since

Q
1
and Q

2
are coherent, it follows from Theorem 3.5(xii) that

Q
1
(g) = lim

n∈N
Q
1
( fn) = lim

n∈N
P( fn) = lim

n∈N
Q
2
( fn) = Q

2
(g),

and hence, Q
1
(g) = Q

2
(g) for any gamble g in their domain (incidentally,

note that the limit is independent of the choice of the sequence fn converging

uniformly to g). This proves uniqueness.

If P is self-conjugate, then, again take for every g in domQ a sequence fn

in domP that converges uniformly to g. Since Q is coherent, it follows from
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Theorem 3.5(xii) that

Q(g) = lim
n∈N
Q( fn) = lim

n∈N
P( fn) = lim

n∈N
P( fn) = lim

n∈N
Q( fn) = Q(g).

�

3.5 Examples of Coherent Lower Previsions

3.5.1 Vacuous Lower Previsions

We may know nothing at all about the realisation of X. We express this by

stating that we are only disposed to buy a gamble f on X for a price that is a

lower bound of it:

PX( f ) = inf f .

This lower prevision, defined on the set of all gambles L(X), is called the
vacuous lower prevision on X. It is coherent (check the conditions of Theo-

rem 3.6).

More generally, we might only be sure that the realisation of X belongs to

a non-empty subset A of X. We then should only be willing to buy a gamble
f on X for a price than is a lower bound of f (X) restricted to A:

PA( f ) = infx∈A
f (x) = max{a ∈ R : ∀x ∈ A, a ≤ f (x)}. (3.5)

Again this lower prevision is defined on the set of all gambles L(X) and is
coherent. We call it the vacuous lower prevision on X relative to A. Its conjugate

is given by

PA( f ) = sup
x∈A
f (x) = min{a ∈ R : ∀x ∈ A, a ≥ f (x)}.

Within the class of vacuous lower previsions, only the ones relative to

singletons are linear. They model exact knowledge of the value of X. Lower

envelopes of vacuous lower previsions are again vacuous, but convex com-

binations usually are not. In Section 4.3.12 we shall show that convex combi-

nations of vacuous lower previsions correspond to the natural extension of

so-called belief functions.
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3.5.2 Probability Charges

Probability charges, also called finitely additive probability measures, are

a very common way of representing uncertainty about a random variable.

They are slightly more general than so-called probability measures, used in

the classical theory of probability. In Section 4.4, we shall establish that avoid-

ing sure loss, coherence, and natural extension (see Section 4.1 further on),

can be expressed using probability charges only, whence their importance in

the theory of lower previsions.

First, we identify a sufficiently large collection of events of interest. Con-

veniently, we assume that this collection has the structure of a field.

Definition 3.15. A fieldF onX is a collection of subsets ofX that contains the
empty set and is closed under finite unions and complementation. A σ-field

F on X is a field on X that is also closed under countable unions. An ample
field on X is a field on X that is also closed under arbitrary unions.

For example, if X is a topological space, the smallest σ-field that contains
all open sets is called the Borel σ-field on X and is denoted by B(X). The
members of this field are called Borel sets. For instance, B(R) corresponds to
the smallest σ-field that contains all open intervals (a, b) (where a, b ∈ R and
a < b). In measure theory, this is the standard way to equip R with a σ-field.

A simpler example is the smallest field that contains all closed intervals

of a compact interval [a, b]. We denote this field by F[]([a, b]). It contains all
finite unions of intervals in [a, b], and turns out to be a handy tool in the study

of Riemann-Stieltjes integrals.

Examples of ample fields on X are the set {∅,X}, and the set of all subsets
of X, also called the power set of X:

℘(X) := {A : A ⊆ X}.

Any finite field is also an ample field. It is well-known that there is a cor-

respondence between ample fields and partitions; see Wang [89], and Theo-

rem 3.51 on p. 88.

Obviously, any ample field is a σ-field, and any σ-field is a field. If X
is finite, then any field on X is also a σ-field and an ample field. If X is
countable, then any σ-field on X is also an ample field.
Next, to each event A in a field F we attach a real number µ(A) that



62 LOWER AND UPPER PREVISIONS

measures our belief in A; typically, it represents a chance, a betting rate, or

a price. To be a probability charge, µ should satisfy a number of additional

properties.

Definition 3.16. Let F be a field on X. A charge µ on F , also called finitely
additive measure, finitely additive set function, or additive set function, is an R∗-

valued mapping on F that assumes at most one of the values +∞ and −∞,
and satisfies

(i) µ(∅) = 0, and

(ii) µ(A ∪ B) = µ(A) + µ(B) whenever A, B ∈ F and A ∩ B = ∅.

A charge µ on F is called a probability charge if additionally

(iii) µ(X) = 1, and

(iv) µ(A) ≥ 0 for any A ∈ F .

The set of probability charges on F is denoted by P(F ). Finally, a charge µ
is said to be σ-additive if additionally F is a σ-field and

(v) for any sequence An of pairwise disjoint sets in F , the limit

lim
n→+∞

n
∑

i=1

µ(Ai)

exists in R∗ and is equal to µ
(⋃

n∈NAn
)

(and hence, the limit is inde-

pendent of the order of the sequence).

A σ-additive charge is simply called a measure and a σ-additive probability

charge is simply called a probability measure.

Note that in the literature, there aremore general definitions of ameasure:

for instance, Bhaskara Rao and Bhaskara Rao [9, Definition 2.3.1, p. 47] allow

a measure to be defined on a field that is not a σ-field, Halmos [40, Section 7,

p. 30] allows a measure to be defined on a ring (i.e., a collection of sets closed

under union and difference), and also König [51, Chapter I, Section 2, p. 14]

has a different definition of a measure, allowing it to be defined on what he

calls a σ-oval. However, usually, measures are assumed to be defined on a

σ-field, see for instance Kallenberg [48, Chapter 1, p. 8] and Schechter [70,

Section 11.37, p. 288], and this is also the assumption we make. Observe
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that probability charges do not assume the values +∞ or −∞; they are [0, 1]-
valued.

Perhaps the most commonly used charge is the Lebesgue measure λ on

B(R), which is defined as the unique σ-additive measure on B(R) such that
λ((a, b)) = λ([a, b)) = λ((a, b]) = λ([a, b]) = b − a for any a, b ∈ R (a ≤ b): it
measures the length of intervals of R. Vitali [82] proved that there is no σ-

additivemeasure on all of℘(R) that has this property—ifwe accept the axiom

of choice; also see for instance Schechter [70, Section 21.22, p. 558]. This is also

one of the reasons why we need to introduce the Borel σ-field. Sometimes

the Lebesgue measure is defined on larger σ-fields, see for instance Halmos

[40, Section 15]. We have found at least three different Lebesgue measures.1

However, we prefer to take the simplest definition and always assume the

Lebesgue measure to be defined only on the Borel σ-field of R.

As another example, consider the total variation
∣

∣

∣µ
∣

∣

∣ of a charge µ on a field

F , which is defined as

∣

∣

∣µ
∣

∣

∣ (A) = sup

n
∑

i=1

∣

∣

∣µ(Ai)
∣

∣

∣

for any A ∈ F , where the supremum is taken over all finite partitions
{A1, . . . ,An} ⊆ F of A. It is easy to check that

∣

∣

∣µ
∣

∣

∣ is a charge. When µ

is positive (that is, µ(A) ≥ 0 for all A ∈ F , which holds for instance for
probability charges and also for the Lebesgue measure),

∣

∣

∣µ
∣

∣

∣ is equal to µ.

Identifying events with indicator gambles, observe that any real-valued

mappingµonF canbe identifiedwith a lowerprobability, anupper probabil-
ity, or a probability. In doing this,F need not even be a field. Let’s emphasise
the difference between what we call probabilities, and probability charges.

Probabilities, defined in the last paragraph of Section 3.3.1, are previsions

whose domain only contains indicator gambles along with their negations—

without any further restrictions. Probability charges, on the other hand, are

additive, positive, and normed real-valued mappings defined on a field. So,

as mathematical objects, they are quite different from probabilities. Through

1The Lebesgue measure defined on the Borel σ-field is sometimes also called the Borel-
Lebesgue measure; see Schechter [70, Section 21.19]. The completion of the Borel-Lebesgue
measure is usually also called the Lebesguemeasure; see Halmos [40]. Finally, the Carathéodory
extension of the Borel-Lebesguemeasure to the σ-field ofλ∗-measurable sets—again, seeHalmos
[40]—might as well be called the Lebesgue measure. The Carathéodory extension also agrees
with the linear extension, as described in Section 4.3.4 on p. 116 ff.
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the identification below, we shall establish a link between probabilities and

probability charges in Theorem 3.21.

Definition 3.17. Let µ be any real-valued mapping defined on a class of sub-

sets of X. The lower probability induced by µ is defined as the lower prevision
Pµ thatmaps all gambles IA forA ∈ domµ toµ(A), the upper probability induced
by µ the upper prevision Pµ that maps all gambles IA for all A ∈ domµ to
µ(A), and the probability induced by µ the prevision Pµ that maps all gambles

IA for A ∈ F to µ(A) and all gambles −IA for A ∈ F to −µ(A):

Pµ(IA) := µ(A)

Pµ(IA) := µ(A)

Pµ(IA) = −Pµ(−IA) := µ(A)































for all A ∈ domµ.

A natural question is: are these (lower/upper) probabilities coherent? If

not, do they at least avoid sure loss? In general, this question is hard to

answer. In case the domain of µ is a field, we shall establish in Theorem 3.21

that Pµ is a coherent probability if and only ifµ is a probability charge. Hence,

by Lemma 3.9, in such a case alsoPµ is a coherent lower probability andPµ is a

coherent upper probability. The proof invokes an extension of Pµ to the linear

span of {IA : A ∈ F }, called theDunford integral. This integral was introduced
as an integral of vector-valued functionswith respect tomeasures byDunford

[31, p. 443, Sect. 3], and extended to an integral of vector-valued functions

with respect to charges by Dunford and Schwartz [30, Part I, Chapter III,

Definition 2.17, p. 112]; also see BhaskaraRao andBhaskaraRao [9, Chapter 4]

for a detailed study of the Dunford integral on scalar-valued functions. For

establishing the coherence of probability charges in Theorem 3.21, we only

need the Dunford integral defined on F -simple (see Definition 3.18 below)
gambles; see Dunford and Schwartz [30, Part I, Chapter III, Definition 2.13,

p. 108]. As discussed by Dunford and Schwartz [30, Part I, Chapter III,

Section 2, pp. 101–119], the Dunford integral is first defined on F -simple
gambles—this is the main reason why we call the integral defined below

the Dunford integral—and then extended to more general functions through

Cauchy sequences; this method is due to Dunford [31, Lemma 6, p. 444],

and will be discussed in Section 4.3.8 on p. 161 ff., as it also forms a possible

basis to extend coherent lower previsions to functions of X that are possibly

unbounded; this is the subject of Chapter 5. Note that, onF -simple gambles,
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the Dunford integral coincides with the S-integral introduced byHildebrandt

[42, Sect. 1(f), p. 869] as an integral associated with charges. We shall discuss

the S-integral in Section 4.3.5. As Hildebrandt [42, Sect. 1(f), p. 869] notes,

‘it is possible to define the Lebesgue integral [with respect to a charge] by

the Lebesgue process’ and for F -simple gambles (or more generally, F -
measurable gambles), ‘obviously [the Lebesgue integral] exists’, and the ‘[S-

integral] exists also in this case and agrees with the [Lebesgue integral]’.

Concluding, the integral of Definition 3.19 coincides with just about any

integral found in the literature for charges and F -simple gambles. Other
extensions of probability charges will be discussed in Sections 4.3.2 and 4.3.4.

So, what are F -simple gambles?

Definition 3.18. Let F be a field on X. A gamble f on X is called F -simple if
it belongs to the linear span of IF , that is, if

f =

n
∑

i=1

aiIAi ,

for some n ∈ N, a1, . . . , an in R and A1, . . . , An in F . The sum
∑n
i=1 aiIAi

is called a representation of f . The set of F -simple gambles is denoted by
span(F ).

Note that span(F ) is a simplified notation for span(IF ), the linear span of
all indicators of elements of F .

Definition 3.19. Let F be a field on X and let µ be a charge on F . An
F -simple gamble f is called Dunford integrable with respect to µ if it has a
representation f =

∑n
i=1 aiIAi such that

∣

∣

∣µ
∣

∣

∣ (Ai) < +∞ for all i ∈ {1, . . . ,n}. The
Dunford integral of f with respect to µ is then defined as

D

∫

f dµ :=
n

∑

i=1

aiµ(Ai). (3.6)

Proof of unambiguity. Consider the linear space of gambles spanned by

K := {IA : A ∈ F ,
∣

∣

∣µ
∣

∣

∣ (A) < +∞}.

Note that span(K ) is exactly the set of Dunford integrableF -simple gambles.
Define the mapping ψ(IA) := µ(A) on K . Now note that ψ satisfies the
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condition
n

∑

i=1

αiIAi = 0 =⇒
n

∑

i=1

αiψ(IAi ) = 0 (3.7)

for every α1, . . . , αn ∈ R and IA1 , . . . , IAn ∈ K . Indeed, suppose
∑n
i=1 αiIAi = 0.

Let B ⊆ F be a finite partition of X such that for every i ∈ {1, . . . ,n} it holds
that Ai is a union of elements of B. Then,

0 =

n
∑

i=1

αiIAi =
n

∑

i=1

αi
∑

B∈B
B⊆Ai

IB =
∑

B∈B

























∑

i∈{1,...,n}
B⊆Ai

αi

























IB

and since {IB : B ∈ B} is linearly independent this means that
∑

i∈{1,...,n}
B⊆Ai

αi = 0

for every B ∈ B. In particular,

n
∑

i=1

αiψ(IAi ) =
n

∑

i=1

αiψ

























∑

B∈B
B⊆Ai

IB

























=

n
∑

i=1

αi
∑

B∈B
B⊆Ai

ψ(IB)

=
∑

B∈B

























∑

i∈{1,...,n}
B⊆Ai

αi

























ψ(IB) = 0,

where we used additivity of µ. Hence, Eq. (3.7) holds.

By a linear extension theorem (Schechter [70, Proposition 11.10]) it follows

from Eq. (3.7) that ψ has a unique linear extensionΨ to span(K ) given by

Ψ















n
∑

i=1

αiIAi















=

n
∑

i=1

αiψ(IAi). (3.8)

But this means that Ψ is the Dunford integral. In other words, the Dunford

integral is uniquely determined by (3.6). �

For A ∈ F , we say that an F -simple gamble f is Dunford integrable over
Awith respect to µwhenever IA f is Dunford integrable with respect to µ. In

such a case, we call D
∫

IA f dµ the Dunford integral of f over Awith respect
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to µ, and we also write

D

∫

A

f dµ := D

∫

IA f dµ. (3.9)

Lemma 3.20. Let F be a field on X and let µ be a probability charge on F . Then
all F -simple gambles are Dunford integrable with respect to µ, and the mapping
E
span(F )
µ defined by

E
span(F )
µ ( f ) := D

∫

f dµ (3.10)

for any F -simple gamble f , defines a linear prevision on span(F ).

Proof. Dunford integrability of allF -simple gambles follows from
∣

∣

∣µ
∣

∣

∣ = µ for

probability charges µ. Note that E
span(F )
µ is self-conjugate, this easily follows

from its definition, and hence, E
span(F )
µ is a prevision. Now, simply check the

conditions of Theorem 3.7. �

We now arrive at the main result of this section: probability charges are

coherent probabilities. Obviously, by Lemma 3.9, this implies that they are

also coherent either as lower probabilities or upper probabilities.

Theorem 3.21. Let F be a field. Let µ be any real-valued function defined on F .
Then Pµ is coherent if and only if µ is a probability charge.

Proof. Let µ be a probability charge defined on a field F . Observe that
the probability µ is the restriction of E

span(F )
µ which is a linear prevision by

Lemma 3.20. Now apply Lemma 3.9 to arrive at the desired result.

Conversely, let Pµ be coherent. Observe that Pµ is a linear probability

on IF ∪ −IF . From µ(A) = Pµ(A) for all A ∈ F , it is very easy to show
that µ satisfies the properties of a probability charge simply by applying the

linearity of Pµ. �

Equivalently, it holds that Pµ avoids sure loss if and only if µ is a proba-

bility charge.

We have already shown that the linear prevision E
span(F )
µ is the unique

linear extension of the probability Pµ to the set of F -simple gambles. We
shall prove further on that E

span(F )
µ is actually the only coherent extension of

Pµ to span(F ) (this will follow from a stronger result; see Proposition 4.28 on
p. 112). In fact, it is also the only coherent extension of the lower probability

Pµ, and the only coherent extension of the upper probability Pµ, to span(F ).
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In this sense, additivity implies self-conjugacy (see Corollary 4.33). In order

to come up with event-based models, (lower or upper) probabilities, that are

not self-conjugate, we need to weaken additivity. A few ways of doing this

are described in Sections 3.5.4, 3.5.5, 3.5.7, 3.5.8, 3.5.9, and 3.5.10. But first,

we fix the minimal properties a set function should satisfy, to be interpreted

as a coherent (lower/upper) probability.

3.5.3 Set Functions

Definition

Let, for now, µ be an arbitrary set function, i.e., an arbitrary real-valued

mapping defined on an arbitrary collectionA of subsets ofX, which we shall
interpret either as a lower probability, an upper probability, or a probability;

for simplicity, also assume that ∅ ∈ A and X ∈ A. Then, independently of
how we interpret µ, it follows from Theorem 3.5 that, if either Pµ, Pµ, or Pµ is

coherent, then µ(∅) = 0, µ(X) = 1, and µ(A) ≤ µ(B) for all A and B inA such
that A ⊆ B. Explicitly:

• if Pµ is coherent, then Pµ(I∅) = 0, Pµ(IX) = 1, and A ⊆ B =⇒ Pµ(IA) ≤
Pµ(IB), for all A and B inA,

• if Pµ is coherent, then Pµ(I∅) = 0, Pµ(IX) = 1, and A ⊆ B =⇒ Pµ(IA) ≤
Pµ(IB), for all A and B inA, and

• if Pµ is coherent, then Pµ(I∅) = 0, Pµ(IX) = 1, and A ⊆ B =⇒ Pµ(IA) ≤
Pµ(IB), for all A and B inA.

Sincewe are only interested in set functions that induce either coherent lower

probabilities, coherent upper probabilities, or coherent probabilities, it is

consistent to include the above conditions into our definition of a set function.

Why exactly take—only—these conditions? Indeed, they are necessary, but

not sufficient for µ to induce a coherent lower probability, a coherent upper

probability, or a coherent probability. Nevertheless,

• they are simple,

• they are independent of whether we interpret µ as a coherent lower
probability, as a coherent upper probability, or as a coherent probability,

and
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• for all the specialised types of set functions we shall study further on,
it suffices to impose only one additional property—such as nesting, 2-

monotonicity, minimum preservation, etc.—for µ to induce a coherent

lower probability, a coherent upper probability, or a coherent probabil-

ity.

Definition 3.22. A set function is a real-valued mapping µ, defined on a

collectionA of subsets of X, such that

(i) ∅ ∈ A and X ∈ A,

(ii) µ(∅) = 0 and µ(X) = 1, and

(iii) A ⊆ B =⇒ µ(A) ≤ µ(B) for any A and B inA.

The setA is called the domain of µ and is denoted by domµ.

So, from now on, all set functions are assumed to satisfy the conditions

of the above definition. This deviates from the terminology used in the

literature: usually, set functions are only assumed to be non-negative, and

zero on the empty set. But, for the purpose of studying the coherence of

event-based models, Definition 3.22 simplifies our study a lot. Note that

probability charges are set functions: since they induce coherentprobabilities,

they satisfy the above conditions; however, we shall not call all charges set

functions: for instance, we shall not call the Lebesguemeasure a set function,

because λ(R) = +∞. In this work, this will not form any obstacle whatsoever.

Dual Set Functions

Defining lower and upper previsions in Section 3.3.1, we have seen that

from any lower prevision P we can infer a conjugate upper prevision P on

domP = −domPwhich represents the same behavioural dispositions.
Let ν be a real-valued set function, and assume that we interpret it as

a lower probability: we consider the lower probability P := Pν induced by

ν—note that we will usually denote by ν any set function that is meant to

be interpreted as a lower probability. The conjugate upper prevision P of P

can be defined by P(−IA) := −ν(A) for all A ∈ dom ν, and unfortunately, P
is not defined on a set of indicator gambles: P is not an upper probability

induced by a set function π—we shall usually denote by π any set function

that is meant to be interpreted as an upper probability. Hence, there seems to
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be no correspondence between lower and upper probabilities similar to the

correspondence between lower and upper previsions.

However, through a simple transformation, we can infer, through coher-

ence, an upper probability from P: by Theorem 3.5, it should hold that

P(I∁A) = P(1 − IA) = 1 − P(IA)

whenever P is coherent. This suggests the following definition.

Definition 3.23. Let ν be a real-valued set function. The dual of ν is the

real-valued set function π defined on
{

∁A : A ∈ dom ν
}

by

π(∁A) := 1 − ν(A),

for any A ∈ dom ν. If dom ν is closed under complementation and ν(∁A) =
1 − ν(A) for all A ∈ dom ν, then ν is called self-dual.

There is a close relationship between conjugate upper previsions and

dual set functions, as we shall see in Proposition 3.24 and Proposition 4.10.

Note that fields are closed under complementation. We have already seen

an example of self-dual set functions on a field: in case ν is a probability

charge, its dual π is equal to ν, whence, probability charges are self-dual set

functions.

The following proposition says that avoiding sure loss and coherence are

preserved for the dual set function. In Proposition 4.10 on p. 99, we shall

establish a stronger result: νmodels the same behavioural dispositions as its

dual π.

Proposition 3.24. Let ν be a real-valued set function, and let π be its dual. Then

Pν avoids sure loss if and only if Pπ avoids sure loss, and Pν is coherent if and only

if Pπ is coherent. If ν is self-dual, then Pν is coherent if and only if Pν is coherent, if

and only if Pν is coherent.

Proof. Immediate from the definitions of avoiding sure loss and coherence.

except for proving that, whenever ν is self-dual, coherence of Pν is equivalent

to coherence of Pν. Since the proof is so much shorter using very simple

result proved in Section 4.1, we shall cheat, and use that result.

By Lemma 3.9, if Pν is coherent, then Pν is coherent too. Conversely,

assume that Pν is coherent. The easiest way to proceed, is to assume that Pν
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has a coherent extension P to IA ∪ −IA; this will be established in Section 4.1.
If we can prove that this coherent extension P is equal to Pν—and hence,

that it is unique—then we have also established the coherence of Pν. Since

P is an extension of Pν, it holds that P(IA) = Pν(IA) = ν(A) = Pν(IA). Since,

additionally, ν is self-dual, it holds that P(−IA) = P(1− IA)− 1 = Pν(I∁A)− 1 =
ν(∁A) − 1 = −ν(A) = Pν(−IA). �

3.5.4 Nested Set Functions

A common way to model uncertainty about a random variable, is to identify

a nested collection of sets, and to attach, to each event A in this collection,

a real number µ(A) that measures our belief in A; we shall identify µ with a

lower probability Pµ, an upper probability Pµ, or a probability Pµ. These set

functions, which are far simpler than probability charges, have no specific

name in the literature. I call them nested set functions, because they are

defined on a collection of nested sets.

As lower probabilities, or upper probabilities, they arise naturally when

modelling linguistic uncertainty; see Walley and De Cooman [88]. As prob-

abilities, they arise as cumulative distribution functions; see Section 3.5.10.

In Theorem 3.27 below, we prove that a nested set function µ always in-

duces a coherent probability Pµ, and hence, also a coherent lower probability

Pµ and a coherent upper probability Pµ.

Definition 3.25. A collectionA of subsets of X is called nested whenever for
any two elements A and B ofA either A ⊆ B or B ⊆ A.

Definition 3.26. A set function is called nested if its domain is a nested

collection of sets.

Recall from Definition 3.22 that we assume set functions µ to be defined

on at least ∅ and X: this will simplify the condition for coherence and the
expression for natural extension, and it guarantees that domµ is a bounded

chainwith respect to⊆—a chain is bounded if it has aminimal and amaximal
element; such nested set functions have been studied in the literature in the

context of non-additive set functions, see for instance DeCooman andAeyels

[21] and Denneberg [28].

Also recall that we assume set functions to be monotone: µ(A) ≤ µ(B)
whenever A ⊆ B, with minimum value µ(∅) = 0 and maximum value µ(X) =
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1; otherwise, they induce neither coherent lower probabilities, nor coherent

upper probabilities, nor coherent probabilities. Hence, a nested set function

is an order preserving mapping from a chain of subsets of X to the unit
interval [0, 1].

The following theorem follows fromDenneberg [28, Proposition 2.10]; we

give an alternative proof below.

Theorem 3.27. Let µ be a nested set function. Then Pµ, Pµ and Pµ are coherent.

Proof. Indeed, by Lemma 3.9, it suffices to show that Pµ is coherent. Den-

neberg [28, Proposition 2.10] showed that µ is the restriction of a probability

charge. Hence, by Theorem 3.21 and Lemma 3.9, Pµ is coherent.

Alternatively, define the set of gambles K := {IA : A ∈ domµ}. Consider
the set of gambles span(K ) spanned by K , this is a linear subspace of L(X).
It is easy to show thatK constitutes a basis for the linear space span(K ). By a
linear extension theorem (Schechter [70, Proposition 11.10]) we can uniquely

define a linear mapping P on span(K ) such that

P(IA) = µ(A)

for all A ∈ domµ. P is an extension of the probability Pµ: to establish
coherence, it suffices to show that P is a linear prevision. We check the

conditions of Theorem 3.7. Clearly P( f +g) = P( f )+P(g) for all f , g ∈ span(K )
since it is a linear mapping. We only need to show that P( f ) ≥ inf f for any
f ∈ span(K ). Indeed, for any n in N, α1, . . . , αn in R, and S1 ⊆ S2 ⊆ · · · ⊆
Sn = X in domµ, we easily see that

inf
x∈X
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which is dominated by the following convex mixture—where we use µ(S1)+
∑n
i=2[µ(Si) − µ(Si−1)] = µ(Sn) = µ(X) = 1, µ(S1) ≥ 0, µ(Si) − µ(Si−1) ≥ 0,
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by µ(S1) = P(IS1), µ(Si) − µ(Si−1) = P(ISi\Si−1), and the linearity of P,

= P

































n
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n
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n
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j=i

α j
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= P
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�

3.5.5 2-Monotone and 2-Alternating Set Functions

The definition of 2-monotone and 2-alternating set functions below can be

found for instance in Choquet [11, p. 131, and Chapter II, Section 8, p. 155].

Definition 3.28. A set function ν defined on a field F is called 2-monotone if
for any A and B in F ,

ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) + ν(B).

A set function π defined on F is called 2-alternating if its dual is 2-monotone,
or equivalently, if for any A and B in F ,

π(A ∪ B) + π(A ∩ B) ≤ π(A) + π(B).

The property π(A ∪ B) + π(A ∩ B) ≤ π(A) + π(B) is sometimes also called
strong sub-additivity; see for instance Choquet [11, p. 132].

As Walley [85, Section 6, pp. 51–52] notes, there are no clear behavioural

arguments, similar to the behavioural arguments in favour of coherence, ex-

plaining 2-monotonicity. Certainly, not all coherent lower probabilities corre-

spond to a 2-monotone set function. Nevertheless, 2-monotone set functions

are mathematically very convenient, as we shall see in Section 4.3.10, and

arise naturally in a number of important cases, as we shall see Section 4.3.4:

these are the main reasons for studying 2-monotonicity.

In case A ∩ B = ∅ it holds that ν(A ∪ B) ≥ ν(A) + ν(B) if ν is 2-monotone,
and π(A ∪ B) ≤ π(A) + π(B) if π is 2-alternating. This indicates that 2-

monotone set functions are to be identified with lower probabilities and 2-

alternating set functions, which are duals of 2-monotone set functions, with
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upper probabilities; see Theorem 3.5(v) and Proposition 3.24. When are these

lower and upper probabilities coherent?

The lower probability Pν induced by a 2-monotone set function ν has

an extension, known as the Choquet integral. This integral was introduced

by Choquet [11, Section 48.1, p. 265] with respect to so-called capacities; we

shall not study capacities in their full generality. Let it suffice to note that

2-monotone set functions are 2-monotone capacities when we equip X with
any topology such that all elements of dom ν are open: our definition of

2-monotone set function is then a special case of Choquet’s [11, Chapter III,

Section 15.2, p. 174] definition of 2-monotone capacities. Below we give a

definition of the Choquet integral with respect to 2-monotone set functions,

forF -simple gambles. Our definition relies on theDunford integral forB(R)-
simple gambles, which we introduced before—recall that B(R) is the Borel
field on R. Usually, the Choquet integral is defined through the Riemann

integral, see for instance Janssen [45, Section 1.5.4.1], or the Riemann-Stieltjes

integral, see for instanceWalley [85, Section6]—although someauthorsprefer

to use other types of integration in their definition of the Choquet integral, as

is the case for instance in Denneberg [28, Chapter 5]. In all cases investigated,

the definition for F -simple gambles, given below in terms of the Dunford
integral, coincides with other definitions found in the literature.

Definition 3.29. Let F be a field onX and let ν be a 2-monotone set function
on F . Let f be any F -simple gamble. Then the lower decreasing distribution
function of f with respect to ν is defined by

G∗ν, f (a) := ν({x ∈ X : f (x) > a})

for any a ∈ R. The Choquet integral of f with respect to ν is defined as

C

∫

f dν := inf f +D

∫

[inf f ,sup f ]
G∗ν, f dλ

where the Dunford integral is taken with respect to the Lebesgue measure λ

on B(R).

Proof of Dunford integrability of G∗ν, f . First observe that {x ∈ X : f (x) > a} is in
F for any a ∈ R since f is F -simple. Also f only takes a finite number of
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values, say a1 < · · · < an. We can write

G∗ν, f = I(−∞,a1) +
n−1
∑

i=1

G∗ν, f (ai)I[ai,ai+1) (3.11)

hence, G∗ν, f is B(R)-simple. From the above expression, it is easy to see that
G∗ν, f is Dunford integrable over [inf f , sup f ] = [a1, an] with respect to the

Lebesgue measure. �

It is convenient to write the Dunford integral in the above definition of

the Choquet integral as a sum. We can always write an F -simple function
as f =

∑n
i=1 aiIAi such that a1 < · · · < an and such that A1,. . . , An constitutes a

partition of F . We can write, using (3.11),

C

∫

f dν = a1 +
n−1
∑

i=1

(ai+1 − ai)G∗ν, f (ai)

= a1
[

1 − G∗ν, f (a1)
]

+

n−1
∑

i=2

ai
[

G∗ν, f (ai−1) − G∗ν, f (ai)
]

+ anG∗ν, f (an−1)

=

n
∑

i=1

ai
[

ν(∪nj=iA j) − ν(∪nj=i+1A j)
]

.

The last two expressions are especially interesting because they show how

the Choquet integral of f is a convex combination of the values of f , with

coefficients that depend in a non-trivial way on the shape of f . If we write

the gamble f as b0+
∑n
i=1 biIBi with b0 inR, b1, . . . , bn inR and strictly positive,

and X % B1 % B2 % · · · % Bn % ∅, then we can also write the above equality as

C

∫

f dν = b0 +
n

∑

i=1

biG∗ν, f

















i−1
∑

j=0

b j

















= b0 +

n
∑

i=1

biν(Bi), (3.12)

which is a well-known identity (see for instance, Janssen [45]). The following

result is due to Walley [85, Corollary 6.2, p. 55].

Lemma 3.30. Let F be a field on X and let ν be a 2-monotone set function on F .
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Define the lower prevision E
span(F )
ν by

E
span(F )
ν ( f ) := C

∫

f dν (3.13)

for anyF -simple gamble f . Then Espan(F )ν is a coherent lower prevision on span(F ).

Proof. Simply check the conditions of Theorem 3.6. Conditions (i) and (ii)

are easy to check. Condition (iii) is more difficult to prove; see for instance

Choquet [11, p. 287], Walley [85, Lemma 6.3, p. 54], or Denneberg [28, Theo-

rem 6.3, p. 75] for proofs. �

We now arrive at the main result: 2-monotone set functions induce co-

herent lower probabilities. It was proved byWalley [85, Corollary 6.3, p. 55].

Theorem 3.31. Any 2-monotone set function induces a coherent lower probability.

Proof. Let ν be a 2-monotone set function defined on a field F . Observe
that, for instance by Eq. (3.12), Pν is the restriction of E

span(F )
ν to the set

IF of indicators of elements of F . But Espan(F )ν is a coherent prevision by

Lemma 3.30. Now apply Lemma 3.9 to arrive at the desired result. �

3.5.6 2-Monotone Lower Previsions

Let’s briefly generalise the notion of 2-monotonicity to lower previsions; this

will turn out to be useful later on. The definition below is an instance of a

general definition given by Choquet [11, Chapter III, Definition 13.1, p. 170,

and Section 14.1, p. 171]

Definition 3.32. A lower prevision P defined on a lattice of gambles on X is

called 2-monotone if for all gambles f and g in domP it holds that

(i) f ≥ g =⇒ P( f ) ≥ P(g), and

(ii) P( f ∨ g) + P( f ∧ g) ≥ P( f ) + P(g).

Proposition 3.33. Let S be any non-empty subset ofX. The vacuous lower prevision
with respect to S, i.e., PS, is a 2-monotone coherent lower prevision.

Proof. The proposition can be proved easily by direct verification of Defi-

nition 3.32: let f and g be gambles in domP. Clearly, by the coherence of
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PS (Theorem 3.5(iv)) it holds that PS( f ) ≥ PS(g) whenever f ≥ g, and since
f ∨ g ≥ f and f ∨ g ≥ g, also PS( f ∨ g) ≥ max{PS( f ),PS(g)}. Moreover,

PS( f ∧ g) = infx∈Smin{ f (x), g(x)} = min
{

inf
x∈S
f (x), inf

x∈S
g(x)

}

= min{PS( f ),PS(g)}.

So, we can also conclude that

PS( f ∨ g) + PS( f ∧ g) ≥ max{PS( f ),PS(g)} +min{PS( f ),PS(g)}
= PS( f ) + PS(g),

which establishes the proposition. �

Proposition 3.34. Any convex combination of 2-monotone lower previsions defined

on a common domain, is 2-monotone.

Proof. LetP1, . . . ,Pn be afinite family of 2-monotone lowerprevisionsdefined

on a common domain K , and let λ1, . . . , λn be non-negative reals such that
∑n
i=1 λi = 1. For any f and g inK , it holds that

n
∑

i=1

λiPi( f ∨ g) +
n

∑

i=1

λiPi( f ∧ g) =
n

∑

i=1

λi
[

Pi( f ∨ g) + Pi( f ∧ g)
]

≥
n

∑

i=1

λi
[

Pi( f ) + Pi(g)
]

=

n
∑

i=1

λiPi( f ) +
n

∑

i=1

λiPi(g),

and, whenever f ≥ g, it obviously follows that ∑ni=1 λiPi( f ) ≥
∑n
i=1 λiPi(g); so

∑n
i=1 λiPi is 2-monotone as well. �

Proposition 3.35. Let Pα be a net of 2-monotone lower previsions defined on a

common domain K ⊆ L(X). If P( f ) := limα Pα( f ) exists and is real for all f in K ,
then this point-wise limit P is a 2-monotone lower prevision onK .

Proof. For any f and g inK , it holds that

lim
α
Pα( f ∨ g) + limα Pα( f ∧ g) = limα

[

Pα( f ∨ g) + Pα( f ∧ g)
]

≥ lim
α

[

Pα( f ) + Pα(g)
]

= lim
α
Pα( f ) + limα

Pα(g),
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since all limits exist and are real. Clearly, whenever f ≥ g, it also follows
that limα Pα( f ) ≥ limα Pα(g) So, limα Pα is a 2-monotone lower prevision on

K . �

3.5.7 Completely Monotone Set Functions and Belief Func-

tions

Belief functions were introduced by Shafer [74, 75]. They are a special case

of so-called completely monotone set functions. Note that |J| denotes the
cardinality of the finite set J, that is, the number of elements in J. The

definition below can be found in Choquet [11, Chapter III, Definition 13.1,

p. 170, and Section 14.1, p. 171]; Choquet’s definition is actually far more

general, and extends to mappings from any commutative semi-group to any

commutative group, i.e., not only mappings from a field to R. Also note

that n-monotone set functions are n-monotone capacities when we equip X
with any topology such that all elements of dom ν are open: our definition of

n-monotone set functions is then a special case of Choquet’s [11, Chapter III,

Section 15.2, p. 174] definition of n-monotone capacities. (Note that, by our

definition of a set function ν, it already holds that ν(A) ≥ ν(B) whenever

A ⊇ B, this is why this condition is not included in the definition below.)

Definition 3.36. Let F be a field on X, and let ν be a set function defined on
F . Let n ∈N, n ≥ 2. Then ν is called monotone of order n, or n-monotone, if for
any A1, . . . , An ∈ F , it holds that

ν















n
⋃

i=1

Ai















≥
∑

∅,J⊆{1,2,...,n}
(−1)|J|+1ν

















⋂

i∈J
Ai

















. (3.14)

If ν is n-monotone for all n ≥ 2, then ν is called completely monotone, monotone
of order infinity, or ∞-monotone. If, additionally, X is a finite set and F is the
power set of X, then ν is called a belief function. A set function π on F is
called n-alternating if its dual is n-monotone, or equivalently, if for any A1,

. . . , An ∈ F , it holds that

π















n
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i=1

Ai
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∅,J⊆{1,2,...,n}
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. (3.15)
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If π is n-alternating for all n ≥ 2, or equivalently, if the dual of π is completely
monotone, then π is called completely alternating. The dual of a belief function

is called a plausibility function.

It is easily verified that 2-monotonicity as defined in Definition 3.36 is

equivalent to the 2-monotonicity as defined in Definition 3.28.

Shafer [75, Section 1, pp. 827–828] calls completelymonotone set functions

also belief functions, and calls completely alternating set functions also upper

probability functions; in his definition, the domain of belief functions and

upper probability functions does not even need to be a field. However, in

the literature, belief and plausibility functions are usually understood to be

defined on the power set of a finite set, following Shafer’s [74, Chapter 2,

Section 2, p. 38] original definition.

It is instructive to compare the definition of completely monotone set

functions with the definition of probability charges, and to observe that

complete monotonicity generalises a well-known combinatorial identity: for

a probability charge µ on F it holds that

µ















n
⋃

i=1

Ai















=
∑

∅,J⊆{1,2,...,n}
(−1)|J|+1µ

















⋂

i∈J
Ai

















, (3.16)

for any n ∈ N, n ≥ 2 and A1, . . . , An ∈ F ; for instance, see De Finetti [27,
Vol. I, Sect. 3.8.3, p. 101]. This equality is also known as the sieve formula

or the inclusion-exclusion principle; see for instance Aigner [1, 4.24(i), p. 158].

Hence, probability charges are also completely monotone set functions, but

not every completely monotone set function corresponds to a probability

charge. For example, as we shall see in Proposition 3.42 below, the vacuous

lower prevision, restricted to I℘(X), is a completelymonotone set function that

is not a probability charge. Choquet [11, Section 14.5, p. 173–174] notes that

probability charges are the only set functions, defined on a field, which are

both 2-monotone and 2-alternating, and proves that consequently, they must

be n-monotone and n-alternating for any n ∈ N∗, n ≥ 2; he does not rely on
the sieve formula to prove this.

Let’s sum up a few obvious facts. Denote byN∗ the setN ∪ {∞}.

Proposition 3.37. Let n ∈ N∗, n ≥ 2. If a set function ν is n-monotone, then for
any m ∈N∗, n ≥ m ≥ 2, ν is also m-monotone.
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Proof. Immediate from Definition 3.36. �

Proposition 3.38. Let n ∈ N∗, n ≥ 2. Any n-monotone set function ν induces a
coherent lower probability Pν.

Proof. Immediate from Proposition 3.37 and Theorem 3.31. �

The following proposition says that n-monotonicity is preserved under

convex combinations and limits.

Proposition 3.39. Let n ∈N∗, n ≥ 2. The following statements hold.

(i) Any convex combination of n-monotone set functions, defined on a common

field, is n-monotone.

(ii) If the point-wise limit of a net of n-monotone set functions defined on a common

field exists, then this limit is n-monotone.

Proof. We prove the statements for n ∈N, n ≥ 2. The proof for n = ∞ is then
immediate.

(i). It is easily verified that the convex combination of set functions is

again a set function. We are left to check the condition for n-monotonicity.

Let α1, . . . , αm be non-negative real numbers such that
∑m
j=1 α j = 1, let ν1, . . . ,

νm be n-monotone set functions defined on a common field F , and define
ν(A) :=

∑m
j=1 α jν j(A) for every A ∈ F . Then, for any A1, . . . , An ∈ F , it holds

that

ν
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=

n
∑
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=
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n
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α jν j
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i∈J
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=
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,
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hence, ν is n-monotone.

(ii). It is easily verified that the point-wise limit of a net of set functions,

if this limit exists, is again a set function. It remains to check the condition

for n-monotonicity. Let να be a net of n-monotone set functions. Then

lim
α
να















n
⋃

i=1

Ai















≥ lim
α

∑

∅,J⊆{1,2,...,n}
(−1)|J|+1να

















⋂

i∈J
Ai

















=
∑

∅,J⊆{1,2,...,n}
(−1)|J|+1 lim

α
να

















⋂

i∈J
Ai

















,

hence, also limα να is an n-monotone set function. �

There’s another way to construct n-monotone set functions, due to Cho-

quet [11, Chapter V, Section 24.3, p. 198]. We shall use it a few times.

Definition 3.40. Let F be a field on X and G a field on Y. A mapping
r : F → G is called a meet-homomorphism or a ∩-homomorphism from F to G if

(i) r(∅) = ∅ and r(X) = Y, and

(ii) r(A ∩ B) = r(A) ∩ r(B) for every A and B in F .

Note that every ∩-homomorphism is monotone, i.e., if C ⊆ D for C and D
in F , then r(C) ⊆ r(D), since r(C) = r(C ∩D) = r(C) ∩ r(D).

Lemma 3.41. Let n ∈ N∗, n ≥ 2. Let F be a field on X, let G be a field on Y, let r
be a ∩-homomorphism from F to G, and let κ be an n-monotone set function on G.
Then ν := κ ◦ r is an n-monotone set function on F .

Proof. Choquet’s [11, Chapter V, Section 23.2, p. 197, and Section 24.3, p. 198]

proof is rather short; it’s essentially only a remark of two lines. For the sake

of completeness, let’s work out the details. We shall prove the statement for

finite n; the case n = ∞ is then immediate.
It is easily shown that ν(∅) = 0, and ν(X) = 1, and that ν is monotone, i.e.,

ν(A) ≤ ν(B) whenever A ⊆ B for A and B in F (use the monotonicity of r and
κ).
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Now, for any A1, . . . , An ∈ F , it holds that

∑

∅,J⊆{1,2,...,n}
(−1)|J|+1ν
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and since κ is n-monotone,
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and, since a ∩-homomorphism is monotone, it holds that r(A j) ⊆ r(
⋃n
i=1 Ai)

for all j ∈ {1, . . . ,n}, and hence, ⋃ni=1 r(Ai) ⊆ r(
⋃n
i=1 Ai). So, since also κ is

monotone,

≤ κ
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n
⋃

i=1

Ai





























= ν















n
⋃

i=1

Ai















.

This establishes the lemma. �

We can now easily prove the following proposition, which is strongly

related to a very similar result byChoquet [11, ChapterV, Section 26.2, p. 205],

which gives a particular example of a completely monotone set function; we

shall need this when introducing S-integrals and Riemann-Stieltjes integrals.

Proposition 3.42. Let S be any non-empty subset of X. The set function ν defined
by ν(A) := PS(IA) is a completely monotone set function.

Proof. Immediately fromChoquet [11, Chapter V, Section 24.3, p. 198], Shafer

[75, Section 2, p. 830, ll. 1–4], or Lemma 3.41, once observed that ν = µ ◦ r,
withµ a probability charge (i.e., a completelymonotone set function) on {∅,X}
defined by µ(∅) := 0 and µ(X) := 1, and r a ∩-homomorphism from ℘(X) to
{∅,X}, defined by

r(A) :=



















X, if S ⊆ A,
∅, otherwise.

for every A ⊆ X. Indeed, r is a ∩-homomorphism, since r(∅) = ∅, r(X) = X,
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and

r(A ∩ B) =



















X, if S ⊆ A ∩ B
∅, otherwise

=



















X, if S ⊆ A and S ⊆ B
∅, otherwise

= r(A) ∩ r(B),

and also,

(µ ◦ r)(A) = µ(r(A)) =



















1, if S ⊆ A,
0, otherwise,

which is equal to ν(A). This establishes the lemma. �

What makes belief functions so special is that they can be uniquely char-

acterised through convex combinations of vacuous lower previsions, i.e.,

convex combinations of completely monotone set functions of the type of

Proposition 3.42. This was proved by Shafer [74, Theorem 2.1 and Theo-

rem 2.2] using simple combinatorics (the sieve formula and Möbius inver-

sion); Choquet [11, Section 45.1, pp. 258–259] established a more general

result, i.e., for a more general class of completely monotone set functions,

using geometry; also see Shafer [75, p. 830, ll. 1–4 and Theorem 2.1] for a

straightforward extension of Choquet’s result.

Theorem 3.43. Assume that X is finite. Let ν be any real-valued mapping defined
on the power set ofX. Then ν is a belief function if and only if there exists a mapping
m : ℘(X)→ [0, 1] that satisfies m(∅) = 0,∑A⊆Xm(A) = 1, and

ν(A) =
∑

∅,B⊆X
m(B)PB(IA). (3.17)

Amappingm satisfying the conditions described in Theorem3.43 is called

a basic probability assignment. It is well-known that the correspondence

between basic probability assignments and belief functions is onto and one-

to-one; see Shafer [74, Section 3, p. 39]. Transforming a belief function into

its basic probability assignment is sometimes also calledMöbius inversion or

the inverse Möbius transform:

m(A) :=
∑

B⊆A
(−1)|A\B|ν(B); (3.18)

see Shafer [74, Theorem 2.2, p. 39].
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Eq. (3.17) suggests the following coherent extension of Pν:

Eν( f ) :=
∑

∅,B⊆X
m(B)PB( f ), for any gamble f on X. (3.19)

This coherent lower prevision agrees with the Choquet integral with respect

to ν, defined on p. 74 for F -simple gambles—in this case X is a finite set
and F is the power set of X, all gambles are F -simple. Thus, for belief
functions, Eq. (3.19) can be used to calculate the Choquet integral. This result

is apparently due to Walley [86, Note 2 of Section 3.2, p. 502].

Theorem 3.44. Assume that X is finite, and let ν be a belief function on ℘(X)
corresponding to a basic probability assignment m. For any gamble f on X it holds

that

C

∫

f dν =
∑

∅,B⊆X
m(B)PB( f ).

3.5.8 Minimum and Maximum Preserving Set Functions

Minimum andmaximumpreserving set functions are a nice example of com-

pletely monotone and completely alternating set functions. On the power

set of a finite set, they are belief functions. More generally, on finite fields,

they are equivalent to (normed) necessity and possibility measures, defined

further on in Section 3.5.9. For modelling so-called linguistic uncertainty

through nested set functions, they are actually more reasonable than neces-

sity and possibility measures; see Theorem 4.36(ii) on p. 117; also see Walley

and De Cooman [88, p. 19].

Definition 3.45. Let F be a field. A set function ν defined on F is called
minimum preserving if, for any A and B in F ,

ν(A ∩ B) = ν(A) ∧ ν(B).

A set function π defined on F is called maximum preserving if its dual is
minimum preserving, or equivalently, if for any A and B in F ,

π(A ∪ B) = π(A) ∨ π(B).

As with 2-monotonicity, minimum preservation does not have a clear

behavioural interpretation. Actually, minimum preservation, as a rationality
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constraint, is clearly too strong in general: from De Cooman and Aeyels [21,

Proposition 15&16], we infer that if X is finite, then the only coherent mini-
mum preserving lower previsions defined on all gambles on X are vacuous

lower previsions.

Using results from Section 3.5.5 about 2-monotone set functions, it is

easy to prove that minimum preserving set functions induce coherent lower

probabilities. As the proof is short, it is given below.

Theorem 3.46. Any minimum preserving set function is 2-monotone, and hence,

induces a coherent lower probability. Similarly, any maximum preserving set func-

tion is 2-alternating, and hence, induces a coherent upper probability.

Proof. Let ν be a 2-monotone set function, and let A, B ∈ dom ν. Since ν is
a set function, it is monotone, and hence, ν(A ∪ B) ≥ ν(A) and ν(A ∪ B) ≥
ν(B). Therefore, ν(A ∪ B) ≥ ν(A) ∨ ν(B). Since, additionally, ν is minimum
preserving,

ν(A ∪ B) + ν(A ∩ B) ≥ ν(A) ∨ ν(B) + ν(A) ∧ ν(B) = ν(A) + ν(B).

Now apply Theorem 3.31 and Proposition 3.24. �

Nguyen [62, Theorem 1, pp. 363–364] proved that minimum preserving

set functions are completely monotone. So, when they are defined on the

power set of a finite set, we can invokeEq. (3.18) andTheorem3.44 to calculate

their Choquet integral.

Proposition 3.47. Any minimum preserving set function is completely monotone.

Corollary 3.48. Any minimum preserving set function defined on the power set of

a finite set is a belief function.

3.5.9 Necessity and Possibility Measures

Zadeh [95] introduced possibility measures, aimed at modelling linguistic

uncertainty, for instance, inferring from “tomorrow, it will rain a lot in

Ghent” something about the amount it will rain tomorrow in Ghent. Dubois

and Prade [29] introduced necessity measures, which are dual possibility

measures. De Cooman [17, 18, 19] generalised possibility and necessity

measures to complete lattices—linguistic variables typically assume values
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in a complete lattice—anddiscussed the formal analogies between possibility

theory and probability theory. Because of their interpretation as upper and

lower probabilities, I shall only consider real-valued possibility and necessity

measures.

Walley and De Cooman [88] modelled statements of the type “subject is

predicate” as lower previsions, and obtained possibility measures (or more

general, maximum preserving upper probabilities) only when the predicate

is ‘monotonic’ in the random variable of interest. This means the predicate

must be attached to a numerical scale onX (Walley andDeCooman [88, p. 13,
ll. 19–21]):

[...] monotonic predicates are the predicates q for which there is an
underlying numerical scale which measures the degree of q-ness of [the
possible outcomes x of X,]

or, more generally, that the predicate is attached to a complete preorder (a

complete, transitive, and reflexive relation) on X (Walley and De Cooman
[88, p. 14, Assumption 1]):

[we assume that] there are degrees of q-ness, and every pair of elements
in the possibility space [X] can be compared according to how well they
satisfy the property q, i.e. according to their degrees of q-ness.

For example (Walley and De Cooman [88, p. 13, ll. 2–10]),

[...] suppose that we are trying to identify the man who committed a
particular crime from a group of suspects, who make up the possibility
space [X]. An eyewitness describes the criminal as ‘tall’. How shouldwe
model the resulting uncertainty about which suspect is the criminal? [...]
there is a natural ordering of [X] according to the height of the suspects,
and ‘tall’ is increasing for an uncertain state which represents the height
of the criminal.

So, as a behavioural uncertainty model, it appears that possibility measures

can only model a very particular—but common—type of linguistic uncer-

tainty.

Perhaps the easiest way to introduce necessity and possibility measures,

is to take a look at Definition 3.45 on p. 84, and to note that

ν















⋂

A∈A
A















= min
A∈A

ν(A) and π















⋃

A∈A
A















= max
A∈A

π(A)
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for any non-empty finite subsetA of F . This suggests a stronger version of
Definition 3.45 if ν and π are defined on an ample field—a field closed under

arbitrary intersection and arbitrary union.

Definition 3.49. Let F be an ample field. A set function N defined on F is
said to be an infimum preserving set function, or a necessity measure, if for any

non-emptyA ⊆ F ,

N















⋂

A∈A
A















= inf
A∈A
N(A).

A set functionΠ defined on F is said to be a supremum preserving set function,
or a possibility measure, if its dual is infimum preserving, or equivalently, if

for any non-emptyA ⊆ F ,

Π















⋃

A∈A
A















= sup
A∈A
Π(A).

Note that, since possibility measures Π, as defined above, are set func-

tions, it holds that Π(X) = 1. In the literature, possibility measures for
which Π(X) = 1 are called normed possibility measures. Similarly, necessity
measures, as defined above, are called normed necessity measures in the lit-

erature. We shall only consider normed possibility and necessity measures,

and simply call them possibility and necessity measures.

Before, we have denoted set functions by lower case letters, such as µ for

set functions that induce coherent probabilities, ν for set functions that induce

coherent lower probabilities, and π for set functions that induce coherent

upper probabilities. In the literature, necessity and possibility measures are

denoted by upper case lettersΠ andN, and the lower case letters ν and π are

reserved for the necessity distribution and the possibility distribution; we

follow this convention.

One important advantage of supremum preserving set functions, not

shared by maximum preserving set functions in general, is their repre-

sentability as a real-valued mapping on X. This relies on a special property
of ample fields, not shared by fields or σ-fields in general. First, we need to

define atoms; see for instance Wang [89].

Definition 3.50. Let F be a field on X, and let x ∈ X. Then a set A in F is
called an atom of F if
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(i) A , ∅, and

(ii) if B ∈ F and B ⊆ A then either B = ∅ or B = A.

The set of atoms of F will be denoted byA(F ).

The following theorem is a concise summary of results by Wang [89]. As

the proof is short, it is given below, for the sake of completeness.

Theorem 3.51. A field F on X is an ample field if and only if there is a partition B
of X such that every element of F is an arbitrary union of elements of B:

F =














⋃

A∈A
A : A ⊆ B















. (3.20)

If so, this partition B is unique, and is the setA(F ) of atoms of F .

Proof. First, we show that, for any field F , the atoms of F are pair-wise
disjoint. Suppose A and B are atoms of F . Clearly, A∩B ∈ F , A∩B ⊆ A, and
A ∩ B ⊆ B. So, by the definition of atom, either A ∩ B = ∅ or A ∩ B = A, and
eitherA∩B = ∅ orA∩B = B. Hence, indeed, eitherA∩B = ∅ orA∩B = A = B.
“if”. If F is generated by a partition B through arbitrary union, then F

is closed under arbitrary union, and hence, F is an ample field. Let’s show
that B = A(F ). Let B ∈ B. Suppose that A ∈ F and A ⊆ B. Since A ∈ F ,
there is a subsetA of B such that A = ∪C∈AC. Since B is a partition,A ⊆ B,
and A ⊆ B, it must hold that A ⊆ {B}. Hence, either A = ∅, in which case
A = ∅, or A = {B}, in which case A = B. So, indeed, B ∈ A(F ). We proved
that B ⊆ A(F ). But, all elements of A(F ) are pair-wise disjoint, so, it must
hold that B = A(F ).
“only if”. Suppose F is an ample field. We must prove that A(F ) is

the only partition of X for which Eq. (3.20) is satisfied. First, we show that
A(F ) is a partition ofX. Since F is an ample field, this implies that Eq. (3.20)
is satisfied for the partition A(F ). Then, by the “if”-part, A(F ) is the only
partition of X such that Eq. (3.20) is satisfied.
So, is A(F ) a partition of X? Above, we showed that all atoms of F are

pair-wise disjoint. It remains to prove that
⋃

A∈A(F ) A = X. Define for any
x ∈ X the set

[x]F :=
⋂

A∈F , x∈A
A.
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Then, [x]F is an atom of F . Indeed, since x ∈ [x]F , it is non-empty, and since
F is closed under arbitrary intersection—since it is an ample field—also
[x]F ∈ F . If B ∈ F and B ⊆ [x]F , then we have the following cases.

(a) x ∈ B. Then [x]F ∩ B = [x]F by definition of [x]F , and hence, B ⊇ [x]F .
Together with B ⊆ [x]F , it follows that B = [x]F .

(b) x < B. Then (∁[x]F ) ∪ B = ∁[x]F , and hence, B ⊆ ∁[x]F . Together with
B ⊆ [x]F , it follows that B = ∅.

So, [x]F is indeed an atom of F . Since x ∈ [x]F for all x ∈ X, we find that

X ⊇
⋃

A∈A(F )
A ⊇

⋃

x∈X
[x]F ⊇ X,

which establishes the desired equality. �

So, ifF is an ample field, the setA(F ) of atoms ofF is the finest partition
ofXwhose elements belong toF , and any element ofF is an arbitrary union
of elements of this partition. Conversely, if F is generated through arbitrary
union of elements of a partition, then F is an ample field whose atoms are
given by the generating partition. This establishes an isomorphism between

partitions and ample fields. For example, the ample field ℘(X) corresponds
to the partition {{x} : x ∈ X} of all singletons of X. The ample field {∅,X}
corresponds to the partition {X}.
An important consequence of Theorem 3.51 is that, if F is an ample field,

then every singleton of X is contained in an atom of F . As in the proof, we
shall denote this atom by [x]F .

What happens if we restrict a possibility measure defined on an ample

field F to the corresponding partition A(F )? As we shall prove shortly, a
possibility measure is uniquely determined by its restriction to atoms, and a

necessity measure by its restriction to complements of atoms.

Definition 3.52. Let F be an ample field. Let Π be a possibility measure on
F . The gamble

π(x) := Π([x]F ), for all x ∈ X,

is called the possibility distribution induced byΠ. For a necessity measureN on

F , the gamble
ν(x) := N(∁[x]F ), for all x ∈ X,
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is called the necessity distribution induced by N.

The next theorem and corollary is a summary of results by De Cooman

[17]. Again, since the proofs are short, they are given here for the sake of

completeness. The notion ofF -measurability will be defined in Section 4.3.2;
see Definition 4.25 on p. 109. The only thing we need to know now, is that

in case F is an ample field, a gamble f is F -measurable if and only if it is
constant on the atoms of F ; see Proposition 4.27 on p. 111.

Theorem 3.53. LetF be an ample field. A set functionN defined onF is a necessity
measure if and only if there is an F -measurable gamble ν on X such that inf ν = 0,
sup ν ≤ 1 and

N(A) = inf
x∈∁A

ν(x), (3.21)

for any A in F \ {X}, and N(X) = 1. If so, then ν is the necessity distribution
induced by N. Similarly, a set function Π defined on F is a possibility measure if
and only if there is an F -measurable gamble π onX such that infπ ≥ 0, supπ = 1,
and

Π(A) = sup
x∈A

π(x), (3.22)

for any A in F \ {∅}, and Π(∅) = 0. If so, then π is the possibility distribution
induced by Π.

Proof. Immediate from Theorem 3.51. Let’s fill in the details. First of all,

it suffices to prove only the first part of the theorem, concerning necessity

measures. The part about possibility measures follows then from their dual

necessity measures.

“if”. Let νbe anF -measurablemapping onX such that inf ν = 0, sup ν ≤ 1
and suppose that Eq. (3.21) holds. The properties N(∅) = 0, N(X) = 1 and
N(A) ≤ N(B) for all A and B in F such that A ⊆ B, are immediate. LetA be a
subset of F \ {X}. Then

N















⋂

A∈A
A















= inf















ν(x) : x ∈ ∁














⋂

A∈A
A





























= inf















ν(x) : x ∈
⋃

A∈A
∁A















= inf
{

ν(x) : ∃A ∈ A : x ∈ ∁A
}
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= inf















⋃

A∈A

{

ν(x) : x ∈ ∁A
}















= inf
{

inf
{

ν(x) : x ∈ ∁A
}

: A ∈ A
}

= inf
A∈A
N(A),

and hence,N is an infimum preserving set function; it is a necessity measure.

From the equality Eq. (3.21) it also easily follows that, for any x ∈ X,

N(∁[x]F ) = inf
y∈∁∁[x]F

ν(y) = inf
y∈[x]F

ν(y) = ν(x),

since ν is F -measurable, and using Proposition 4.27. Hence, ν coincides with
the necessity distribution induced by N.

“only if”. Suppose thatN is a necessity measure onF . Then the necessity
distribution ν induced by N, satisfies Eq. (3.21). Indeed, since N is infimum

preserving, and A =
⋂

B∈A(F ),B∩∁A,∅∁B by Theorem 3.51 applied on ∁A, it

follows that

N(A) = inf
B∈A(F )
B∩∁A,∅

N(∁B) = inf
x∈∁A
N(∁[x]F ) = inf

x∈∁A
ν(x)

for any A ∈ F \ {X}. From this equality, it also follows that sup ν =
supx∈XN(∁[x]F ) ≤ 1, and

inf
x∈X

ν(x) = inf
B∈A(F )

N(∁B) = N

















⋂

B∈A(F )
∁B

















= N

















∁
⋃

B∈A(F )
B

















= N(∁X) = 0,

applying Theorem 3.51 to get
⋃

B∈A(F ) B = X. �

The following corollary is similar to a well-known result in probability

theory, namely, that there is an onto and one-to-one correspondence between

(sufficiently regular) probability density functions on [a, b], and (sufficiently

regular) probability measures on [a, b]; see De Cooman [17].

Definition 3.54. A necessity distribution ν on X is a gamble on X such that

0 = inf ν ≤ sup ν ≤ 1. A possibility distribution π on X is a gamble on X such
that 0 ≤ infπ ≤ supπ = 1.

Corollary 3.55. LetF be an ample field. There is an onto and one-to-one correspon-
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dence between necessity measures on F and F -measurable necessity distributions,
and an onto and one-to-one correspondence between possibility measures on F and
F -measurable possibility distributions.

Proof. Immediate from Theorem 3.53, and the fact that, through Eq. (3.21),

a necessity measure N on F uniquely determines an F -measurable neces-
sity distribution—namely, its induced necessity distribution—and any F -
measurable necessity distribution ν uniquely determines a necessity mea-

sure N on F : indeed, suppose N(A) , M(A) for some A ∈ F , where M is a
necessity measure that also satisfies Eq. (3.21) with necessity distribution ν.

Then

inf
x∈∁A

ν(x) = N(A) ,M(A) = inf
x∈∁A

ν(x)

We have arrived at a contradiction. Hence, N is unique.

The proof for possibility measures now follows from their dual necessity

measures. �

3.5.10 Cumulative Distribution Functions and P-Boxes

A probability box, or p-box, models uncertainty about a real-valued random

variable X through bounds on the cumulative distribution function of X; we

refer to Ferson, Kreinovich, Ginzburg, Myers, and Sentz [33] for an in depth

discussion of this model. Within our framework, we shall view a p-box as

a lower prevision defined on a particular set of indicator gambles and their

negations.

We shall be mostly concerned with p-boxes modelling uncertainty about

bounded random variables, i.e., gambles. Therefore, we restrict our study to

p-boxes defined on compact intervals only.

Definition 3.56. Let X = [a, b] be a compact interval in R. An ordered pair
(F∗,F∗) of real-valued mappings on X is called a p-box on X, and the lower
prevision P(F∗,F∗) defined by

P(F∗,F∗)(I[a,x]) = F∗(x) and P(F∗,F∗)(−I[a,x]) = −F
∗(x) for all x ∈ X, (3.23)

is called the lower prevision induced by (F∗,F∗).

The identification of p-boxes (F∗,F∗) with P(F∗,F∗) means that we interpret

F∗(x) as a lower probability and F∗(x) as an upper probability for the event
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[a, x]. So, p-boxes are nothing but a specification of a lower and an upper

cumulative distribution function.

Through the above identifications, we may also translate our lower pre-

vision behavioural concepts to p-boxes. We say that a p-box avoids sure loss

if its corresponding lower prevision avoids sure loss, etc. It is easy to show

exactly when a p-box is coherent. Let’s first consider the simpler case F∗ = F∗.

Definition 3.57. Let X = [a, b] be a compact interval in R. A cumulative
distribution function on X is a self-conjugate p-box (F,F) on X.

A cumulative distribution function F (we shall write simply F instead of

(F,F) for cumulative distribution functions) induces a probability defined by

PF := P(F,F). It satisfies PF(I[a,x]) = −PF(−I[a,x]) = F(x). When is PF coherent?

Lemma 3.58. Let X = [a, b] be a compact interval in R and let F be cumulative
distribution function F on X. Then PF is coherent if and only if

(i) x ≤ y =⇒ F(x) ≤ F(y) for all x, y ∈ X, and

(ii) 0 ≤ F(a) ≤ F(b) = 1.

Proof. “if”. Immediate from Theorem 3.27.

“only if”. Immediate from the properties of coherence, Theorem 3.5. �

Theorem 3.59. LetX = [a, b] be a compact interval inR, and let (F∗,F∗) be a p-box
on X. Then P(F∗,F∗) is coherent if and only if both PF∗ and PF∗ are coherent, and
additionally F∗(x) ≤ F∗(x) for all x ∈ X:

(i) x ≤ y =⇒ F∗(x) ≤ F∗(y) and F∗(x) ≤ F∗(y), for all x, y ∈ X

(ii) 0 ≤ F∗(x) ≤ F∗(x) ≤ 1 = F∗(b) = F∗(b), for all x ∈ X

Proof. “only if”. The conditions for coherence of PF∗ and PF∗ (described in

Lemma 3.58) and the condition F∗(x) ≤ F∗(x) for all x ∈ X are easily derived
from the coherence of P(F∗,F∗).

“if”. If both PF∗ and PF∗ are coherent, then, by Lemma 3.11, so must be

their lower envelope

P(I[a,x]) = min{PF∗(I[a,x]),PF∗ (I[a,x])} = min{F∗(x),F∗(x)} = F∗(x), and
P(−I[a,x]) = min{PF∗(−I[a,x]),PF∗ (−I[a,x])} = min{−F∗(x),−F∗(x)} = −F∗(x),

where we used F∗(x) ≤ F∗(x). But P is exactly equal to P(F∗,F∗). Hence, P(F∗,F∗) is
coherent. �





Chapter 4

Inference

We now turn to the following simple inference problem. Suppose we have

a lower prevision P, defined on a subset of the set of all gambles on X. Can

we infer from P something about the lower prevision of a gamble that is not

in the domain of P? More generally, can we extend P to a coherent lower

prevision defined on a larger domain? Walley [86] proved that this is possible

if P avoids sure loss, in which case he proved there is point-wise smallest

coherent lower prevision in the set of all coherent extensions of P. This is

only one of the many ways to define natural extension; we refer to Walley

[86] on this subject.

Walley [86] also demonstrated how natural extension encompasses many

other extension methods known from the literature: the Lebesgue integral

on the closed unit interval, the Choquet integral with respect to 2-monotone

set functions, inner and outer measures, Bayes’s rule, etc. We shall discuss

these results, and generalise some of them.

4.1 Natural Extension

Let P be any lower prevision, and let K be a set of gambles that includes
domP. Let’s carefully sum up the properties which our extension EKP of P

to K should satisfy. Note that Walley only discusses the case K = L(X); as
we shall see in Corollary 4.4, all other cases follow from K = L(X). We shall
denote EL(X)

P
by EP.

First of all, any behavioural disposition expressed by P should also be

95
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expressed by EKP . Hence, any transaction implied by P, such as buying a

gamble f for a price s, should also be implied by EKP . In such a case, we say

that EKP is a behavioural extension of P:

Definition 4.1. We say that a lower prevision Q is a behavioural extension

of a lower prevision P if domP ⊆ domQ and P( f ) ≤ Q( f ) for any gamble
f ∈ domP.

Thus, domP ⊆ K and EKP ( f ) ≥ P( f ) for all f in domP. Secondly, EKP must
be coherent, as argued in Section 3.4.2. Last but not least, wewant the buying

prices EKP to be as low as possible: any coherent behavioural extension of P

to K must also be a behavioural extension of EKP . This can only be the case
when EKP is the point-wise smallest coherent behavioural extension of P to

K . Because of this property, EKP is sometimes also called the least committal
extension of P; see for instance Walley [85, p. 28].

Definition 4.2. Let P be a lower prevision, and let domP ⊆ K ⊆ L(X). The
point-wise smallest coherent behavioural extension of P to K , if it exists, is
called the natural extension of P to K , and it is denoted by EKP . The natural
extension ofP toL(X) is simply called thenatural extension of P, and is denoted
by EP.

The main contribution of the following theorem, again due to Walley [86,

Chapter 3], is that avoiding sure loss of P is necessary and sufficient for the

existence of its natural extension EKP . It also gives an explicit expression for

EKP , and a number of criteria for checking avoiding sure loss.

Theorem 4.3. Let P be a lower prevision, and let domP ⊆ K ⊆ L(X). Define the
L(X)–R∗ map E by

E( f ) := sup

{

α +
n

∑

i=1

λiP( fi) :

α ∈ R, n ∈N, λ1, . . . , λn ≥ 0, f1, . . . , fn ∈ domP,

(∀x ∈ X)
(

α +
n

∑

i=1

λi fi(x) ≤ f (x)
)

}

(4.1)

for any gamble f ∈ L(X). The following conditions are equivalent.

(i) E( f ) < +∞ for some gamble f ∈ L(X).
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(ii) E( f ) < +∞ for all gambles f ∈ L(X).

(iii) E is a coherent lower prevision.

(iv) The natural extension of P toK exists and is equal to E restricted toK .

(v) P has at least one coherent behavioural extension.

(vi) P has at least one behavioural extension that avoids sure loss.

(vii) P avoids sure loss.

The following corollary, whose proof is immediate from the above the-

orem, tells us that EP uniquely determines the natural extension E
K
P of P to

any domain K that includes domP.

Corollary 4.4. Let P be a lower prevision, and let domP ⊆ K ⊆ L(X). Then EKP
exists if and only if EP exists, and in such a case

EKP ( f ) = EP( f ) for all f ∈ K .

So, from now on, in proofs, we can focus our attention on the natural

extension EP of P to the set of all gambles on X. An alternative, and simpler

expression for natural extension is obtained when P is defined on a linear

space and is coherent. This theorem is also due toWalley [86, Definition 3.1.1

and Theorem 3.1.2, pp. 122–124]; the proof is very short, we provide it for the

sake of completeness.

Theorem 4.5. Let P be any coherent lower prevision defined on a linear space, and

let domP ⊆ K ⊆ L(X). Then the natural extension of P to K exists, and for any
gamble f ∈ K ,

EKP ( f ) := sup{a + P(g) : a ∈ R, g ∈ domP, a + g ≤ f }. (4.2)

for any gamble f ∈ K .

Proof. Look at Eq. (4.1) and note that

n
∑

i=1

λiP( fi) ≤ P














n
∑

i=1

λi fi















. (4.3)

Since we are looking for the supremum, we can replace
∑n
i=1 λiP( fi) by P(g)

with g =
∑n
i=1 λi fi. �



98 INFERENCE

EKP coincides with P on domP if P is coherent; this follows directly from

the definition of natural extension in case domP = K . We refer toWalley [86,
Theorem 3.1.2(d)] for a proof.

Proposition 4.6. Let P be a lower prevision, and let domP ⊆ K ⊆ L(X). If P is
coherent then P and EKP coincide on domP.

Let’s endwith few nice results about natural extension, not due toWalley.

Proposition 4.7. Let P and Q be lower previsions on X that avoid sure loss. If

Q is a behavioural extension of P, then EQ is a behavioural extension of EP too:

EQ( f ) ≥ EP( f ) for every gamble f on X.

Proof. If Q is a behavioural extension of P, then any coherent behavioural

extension of Q is also a coherent behavioural extension of P; now apply

the definition of natural extension: it is the point-wise smallest coherent

behavioural extension to the set of all gambles on X. �

Proposition 4.8. Let P be a lower prevision that avoids sure loss. Let Q be any

coherent behavioural extension of P. Then P is equivalent to Q (that is, EP = EQ) if

and only if Q and EP coincide on domQ.

Proof. Note that since P avoids sure loss and Q is coherent, both EP and EQ
exist.

“if”. Since Q is a behavioural extension of P, any behavioural extension

of Q is also a behavioural extension of P. Hence, EQ ≥ EP. To prove the
converse inequality, let R be any coherent behavioural extension of P to the

set of all gambles on X. The claim is established if we can show that R is

also a behavioural extension of Q. Indeed, R ≥ EP by definition of natural
extension. Since Q = EP on domQ it follows that also R ≥ Q on domQ,
which means that R is a behavioural extension of Q.

“only if”. Suppose EP = EQ. Since Q is coherent, it follows from Proposi-

tion 4.6 that Q and EQ coincide on domQ, and hence, EP and Q coincide on

domQ. �

Corollary 4.9. Let P be a lower prevision that avoids sure loss, and let domP ⊆
J ⊆ K ⊆ L(X). Then

EK
EJ
P

( f ) = EKP ( f ), for all f ∈ K , and E
J
P
( f ) = EKP ( f ), for all f ∈ J .
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Proof. ByCorollary 4.4,EJ
P
coincideswithEP onJ . Hence, byProposition 4.8,

EEJ
P
is equal to EP. Therefore, also E

K
EJ
P

is equal to EKP , again by Corollary 4.4.

The other equality is immediate from Corollary 4.4. �

The first equality of Corollary 4.9 could be called transitivity of natural

extension: let P, Q, and R be three coherent lower previsions on X, and

assume that domP ⊆ domQ ⊆ domR; if Q is the natural extension of P to
domQ, and R is the natural extension of Q to domR, then R is the natural

extension of P to domR.

The following proposition generalises Proposition 3.24 on p. 70. Recall

that the dual of a set function ν is defined as π(∁A) := 1 − ν(A) for any
A ∈ dom ν.

Proposition 4.10. Let ν be a set function defined on a collectionA of subsets of X,
and let π be its dual. Then Pν and Pπ are equivalent: Pν avoids sure loss if and only

if Pπ avoids sure loss, and in such a case, EPν
= EPπ .

Proof. Immediate from Theorem 4.3. �

4.2 Linear Extension and Integration

In the following sections we shall study how integration with respect to

probability charges and other event-based uncertainty structures can be ob-

tained through natural extension, and vice versa. Let’s startwith some general

considerations about integration. Many of the integrals we know are linear

functionals that can be written as (a linear combination of)1 linear previsions

defined on a linear space of gambles. So, it seems natural to me to define

integration as a kind of linear natural extension for lower previsions. The

idea of defining integrability and integrals through natural extension is new,

and we shall explore its relation with some of the more common integrals

further on.

Definition 4.11. Let P be a lower prevision that avoids sure loss. Then the

linear extension EP of P is defined as the natural extension EP restricted to the

1For instance, by the Jordan decomposition theorem, any bounded charge is a linear com-
bination of two probability charges; see Bhaskara Rao and Bhaskara Rao [9, Theorem 2.5.3].
Therefore, as long as integrals are linear, we can reduce integration with respect to bounded
charges to integration with respect to probability charges. For bounded positive charges this
comes down to renormalisation. Renormalisation will be extensively used further on.
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domain where it is self-conjugate, that is, to { f ∈ L(X) : EP( f ) = EP( f )}. We
say that f is P-integrable if f ∈ domEP, and we shall call EP( f ) the integral of
f with respect to P, or simply the P-integral.

SinceEP is a restriction of a coherent lower prevision, namelyEP, and since

EP is self-conjugate by its definition, it follows that it is a linear prevision.

Proposition 4.12. EP is a linear prevision.

We emphasise again that the P-integral introduced here is a linear inte-

gral. Not all integrals are linear. The most important non-linear integral is

probably the Choquet integral; this integral is usually not a P-integral. The

Choquet integral is the only non-linear integral used in this work.

The linear extension is in a sense the unique coherent behavioural exten-

sion, as explained in the following proposition.

Proposition 4.13. Let P be a lower prevision that avoids sure loss. Then for

any coherent behavioural extension Q of P, it holds that EP( f ) = Q( f ) whenever

f ∈ domEP ∩ domQ.

Proof. Let f ∈ domEP ∩ domQ. Simply note that the linear extension coin-
cides with the natural extension on its domain, and the natural extension is

the point-wise smallest coherent behavioural extension of P. In particular,

EP( f ) = EP( f ) ≤ EQ( f ) ≤ −EQ(− f ) ≤ −EP(− f ) = −EP(− f ) = EP( f ),

hence, EP( f ) = EQ( f ). Now, by coherence of Q and Proposition 4.6 we have

that Q( f ) = EQ( f ). Hence, EP( f ) = Q( f ). �

For previsions we don’t only have uniqueness, but we can even establish

equivalence of P and EP. Below, we prove an even more general statement;

compare with Proposition 4.8.

Proposition 4.14. Let P be a linear prevision. Then for any coherent behavioural

extension Q of P such that domQ ⊆ domEP it holds that EQ = EP, that is, Q is
equivalent to P.

Proof. Since any behavioural extension of Q must also be a behavioural ex-

tension of P, it clearly holds that EQ ≥ EP. The converse is established if we
can show that any behavioural extension R of P, defined on L(X), is also a
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behavioural extension of Q. Indeed, by Proposition 4.13 we easily find that

EP = R on domEP, and EP = Q on domQ. Hence, Q = R on domQ. But this

means that R is a behavioural extension of Q. �

The following is an immediate consequence of Proposition 4.7 on p. 98.

Proposition 4.15. Let P and Q be lower previsions on X that avoid sure loss. If

Q is a behavioural extension of P, then EQ is an extension of EP: it holds that

domEP ⊆ domEQ and EP( f ) = EQ( f ) for every f in domEP.

Proof. By Proposition 4.7 on p. 98, we already have that EQ is a behavioural

extension of EP. Consequently, for any gamble f in domEP it holds that

EP( f ) = EP( f ) ≤ EQ( f ) ≤ EQ( f ) ≤ EP( f ) = EP( f ),

so f belongs to domEQ and EQ( f ) = EP( f ). �

The P-integrable gambles interact in additive way with other gambles.

Proposition 4.16. Let P be a lower prevision on X that avoids sure loss. For any

pair of gambles f and g on X of which at least one is P-integrable it holds that

EP( f + g) = EP( f ) + EP(g) and EP( f + g) = EP( f ) + EP(g).

Proof. Suppose for instance f is P-integrable, that is, EP( f ) = EP( f ). Then the

first equality follows from

EP( f ) + EP(g) ≤ EP( f + g) ≤ EP( f ) + EP(g) = EP( f ) + EP(g),

wherewe used the coherence of EP and Theorem 3.5(v). For upper previsions

the proof is similar. �

The linear extension is a natural generalisation to gambles of the Jordan

extension (see Denneberg [28, p. 29]) in measure theory; the Jordan exten-

sion will be defined in Section 4.3.4. Indeed, restricting the self-conjugacy

condition to indicators, we recover the condition for Jordan measurability.

The following corollary tells us that linear extension is also very similar to

the construction of the Carathéodory extension (see Denneberg [28, p. 24])

in measure theory; the Carathéodory extension will also be defined in Sec-

tion 4.3.4. However, the condition below, restricted to indicators, is not
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similar to the condition for Carathéodory measurability—the equivalence is

true, but it is not immediate.

Corollary 4.17. Let P be a lower prevision that avoids sure loss. A gamble f on X

is P-integrable if and only if

EP( f + g) = EP( f ) + EP(g), for all g ∈ L(X).

Proof. “only if”. Immediate from Proposition 4.16.

“if”. Take g = − f . Then 0 = EP(0) = EP( f ) + EP(− f ) = EP( f ) − EP( f ). �

The followingproposition gives a lower boundon thedomain of the linear

extension. Recall that R(X) denotes the set of constant gambles on X. The

relation P( f ) = sup f in the proposition below is related to so-called null-sets

and null-gambles. With respect to a probability measure µ, a subset A ofX is
called a null-set if its outer measure µ∗(A) is zero; we shall see in Section 4.3.4

that the outer measure corresponds to a coherent upper prevision. Hence,

µ∗(A) translates into P(IA) = 0, or equivalently, P(−IA) = sup[−IA]. The
proposition below says that null-sets belong to the domain of the linear

extension—it is not hard to imagine how this also extends to null-gambles

f , which satisfy P(| f |) = 0. Null-sets and null-gambles will be introduced in
Section 5.3.1 on p. 225 ff. and Section 5.3.2 on p. 230 ff.

Recall the definition of 2-monotonicity for lower previsions; see Defini-

tion 3.32 on p. 76.

Proposition 4.18. Let P be a lower prevision that avoids sure loss. The following

statements hold.

(i) If both f and − f are in domP, and P( f ) = −P(− f ), then f ∈ domEP and
P( f ) = EP( f ).

(ii) If f ∈ domP and P( f ) = sup f , then f ∈ domEP and P( f ) = EP( f ).

(iii) If | f | ∈ domP and P(| f |) = 0, then any gamble g such that |g| ≤ | f |, belongs
to domEP, and EP(g) = 0. In particular, EP( f ) = EP(| f |) = EP(−| f |) = 0.

(iv) R(X) ⊆ domEP.

(v) domEP is a uniformly closed linear space.

(vi) If EP is 2-monotone then domEP is a uniformly closed linear lattice.



4.2 LINEAR EXTENSION AND INTEGRATION 103

Proof. (i). If both f and − f are in domP and P( f ) = −P(− f ) then, by the def-
inition of natural extension as the point-wise smallest coherent behavioural

extension of P,

P( f ) = P( f ) ≤ EP( f ) ≤ EP( f ) ≤ P( f );

recall that −P(− f ) = P( f ) by definition. Hence, P( f ) = EP( f ) = EP( f ) = EP( f ).
(ii). If f ∈ domP and P( f ) = sup f , then

sup f = P( f ) ≤ EP( f ) ≤ EP( f ) ≤ sup f ,

and hence, also P( f ) = EP( f ) = EP( f ) = EP( f ).

(iii). If P(| f |) = 0, then, since P(| f |) ≥ inf| f | ≥ 0, it follows that inf| f | = 0,
or equivalently, sup−| f | = P(−| f |). Now, apply (ii) to find that −| f | belongs
to domEP, and EP(−| f |) = 0, and hence, EP(| f |) = −EP(−| f |) = 0 too. For any
gamble g on X such that |g| ≤ | f |, we find that

0 = EP(−| f |) ≤ EP(−|g|) ≤ EP(g) ≤ EP(g) ≤ EP(|g|) ≤ EP(| f |) = 0.

Therefore, EP(g) = EP(g) = 0, so g belongs to domEP, and EP(g) = 0.

(iv). EP is coherent, so EP(a) = EP(a) = EP(a) = a for any a ∈ R(X).
(v). Let α1, . . . , αn, α′1, . . . , α

′
m be non-negative reals, and h1, . . . , hn, h

′
1
,

. . . , h′m gambles in domEP. By the coherence of the natural extension, and the

self-conjugacy of the linear extension, it follows from Theorem 3.5(vi)&(v)

on p. 55 that

EP















n
∑

i=1

αihi −
n

∑

i=1

α′ih
′
i















≥
n

∑

i=1

αiEP(hi) +
m

∑

i=1

α′iEP(−h′i )

and since EP(hi) = EP(hi), and also EP(−h′i ) = EP(−h′i ) = −EP(h′i ) = −EP(h′i ) =
EP(−h′i ),

=

n
∑

i=1

αiEP(hi) +
m

∑

i=1

α′iEP(−h′i ) ≥ EP















n
∑

i=1

αihi −
m

∑

i=1

α′ih
′
i















NowuseEP ≤ EP. So, domEP is a linear space. It is uniformly closed, because
of Lemma 3.14 on p. 59.

(vi). It suffices to show that | f | belongs to domEP whenever f belongs to
domEP—indeed, f ∨ g = ( f + g+ | f − g|)/2 and f ∧ g = ( f + g− | f − g|)/2, and
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by (v) we already have that domEP is a uniformly closed linear space.

Observe that, by the 2-monotonicity of EP,

EP( f ∨ − f ) + EP( f ∧ − f ) ≥ EP( f ) + EP(− f ),

or equivalently, since f ∨ − f = | f | and f ∧ − f = −| f |, and EP(−•) = −EP(•),

EP( f ) − EP( f ) ≥ EP(| f |) − EP(| f |).

So, if f belongs to domEP, then the left hand side is zero. By the coherence

of EP, the right hand side is non-negative, and hence, the inequality implies

that the right hand side must be zero too. But this means that | f | belongs to
domEP. �

Note that for just about any notion of integrability in the literature, the

set of integrable bounded functions is at least uniformly closed: for instance,

Darboux [14, Théorème V (second one), p. 82] proves this result for Riemann

integrability.

We now give some conditions under which P-integrals of two gambles

are equal.

Proposition 4.19. Let P be a lower prevision on X that avoids sure loss, let f and

g be gambles on X, and define N := {x ∈ X : f (x) , g(x)}. The following statements
hold.

(i) If f is P-integrable, and EP(IN) = 0, then g is P-integrable and EP( f ) = EP(g).

(ii) If f and g are P-integrable, EP(IN) = 0, and EP is 2-monotone, then EP( f ) =

EP(g).

Proof. Define λ := sup| f − g| ≥ 0, and note that | f − g| ≤ λIN.
(i). By the coherence of EP, Theorem 3.5(iv)&(vi) on p. 55:

0 ≤ EP(| f − g|) ≤ λEP(IN) = 0.

Applying Theorem 3.5(ix), it follows that EP(g) = EP( f ) = EP(g).

(ii). If EP is 2-monotone, then by Proposition 4.18(vi), domEP is a linear

lattice. Therefore, if f and g are P-integrable, then also | f − g| is P-integrable,
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and hence, by the coherence of EP, Theorem 3.5(iv)&(vi) on p. 55:

0 ≤ EP(| f − g|) = EP(| f − g|) ≤ λEP(IN) = 0.

Again applying Theorem 3.5(ix), it follows that EP(g) = EP( f ). �

Let’s end with a few obvious, but important, results.

Corollary 4.20. Let P be a linear prevision. Then EP is an extension of P.

Proof. Immediate from Proposition 4.18(i). �

If domP ⊆ K ⊆ domEP, then we denote EKP also by EKP to emphasise that
it is a linear prevision.

Corollary 4.21. Let P be a linear prevision, and let domP ⊆ J ⊆ K ⊆ domEP.
Then

EK
EJ
P

( f ) = EKP ( f ) for all f ∈ K , and E
J
P
( f ) = EKP ( f ) for all f ∈ J .

Proof. Immediate from Corollary 4.9, once observed that EK
P
= EKP , E

J
P
= EJ

P
,

and EK
EJ
P

= EK
EJ
P

, by Corollary 4.4. �

4.3 Examples of Natural and Linear Extension

4.3.1 Uncertainty Models and Equivalence

We have already seen many examples where mathematical constructs for

modelling uncertainty—briefly, uncertainty models—are identified with lo-

wer previsions: a probability charge µ is identifiedwith its induced probabil-

ity Pµ; a nested set function µ is identified with its induced lower probability

Pµ, its induced upper probability Pµ, or its induced probability Pµ; a 2-

monotone set function ν is identified with its induced lower probability Pν,

as are minimum preserving set functions and necessity measures; a cumu-

lative distribution function F is identified with its induced probability PF;

and a p-box (F∗,F∗) with its induced lower prevision P(F∗,F∗). Through this

identification it was proved under what conditions these models are coher-

ent: see Theorem 3.21 on p. 67, Proposition 3.24 on p. 70, Theorem 3.27 on

p. 72, Theorem 3.31 on p. 76, Proposition 3.38 on p. 80, Theorem 3.46 on p. 85,
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Lemma 3.58 on p. 93, and Theorem 3.59 on p. 93. In this section we formalise

the idea of identifying mathematical constructs with lower previsions. This

provides us with a unifying language for studying their relations.

Again, only because all these uncertainty models can be interpreted as

lower previsions, it seems logical to describe all relations between them

through the language of lower previsions. So, the definition below is not

the most general one we can think of—without doubt there are uncertainty

models not interpretable as lower previsions—but it is general enough for

the purpose of this work (see for instance De Cooman [20] for a very general

approach).

Definition 4.22. An uncertainty structure is a pair (S, s), where S is a non-
empty set, and smaps each element ofS to a lower prevision onX. Elements
s of S are called uncertainty models. An uncertainty model s is said to avoid
sure loss whenever s(s) avoids sure loss; the set of uncertainty models that

avoid sure loss is denoted by asl(S). If s avoids sure loss, then E
s(s) exists, is

called the natural extension of s, and is also denoted by Es whenever s is clear

from the context. Similarly, Es(s) is called the linear extension of s and is simply

denoted by Es. A gamble f is called s-integrable whenever it is Es-integrable

and in such a case we call Es( f ) the s-integral of f . An uncertainty model s is

said to be coherent whenever s(s) is coherent, that is, whenever s(s) = Es on

dom s(s); the set of coherentmodels inS is denoted by coh(S). Anuncertainty
structuremust satisfy the following conditions which guarantee that the idea

of natural extension pulls back to S in a very simple way.

(i) Every coherent uncertainty model s ∈ S is uniquely determined by the
natural extension of s(s). That is, for every coherent s, s′ ∈ S it holds
that

Es = Es′ ⇐⇒ s = s′. (4.4)

So, smust be one-to-one between coh(S) and {Es : s ∈ coh(S)}.

(ii) For every uncertainty model s ∈ S that avoids sure loss there is a
coherent uncertainty model s∗ ∈ coh(S) such that Es = Es∗ . So, {Es : s ∈
asl(S)} = {Es : s ∈ coh(S)}

For every s ∈ asl(S) there is a unique s∗ ∈ coh(S) such that Es = Es∗ and this
uncertainty model s∗ is called the natural extension in S of s.

Let’s give a few examples of uncertainty structures.
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• Let K ⊆ L(X). Any set of lower previsions defined on a common
domainK is an uncertainty structure when equipped with the identity
map.

• Let F be a field. The set P(F ) of probability charges on F equipped
with P• is an uncertainty structure; see Definition 3.17 on p. 64: Pµ

is the induced probability of a probability charge µ. Indeed, all of its

elements are coherent:

coh(P(F )) = asl(P(F )) = P(F ). (4.5)

Hence, condition (ii) is satisfied. Condition (i) is also satisfied. The

natural extension Eµ coincides with E
span(F )
µ on span(F ). This will

follow from the fact that every F -simple gamble f is µ-integrable with
µ-integral given by E

span(F )
µ ( f ) (see for instance Proposition 4.28 on

p. 112).

• Let A be a nested collection of subsets of X, and suppose that ∅ ∈ A
and X ∈ A. The set of nested set functions onA equipped with either
P•, P•, or P•, are three different uncertainty structures.

• The set of 2-monotone set functions on a field F is an uncertainty
structure when equipped with P•; once more see Definition 3.17 on

p. 64: Pν is the induced lower probability of a 2-monotone set function

ν. Again, all of its elements are coherent so condition (ii) is trivially

satisfied, as well as condition (i). The natural extension Eν coincides

with E
span(F )
ν on span(F ), as we shall prove further on. In case ν is a

probability charge, it holds that EPν = EPν
.

• Let F be an ample field. The set of necessity measures on F is an
uncertainty structure when equipped with P•. The set of possibility

measures on F is an uncertainty structure when equipped with P•.

• P-boxes and cumulative distribution functions are uncertainty struc-
tures too when equipped with P(•,•).

Let’s now use uncertainty structures in order to identify various relations

between different uncertainty models.
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Definition 4.23. Let (S, s) and (T , t) be two uncertainty structures, and let
s ∈ S and t ∈ T . We say that s is equivalent to t, and we write s ∼ t, whenever

(i) both s and t incur sure loss, or

(ii) their natural extensions coincide: Es = Et.

Let (S, s) and (T , t) be two uncertainty structures. Then S is said to be
weaker than T and we write S 4 T whenever for every s ∈ coh(S) there is a
t ∈ coh(T ) such that s ∼ t. Finally, S and T are said to be equivalent and we
write S ∼ T if each is weaker than the other one, that is, whenever S 4 T
and T 4 S.

Clearly, ∼ is the equivalence relation that corresponds to the partial semi-
ordering 4 on the set of uncertainty structures. This partial semi-ordering

has a unique maximal element (up to equivalence), namely, the set of all

coherent lower previsions on L(X) equipped with the identity map. Every
other uncertainty structure is equivalent to some subset of this set, and the

partial semi-ordering corresponds to set inclusion.

Sometimes, we want to express the relation between uncertainty models

restricting to only a subset of all gambles.

Definition 4.24. Let K ⊆ L(X). Let (S, s) and (T , t) be two uncertainty
structures, and let s ∈ S and t ∈ T . We say that s is equivalent to t on K , and
we write s ∼K t, whenever

(i) both s and t incur sure loss, or

(ii) their natural extensions coincide on K : Es( f ) = Et( f ) for all gambles f
inK .

S is said to be weaker than T on K , and we write S 4K T , whenever for
every s ∈ coh(S) there is a t ∈ coh(T ) such that s ∼K t. Finally, S and T are
said to be equivalent onK and wewriteS ∼K T if both are weaker onK than
the other one, that is, whenever S 4K T and T 4K S.

For example, by definition, any twouncertainty structures (S, s) and (T , t)
are at least equivalent on the set R(X) of constant gambles on X.
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4.3.2 Integration of Probability Charges

Let’s now consider s-integrals for some special uncertainty structures. First

of all, we take a look at the set of probability charges defined on a field F
equippedwith P•. For a probability charge µ, the set of all Pµ-integrable gam-

bles, the domain of EPµ , is denoted by Lµ(X). Using the notation introduced
in Section 4.3.1, the set of all µ-integrable gambles, which is the domain of

Eµ, is denoted by Lµ(X).
What can we say about Lµ(X)? Applying Proposition 4.18(i)&(v) with

P equal to Pµ, it follows that Lµ(X) contains at least the uniform closure of
span(F ). Gambles in this uniform closure will be called F -measurable, and
the set of F -measurable gambles is denoted by

LF (X) := cl(span(F )). (4.6)

This characterisation is equivalent tomany other characterisations ofmeasur-

ability known in the literature; see for instance Greco [38], Bhaskara Rao and

Bhaskara Rao [9], Walley [86], Denneberg [28], and Janssen [45]. Bhaskara

Rao andBhaskara Rao [9] called itF -continuity. InHildebrandt [42, Sect. 1(f),
p. 869] andWalley [86, Section 3.2.1, p. 129], the definition ofF -measurability
is stronger than our definition of F -measurability given below, unless F is
a σ-field. However, if F is a field, but not a σ-field, Hildebrandt’s [42]
and Walley’s [86] set of F -measurable gambles is not even a linear space;
therefore, I prefer the more general definition. In case F is a σ-field, our
definition reduces to the classical definition of F -measurability, also called
Borel-measurability, for gambles.

The characterisation (A) in the definition below is due to Greco [38],

and the characterisation (B) is due to Janssen [45], who also established

equivalence with Greco’s definition. Below, we give a shorter proof.

Definition 4.25. Let F be a field on X and let f be a gamble on X. Then the
following conditions are equivalent; if any (hence all) of them are satisfied,

we say that f is F -measurable.

(A) For any a ∈ R and any ǫ > 0 there is an A ∈ F such that

{x ∈ X : f (x) ≥ a} ⊇ A ⊇ {x ∈ X : f (x) ≥ a + ǫ}.
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(B) There is a sequence fn of F -simple gambles that converges uniformly to
f , that is, limn→∞ sup

∣

∣

∣ f − fn
∣

∣

∣ = 0.

The set of all F -measurable gambles is denoted by LF (X).

Proof of equivalence. (A) =⇒ (B). Assume that condition (A) is satisfied. Let
ǫ > 0. Then (B) is established if we can find an F -simple gamble g such that
sup

∣

∣

∣ f − g
∣

∣

∣ ≤ ǫ.
Let a0, . . . , an be a finite sequence of real numbers such that a0 < inf f , 0 <

ai+1 − ai < ǫ
3 for i ∈ {0, . . . ,n− 1} and sup f < an. Define Ai = {x ∈ X : f (x) ≥ ai}

for i ∈ {0, . . . ,n}. By (A) there is a sequence B0, . . . , Bn−1 of members of F
such that

A0 ⊇ B0 ⊇ A1 ⊇ B1 · · · ⊇ An−1 ⊇ Bn−1 ⊇ An.

With a−1 := 0, define the F -simple gamble

g :=

n−1
∑

i=0

(ai − ai−1)IBi .

We show that g has the desired property:
∣

∣

∣ f (x) − g(x)
∣

∣

∣ < ǫ for any x ∈ X.
Indeed, let x ∈ X. First observe that by construction of a0, . . . , an there is a
unique j ∈ {1, . . . ,n} such that a j−1 ≤ f (x) < a j. By the construction of the
sequence B0, . . . , Bn−1 it holds that IBi(x) = 1 for i < j and IBi(x) = 0 for i > j

(for i = j both values are possible). We can conclude that

∣

∣

∣ f (x) − g(x)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

f (x) −
n−1
∑

i=0

(ai − ai−1)IBi

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

f (x) −
j−1
∑

i=0

(ai − ai−1)
∣

∣

∣

∣

∣

∣

∣

+
∣

∣

∣a j − a j−1
∣

∣

∣

=
∣

∣

∣ f (x) − a j−1
∣

∣

∣ +
∣

∣

∣a j − a j−1
∣

∣

∣

≤
∣

∣

∣ f (x) − a j
∣

∣

∣ + 2
∣

∣

∣a j − a j−1
∣

∣

∣

< ǫ,

which establishes the first part of the proof.

(B) =⇒ (A). Conversely, let a ∈ R and ǫ > 0, and suppose there is a
sequence of F -simple gambles such that sup

∣

∣

∣ f − fn
∣

∣

∣ converges to zero. Then
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there is an nǫ ∈N such that sup
∣

∣

∣ f − fnǫ
∣

∣

∣ < ǫ
2 . We find that

{x ∈ X : f (x) ≥ a} ⊇ {x ∈ X : fnǫ(x) ≥ a + ǫ
2 } ⊇ {x ∈ X : f (x) ≥ a + ǫ}.

Now simply observe that {x ∈ X : fnǫ (x) ≥ a + ǫ
2 } belongs to F , since fnǫ is

F -simple. �

We note that for a σ-field F , F -measurability is equivalent to the well-
known notion of Borel-measurability, as we prove now; see for instance

Kallenberg [48, Lemma 1.11, p. 7]. As the proof is short, it is given below.

Proposition 4.26. Let F be a σ-field on X. A gamble f on X is F -measurable if
and only if for any a ∈ R the set {x ∈ X : f (x) > a} belongs to F , or equivalently, if
and only if for any a ∈ R the set {x ∈ X : f (x) ≥ a} belongs to F .

Proof. “if”. Simply take A := {x ∈ X : f (x) > a} or A := {x ∈ X : f (x) ≥ a} in
Definition 4.25(A).

“only if”. Suppose f is F -measurable. By Definition 4.25(A) there is a
sequence An in F such that

{x ∈ X : f (x) ≥ a + 1
n+1 } ⊇ An ⊇ {x ∈ X : f (x) ≥ a + 2

n+1 }

Taking the countable union over n ∈N, we find that

{x ∈ X : f (x) > a} ⊇ ∪n∈NAn ⊇ {x ∈ X : f (x) > a},

which means that {x ∈ X : f (x) > a} = ∪n∈NAn. Since F is a σ-field, it is closed
under countable union, and hence, ∪n∈NAn belongs to F . This establishes
the proposition.

For the other part, construct the sequence An in F such that

{x ∈ X : f (x) ≥ a − 2
n+1 } ⊇ An ⊇ {x ∈ X : f (x) ≥ a − 1

n+1 },

and take countable intersection to arrive at the desired result. �

For ample fields—fields closed under arbitrary union—we have the fol-

lowing necessary and sufficient condition.
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Proposition 4.27. Let F be an ample field on X. A gamble f on X is F -measurable
if and only if for any a ∈ R the set {x ∈ X : f (x) = a} belongs to F , or equivalently,
if and only if f is constant on the atoms of F .

Proof. The two conditions are equivalent, since {x ∈ X : f (x) = a} belongs to
F if and only if {x ∈ X : f (x) = a} is a union of atoms of F , by Theorem 3.51.
“if”. Suppose that for any a ∈ R the set {x ∈ X : f (x) = a} belongs to F .

Since

{x ∈ X : f (x) ≥ b} =
⋃

a≥b
{x ∈ X : f (x) = a}

for any b ∈ R, and F is closed under arbitrary union, it follows that {x ∈
X : f (x) ≥ b} belongs to F for any b ∈ R. Now apply Proposition 4.26.
“only if”. If f is F -measurable, then, by Proposition 4.26, for any a ∈ R,

both {x ∈ X : f ≥ a} and {x ∈ X : f > a} belong to F . But, F is a field, and
hence, it is closed under complementation and intersection. We find that also

{x ∈ X : f ≥ a} ∩∁{x ∈ X : f > a} = {x ∈ X : f = a}

belongs to F . �

Proposition 4.28. Let F be a field on X and let µ be a probability charge on F .
Then any F -measurable gamble is µ-integrable, that is,

span(F ) ⊆ LF (X) ⊆ Lµ(X). (4.7)

Proof. The inclusion span(F ) ⊆ LF (X) follows easily from the definition of
F -measurability, Definition 4.25(B) on p. 109.
ByProposition 4.18(i) all gambles in span(F ) areµ-integrable. ByProposi-

tion 4.18(v) all gambles in the uniform closure of this set are also µ-integrable.

But, by Definition 4.25 these are exactly the F -measurable gambles. �

4.3.3 Linear Previsions and Probability Charges

Through F -measurability, we shall now establish a fairly general correspon-
dence between linear previsions and probability charges; similar results were

proved by for instance, Hildebrandt [42], Dunford and Schwartz [30, Chap-

ter VI, p. 492 ff.], and Bhaskara Rao and Bhaskara Rao [9, Theorem 4.7.4,

p. 135]. This will also be a first example of equivalent uncertainty structures.
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Its impact is that, in Section 4.4, it will allow us to obtain the natural extension

by lower and upper integrals, introduced further on in Section 4.3.5.

Definition 4.29. We can define a map from the set of linear previsions to the

set of probability charges. Let P be a linear prevision, and let F be a field
such that IF ⊆ domP. The restriction of P to IF corresponds to a probability
charge on F :

µµµF
P
(A) := P(IA) for any A ∈ F . (4.8)

Conversely, we can also define a map from the set of probability charges

to the set of linear previsions. Let µ be a probability charge defined on the

field F , and let K be any set of µ-integrable gambles: K ⊆ Lµ(X). Then the
mapping EKµ defined by

EKµ ( f ) := Eµ( f ) for any f ∈ K , (4.9)

is a linear prevision.

Proof that these maps are well-defined. Let P be a linear prevision, and let F be
a field such that IF ⊆ domP. To see that µµµFP is a probability charge, observe
that the conditions of Definition 3.16 follow from the linearity of P.

Let µ be a probability charge on F , and letK ⊆ Lµ(X). To see that EKµ is a
linear prevision, observe that by its definition, it is a restriction of the linear

extension Eµ, which is obviously a linear prevision. Therefore, by Lemma 3.9

also EKµ is a linear prevision. �

By Proposition 4.18(iv) (R(X) ⊆ domEP) and Proposition 4.13, any linear
prevision P has a unique coherent behavioural extension to a linear prevision

on domP ∪ R(X), through P(a) := a for all a ∈ R(X). So, we can always
assume that there is a field F such that IF ⊆ domP.
Recall that Eµ is a short notation for EPµ : the linear extension of the

probability Pµ induced by µ. Hence, EKµ is the linear extension of Pµ restricted

toK . If domP ⊆ K , then EKµ is equal to EKPµ , defined on p. 105.
Also note that for K = span(F ), the linear prevision Espan(F )µ , as defined

in Definition 4.29 above by Eq. (4.9), coincides with the linear prevision

E
span(F )
µ := D

∫

•dµ, as defined in Lemma 3.20 on p. 67 by Eq. (3.10). Indeed,
by Lemma 3.20, D

∫

•dµ, defined on the set span(F ) of F -simple gambles,
is a coherent behavioural extension of Pµ. But, by Proposition 4.28, any
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F -simple gamble is µ-integrable: span(F ) ⊆ Lµ(X) = domEPµ . Hence, by
Proposition 4.13, D

∫

•dµ and EPµ coincide on span(F ). Thus, D
∫

•dµ =
E
span(F )
Pµ

= E
span(F )
µ : this shows that our notation is consistent.

We can actually extend the Dunford integral to a much larger set of

gambles, and in Theorem 4.62 we shall prove that D
∫

•dµ = Eµ for this
extension.

The two maps given above constitute equivalences between particular

sets of probability charges and sets of linear previsions; a more general ver-

sion of the theorem below can be found in Bhaskara Rao and Bhaskara Rao

[9, Theorem 4.7.4, p. 135].

Theorem 4.30. Let F be a field. Then µµµF• and E
LF (X)
• are onto and one-to-one

between the set of linear previsions on LF (X) and the set of probability charges on
F .

Proof. Let P be any linear prevision on LF (X), and let µ be any probability
charge on F .
In order to establish that the maps are onto and one-to-one, it suffices to

show that

µµµF
E
LF (X)
µ

= µ and ELF (X)
µµµF
P

= P.

For any A ∈ F , ELF (X)µ (IA) = EPµ (IA), and applying Corollary 4.20, EPµ (IA) =

Pµ(A) = µ(A); hence, the first equality holds. To see that the second equality

also holds, let f be any F -measurable gamble. By Definition 4.25 f can be
uniformly approximated by a sequence fn of F -simple gambles. For any
such F -simple gamble fn =

∑mn
j=1
an, jIAn, j , it holds that

E
LF (X)
µµµF
P

( fn) = E
span(F )
µµµF
P

( fn) = D

∫

fn dµµµ
F
P

=

mn
∑

j=1

an, jµµµ
F
P
(An, j) =

mn
∑

j=1

an, jP(IAn, j ) = P( fn).

Let’s explain each equality. The first equality follows from Proposition 4.28,

by which domP ⊆ span(F ) ⊆ LF (X) ⊆ Lµ(X), and Corollary 4.21, which
gives the desired equality. The next equality is simply an application of the

definition of E
span(F )
µµµF
P

given in Lemma 3.20, which agrees with Definition 4.29

as we explained before. The next equality is a direct application of the

definition of the Dunford integral for F -simple gambles; see Definition 3.19
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on p. 65. Next, we apply the definition of µµµF
P
; see Definition 4.29. Finally, we

invoke the linearity of P.

Since both E
LF (X)
µµµF
P

and P are coherent previsions, they are continuous with

respect to the topology of uniform convergence, so

E
LF (X)
µµµF
P

( f ) = lim
n→+∞

E
LF (X)
µµµF
P

( fn) = lim
n→+∞

P( fn) = P( f ).

This establishes the claim. �

Corollary 4.31. For a given field F , the set of probability charges on F (equipped
with P•) is equivalent to the set of linear previsions on LF (X) (equipped with the
identity map).

Proof. Using Theorem 4.30 it is easy to check the conditions of Definition 4.23.

�

Corollary 4.32. µµµ℘(X)• and EL(X)• are onto and one-to-one maps between probability

charges on ℘(X) and linear previsions on L(X). Hence, the set P(℘(X)) of all
probability charges on ℘(X) is equivalent to the set P(X) of all linear previsions on
L(X).

Proof. See Theorem 4.30 and observe that L℘(X)(X) = L(X) whenever µ is
defined on ℘(X). �

Finally, we obtain the following new characterisation of self-conjugacy,

which I find quite surprising.

Corollary 4.33. Let F be a field on X and P be a coherent lower prevision defined
on a symmetric domain (domP = −domP) such that

IF ⊆ domP ⊆ LF (X). (4.10)

Then P is self-conjugate if and only if its restriction to IF corresponds to a probability

charge on F , that is, if and only if µµµF
P
is a probability charge.

Proof. “only if”. If P is self-conjugate, it must be a coherent prevision, in

which case its restriction to IF corresponds to µµµ
F
P
, which is a probability

charge by Definition 4.29.

“if”. Since P is coherent, it coincides with its natural extension EP on

domP, by Proposition 4.6. The corollary is therefore established if we can

show that EP is self-conjugate on LF (X).
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First, note that since the restriction of P to IF corresponds to a probability

charge, for any A in F it holds in particular that P(IA) + P(I∁A) = P(IX) = 1,
and hence, also EP(IA)+EP(I∁A) = 1. But this means that, by Theorem 3.5(iii),

EP(IA) = 1 − EP(I∁A) = 1 − EP(1 − IA) = −EP(−IA) = EP(IA). (4.11)

Thus, EP restricted to IF ∪−IF , sayQ, is a linear prevision: it is the restriction
of a coherent lower prevision, and it is self-conjugate. By Theorem 3.21 on

p. 67, it follows that the set function µ, defined by µ(A) := Q(A) for all A ∈ F ,
is a probability charge; note that Pµ = Q. Its linear extension Eµ = EQ is, by

its definition, a linear prevision defined on the set of all µ-integrable gambles

f . But, since EP is also a coherent behavioural extension of Q, it must hold

that EQ( f ) = EP( f ) for all µ-integrable gambles f , by Proposition 4.13. But,

by Proposition 4.28, F -measurability implies µ-integrability, and so we also
have that EQ( f ) = EP( f ) for all F -measurable gambles f . This means that EP
is self-conjugate on the set LF (X) of F -measurable gambles. �

4.3.4 Inner and Outer Set Function, Completion, and Other

Extensions

The following definition describes well-known extensions for probability

charges, 2-monotone set functions, and nested set functions that can be char-

acterised by means of natural extension.

Definition 4.34. Let µ be a set function defined on a collectionA of subsets
of X. The inner set function and outer set function induced by µ are the set
functions µ∗ and µ∗ defined for all B ⊆ X by

µ∗(B) := sup{µ(A) : A ∈ A, A ⊆ B},
µ∗(B) := inf{µ(A) : A ∈ A, A ⊇ B}.

Proposition 4.35. Let ν be a set function defined on a collectionA of subsets of X,
and let π be its dual. Then ν∗(A) = 1 − π∗(∁A) and ν∗(A) = 1 − π∗(∁A) for any
A ∈ A.

Proof. Immediate from the definition of inner and outer set function. �

The next theorem summarises the most important properties of the inner

and outer set function. Properties (i), (ii) and (vi) are due to De Cooman
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and Aeyels [21]; their results are proved by means of nested set functions

induced by a multi-valued map; for the sake of completeness, an alternative

proof without reference to multi-valuedmaps is given below. The continuity

condition below for necessity and possibility measures is sufficient, but not

necessary; it is a special case of the (necessary and sufficient) continuity condi-

tion given by De Cooman and Aeyels [21]; this follows immediately from De

CoomanandAeyels [21, Section 6.2]. Property (iii) is due toWalley [86, Corol-

lary 3.1.9, p. 127], (iv) is due to Choquet [11, Chapter IV, Lemma 18.3&18.4,

pp. 185–186], and (v) summarises (iii) and (iv) for probability charges.

Recall that by Theorem 3.27 on p. 72, lower probabilities, upper probabil-

ities, and probabilities induced by nested set functions are always coherent,

and by Theorem 3.31 on p. 76, lower probabilities induced by 2-monotone

set functions are always coherent.

Theorem 4.36. The following statements hold.

(i) Let ν and π be nested set functions. Then Pν∗ is coherent, and equal to EPν
on

indicators:

ν∗(A) = EPν
(IA), for all A ⊆ X.

Similarly, Pπ∗ is coherent and equal to EPπ on indicators:

π∗(A) = EPπ (IA), for all A ⊆ X.

(ii) Let ν and π be nested set functions. Then ν∗ is a minimum preserving set

function. If, additionally, dom ν is closed under arbitrary intersection and ν

is continuous from above, i.e.,

ν















⋂

A∈A
A















= inf
A∈A

ν(A), for any non-emptyA ⊆ dom ν,

then ν∗ is a necessity measure. Similarly, π∗ is a maximum preserving set

function. If, additionally, domπ is closed under arbitrary union and π is

continuous from below, i.e.,

π















⋃

A∈A
A















= sup
A∈A

π(A), for any non-emptyA ⊆ domπ,

then π∗ is a possibility measure.
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(iii) Let ν and π be set functions defined on a field. If Pν is coherent, then Pν∗ is also

coherent and equal to EPν
on indicators:

ν∗(A) = EPν
(IA), for all A ⊆ X.

Similarly, if Pπ is coherent, then Pπ∗ is also coherent and equal to EPπ on

indicators:

π∗(A) = EPπ (IA), for all A ⊆ X.

(iv) Let n ∈ N∗, n ≥ 2. If ν is an n-monotone set function, then ν∗ is also an
n-monotone set function. If π is an n-alternating set function, then π∗ is also

an n-alternating set function.

(v) If µ is a probability charge, then µ∗ is completely monotone, µ∗ is completely

alternating, and

µ∗(A) = Eµ(IA), and µ
∗(A) = Eµ(IA), for all A ⊆ X. (4.12)

(vi) Let F be an ample field, let N be a necessity measure on F with necessity
distribution ν, and let Π be a possibility measure on F with possibility distri-
bution π. Then N∗ is a necessity measure with necessity distribution ν andΠ∗

is a possibility measure with possibility distribution π: for any A ⊆ X, A , ∅
and A , X, it holds that

N∗(A) = inf
x∈∁A

ν(x) and Π∗(A) = sup
x∈A

π(x).

Proof. (i). It suffices to prove that ν∗(A) = EPν
(IA) for all A ⊆ X. Indeed, since

X ∈ dom ν and ν(X) = 1 by the coherence of Pν (Theorem 3.27), it follows
from Theorem 4.3 on p. 96 that

EPν
(A) = sup

{ n
∑

i=1

λiν(Si) : n ∈N, λ1, . . . , λn ≥ 0, S1, . . . ,Sn ∈ dom ν,

n
∑

i=1

λiISi ≤ IA
}

.
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Choosing n = 1 and λ1 = 1, it immediately follows that

EPν
(A) ≥ sup{ν(S) : S ∈ dom ν, S ⊆ A} = ν∗(A).

To see that the converse inequality holds too, it suffices to show that for any

n ∈ N, λ1, . . . , λn ≥ 0, and S1, . . . , Sn ∈ dom ν such that
∑n
i=1 λiISi ≤ IA, there

is an S ∈ dom ν such that S ⊆ A and∑n
i=1 λiν(Si) ≤ ν(S).

If
∑n
i=1 λiISi = 0, choose S = ∅, and use ∅ ∈ dom ν and ν(∅) = 0 (which

hold by the coherence of Pν). Otherwise, without loss of generality, we can

assume that λi > 0 and Si , ∅ for all i ∈ {1, . . . ,n}. Define the non-empty set

S :=

n
⋃

i=1

Si.

Since dom ν is a nested collection of sets, it follows that S ∈ dom ν. If x ∈ S,
then (since λi > 0 for all i ∈ {1, . . . ,n} and n ≥ 1)

0 <
n

∑

i=1

λiISi(x) ≤ IA(x);

this can only happen when also IA(x) = 1. Hence, S ⊆ A. Finally, take any
x ∈ ∩n

i=1
Si—this set is non-empty since dom ν is a nested collection, Si , ∅ for

all i ∈ {1, . . . ,n}, and n ≥ 1. Observe that x ∈ S, and therefore also x ∈ A. We
find that

1 = IA(x) ≥
n

∑

i=1

λiISi(x) =
n

∑

i=1

λi,

and hence,

ν(S) ≥
n

∑

i=1

λiν(S) ≥
n

∑

i=1

λiν(Si),

where we used ν(S) ≥ ν(Si) for all i ∈ {1, . . . ,n}: indeed, S ⊇ Si by definition
of S, and hence, ν(S) ≥ ν(Si) by the coherence of Pν; see Theorem 3.27. This
establishes that ν∗(A) = EPν

(IA) for all A ⊆ X.
To prove that π∗(A) = EPπ (IA) for all A ⊆ X, apply Proposition 4.35 and

Proposition 4.10 on p. 99.

(ii). From (i) and Theorem 3.5(iv): ν∗(A∩B) = EPν(A∩B) ≤ EPν(A) = ν∗(A)
and ν∗(A∩B) = EPν(A∩B) ≤ EPν(B) = ν∗(B), andhence, ν∗(A∩B) ≤ ν∗(A)∧ν∗(B).
To establish the converse inequality, it suffices to show that, for any C, D ∈
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dom ν such that C ⊆ A and D ⊆ B, there is an E ∈ dom ν such that E ⊆ A ∩ B
and ν(E) ≥ ν(C) ∧ ν(D). Indeed, take E = C ∩ D, and observe that E = C or
E = D since dom ν is a nested collection. Hence,

ν∗(A ∩ B) = sup{ν(E) : E ∈ dom ν, E ⊆ A ∩ B}
≥ sup{ν(C) ∧ ν(D) : C,D ∈ dom ν, C ⊆ A, D ⊆ B}

and since the conditions C ⊆ A and D ⊆ B are logically independent,

= sup{ν(C) : C ∈ dom ν, C ⊆ A} ∧ sup{ν(D) : D ∈ dom ν, D ⊆ B}
= ν∗(A) ∧ ν∗(B).

Suppose that dom ν is closed under arbitrary intersection, and ν is con-

tinuous from above. Let A be any collection of subsets of X. Again, the
inequality ν∗(

⋂

A∈A A) ≤ infA∈A ν∗(A) follows from (i) and Theorem 3.5(iv).
To establish the converse inequality, it suffices to show that, whenever for all

A ∈ Awe have CA ⊆ dom ν such that CA ⊆ A, there is an E ∈ dom ν such that
E ⊆ ⋂

A∈A A and ν(E) ≥ infA∈A ν(CA). Indeed, take E =
⋂

A∈A CA: E ∈ dom ν
for some A ∈ A since dom ν is a nested collection closed under arbitrary
intersection, and ν(E) = infA∈A ν(CA) since ν is continuous from above. Now,

proceed as above.

To prove that π∗ is maximum preserving, or a possibility measure if π is

continuous from below, apply Proposition 4.35 and Proposition 4.10 on p. 99.

(iii). See Walley [86, Corollary 3.1.9, p. 127].

(iv). We prove the n-monotone case: the n-alternating case then follows

from Proposition 4.35 and Proposition 4.10 on p. 99.

Choquet [11, Chapter IV, Lemma18.3, p. 186, ll. 6–9] gives a simpleproof—

note that Choquet’s ‘interior capacity’ does not depend on any topology on

X, and coincideswith our inner set function, but Choquet’s ‘exterior capacity’
does depend on the topology on X, and therefore has no relation with the
outer set function in general; see Choquet [11, Chapter V, Section 15.2, p. 174].

The 2-monotone case can also be found in for instanceWalley [85, Lemma6.1].

Choquet’s proof is rather brief, so let’s fill in the details for the sake of

completeness. We prove the case where n is finite; the case n = ∞ is then
immediate.

Let B1, . . . , Bn be subsets of X. By the definition of the inner set function
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ν∗, for any non-empty J ⊆ {1, . . . ,n}, there is a set AJ in dom ν such that
AJ ⊆

⋂

i∈J Bi and ν∗(
⋂

i∈J Bi) ≤ ν(AJ) + ǫ. For every i ∈ {1, . . . ,n}, define
Ai :=

⋃

J∋iAJ. Since AJ ⊆
⋂

i∈J Bi for every non-empty J ⊆ {1, . . . ,n}, it follows
that

Ai =
⋃

J∋i
AJ ⊆

⋃

J∋i

⋂

i′∈J
Bi′ ⊆ Bi

for all i ∈ {1, . . . ,n}: if there is a J ∋ i (namely, J = {i}), such that x ∈ Bi′ for
every i′ ∈ J, then it must hold in particular that x ∈ Bi (since i ∈ J). Also,

⋂

i∈J
Ai =

⋂

i∈J

⋃

J′∋i
AJ′ ⊇ AJ

for every non-empty J ⊆ {1, . . . ,n}: if x ∈ AJ, then, obviously, for every i ∈ J,
there is a J′ ∋ i (namely, J′ = J) such that x ∈ AJ′ . Hence, for every ǫ > 0, we
find that

ν∗















n
⋃

i=1

Bi















≥ ν∗















n
⋃

i=1

Ai















= ν















n
⋃

i=1

Ai















since Ai ⊆ Bi and Ai ∈ dom ν for all i ∈ {1, . . . ,n}, and now using the n-
monotonicity of ν,

≥
∑

∅,J⊆{1,2,...,n}
(−1)|J|+1ν

















⋂

i∈J
Ai

















.

and since ν(
⋂

i∈J Ai) ≤ ν∗(
⋂

i∈J Bi) ≤ ν(AJ)+ǫ ≤ ν(
⋂

i∈J Ai)+ǫ for all non-empty

J ⊆ {1, . . . ,n}, we may conclude that

≥ −(2n − 1)ǫ +
∑

∅,J⊆{1,2,...,n}
(−1)|J|+1ν∗

















⋂

i∈J
Bi

















.

Since this inequality holds for all ǫ > 0, it follows that it must also hold for

ǫ = 0, and hence, ν∗ is n-monotone.

(v). Immediate (iii) and (iv), once observed that a probability charge is a

completely monotone and completely alternating set function (see Choquet

[11, Section 14.5, pp. 173–174]). An alternative proof follows from application

of Theorem 4.41 and Theorem 4.42, given further on.
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(vi). By (iii), N∗(A) = EPN
(IA) for all A ⊆ X. De Cooman and Aeyels

[21, Theorem 6] proved that EPN
(I∁{x}) = ν(x). This establishes the claim.

Alternatively, for any A ⊆ X, A , X, it holds that

N∗(A) = sup{N(B) : B ∈ F , B ⊆ A}

= sup

{

inf
x∈∁B

ν(x) : B ∈ F , B ⊆ A
}

= sup
{

inf
x∈B
ν(x) : B ∈ F , ∁A ⊆ B

}

and this supremum is reached for B ∈ F as small as possible such that
∁A ⊆ B, and by Theorem 3.51 on p. 88, this is B = ∪x∈∁A[x]F , hence,

= inf
x∈∁A

ν(x).

The proof for Π∗ is similar. �

The above proposition about inner and outer extension has a nice conse-

quence, which is again due to De Cooman and Aeyels [21, Section 7.1]; the

corollary below is a special case of their result. We give an alternative proof

below.

Corollary 4.37. Let N be a necessity measure, and let v be its induced necessity

distribution. ThenPN is equivalent to the lower probability induced by the restriction

of N to the dual cut sets of v, i.e., the lower probability Pν induced by the nested set

function

ν({x ∈ X : v(x) ≤ z}) := N({x ∈ X : v(x) ≤ z}), for all z ∈ R.

Similarly, let Π be a possibility measure, and let p be its induced possibility distri-

bution. Then PΠ is equivalent to the upper probability induced by the restriction of

Π to the strict cut sets of p, i.e., the upper probability Pπ induced by the nested set

function

π({x ∈ X : p(x) > z}) := Π({x ∈ X : p(x) > z}), for all z ∈ R,

Proof. As it follows from Theorem 3.46 that N is coherent, it suffices to show

that N(A) = ν∗(A) for all A ∈ domN, by Theorem 4.6 and Theorem 4.8.
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Observe that ν is a nested set function, and dom ν is closed under arbitrary

intersection: for any Z ⊆ R, it holds that
⋂

z∈Z
{x ∈ X : N(x) ≤ z} = {x ∈ X : N(x) ≤ infZ};

and ν is continuous from above since N is a necessity measure—hence, ν∗ is

necessitymeasure by Theorem 4.36(ii). Is it equal toN? Yes, by Theorem 3.53,

this holds if the necessity distribution v∗ induced by ν∗ is equal to the necessity

distribution v induced by N. Indeed, for any x ∈ X,

v∗(x) = ν∗(∁{x})
= sup{ν(S) : S ∈ dom ν, x < S}
= sup{N({y ∈ X : v(y) ≤ z}) : z ∈ R, x < {y ∈ X : v(y) ≤ z}}
= sup{N({y ∈ X : v(y) ≤ z}) : z ∈ R, v(x) > z}}
= sup{inf{v(y) : y ∈ X, v(y) > z} : z ∈ R, v(x) > z}}

and since inf{v(y) : y ∈ X, v(y) > z} is non-decreasing in z,

= lim
z
<→v(x)
inf{v(y) : y ∈ X, v(y) > z}

Since inf{v(y) : y ∈ X, v(y) > z} ≥ z, its limit for z to v(x) is greater or equal
than v(x). Also, since v(x) ∈ {v(y) : y ∈ X, v(y) > z} whenever z < v(x), it
follows that inf{v(y) : y ∈ X, v(y) > z} ≤ v(x) whenever z < v(x). Hence, the
limit is less or equal than v(x). We conclude that v∗(x) = v(x). �

In the literature, we find the following extensions of probability charges

(see for instance Denneberg [28, pp. 24–29]). We shall investigate their rela-

tion to the linear extension we introduced before.

Definition 4.38. Let µ be a probability charge defined a the field F . The
completion of µ is the probability charge µ defined by µ(A∆N) := µ(A) for

any A ∈ F and N ⊆ X, whenever there is an M ∈ F such that N ⊆ M and
µ(M) = 0. The Carathéodory field of µ is defined as

Cµ :=
{

A ⊆ X : µ∗(B) = µ∗(B ∩ A) + µ∗(B \ A) for all B ⊆ X}

,
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and Jordan field of µ is defined as

Jµ :=
{

A ⊆ X : µ∗(A) = µ∗(A)
}

.

The Carathéodory extension of a probability charge µ is the unique extension

of µ to a probability charge µC defined on Cµ, and the Jordan extension of a
probability charge µ is the unique extension of µ to a probability charge µJ
defined on Jµ.

Through Theorem 4.36, we can easily show that the probability PµJ in-

duced by the Jordan extension µJ is equal to the linear extension Eµ of

Pµ restricted to indicators. By Theorem 4.30, this establishes existence and

uniqueness of the Jordan extension. Note that, as a result, IJµ = domEµ∩I℘(X).
Proof of existence anduniqueness of theCarathéodory extension for prob-

ability measures can be found in for instance Kallenberg [40, Theorem 2.1,

p. 24]. For probability charges, this follows from a result by Denneberg [28],

who showed that Jordan and Carathéodory extensions coincide. Anyway,

the Carathéodory extension of µ satisfies the following interesting property:

µ∗(A ∪ B) + µ∗(A ∩ B) = µC(A) + µ∗(B)

for any A ∈ Cµ and B ⊆ X; note that µC(A) = µ∗(A) = µ∗(A). In case A∩B = ∅,
the above equation follows from Proposition 4.16 and Theorem 4.36 above.

A set A ∈ Cµ is also called µ∗-measurable (see Halmos [40, Section 11]) or
Carathéodory measurable (see Denneberg [28, Chapter 2, p. 24]). Following

Hildebrandt [43, Chapter V, Theorem 2.8], Carathéodory measurability has

also a connection with Riemann integrability. Similarly, a set in Jµ is called
Jordan measurable.

Taking B = X in the definition of Cµ makes clear that the Jordan field
includes the Carathéodory field. Once observed that µ∗ is a 2-monotone

set function, it follows easily that the Jordan field is actually equal to the

Carathéodory field; see Denneberg [28, Proposition 2.9]. Therefore, the Jor-

dan extension is equal to the Carathéodory extension.

It is easy to show that the completion of a probability charge µ is also a

probability charge that agrees with the linear extension of µ, but in general,

the domain of the completion is smaller than the domain of the Carathéodory

or Jordan extension. Let’s alsomention that sets in the domain of the comple-
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tion of theLebesguemeasure are calledLebesguemeasurable. So,measurability

is legion, and all want their personal soldier? Anyway, let’s summarise:

Theorem 4.39. Let F be a field on X and let µ be a probability charge. Then, for
any A ⊆ X, A ∈ domµ implies IA ∈ domEµ, and

Eµ(IA) = µ(A) for any A ∈ domµ,

The linear extension of µ restricted to events, the Carathéodory extension of µ, and

the Jordan extension of µ coincide: for any A ⊆ X it holds that

IA ∈ domEµ ⇐⇒ A ∈ Cµ ⇐⇒ A ∈ Jµ

and, if A satisfies any of these equivalent conditions,

Eµ(IA) = µC(A) = µJ (A).

Proof. The completion µ agrees on its domain with the linear extension of

µ. Indeed, let A ∈ domµ. We must show that µ(A) = µ∗(A) = µ∗(A). Since
µ∗(A) ≤ µ∗(A), it suffices to show that µ∗(A) ≥ µ(A) ≥ µ∗(A). Since A ∈ domµ,
there are B ∈ F , M ∈ F , and N ⊆ M, such that A = B∆N, µ(M) = 0, and
µ(A) = µ(B); see Definition 4.38. Hence,

µ∗(B∆N) ≥
∣

∣

∣µ∗(B) − µ∗(N)
∣

∣

∣ = µ∗(B) = µ(B) = µ
∗(B) + µ∗(N) ≥ µ∗(B∆N),

where we used µ∗(N) ≤ µ∗(N) ≤ µ∗(M) = µ(M) = 0, the coherence of the
natural extension Eµ (Theorem 3.5), and Theorem 4.36(v)—for the first in-

equality, use IB∆N = |IB − IN |, and for the second inequality, use IB + IN ≥ IB∆N.
Therefore, µ∗(A) ≥ µ(A) ≥ µ∗(A).
It follows from Eq. (4.12) that µ∗(A) = µ∗(A) if and only if Eµ(IA) = Eµ(IA),

and therefore, the Jordan extension corresponds to the linear extension of

µ restricted to indicators. Denneberg [28, Proposition 2.9], has proved that

the Jordan extension coincides with the Carathéodory extension. Let’s give

a shorter version of the proof.

Clearly, if A ∈ Cµ then A ∈ Jµ; simply take B = X in the definition of
the Carathéodory field. Hence, Cµ ⊆ Jµ. Conversely, assume that A ∈ Jµ.
By Theorem 4.36, µ∗ induces a coherent upper prevision, and hence, µ∗ is
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sub-additive, so

µ∗(B) ≤ µ∗(B ∩ A) + µ∗(B \ A).

To prove the converse inequality, observe that µ∗ is 2-monotone, again by

Theorem 4.36. Hence,

µ∗(B) ≥ µ∗(B ∩ A) + µ∗(B ∪ A) − µ∗(A).

Again, apply Theorem 4.36, and use Proposition 4.16, to see that

µ∗(B ∪ A) − µ∗(A) = Eµ(IB∪A) − Eµ(IA) = Eµ(IB∪A − IA) = Eµ(IB\A) = µ∗(B \ A),

where we used the fact that A belongs to the Jordan field, Eµ(IA) = µ∗(A) =

µ∗(A) = Eµ(IA), to apply Proposition 4.16. Hence, A ∈ Cµ. �

For the purpose of this work, the most important observation is that the

inner set functions induced by nested set functions, possibilitymeasures, and

probability charges, are 2-monotone set functions.

4.3.5 The S-Integral

One of the simplest kinds of integrals on charges one can think of is the S-

integral. Of all integrals we shall discuss, this integral is most closely related

to the idea of natural extension, as we shall prove shortly in Theorem 4.42.

The S-integral was suggested by Moore and Smith [57, Section 5, p. 114,

ll. 10–13] to provide a conceptually simpler definition of the Lebesgue in-

tegral. It was then defined by Kolmogoroff [50, Zweites Kapitel, §2, p. 663,
Nr. 12] for arbitrary functions, and again byHildebrandt [42, Sect. 1(f), p. 869]

for bounded functions. Gould [37, Definition 4.3, p. 201, and Definition 6.1&

Theorem 6.2, p. 213] extended the S-integral to unbounded functions and

charges that assumevalues in a Banach space—incidentally, Gould aimed at a

generalisation of the Dunford integral. In this section, we shall only consider

the S-integral of bounded functions, i.e., gambles, with respect to real-valued

bounded positive charges. For this case, Bhaskara Rao and Bhaskara Rao

[9, Section 4.5] have defined the S-integral through a lower and an upper

S-integral; equivalence is immediate fromGould [37, Theorem 4.7(c)], in case

of real-valued positive charges. Hence, Bhaskara Rao’s and Bhaskara Rao’s

construction of Hildebrandt’s S-integral—restricted to positive charges and
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bounded functions—is similar to Darboux’s [14] construction of Riemann’s

[66] integral, as we shall discuss in Section 4.3.6. With respect to the Lebesgue

measure (or the Lebesgue-Stieltjes measure, which will be introduced in Def-

inition 4.47), the S-integral is also called the Y-integral, or the Young-Stieltjes

integral. It was introduced by Young [94] and is extensively discussed by

Hildebrandt [43, Chapter VII, Section 3]. The S-integral is a straightfor-

ward generalisation of the Young-Stieltjes integral. For gambles, the Young-

Stieltjes integral provides us with an alternative to, and, inmy opinion, also a

simpler formulation, of the Lebesgue-Stieltjes integral; see Hildebrandt [43].

In particular, it does not involve any measurability conditions. In any case,

the Young-Stieltjes integral and the Lebesgue-Stieltjes integral agree on a very

large class of gambles; see Hildebrandt [43, Chapter VII, Theorem 3.9].

Hildebrandt [42] claims that the S-integral is of the Stieltjes type, whence

the term S-integral. But, as we shall prove in Theorem 4.53, not all Riemann-

Stieltjes integrals are representable by an S-integral: the S-integral is therefore

not really of the Stieltjes type. Nevertheless, we shall keep the termS-integral.

However, the S-integral does generalise the Riemann integral, as well as

a large class of Riemann-Stieltjes integrals. Apparently, this is a new result:

in the vast literature on integration, I have found only very little material

covering this topic, perhaps because the connection requires integrationwith

respect to charges on fields of R that are not σ-fields. Let’s summarise what

I believe is known:

• If a gamble is Riemann-integrable, then it is S-integrable with respect to
the Lebesgue measure restricted to the field generated by {[a, x] : x ∈ X}
(which we denote by F(](X)); see Hildebrandt [42, p. 870, ll. 1–6]—we
shall establish the converse of this claim in Corollary 4.54.

• De Finetti [27, Vol. I, Sections 6.2–6.4, pp. 222–241] has argued that
‘[the lower and upper Riemann-Stieltjes integral] expresses all that one

can obtain from F, that is, distributional knowledge, [...]’ (De Finetti

[27, Vol. I, p. 235, ll. 14–17]. This suggests that the lower and upper

Riemann-Stieltjes integral should coincide with the lower and upper

S-integral induced by a Riemann-Stieltjes charge; we shall prove that

this claim is approximately correct, if we follow Darboux’s approach to

Riemann-Stieltjes integration (see Section 4.3.6 on p. 132 ff.).

So,we shall take some time for an extensivediscussionof the relationbetween
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the S-integral and the Riemann-Stieltjes integral; the results are summarised

in Theorem 4.52 on p. 145, Theorem 4.53 on p. 151, and Corollary 4.54 on

p. 156. Why do we do this? Because, as a result, we shall be able to

• provide new characterisations of the Choquet integral described in
Section 4.3.10, and

• characterise the natural extension of cumulative distribution functions
and p-boxes as Riemann-Stieltjes integrals.

This only adds to the importance of the S-integral.

The S-integral, and hence, as we shall see shortly, natural extension,

provides us with a tool to study all of the above-mentioned integrals and

their connections. Conversely, and certainly of more importance for our

purposes here, all of these integrals provide uswith a tool to calculate natural

extension itself, not only for probability charges, but for any lower prevision

that avoids sure loss. This will be extensively discussed in Section 4.4.

LetP(F ) denote the set of all finite partitions ofXwhose elements belong
to the field F . We define a relation ≤ on P(F ): say thatA ≤ BwheneverB is
a refinement ofA, i.e., whenever every element of B is a subset of an element
ofA. It follows easily that

(i) ≤ is reflexive: every finite partition is a refinement of itself,

(ii) ≤ is transitive: if a finite partition A refines a finite partition B, and B
refines a finite partition C, thenA also refines C, and

(iii) ≤ satisfies the composition property: since F is a field, every two finite
partitions in F have a common finite refinement in F , i.e., for everyA
and B in P(F ) there is a C in P(F ) such thatA ≤ C and B ≤ C.

A set equipped with a relation that is transitive, reflexive, and that satisfies

the composition property, is called a directed set. Hence, P(F ) is a directed
set with respect to ≤.
As a consequence, we can take the so-calledMoore-Smith limit overP(F );

seeMoore and Smith [57, Section I, p. 103]: for every net α onP(F ), i.e., every
map α : P(F ) → R, the Moore-Smith limit of α, if it exists, is the unique

real number a such that for every ǫ > 0, there is an Aǫ ∈ P(F ) such that
|α(A)−a| < ǫ for allA ≥ Aǫ; we shall denote theMoore-Smith limit of a net α

onP(F ) by limB∈P(F ) α(B). TheMoore-Smith limit is a natural generalisation
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of the limit of sequences, and this limit is used in the definition of the S-

integral.

Definition 4.40. Let F be a field onX and let µ be a bounded positive charge
on F . A gamble f on X is called S-integrable with respect to µ if and only if
the lower and upper S-integral of f

S

∫

f dµ := lim
B∈P(F )

∑

B∈B
PB( f )µ(B) = sup

B∈P(F )

∑

B∈B
PB( f )µ(B), (4.13)

S

∫

f dµ := lim
B∈P(F )

∑

B∈B
PB( f )µ(B) = inf

B∈P(F )

∑

B∈B
PB( f )µ(B) (4.14)

coincide. In such a case, the S-integral of f with respect to µ is defined as

S

∫

f dµ := S

∫

f dµ = S

∫

f dµ. (4.15)

Proof of existence of the Moore-Smith limits. Observe that
∑

B∈B PB( f )µ(B) is a

non-decreasing net overB ∈ P(F ), and is bounded from above byµ(X) sup f .
Hence, it converges and its Moore-Smith limit over P(F ) coincides with the
supremumoverP(F ). Proof of existence of the upper S-integral is similar. �

In case µ is a probability charge, recall that any finite convex combination

and any point-wise limit of coherent lower previsions is coherent, and note

that the lower S-integral with respect to µ is the point-wise limit of a net of

convex combinations of coherent lower previsions; in fact, it’s a point-wise

limit of the natural extensions of belief functions, introduced in Section 3.5.7.

Hence, up tonormalisation, the lower S-integral is a coherent lowerprevision,

and the upper S-integral is its conjugate.

Theorem 4.41. Let µ be a probability charge. Then the lower S-integral with respect

to µ is a 2-monotone coherent lower prevision. The lower S-integral, restricted to

I℘(X), corresponds to a completely monotone set function.

Proof. ByDefinition 4.40, the lower S-integral is the point-wise limit of a net of

convex combinations of vacuous lower previsions. But, by Proposition 3.33

on p. 76, vacuous lower previsions are 2-monotone and coherent, and by

Lemma 3.10 on p. 57, Lemma 3.12 on p. 58, Proposition 3.34 on p. 77, and

Proposition 3.35 on p. 77, limits and convex combinations of 2-monotone
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coherent lower previsions are 2-monotone and coherent. Therefore, the lower

S-integral must be a 2-monotone coherent lower prevision.

Apply Proposition 3.39 on p. 80 and Proposition 3.42 on p. 82 to see why

the lower S-integral, restricted to I℘(X), corresponds to a completelymonotone

set function. �

The following theorem yields an even stronger result.

Theorem 4.42. Let F be a field on X and let µ be a probability charge on F . For
any gamble f on X it holds that

S

∫

f dµ = Eµ( f ), S

∫

f dµ = Eµ( f ). (4.16)

Proof. We start with a simple observation. For every finite subsetA ⋐ F and
λA ∈ R (for all A ∈ A) there are a finite partition BA ∈ P(F ) and a κB ∈ R
(for all B ∈ BA) such that

∑

A∈A
λAIA =

∑

B∈BA
κBIB.

If
∑

B∈BA κBIB ≤ f , then for any B ∈ BA, it holds that κB ≤ f (x) for all x ∈ B,
and hence, κB ≤ infx∈B f (x) = PB( f ). So,

∑

A∈A λAIA ≤ f implies that
∑

A∈A
λAIA =

∑

B∈BA
κBIB ≤

∑

B∈BA
PB( f )IB ≤ f , and

∑

A∈A
λAµ(A) ≤

∑

B∈BA
PB( f )µ(B).

(4.17)

Therefore, by definition of the lower S-integral,

S

∫

f dµ = sup
B∈P(F )

∑

B∈B
PB( f )µ(B),

and, taking the supremum over a larger set,

≤ sup
A⋐F















∑

A∈A
λAµ(A) : A ∈ F , λA ∈ R,

∑

A∈A
λAIA ≤ f















= Eµ( f )
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where the equality with Eµ follows from the fact that X ∈ F , so we can
omit the constant in Eq. (4.1), and from the self-conjugacy of Pµ, so we can

allow the coëfficients λA to be any real number in Eq. (4.1), instead of only

non-negative reals. Now, invoking Eq. (4.17),

≤ sup
A⋐F

∑

B∈BA
PB( f )µ(B)

and since {BA : A ⋐ F } is a subset of P(F ),

≤ S
∫

f dµ.

Equality of the upper S-integral follows by conjugacy. �

Theorem 4.43. Let F be a field on X and let µ be a probability charge on F . Then
S
∫

•dµ = Eµ, that is, a gamble f on X is µ-integrable if and only if it is S-integrable
with respect to µ and in such a case

S

∫

f dµ = Eµ( f ). (4.18)

Proof. Immediately from Theorem 4.42. �

If µ is defined on an ample field, the lower S-integral can be obtained from

the S-integral as follows. This is similar to a result by Aeyels and De Cooman

[21], which was proved in the context of natural extension of a possibility

measure.

Theorem 4.44. Let F be an ample field on X and let µ be a probability charge on
F . Then, for any gamble f on X it holds that

Eµ( f ) = S

∫

f dµ = S

∫

[ f ]↓F dµ = Eµ([ f ]
↓
F ), (4.19)

where the gamble [ f ]↓F is defined as

[ f ]↓F (x) := P[x]F ( f ) = infy∈[x]F
f (y)

for any x in X.
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Proof. From Theorem 3.51 it follows that PA( f ) = PA([ f ]
↓
F ) for any A ∈ F .

Now, apply the definition of the lower S-integral to obtain that S
∫

f dµ =

S
∫

[ f ]↓F dµ. But, [ f ]
↓
F is constant on the atomsofF by its definition, andhence,

byProposition4.27, it isF -measurable, andfinally, applyingProposition4.28,
we find that [ f ]↓F is µ-integrable. Now, apply Theorem 4.43. �

For a general bounded positive charge µ, the lower S-integral satisfies

S

∫

f dµ = µ(X) S
∫

f d
µ

µ(X) = µ(X)E µ
µ(X)
( f ),

assuming that µ(X) > 0. If we call the right hand side the natural extension of
µ, and if we say that a gamble is µ-integrable whenever it is

µ
µ(X) -integrable,

then Theorem 4.42, Theorem 4.43, and Theorem 4.44 remain valid for all

bounded positive charges.

4.3.6 The Riemann and the Riemann-Stieltjes Integral

Consider a compact interval X = [a, b] in R and the Lebesgue measure λ
on the Borel field B(X). The Riemann integral, as defined by Darboux [14,
Section II, p. 65], is very much like the S-integral with respect to λ, except

that it takes a Moore-Smith limit over the set S(X) of subdivisions of X,

S(X) :=
{

{

[a, x1], [x1, x2], . . . , [xn, b]
}

: a ≤ x1 ≤ · · · ≤ xn ≤ b
}

, (4.20)

instead of over the set of finite partitions P(B(X)) on the Borel field B(X).
Indeed, the set S(X) of subdivisions of X constitutes a directed set: for any
S, T ∈ S(X), either we define S ≤|•| T if |S| ≤ |T |, where |S| := maxS∈S λ(S),
or we define S ≤ T if S is a refinement of T , i.e., if for any S ∈ S there is a
T ∈ T such that T ⊆ S. Both ≤ and ≤|•| are transitive, reflexive, and satisfy
the composition property: the set S(X) constitutes a directed set with respect
to both ≤ and ≤|•|.
Hence, we have two ways to take the Moore-Smith limit [57, p. 103]

over S(X) to calculate lower and upper integrals. Darboux [14, p. 69, l. 23–
p. 70, l. 13] showed that it does not matter whether the Moore-Smith limit

is taken with respect to ≤ or with respect to ≤|•|. We, however, shall take
the ≤-limit, because that is more like the S-integral, and hence, like natural
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extension. Note that the original definition of the Riemann integral, by

Riemann [66, Section 4, p. 102], involves the ≤|•|-limit, and is not formulated
through lower and upper integrals. For an extensive discussion of these

matters, also see for instance Hildebrandt’s book [43]: Chapter II, pp. 27–32,

in particular Definition 2.1, Definition 2.2, Theorem 3.2 and Theorem 3.10.

For our purposes, it is convenient to take the result of Darboux’s extension

[14, Section II, pp. 64–71] of Riemann’s analysis [66, Sections 4–6, pp. 102–108]

as our definition of the Riemann integral, because lower and upper integrals

obtained by the Moore-Smith limit with respect to ≤ are more closely linked
to the lower and upper S-integral, and hence, to natural extension.

Definition 4.45. Let X = [a, b] be a compact interval in R, and let λ denote
the Lebesgue measure on the Borel field B(X). A gamble f on X is called
Riemann integrable if and only if the lower and upper Riemann integral of f

R

∫ b

a

f (x) dx := lim
S∈S(X)

∑

S∈S
PS( f )λ(S) = sup

S∈S(X)

∑

S∈S
PS( f )λ(S), (4.21)

R

∫ b

a

f (x) dx := lim
S∈S(X)

∑

S∈S
PS( f )λ(S) = inf

S∈S(X)

∑

S∈S
PS( f )λ(S) (4.22)

coincide. In such a case, the Riemann integral of f is defined as

R

∫ b

a

f (x) dx := R

∫ b

a

f (x) dx = R

∫ b

a

f (x) dx. (4.23)

The set of Riemann integrable gambles on X is denoted by LdX(X).

Proof of existence of the Moore-Smith limits. Similar to the proof for the lower

and upper S-integral. �

Note that the lower andupperRiemann integrals are sometimes called the

lower andupperDarboux integrals. Again, wehave the following interesting

property:

Theorem 4.46. Let X = [0, 1]. The lower Riemann integral on X is a 2-monotone
coherent lower prevision. The lower Riemann integral on X, restricted to I℘(X),
corresponds to a completely monotone set function.

Proof. Similar to the proof of Theorem 4.41 on p. 129. �
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Obviously, Theorem 4.46 extends to arbitrary compact intervalsX = [a, b]
in R, after renormalisation.

The Riemann integral can be easily generalised as follows. Subdivisions

consist of closed intervals [x, y] with a ≤ x ≤ y ≤ b. We know that the
Lebesgue measure is the unique (σ-additive) measure on B(X) such that
λ([x, y]) = y − x for all a ≤ x ≤ y ≤ b. Now, instead, fix a real-valued
non-decreasing bounded function F on X (such functions have very nice
properties: in particular F(x+) := limǫ>0 F(x + ǫ) exists for every a ≤ x < b
and F(x−) := limǫ>0 F(x − ǫ) exists for every a < x ≤ b, and F is continu-
ous except at countably many points of [a, b]; see for instance Schechter [70,

Proposition 19.22]). Then, as we shall prove below, there is a charge ρF on

a field that contains all closed intervals, such that ρF([x, y]) = F(y) − F(x) for
all a ≤ x ≤ y ≤ b. If we replace the Lebesgue measure λ in the definition of
the Riemann integral by this charge ρF then we obtain exactly the Riemann-

Stieltjes integral defined below. These integrals will play an important rôle in

the natural extension of cumulative distribution functions and p-boxes. Be-

fore proceeding with the definition, a few remarks are necessary to motivate

why we choose our particular approach.

First of all, contrary to the Riemann integral, the Riemann-Stieltjes inte-

gral defined by the (norm based) ≤|•|-limit is not equivalent to the Riemann-
Stieltjes integral defined by the (refinement based) ≤-limit unless F is con-
tinuous; see for instance Hildebrandt [43, Chapter II, Theorem 10.9]. As

mentioned before, we prefer to take the ≤-limit over S(X) because this con-
struction of the limit is closer to the definition of the S-integral, and hence, to

the idea of natural extension. Another reason is that this construction yields

a strictly larger set of integrable gambles whenever F is not continuous.

If F is continuous, then there actually exists a unique measure λF on the

Borel field B(X) such that λF([x, y]) = F(y) − F(x) for all a ≤ x ≤ y ≤ b.
This measure (or, its completion) is called the Lebesgue-Stieltjes measure

induced by F; see Halmos [40, Section 15.9]. It can be defined through the

Lebesgue measure as λF(A) := λ(F(A)) for any A ∈ B(X)—the continuous
image of a Borel set again is a Borel set. But, if F is not continuous, there is no

such measure: σ-additivity cannot hold. Indeed, suppose for instance that

F(y+) > F(y), with F(y+) := limǫ>0 F(y + ǫ) > F(y).

F(y+) − F(x) = inf
n∈N
F
(

y + 1n

)

− F(x) = inf
n∈N

ρF
([

x, y + 1n
])
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> ρF
(

∩n∈N
[

x, y + 1n
])

= F(y) − F(x),

and a similar strict inequality in case F(x−) < F(x), with F(x−) := limǫ>0 F(x −
ǫ). So, either we have to give up σ-additivity, or we have to give up that

ρF([x, y]) = F(y) − F(x) for every closed interval [x, y]. Since we need that
ρF([x, y]) = F(y) − F(x) in our definition of the Riemann-Stieltjes integral, we
have to give up σ-additivity for ρF.

Note that, for instance, Hildebrandt [43, Chapter V, Sections 4–6] intro-

duces a σ-additive Lebesgue-Stieltjes measure λF even if F is not continuous

(and uses thismeasure λF to define the Young-Stieltjes integral as the lower S-

integral with respect to λF; see Hildebrandt [43, Chapter VII, Definition 3.3]).

However, the equality λF([x, y]) = F(x) − F(y) does not hold for all closed
intervals if F is not continuous; instead, it satisfies λF([x, y]) = F(y+) − F(x−).
The same holds for the Lebesgue-Stieltjes integral introduced by for instance

Kallenberg [48, Proposition 2.14, p. 31]. Therefore, these Lebesgue-Stieltjes

measures are not attractive candidates for studying the relation between

the S-integral and the Riemann-Stieltjes integral—it is not clear how to ob-

tain the Riemann-Stieltjes integral using these Lebesgue-Stieltjes measures.

Moreover, why insist on ameasure if a charge can do the jobmore efficiently?

These are some of the complications that we should be aware of. Note

however, that ρF is uniquely determined on F[](X), that is the smallest field
generated by the set of closed (or open) intervals in X; this follows from a
result by Bhaskara Rao and Bhaskara Rao [9, Theorem 3.2.5, p. 65]. Below,

we invoke natural extension to obtain the same result. For our purposes,

this charge will be sufficiently general as a replacement for the Lebesgue

measure in the Riemann-Stieltjes integral if we do not want to assume F to

be continuous. Of course, by the Hahn-Banach theorem, ρF can be extended

to B(X) (see for instance Schechter [70, Section 29.32, HB26]), but in general
this extension is not unique.

Definition 4.47. Let X = [a, b] be a compact interval of R, and let F be a real-
valued non-decreasing bounded function on X. Define the Riemann-Stieltjes
charge ρF as the unique charge on F[](X) such that ρF([x, y]) = F(y) − F(x) for
every a ≤ x ≤ y ≤ b. If F is continuous, define the Lebesgue-Stieltjes measure
λF as the unique σ-additive extension of ρF to the Borel σ-field B(X).

Proof of existence and uniqueness. Againwe can demonstrate the power of nat-
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ural extension. Assume that F(b) − F(a) = 1. Define the probability P by

P(I[x,y]) = −P(−I[x,y]) = F(y) − F(x)

for every a ≤ x ≤ y ≤ b. If this probability avoids sure loss, then there is
only one linear prevision Q defined on cl(span({I[x,y] : a ≤ x ≤ y ≤ b})) =
cl(span(F[](X))) = LF[](X)(X) that is a behavioural extension of P, through
Proposition 4.18(v). But by Theorem 4.30 there is only one charge on F[](X)
whose linear extension to LF[](X)(X) is Q. This is exactly ρF.
To see thatP avoids sure loss, consider the following coherent behavioural

extension of P to F[](X),

µF(A) :=
∑

I∈IA

F(sup I) − F(inf I), (4.24)

for any A ∈ F[](X), where IA is the (unique and finite) smallest set of disjoint
intervals that make up A. It is follows immediately that µF is a bounded pos-

itive charge, and hence, a probability charge, which extends P. Uniqueness

and existence of ρF follow as explained above. Note that as a consequence,

µF is actually equal to ρF.

If F(b)− F(a) , 1 and F(b) > F(a), define G(x) := F(x)
F(b)−F(a) for all x ∈ X. Since

G(b) − G(a) = 1, there is a unique probability charge ρG on F[](X) such that
ρG([x, y]) =

F(y)−F(x)
F(b)−F(a) for all a ≤ x ≤ y ≤ b, and hence, ρF := [F(b) − F(a)]ρG is

the unique charge such that ρF([x, y]) = F(y) − F(x) for all a ≤ x ≤ y ≤ b.
If F(b) = F(a), then ρF([x, y]) = F(y) − F(x) = 0 for all a ≤ x ≤ y ≤ b,

extends uniquely to ρF(A) := 0 for all A ∈ F[](X)—by the monotonicity of ρF,
ρF(∅) = 0, and ρF(X) = 0.
In case F is continuous, λF(A) := λ(F(A)) for any A ∈ B(X) identifies

a measure with the desired properties, whose uniqueness is similar to the

uniqueness of the Lebesgue measure on B(X); see for instance Halmos [40,
Section 16.9]. �

Unlike the Riemann-Stieltjes charge we have just defined, the Lebesgue-

Stieltjes measure is only defined given that F is continuous. Remark that in

case F is continuous ρF is usually not equivalent to λF: it may happen that

ρF∗(A) < λF∗(A) for some A ⊆ X. For instance, assume a < b, let F be the
identity map on X, and let A = {x ∈ X : x not rational}. Then ρF∗(A) = 0 but
λF∗(A) = λF(A) = λ(F(A)) = λ(A) = b − a > 0. Hence, by Theorem 4.36(v)
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on p. 117, the natural extension of ρF does not coincide with the natural

extension of λF. Of course, ρF is equivalent to λF on F[](X) (the set A in
the above example is chosen such that it does not belong to F[](X)). As a
consequence, in the definition below ρF can be replaced by λF whenever F is

continuous.

Definition 4.48. Let X = [a, b] be a compact interval in R, let F be a real-
valued non-decreasing bounded function on X. A gamble f on X is called
Riemann-Stieltjes integrable with respect to F if and only if the lower and upper

Riemann-Stieltjes integral of f

R-S

∫ b

a

f (x) dF(x) := lim
S∈S(X)

∑

S∈S
PS( f )ρF(S) = sup

S∈S(X)

∑

S∈S
PS( f )ρF(S), (4.25)

R-S

∫ b

a

f (x) dF(x) := lim
S∈S(X)

∑

S∈S
PS( f )ρF(S) = inf

S∈S(X)

∑

S∈S
PS( f )ρF(S) (4.26)

coincide. In such a case, the Riemann-Stieltjes integral of f is defined as

R-S

∫ b

a

f (x) dF(x) := R-S

∫ b

a

f (x) dF(x) = R-S

∫ b

a

f (x) dF(x). (4.27)

The set of Riemann-Stieltjes integrable gambles on X is denoted by LdF(X).

Proof of existence of the Moore-Smith limits. Similar to the proof for the lower

and upper S-integral. �

The Riemann integral is just the Riemann-Stieltjes integral with respect

to the identity map on X. So in the following, we can concentrate our study
on the Riemann-Stieltjes integral. Again, we have the following interesting

property:

Theorem 4.49. Let X = [a, b] be a compact interval in R, and let F be a real-
valued non-decreasing bounded function on X such that F(b) − F(a) = 1. The
lower Riemann-Stieltjes integral with respect to F is a 2-monotone coherent lower

prevision. Restricted to I℘(X), the lower Riemann-Stieltjes integral with respect to F

corresponds to a completely monotone set function.

Proof. Similar to the proof of Theorem 4.41 on p. 129. �
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Theorem 4.49 extends to arbitrary real-valued non-decreasing bounded

functions F on X after renormalisation.
Since F is non-decreasing and bounded, the Riemann-Stieltjes charge ρF

is guaranteed to be a bounded positive charge. Consequently we can define

an S-integral with respect to ρF. In the rest of this section, we shall investigate

the relation between the Riemann-Stieltjes integral and the S-integral with

respect to ρF, and with respect to other charges related to ρF.

In case F(b)− F(a) = 1, ρF is a probability charge, and the lower Riemann-
Stieltjes integral is the point-wise limit of a net of convex combinations of

coherent lower previsions. Hence, up to normalisation, the lower Riemann-

Stieltjes integral is a coherent lower prevision, and the upper Riemann-

Stieltjes integral is its conjugate. One of themany consequences of this simple

observation is that we can restrict our study to the lower Riemann-Stieltjes

integral only, since the upper Riemann-Stieltjes integral follows uniquely

from it.

In order to link the lower Riemann-Stieltjes integral to the lower S-integral

we must somehow be able to convert subdivisions into partitions. Obvious

candidates are finite partitions, whose elements belong to a field F that con-
tains a sufficiently large number of intervals, for instance all closed intervals

[x, y] for a ≤ x ≤ y ≤ b. Further on, we shall prove that we can replace
subdivisions S(X) by partitions P(F ), as long as every element of P(F ) can
be approximated by a sequence in S(X) and vice versa. If such fields F exist,
then this suggests yet anotherway to construct the Riemann-Stieltjes integral,

directly by means of the S-integral. Theorem 4.52 characterises all fields F
for which we can realise the above-mentioned approximation.

First, we need some results about Riemann-Stieltjes integrable indicator

gambles. It is convenient to say that a set A is Riemann-Stieltjes integrable

whenever IA is Riemann-Stieltjes integrable. Roughly stated, the following

lemma connects the Riemann-Stieltjes lower and upper integral of sets to the

inner and outer set functions induced by ρF, and states that a set is Riemann-

Stieltjes integrable if and only if the parts, that can neither be contained in

nor excluded by closed intervals, are sufficiently small in Riemann-Stieltjes

charge.

Recall that a real-valued function F onR is said to be continuous on A ⊆ R
whenever, for every ǫ > 0 and every x ∈ A, there is a δǫ,x > 0 such that, for
every y ∈ A, |x − y| < δǫ,x implies that |F(y) − F(x)| < ǫ; in particular, if F is
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continuous at every point of A, then F is continuous on A, but the converse

only holds if A is open.

Lemma 4.50. Let X = [a, b] be a compact interval in R, and let F be a real-valued
non-decreasing bounded function on X. Let A ⊆ X. The following propositions
hold.

(i) It holds that

R-S

∫ b

a

IA(x) dF(x) ≤ ρF∗(A),

with equality if F is continuous on B ∩ A, where B ∈ F[](X) is some set such
that cl(A \ B) ⊆ A. Similarly,

R-S

∫ b

a

IA(x) dF(x) ≥ ρ∗F(A),

with equality if F is continuous on B \ A, where B ∈ F[](X) is some set such
that A ⊆ int(A ∪ B).

(ii) If F is continuous on some B ∈ F[](X) such that cl(A \ B) ⊆ A ⊆ int(A ∪ B)
then

R-S

∫ b

a

IA(x) dF(x) = ρF∗(A) and R-S

∫ b

a

IA(x) dF(x) = ρ
∗
F(A)

(iii) The set A is Riemann-Stieltjes integrable if and only if

lim
S∈S(X)

∑

S∈S
S*A and S*∁A

ρF(S) = 0. (4.28)

Hence, in such a case

R-S

∫ b

a

IA(x) dF(x) = ρF∗(A) = ρ
∗
F(A). (4.29)

Proof. Throughout the proof, we shall assume that F(b)−F(a) = 1. The general
case follows simply by renormalisation.

Observe that PS(IA) = 1 if and only if S * ∁A, and PS(IA) = 1 if and only
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if S ⊆ A. This will be repeatedly used. Also observe that

R-S

∫ b

a

IA(x) dF(x) = 1 − R-S
∫ b

a

I∁A(x) dF(x) and ρF∗(A) = 1 − ρ∗F(∁A).

This effectively halves the number of things we need to prove.

(i) To show that R-S
∫ b

a
IA(x) dF(x) ≤ ρF∗(A) we shall prove that for every

subdivision S ∈ S(X) we can find a BS ∈ F[](X) such that BS ⊆ A and
∑

S∈S
PS(IA)ρF(S) =

∑

S∈S
S⊆A

ρF(S) ≤ ρF(BS)

In such a case, it will follow that

∑

S∈S
PS(IA)ρF(S) ≤ sup{ρF(B) : B ∈ F[](X), B ⊆ A} = ρF∗(A),

for any subdivision S, and hence,

sup
S∈S(X)

∑

S∈S
PS(IA)ρF(S) = R-S

∫ b

a

IA(x) dF(x) ≤ ρF∗(A).

Indeed, take BS = ∪S∈S
S⊆A
S. Since ρF is zero on finite sets and the sets S ∈ S

only overlap on a finite set, it follows from the additivity of the charge ρF that

ρF(BS) = ρF























⋃

S∈S
S⊆A

S























=
∑

S∈S
S⊆A

ρF(S),

which implies the desired inequality.

To establish R-S
∫ b

a
IA(x) dF(x) ≥ ρF∗(A) in case F is continuous on A ∩ C

for some C ∈ F[](X) such that cl(A \ C) ⊆ A, we shall show that for every
B ∈ F[](X) such that B ⊆ Awe can find a KB ≥ 0 (that may depend on B) such
that for every ǫ > 0 we can find a subdivision SBǫ ∈ S(X) such that

∑

S∈SBǫ

PS(IA)ρF(S) =
∑

S∈SBǫ
S⊆A

ρF(S) ≥ ρF(B) − KBǫ



4.3 EXAMPLES OF NATURAL AND LINEAR EXTENSION 141

We shall then have that

sup
S∈S(S)

∑

S∈S
S⊆A

ρF(S) = R-S

∫ b

a

IA(x) dF(x) ≥ ρF(B) − KBǫ

for any B ∈ F[](X) such that B ⊆ A and any ǫ > 0, and hence also for ǫ = 0,
and therefore

R-S

∫ b

a

IA(x) dF(x) ≥ sup{ρF(B) : B ∈ F[](X), B ⊆ A} = ρF∗(A).

Indeed, fix ǫ > 0 and B ∈ F[](X), B ⊆ A. Since F is continuous on A ∩ C,
for every x ∈ A ∩ C, there is a δx,ǫ > 0 such that, for every y ∈ A ∩ C,
∣

∣

∣F(x) − F(y)
∣

∣

∣ < ǫ whenever
∣

∣

∣x − y
∣

∣

∣ < δx,ǫ. Since both B and C ∈ F[](X), also
B \ C and B ∩ C ∈ F[](X). Hence, these two disjoint sets, which jointly make
up B, both must be a finite union of disjoint non-empty intervals. Let IB be a
set of disjoint non-empty intervals that make up B \ C and let JB be a set of
disjoint non-empty intervals that make up B ∩ C, or briefly, IB is an interval
partition of B \C andJB is an interval partition of B∩C (it may happen that
IB or JB are empty).
We are now going to construct a subdivision SBǫ ∈ S(X), based on the

interval partition IB of B \C and the interval partitionJB of B∩C. Note that
the elements of SBǫ ∈ S(X) must be closed intervals.
For each non-empty interval I ∈ IB define the closed interval SI := cl(I).

Since B ⊆ A also I ⊆ A and therefore it holds that

SI = cl(I) = cl(I \ C) ⊆ cl(A \ C) ⊆ A,

where we invoked the special property of C. Obviously also ρF(SI) = ρF(I)

since they have exactly the same extreme points.

Since JB makes up B ∩ C and B ⊆ A obviously also J ⊆ A ∩ C for all
J ∈ JB. Unfortunately, J is not necessarily closed, and so it may happen that
cl J * A∩C. However, we can choose for every J a non-empty closed interval
(possibly a singleton) SJǫ ⊆ J such that

∣

∣

∣

∣

J − SJǫ
∣

∣

∣

∣

< δJ,ǫ and
∣

∣

∣

∣

SJǫ − J
∣

∣

∣

∣

< δJ,ǫ, (4.30)

where ∗ and ∗ denote the lower and upper end-point (that is, infimum and
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supremum) of an interval ∗. Obviously, since SJǫ ⊆ J ⊆ A ∩ C for all J ∈ JB
the extreme points of all intervals J and SJǫ belong to A∩C. By the continuity
of F on A ∩ C and Eq. (4.30) it follows that

∣

∣

∣

∣

F(J) − F(SJǫ)
∣

∣

∣

∣

< ǫ and
∣

∣

∣

∣

F(SJǫ) − F(J)
∣

∣

∣

∣

< ǫ.

But this means that

∣

∣

∣ρF(J) − ρF(SJǫ)
∣

∣

∣ = F(J)−F(SJǫ)+F(SJǫ)−F(J) =
∣

∣

∣

∣

F(J) − F(SJǫ)
∣

∣

∣

∣

+

∣

∣

∣

∣

F(SJǫ) − F(J)
∣

∣

∣

∣

< 2ǫ.

Now clearly all closed intervals SI for I ∈ IB and SJǫ for J ∈ JB are disjoint,
up to a possible finite overlap. Hence, there is a subdivision SBǫ ∈ S(X) such
that

SBǫ ⊇ {SI : I ∈ IB} ∪ {SJǫ : J ∈ JB}.

For this subdivision

∑

S∈SBǫ
S⊆A

ρF(S) ≥
∑

I∈IB
ρF(S

I) +
∑

J∈JB
ρF(S

J
ǫ) ≥

∑

I∈IB
ρF(I) +

∑

J∈JB

[

ρF(J) − 2ǫ
]

= ρF(B \ C) + ρF(B ∩ C) − 2
∣

∣

∣JB
∣

∣

∣ ǫ = ρF(B) − 2
∣

∣

∣JB
∣

∣

∣ ǫ,

and so the desired inequality is satisfied for KB = 2
∣

∣

∣JB
∣

∣

∣ ≥ 0.
(ii) Immediately from (i).

(iii) By definition, IA is Riemann-Stieltjes integrable if and only if

lim
S∈S(X)

∑

S∈S
PS(IA)ρF(S) = lim

S∈S(X)

∑

S∈S
PS(IA)ρF(S)

Since both Moore-Smith limits exist and are real, this is equivalent to

lim
S∈S(X)















∑

S∈S
PS(IA)ρF(S) −

∑

S∈S
PS(IA)ρF(S)















= lim
S∈S(X)

∑

S∈S

(

PS(IA) − PS(IA)
)

ρF(S) = 0

But PS(IA)− PS(IA) = 1 if and only if S * ∁A and S * A, and in all other cases
the difference is zero since PS ≥ PS. This shows that A is Riemann-Stieltjes
integrable if and only if Eq. (4.28) holds. �
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It follows from this lemma that, if F is continuous at the extreme points

x and y (that is, on a neighbourhood of each of those points), then the in-

tervals [x, y], [x, y), (x, y] and (x, y) are Riemann-Stieltjes integrable and their

Riemann-Stieltjes integrals are all equal to F(y)− F(x). Beware if F is not con-
tinuous at some point x: for instance, the singleton {y} is then not Riemann-
Stieltjes integrable, even though ρF∗({y}) = ρ∗F({y}) = ρF({y}) = 0.
Let’s calculate the lower and upper Riemann-Stieltjes integral of intervals

in thegeneral case, not assuming continuityofF, andderiveRiemann-Stieltjes

integrability conditions for intervals from those expressions. Let a ≤ x ≤
y ≤ b. For closed intervals [x, y] (such as singletons), we get, after some
manipulation, directly from Definition 4.48 that

R-S

∫ b

a

I[x,y](z) dF(z) = F(y) − F(x) = ρF([x, y]), (4.31)

R-S

∫ b

a

I[x,y](z) dF(z) = F(y+) − F(x−), (4.32)

if we agree to let F(a−) := F(a) and F(b+) := F(b). Similarly,

R-S

∫ b

a

I(x,y)(z) dF(z) = F(y−) − F(x+), (4.33)

R-S

∫ b

a

I(x,y)(z) dF(z) = F(y) − F(x) = ρF((x, y)), (4.34)

again, if we agree to let F(a−) := F(a) and F(b+) := F(b). For the other intervals,
we have:

R-S

∫ b

a

I[x,y)(z) dF(z) = F(y−) − F(x), (4.35)

R-S

∫ b

a

I[x,y)(z) dF(z) = F(y) − F(x−), (4.36)

and

R-S

∫ b

a

I(x,y](z) dF(z) = F(y) − F(x+), (4.37)

R-S

∫ b

a

I(x,y](z) dF(z) = F(y+) − F(x). (4.38)
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if we once more agree to let F(a−) := F(a) and F(b+) := F(b). Observe that the
lower Riemann-Stieltjes integral coincides with the Riemann-Stieltjes charge

ρF on closed intervals, and the upper Riemann-Stieltjes integral coincides

with ρF on open intervals.

The countable set A = {a + 1n : n ∈ N} is Riemann-Stieltjes integrable if
F is continuous at every point of A and on [a, a + ǫ] for some ǫ > 0. In

case F is only continuous at every point of A, but not at a itself, then its

lower and upper Riemann-Stieltjes integral are given by 0 and F(a+) − F(a).
But, even if F is continuous everywhere, not every countable set (and hence,

not every Borel set) is Riemann-Stieltjes integrable: for instance, the set

Q = {x ∈ [0, 1] : x rational} is not Riemann integrable. Indeed, because Q
is dense in [0, 1] every closed interval S ⊆ [0, 1] with Lebesgue measure
λ(S) > 0 has the property that S * Q and S * ∁Q. The last example

clearly shows that the collection of all Riemann-Stieltjes integrable sets is

usually not a σ-field. Perhaps surprisingly, it does constitute a field. This

is a consequence of Proposition 4.18(i)&(v) on p. 102 given that the lower

Riemann-Stieltjes integral has all the properties of a coherent lower prevision

after renormalisation. Below, we give an alternative proof. Hildebrandt [43,

Chapter V, Theorem 2.6] gives a proof in case F is the identity map, that is,

for Riemann integrability.

Proposition 4.51. Let X = [a, b] be a compact interval in R and let F be a real-
valued non-decreasing bounded function onX. The collection of all subsets ofX that
are Riemann-Stieltjes integrable with respect to F is a field.

Proof. By Lemma 4.50 the set of all Riemann-Stieltjes integrable sets is closed

under complementation, as Eq. (4.28) clearly implies, and contains the empty

set. It remains to show that it is also closed under (finite) union. Let A and

B ⊆ X be Riemann-Stieltjes integrable. We must show that A∪B is Riemann-
Stieltjes integrable. The following implication holds:

(

S * A ∪ B and S * ∁(A ∪ B)
)

=⇒
(

(S * A and S * ∁A) or (S * B and S * ∁B)
)

Indeed, if S * A ∪ B then S * A and S * B, and if S * ∁(A ∪ B) then S * ∁A
or S * ∁B. From this implication, it is easy to see that for any subdivision
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S ∈ S(X)

∑

S∈S
S*A∪B and S*∁(A∪B)

ρF(S) ≤
∑

S∈S
S*A and S*∁A

or
S*B and S*∁B

ρF(S)

≤
∑

S∈S
S*A and S*∁A

ρF(S) +
∑

S∈S
S*B and S*∁B

ρF(S).

Now take the Moore-Smith limit over S ∈ S(X) and again apply Eq. (4.28) to
see that A ∪ B is Riemann-Stieltjes integrable. �

Let’s nowpresent a theorem that characterises all charges that are, through

Theorem 4.42, equivalent to a given lower Riemann-Stieltjes integral, and

hence, by conjugacy, also equivalent to the corresponding upper Riemann-

Stieltjes integral.

Theorem 4.52. Let X = [a, b] be a compact interval in R and let F be a real-valued
non-decreasing bounded function on X. Let F be any field on X and let µ be any
bounded positive charge on F . Then the lower Riemann-Stieltjes integral with
respect to F is equal to the natural extension of µ, that is,

R-S

∫ b

a

f (x) dF(x) = Eµ( f ) = S

∫

f dµ for all f ∈ L(X), (4.39)

if and only if

(i) every A ∈ F is Riemann-Stieltjes integrable and

µ(A) = R-S

∫ b

a

IA(x) dF(x), and

(ii) F is dense in F[](X) in the sense that for every closed interval S ofX and every
ǫ > 0 there is at least one element ASǫ ∈ F such that

ASǫ ⊆ S and R-S

∫ b

a

IASǫ∆S(x) dF(x) < ǫ,

or equivalently, for every open interval T of X and every ǫ > 0 there is at least
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one element BTǫ ∈ F such that

BTǫ ⊇ T and R-S

∫ b

a

IBTǫ∆T(x) dF(x) < ǫ.

The two inequalities above can also be written as
∣

∣

∣µ(ASǫ ) − ρF(S)
∣

∣

∣ < ǫ resp.
∣

∣

∣µ(BTǫ ) − ρF(T)
∣

∣

∣ < ǫ. This is a consequence of Proposition 4.16 on p. 101 along

with some properties of the lower and upper Riemann-Stieltjes integral we

have just demonstrated; see details in the proof below.

Proof. As usual, we shall assume that F(b) − F(a) = 1 throughout the proof,
as in that case, R-S

∫ b

a
•dF is a coherent lower prevision onL(X). The general

case follows after renormalisation. In the marginal case that F(a) = F(b), the

proof is immediate.

“if”. Fix any gamble f on X. We first prove that, under conditions (i) and

(ii), R-S
∫ b

a
f (x) dF(x) ≤ S

∫

f dµ.

Let S ∈ S(X) be any subdivision of X. We shall prove that we can find
a KS ≥ 0, which may depend on S, such that for every ǫ > 0 we can find a
partition Bǫ ∈ P(F ) such that

∑

S∈S
PS( f )ρF(S) ≤ KSǫ +

∑

B∈Bǫ
PB( f )µ(B).

If we can do this for every ǫ > 0, then of course also

∑

S∈S
PS( f )ρF(S) ≤ S

∫

f dµ,

for every subdivision S ∈ S(X), and hence, R-S
∫ b

a
f (x) dF(x) ≤ S

∫

f dµ.

Fix therefore ǫ > 0. S is a finite set of closed intervals, so by condition (ii),
for each S ∈ S there is an ASǫ ∈ F such that ASǫ ⊆ S and, applying the
coherence of R-S

∫ b

a
•dF(x), IF ⊆ domR-S

∫ b

a
•dF(x) (this is condition (i)),

Proposition 4.16 on p. 101, the fact that the lower Riemann-Stieltjes integral

is equal to the Riemann-Stieltjes charge for closed intervals, ASǫ∆S = S \ ASǫ ,
and ASǫ ∈ F ,

R-S

∫ b

a

IASǫ∆S(x) dF(x) = R-S

∫ b

a

[

IS(x) − IASǫ (x)
]

dF(x)
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= R-S

∫ b

a

IS(x) dF(x) − R-S
∫ b

a

IASǫ (x) dF(x)

= ρF(S) − µ(ASǫ ) =
∣

∣

∣ρF(S) − µ(ASǫ )
∣

∣

∣ < ǫ. (4.40)

The finite family Aǫ := {ASǫ : S ∈ S} ⊆ F does not necessarily constitute a
partition of X, but, since F is a field, we do have a finite partition Bǫ ∈ P(F )
such that each ASǫ ∈ Aǫ is a unique (finite) union of elements of Bǫ. For
instance, take for Bǫ the atoms of the field generated byAǫ (finite fields are

ample fields: Theorem 3.51 on p. 88 applies).

DefineBSǫ := {B ∈ Bǫ : B ⊆ ASǫ } for all S ∈ S. This set identifies all elements
of Bǫ which make up ASǫ ; note that BSǫ can be empty, which happens exactly
if ASǫ is the empty set. Bǫ is a finite partition, so for every S ∈ S it holds that

ǫ >
∣

∣

∣ρF(S) − µ(ASǫ )
∣

∣

∣ =

∣

∣

∣

∣

ρF(S) − µ
(

∪B∈BSǫB
)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

ρF(S) −
∑

B∈BSǫ

µ(B)

∣

∣

∣

∣

∣

∣

∣

∣

and therefore,

∑

S∈S
PS( f )ρF(S) ≤

∑

S∈S
ǫPS( f ) +

∑

S∈S

∑

B∈BSǫ

PS( f )µ(B)

and since PS( f ) ≤ sup | f |,

≤ |S| sup | f |ǫ +
∑

S∈S

∑

B∈BSǫ

PS( f )µ(B)

and since B ⊆ ASǫ ⊆ S whenever B ∈ BSǫ , it holds that PS ≤ PB whenever
B ∈ BSǫ , so

≤ |S| sup | f |ǫ +
∑

S∈S

∑

B∈BSǫ

PB( f )µ(B),

The only two problems left are that some B ∈ Bǫmight be countedmore than
once in the above expression, and that some B ∈ B might not be counted at
all. Fortunately, in both cases µ(B) is at most linear in ǫ.

If some B ∈ B is counted more than once, then it must be that B ∈ BSǫ ∩BTǫ
for some S , T in S. This conditions happens only if B ⊆ ASǫ ∩ ATǫ . But, the
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elements ofS overlap only on a finite set. Therefore, since the elements ofAǫ

are such that ASǫ ⊆ S for all S ∈ S, they can also only overlap on a finite set.
Hence, if B ∈ BSǫ ∩ BTǫ then B must a finite, Riemann-Stieltjes integrable set
(not every finite set is Riemann-Stieltjes integrable but B is by construction).

Hence, µ(B) = R-S
∫ b

a
IB(x) dF(x) ≤ ρF∗(B) = 0, and therefore µ(B) = 0 holds.

On the other hand, if B ∈ Bǫ is not counted at all, then it must be that
B < BSǫ for all S ∈ S. But,

∑

B∈B
∀S∈S : B<BSǫ

µ(B) = 1 −
∑

B∈B
∃S∈S : B∈BSǫ

µ(B) = 1 −
∑

S∈S

∑

B∈BSǫ

µ(B)

< 1 −
∑

S∈S

[

ρF(S) − ǫ
]

= |S| ǫ

and hence, if B < BSǫ for all S ∈ S then it can only be that µ(B) < |S| ǫ.
So, in all cases we find that

∑

S∈S

∑

B∈BSǫ

PB( f )µ(B) ≤ |S| sup | f |ǫ +
∑

B∈B
PB( f )µ(B),

and therefore, with KS = 2 |S| sup | f |ǫ, the desired inequality is established.
Hence, so is R-S

∫ b

a
f (x) dF(x) ≤ S

∫

f dµ.

Let’s now turn to the converse inequality: weprove that, under conditions

(i) and (ii), also R-S
∫ b

a
f (x) dF(x) ≥ S

∫

f dµ.

First, assume that f is a non-negative gamble on X; this simplifies the

proof considerably. Let B ∈ P(F ) be a finite partition of X. We shall show
that we can find a KB, f ≥ 0, that may depend on B and on f , such that for
every ǫ > 0 sufficiently small, we can find a subdivision Sǫ ∈ S(X) such that

∑

B∈B
PB( f )µ(B) ≤ KB, f ǫ +

∑

S∈Sǫ
PS( f )ρF(S).

If we can do this for every ǫ > 0 sufficiently small, then

∑

B∈B
PB( f )µ(B) ≤ R-S

∫ b

a

f (x) dF(x),

for every B ∈ P(X), and hence, S
∫

f dµ ≤ R-S
∫ b

a
f (x) dF(x).

Indeed, fix ǫ > 0, and observe that, by (i), every B ∈ B is Riemann-
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Stieltjes integrable with respect to F, with Riemann-Stieltjes integral µ(B). By

the definition of Riemann-Stieltjes integrability and Lemma 4.50, there is a

subdivision SBǫ ∈ S(X) such that
∑

S∈SBǫ
S⊆B

ρF(S) + ǫ > µ(B); (4.41)

the left-hand side follows by direct application of the definition of the lower

Riemann-Stieltjes integral. Since S(X) is a directed set and B is finite, there
is a subdivision Sǫ that refines every SBǫ ∈ S(X) for all B ∈ B. The above
inequality remains valid when replacing all subdivisions by Sǫ. Hence,

∑

B∈B
PB( f )µ(B) ≤

∑

B∈B
PB( f )

























∑

S∈Sǫ
S⊆B

ρF(S) + ǫ

























≤ |B| sup[ f ]ǫ +
∑

B∈B
PB( f )

























∑

S∈Sǫ
S⊆B

ρF(S)

























= |B| sup[ f ]ǫ +
∑

S∈Sǫ























∑

B∈B
S⊆B

PB( f )























ρF(S)

Fix S ∈ Sǫ. Since B is a partition, either there is exactly one B0 for which
S ⊆ B0, in which case

∑

B∈B
S⊆B
PB( f ) = PB0 ( f ) ≤ PS( f ), or there is no B for which

S ⊆ B, in which case∑B∈B
S⊆B
PB( f ) = 0 ≤ PS( f ). So,

∑

S∈Sǫ























∑

B∈B
S⊆B

PB( f )























ρF(S) ≤
∑

S∈Sǫ
PS( f )ρF(S)

The desired inequality follows, with KB, f = |B| sup[ f ], for any non-negative
gamble f .

Since R-S
∫ b

a
[α + f (x)] dF(x) = α + R-S

∫ b

a
f (x) dF(x) for any α ∈ R, and

similarly for the lower S-integral—both are coherent lower previsions—the

inequality S
∫

f dµ ≤ R-S
∫ b

a
f (x) dF(x) follows for all gambles f .

“only if”. Conversely, assume that the lower Riemann-Stieltjes integral
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and the lower S-integral are equal for all gambles f on X. We prove that

conditions (i) and (ii) hold.

(i). First, we must show that all elements of F are Riemann-Stieltjes
integrable. We prove this through contraposition.

Suppose F has bad element A, namely, one that is not Riemann-Stieltjes
integrable. Consider the indicator gamble IA. Obviously, this gamble is F -
measurable, and hence, it is S-integrable with respect to µ: its S-integral is

simply given by µ(A). But it is not Riemann-Stieltjes integrable. Hence, the

lower and upper Riemann-Stieltjes integral are not equal, and so certainly at

least one of them must be different from the S-integral µ(A). So, we find that

R-S
∫ b

a
IA dF , S

∫

IA dµ or R-S
∫ b

a
−IA dF , S

∫

−IA dµ. We have arrived at a
contradiction.

Nowwe have that all elements ofF must be Riemann-Stieltjes integrable,
consider againA ∈ F . The S-integral of IAwith respect toµ is obviously equal
to µ(A). By assumption, this must be equal to the Riemann-Stieltjes integral

of IA. Hence, µ(A) = R-S
∫

IA(x) dF(x) holds for all elements A of F .

Finally, suppose there is a closed interval S and an ǫ > 0 such that for

every A ∈ F , A * S or
∣

∣

∣µ(A) − ρF(S)
∣

∣

∣ ≥ ǫ, or equivalently, if A ⊆ S then
∣

∣

∣µ(A) − ρF(S)
∣

∣

∣ ≥ ǫ. Consider the gamble IS. Since S is a closed interval, the
lower Riemann-Stieltjes integral of IS with respect to F is equal to ρF(S). But

the lower S-integral of IS with respect to µ is bounded away from ρF(S) by at

least ǫ. Indeed,

∣

∣

∣

∣

∣

∣

∣

R-S

∫ b

a

IS(x) dF(x) − S
∫

IS dµ

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

ρF(S) − sup
B∈P(F )

∑

A∈B
PA(IS)µ(A)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρF(S) − sup
B∈P(F )

∑

A∈B
A⊆S

µ(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and, since µ is additive, for any B in P(F ) there is an A′ in F , namely,
A′ := ∪A∈B,A⊆S such that

∑

A∈B,A⊆S µ(A) = µ(A
′), and conversely, for every

A′ in F there is a partition B in P(F ), namely, B := {A′,∁A′}, such that
µ(A′) =

∑

A∈B,A⊆S µ(A). So,
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=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρF(S) − sup
A∈F
A⊆S

µ(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

inf
A∈F
A⊆S

[

ρF(S) − µ(A)
]

∣

∣

∣

∣

∣

∣

∣

∣

and since, as we demonstrated before, for each A ∈ F such that A ⊆ S, we
have that ρF(S) − µ(A) = R-S

∫ b

a
IA∆S(x) dF(x) ≥ 0 (see Eq. (4.40) on p. 147),

= inf
A∈F
A⊆S

[

ρF(S) − µ(A)
] ≥ ǫ.

Again we have arrived at a contradiction. �

Condition (i) saying that every element of F must be Riemann-Stieltjes
integrable and that the charge of each of these setsA ∈ F must be equal to its
Riemann-Stieltjes integral, is obvious. What is striking is that we only have

to add that F is dense in F[](X), as in condition (ii). This weak assumption is
sufficient for the linear extension of µ to coincide with the Riemann-Stieltjes

integral, and the natural extension of µ to coincide with the lower Riemann-

Stieltjes integral. Of course, it has still not been proved that there actually

exist such µ. That is the subject of the following important theorem, which

gives necessary and sufficient conditions on F for the existence of charges µ

that satisfy the conditions of Theorem 4.52. Loosely speaking, it says that at

every point F should be continuous from at least one side. In many practical

cases this is satisfied.

Perhaps it is instructive to note that by Theorem 4.52(i) and Lemma 4.50

the only candidates for µ are restrictions of ρF∗ or ρ∗F to fields of Riemann-

Stieltjes integrable sets. The theorem suggests a very simple restriction.

Theorem 4.53. Let X = [a, b] be a compact interval in R and let F be a real-valued
non-decreasing bounded function on X. Then there is a field F on X and a bounded
positive chargeµ onF , such that the lower Riemann-Stieltjes integral with respect to
F is equal to the lower S-integral with respect to µ if and only if for every a < x < b

either F(x+) = F(x) or F(x−) = F(x). In that case, such a charge µ is given by
the restriction of ρF to the field of those sets in F[](X) that are Riemann-Stieltjes
integrable with respect to F.
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Proof. “if”. Suppose F satisfies the one-sided continuity condition at every

point a < x < b. Define the charge µ as suggested, that is, the restriction

of ρF to the field of Riemann-Stieltjes integrable elements, with respect to F,

in F[](X). We check that µ satisfies the conditions of Theorem 4.52. Every
element of F is Riemann-Stieltjes integrable, and by Lemma 4.50, ρF(A) =
R-S

∫

IA(x) dF(x) for every Riemann-Stieltjes integrable set A ∈ F[](X): so
condition (i) is satisfied.

Now comes a subtle part. We shall need the following result: if F is

continuous at x from the right, then for every ǫ > 0, there is an xǫ > x such

that F is continuous at xǫ (from both sides) and F(xǫ) − F(x) < ǫ. Indeed, if
F is continuous at x from the right, then for every ǫ > 0 there is a δǫ such

that F(z) − F(x) < ǫ whenever x < z < x + δǫ. But, since F is non-decreasing,
there are only a countable number of points at which F is not continuous

(see for instance Schechter [70, Proposition 19.22]). Hence, since (x, x + δǫ) is

uncountable, there must be an xǫ ∈ (x, x + δǫ) at which F is continuous: this
xǫ satisfies F(xǫ) − F(x) < ǫ as required.
Similarly, we see that if F is continuous at x from the left, then for every

ǫ > 0, there is an xǫ < x such that F is continuous at xǫ and F(x) − F(xǫ) < ǫ.
Now,we are in a comfortable situation to check condition (ii) of Theorem4.52.

Let ǫ > 0, and let S = [x, y] be any closed interval inX. DefineASǫ = [xǫ, yǫ]
as follows. If x = a or if F is continuous at x > a from the left, take xǫ := x;

otherwise, F must be continuous at x from the right and we can take xǫ > x

such that F(xǫ) − F(x) < ǫ, and (by the above result) F is continuous at xǫ. In
both cases it holds that F(xǫ) − F(x) < ǫ, and either F is continuous at xǫ from
the left or xǫ = a.

Similarly, if y = b or if F is continuous at y < b from the right, take yǫ := y;

otherwise, F must be continuous at y from the left and we can take yǫ < y

such that F(y) − F(yǫ) < ǫ, and F is continuous at yǫ. Again, in both cases it
holds that F(y) − F(yǫ) < ǫ, and either F is continuous at yǫ from the right or
yǫ = b.

Hence, it holds that ASǫ ⊆ S by definition of xǫ and yǫ. Also, by Eqs. (4.31)
and (4.32) on p. 143, ASǫ is Riemann-Stieltjes integrable since either xǫ = a or

F is continuous at xǫ from the left, and either yǫ = b or F is continuous at yǫ

from the right. Finally,

∣

∣

∣µ(ASǫ ) − ρF(S)
∣

∣

∣ =
∣

∣

∣ρF(A
S
ǫ ) − ρF(S)

∣

∣

∣ = F(xǫ) − F(x) + F(y) − F(yǫ) < 2ǫ,
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since µ is a restriction of ρF. By Eq. (4.40) on p. 147, this establishes condi-

tion (ii) of Theorem 4.52.

“only if”. Suppose there is an a < x0 < b such that F(x0−) < F(x0) < F(x0+),
and assume ex absurdo that there is a bounded positive charge ν defined on

some fieldF onX such that the lower Riemann-Stieltjes integral with respect
to F is equal to the lower S-integral with respect to ν. By Theorem 4.52(i),

we already have that F contains only Riemann-Stieltjes integrable sets, and
S
∫

IA dν = ν(A) = R-S
∫ b

a
IA dF for all A ∈ F . So, consider for instance

the closed interval A = [x0, b], which is not Riemann-Stieltjes integrable by

Eqs. (4.31)&(4.32) on p. 143 (and the fact that F(x0−) , F(x0)), and therefore
does not belong to F . We have proved before that

R-S

∫ b

a

IA(x) dF(x) = F(b) − F(x0);

see Eq. (4.31) on p. 143. We shall obtain a contradiction by showing that

S
∫

IA dν is not equal to F(b) − F(x0).

Define µ as the restriction of ρF∗ to the field H of Riemann-Stieltjes in-
tegrable sets; note that F ⊆ H since F contains only Riemann-Stieltjes in-
tegrable sets. By Lemma 4.50, µ(B) = ρF∗(B) = R-S

∫ b

a
IB dF for all Riemann-

Stieltjes integrable sets B, and hence, also for all B ∈ F , since F ⊆ H .
Therefore, since ν satisfies Theorem 4.52(i), ν(B) = µ(B) for all B ∈ F : Pµ
is a behavioural extension of Pν. Hence, by Proposition 4.7 on p. 98 and

Theorem 4.42 on p. 130,

S

∫

IA dν ≤ S
∫

IA dµ = Eµ(IA) = µ∗(A) = sup
B∈H ,B⊆A

µ(B)

where we also invoked Theorem 4.36(v) on p. 117. Since, as we shall prove

below, for every B ∈ H , i.e., every Riemann-Stieltjes integrable set B, such
that x0 ∈ B, there is an ǫ > 0 such that [x0 − ǫ, x0] ⊆ B, it follows that if B ∈ H
and B ⊆ A = [x0, b], then x0 < B, i.e., B ⊆ (x0, b]:

= sup
B∈H ,B⊆(x0,b]

µ(B)
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Observe that B ∈ H and B ⊆ (x0, b] imply that µ(B) = R-S
∫ b

a
IB(x) dF(x) ≤

R-S
∫ b

a
I(x0,b](x) dF(x) = F(b) − F(x0+), where we used Eq. (4.37) on p. 143, so

≤ F(b) − F(x0+)

< F(b) − F(x0) = R-S
∫ b

a

IA(x) dF(x).

We have arrived at a contradiction.

It still remains to prove that if B is Riemann-Stieltjes integrable and x0 ∈ B,
then there must be an ǫ > 0 such that [x0 − ǫ, x0] ⊆ B; recall that F(x0−) <
F(x0) < F(x0+).

Indeed, assume ex absurdo that [x0 − ǫ, x0] * B for all ǫ > 0. Obviously,
[x0, x0+δ] * ∁B for all δ > 0, since x0 < ∁B. Now, since B is Riemann-Stieltjes

integrable, it follows by Lemma 4.50(iii) that

0 = lim
S∈S(X)

∑

S∈S
S*B and S*∁B

ρF(S)

and by restricting the sum to closed intervals that contain x0,

≥ lim
ǫ>0, δ>0

[

ρF([x0, x0 − ǫ]) + ρF([x0, x0 + δ])
]

= F(x0+) − F(x0−) > 0,

a contradiction. �

Whenever there are points at which F is discontinuous from both sides,

the lower Riemann-Stieltjes integral does not have a lower S-integral repre-

sentation. It can therefore not be written as the natural extension of some

bounded positive charge. In such a case, we could try to do one of the

following.

(i) For some applications, it may be good enough to have only equivalence

with respect to a restricted set of gambles.

(ii) We could try and find a sequence Fn approximating F such that the se-

quence R-S
∫ b

a
f (x) dFn(x) converges (in limit inferior) to R-S

∫ b

a
f (x) dF(x)

for all gambles f on X. If possible there will be also a sequence of
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bounded positive charges µn such that S
∫

f dµn converges (in limit in-

ferior) to R-S
∫ b

a
f (x) dF(x) by Theorem 4.53.

(iii) Perhaps R-S
∫ b

a
•dF(x) is equivalent to a more general uncertainty struc-

ture. For instance, we know that the lower Riemann-Stieltjes integral

is the point-wise limit of the natural extension of belief functions (up

to normalisation, as always). Hence, we could try to find a belief

function, or completely monotone set function, as a representation for

the Riemann-Stieltjes integral. However, in many cases we do have a

probability charge representation, so belief functions and completely

monotone set functions probably are an overkill.

(iv) In a similar spirit we could try establishing equivalence to a lower

envelope or a convex mixture of lower S-integrals with respect to ρF
and related charges.

Let’s end this section on Riemann-Stieltjes integrals with some remarks.

First of all, the restriction of ρF∗ suggested by Theorem 4.53 is usually far

from being restricted to the smallest possible field.

In case F is continuous, other choices that satisfy the conditions of The-

orem 4.52 are for instance the smallest field that contains {[a, x] : x ∈ X}. We
shall denote it by F(](X). It consists of all finite unions of intervals of the type
[a, x] and (x, y] for a ≤ x < y ≤ b. The field of all complements of elements
of F(](X) will be denoted by F[)(X), and this one contains all finite unions of
intervals of the type [x, y) and [y, b] for a ≤ x < y ≤ b. The smallest field that
contains both of these fields is exactly F[](X) which contains all finite unions
of intervals (this choice is suggested in Theorem 4.53). The fields F(](X) and
F[)(X) have the benefit over F[](X) that they have fewer elements.
Still in case F is continuous, we can consider even smaller fields, even

fields with only a countable number of elements. For instance, let A be any

dense subset of X. Then any field generated by only {[a, x] : x ∈ A} will do.
If A is the set of rational numbers in X, then this field is countable. Contrast
the partitions generated by these fields with the subdivisions ofX defined in
Eq. (4.20).

In case F is the identitymap, Theorem 4.52 says that the natural extension of

the Lebesgue measure restricted to any of these fields will give you the lower Riemann

integral, not only for Riemann integrable gambles, but for any gamble. If it
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had not been proved, such statement would be hardly believable.

Corollary 4.54. Let X = [a, b] be a compact interval in R. The set of bounded
positive charges that are equivalent to the lower Riemann integral on X is exactly

given by all restrictions of the Lebesgue measure λ on B(X) to a field F containing
only Riemann integrable sets and satisfying the condition that F is dense (as in
Theorem 4.52(ii)).

In case F is only continuous from at least one side at every point, it mostly

suffices to restrict any of those fields to those sets that are Riemann-Stieltjes

integrable, as suggested by Theorem 4.53. Note that one of the reasons why

this is possible is because, independently of F, the number of intervals that are

not Riemann-Stieltjes integrable is at most countable. Theorem 4.53 exactly

proves that the remaining set of intervals is sufficiently dense in F[](X).
One more important consequence of Theorem 4.52, is that the Riemann-

Stieltjes charge really lives up to its name if F is continuous, and moreover,

thatwemight aswell take the S-integralwith respect to the Lebesgue-Stieltjes

measure for calculating the Riemann-Stieltjes integral (but not for the lower

and upper Riemann-Stieltjes integral).

Proposition 4.55. Let X = [a, b] be a compact interval in R, and let F be a real-
valued non-decreasing bounded function on X. Assume that F is continuous. Then
for any gamble f on X

R-S

∫ b

a

f (x) dF(x) = S

∫

f dρF.

Hence, f is Riemann-Stieltjes integrable with respect to F if and only if it is S-

integrable with respect to the Riemann-Stieltjes charge ρF. In such a case, f is also

S-integrable with respect to the Lebesgue-Stieltjes measure λF and

R-S

∫ b

a

f (x) dF(x) = S

∫

f dρF = S

∫

f dλF.

Proof. The equality R-S
∫ b

a
•dF(x) = S

∫

•dρF follows fromTheorem 4.53; note
that, since F is continuous, all sets in F[](X) are Riemann-Stieltjes integrable
with respect to F (see Eqs. (4.31)–(4.38) on pp. 143–143). It remains to show

that S
∫

•dρF = S
∫

•dλF ondom
(

S
∫

•dρF
)

, i.e., that S
∫

•dλF is an extension
of S

∫

•dρF.
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By definition of the Lebesgue-Stieltjes measure (see Definition 4.47 on

p. 135), λF is the unique σ-additive extension of ρF to the Borel σ-field B(X);
hence, λF coincides with ρF on domρF = F[](X). Consequently, PλF is a
behavioural extension of PρF . So, by Proposition 4.15 on p. 101, EPλF = EλF is

an extension of EPρF = EρF : domEρF ⊆ domEλF and EρF ( f ) = EλF ( f ) for every
gamble f in domEρF . But, the S-integral coincides with the linear extension

by Theorem 4.43 on p. 131; this yields the desired equality. �

To see why not every gamble that is S-integrable with respect to the

Lebesgue measure is also Riemann integrable, consider the set

A := {x ∈ X : x is rational}. (4.42)

Obviously, IA is S-integrable with respect to the Lebesgue measure λ on the

Borel σ-field B(X). Indeed, since A is countable it belongs to B(X), so IA is
B(X)-measurable (it is even B(X)-simple). Now apply Proposition 4.28 and
Theorem 4.43 to find that IA is S-integrable with respect to λ.

But it is well-known that IA is not Riemann integrable. Indeed, since the

rational numbers are dense in R it holds that PB(IA) = 0 and PB(IA) = 1 for

every interval B of X that is larger than a singleton, and therefore also for
every element B of a partition inP(F[](X)) (except for finite sets, but these sets
have charge zero so they do not contribute to the lower and upper integral).

Hence, the lower Riemann integral of IA is equal to zero, whereas the upper

Riemann integral of IA is equal to one, which means that IA is not Riemann

integrable.

The following characterisation ofRiemann integrability, given for the sake

of completeness, is apparently due to Lebesgue. Note that domλ, the domain

of the completion of the Lebesgue measure, constitutes a σ-field. Sets in the

domain of λ are called Lebesgue measurable sets; see Halmos [40, Section 15].

Theorem 4.56. Let X = [a, b] be a compact interval in R. A gamble f on X is
Riemann integrable if and only if it is domλ-measurable and continuous almost

everywhere, that is,

λ∗({x ∈ [a, b] : f not continuous at x}) = 0.

Proof. See for instance Schechter [70, Theorem 24.46]. �
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In the light of our previous results, I find this quite surprising. Indeed,

let F be any field such that the conditions of Theorem 4.52 are satisfied; this
is a subset of domλ. Then Riemann integrability turns out to lie in between

F -measurability and domλ-measurability:

LF (X) ⊆ LdX(X) ⊆ Ldomλ(X).

From Theorem 4.56, we might also want to remember that F -measurability
implies continuity almost everywhere, for any field F that satisfies the con-
ditions of Theorem 4.52.

4.3.7 Natural Extension of Cumulative Distribution Func-

tions

In this section we shall be concerned with the natural extension of cumula-

tive distribution functions F, which are self-conjugate p-boxes (F,F). Using

the results of the previous section about Riemann-Stieltjes integrals and its

equivalence to restrictions of the Riemann-Stieltjes charge to a particular class

of fields, we shall easily establish necessary and sufficient conditions for the

natural extension of a cumulative distribution function to be equal to the

lower Riemann-Stieltjes integral with respect to F.

Let’s first characterise the natural extension of F in terms of the lower

S-integral.

Definition 4.57. Let X = [a, b] be a compact interval of R, and let F be
a coherent cumulative distribution function on X. The unique probability
charge µF on F(](X) that is equivalent to F, i.e., such that µF([a, x]) = F(x) for
all x ∈ X, is called the probability charge induced by F.

Proof of existence and uniqueness. Consider the linear extensionEF ofF. Bydef-

inition, this is the linear extension of the coherent probabilityPF induced by F:

for all x ∈ X, PF(I[a,x]) = −PF(−I[a,x]) = F(x). Through Proposition 4.18(i)&(v)
on p. 102, EF is defined on at least cl(span({I[a,x] : x ∈ X})) = LF(](X)(X), since
F(](X) is the field generated by {[a, x] : x ∈ X}. So we can define the charge

µF(A) := EF(IA)

for all sets A in the field F(](X) (which is the field generated by the collection
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{[a, x] : x ∈ X}).
Clearly PµF is a coherent behavioural extension of PF and domPµF ⊆

domEF. Hence, by Proposition 4.14 on p. 100, it follows that PµF is equivalent

to PF, or equivalently, µF is equivalent to F. It’s uniqueness follows from

Proposition 4.13 on p. 100: every charge κ on F(](X) such that κ([a, x]) = F(x)
for all x ∈ X, induces a coherent behavioural extension of PF. Hence, Pκ
coincides with EF on domEF ∩ domPκ. But, domPκ = domPµF ⊆ domEF,
so, it follows that κ(A) = EF(IA) = µF(A) for all A ∈ F(](X): κmust be equal to
µF. �

Let us emphasise that µF is not the Riemann-Stieltjes charge ρF (but, it

is true that ρF is a behavioural extension of µF). In general, µF is not even

equivalent to ρF—unless F is continuous. Since µF is equivalent to F by

definition, and the lower S-integral with respect to µF is the natural extension

of µF as stated in Theorem 4.43 on p. 131, we immediately have that S
∫

•dµF
is the natural extension of PF. Alternatively, note that PµF is the natural

extension of PF to IF(](X)∪−IF(](X), and S
∫

•dµF is the natural extension of PµF ;
therefore, by Corollary 4.9 on p. 98, S

∫

•dµF is also the natural extension of
PF.

Theorem 4.58. Let X = [a, b] be a compact interval of R, and let F be a coherent
cumulative distribution function on X, inducing the probability charge µF. Then

EF( f ) = S

∫

f dµF for any gamble f on X.

The natural extension EF for a singleton {x}with a < x ≤ b is given by

EF(I{x}) = sup
ǫ≥0,A∈F(](X),A⊆{x}

µF(A) = µF(∅) = 0,

EF(I{x}) = inf
ǫ≥0, (x−ǫ,x]⊇{x}

µF((x − ǫ, x]) = F(x) − F(x−),

and for x = awehaveEF(I{a}) = EF(I{a}) = F(a). These expressions are easily ob-

tained by invoking the inner and outer set functions (defined in Section 4.3.4)

with respect to µF as a means of calculating the natural extension of µF, and

hence, F, to events. Taking into account linearity, i.e., Proposition 4.16 on
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p. 101, we have for a < x ≤ y ≤ b that

EF(I[x,y]) = EF(I[a,y]) − EF(I[a,x]) + EF({x}) = F(y) − F(x) and
EF(I[x,y]) = EF(I[a,y]) − EF(I[a,x]) + EF({x}) = F(y) − F(x−),

and similarly,

EF(I(x,y)) = EF(I[a,y]) − EF(I[a,x]) − EF({y}) = F(y−) − F(x) and
EF(I(x,y)) = EF(I[a,y]) − EF(I[a,x]) − EF({x}) = F(y) − F(x).

Expressions for other intervals can be obtained in a similar way. We are now

in a comfortable position to connect the natural extension of F to the lower

Riemann-Stieltjes integral.

Theorem 4.59. Let X = [a, b] be a compact interval in R and let F be a coherent
cumulative distribution function on X. Then

EF( f ) = R-S

∫ b

a

f (x) dF(x) for all gambles f on X, (4.43)

if and only if F(a) = 0 and F is continuous from the right at every point x ∈ [a, b).

Proof. “if”. Let µF be the probability charge induced by F. By Theorem 4.58,

it suffices to check the conditions of Theorem 4.52.

Consider A := {[a, x] : x ∈ X}; domµF = F(](X) is the field generated
by A. Every element of A is Riemann-Stieltjes integrable. Indeed, using
Eqs. (4.31)&(4.32) on p. 143, for every a ≤ y < b it holds that

R-S

∫ b

a

I[a,y](x) dF(x) = F(y) − F(a)

= F(y+) − F(a) = R-S
∫ b

a

I[a,y](x) dF(x),

and therefore, since F(a) = 0, indeed µF([a, y]) = F(y) = R-S
∫ b

a
I[a,y](x) dF(x).

For y = b we have

R-S

∫ b

a

I[a,b](x) dF(x) = F(b) − F(a) = R-S
∫ b

a

I[a,b](x) dF(x),
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so [a, b] is Riemann-Stieltjes integrable too and, again since F(a) = 0, it follows

that µF([a, b]) = F(b) = R-S
∫ b

a
I[a,b](x) dF(x). Hence, all sets inA are Riemann-

Stieltjes integrable. By Proposition 4.51 it follows that all sets in the field

generated byA are Riemann-Stieltjes integrable: all sets in F(](X) = domµF
are Riemann-Stieltjes integrable.

Let S = [x, y] ⊆ X and ǫ > 0. Take ASǫ = (x, y] in F(](X). Then ASǫ∆S = {x},
and hence, R-S

∫ b

a
IA∆S(z) dF(z) = 0 < ǫ.

So, all conditions of Theorem 4.52 are satisfied. Therefore,

EF( f ) = EµF ( f ) = R-S

∫ b

a

f (x) dF(x)

for any gamble f on X.

“only if”. We are given that EF( f ) = R-S
∫ b

a
f (x) dF(x) for all gambles f on

X. Take f = I[a,b]. It follows that

1 = EF(I[a,b]) = R-S

∫ b

a

I[a,b] dF(x) = F(b) − F(a) = 1 − F(a),

and hence, F(a) = 0.

Now let x ∈ (a, b) and consider the gamble I{x}. Then

F(x) − F(x−) = EF(I{x}) = R-S
∫ b

a

I{x}(z) dF(z) = F(x+) − F(x−).

So, F(x) = F(x+), and hence, F must be continuous from the right at every

x ∈ (a, b). For x = a we have

0 = F(a) = µF({a}) = Eµ(I{a}) = R-S
∫ b

a

I{a}(z) dF(z) = F(a+) − F(a),

and hence, also at x = a, Fmust be continuous from the right. �

4.3.8 The Dunford Integral

Another way to integrate a charge, introduced by Dunford [31] for measures,

and extended by Dunford and Schwartz [30] to charges, is to start from

an integral defined on simple gambles only, and try to approximate other

gambles by a Cauchy sequence of simple ones. This is the core idea behind
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the definition of the Dunford integral. Note that we use the Dunford integral

forF -simple gambles already defined inDefinition 3.19 on p. 65. A nice thing
about its definition is that it applies not only to gambles, but to all functions

f : X → R—in this sense it is more general than the S-integral introduced in
Section 4.3.5. The definition relies on the outer set function µ∗ induced by a

probability charge µ; see Definition 4.34 on p. 116

Definition 4.60. Let F be a field on X and let µ be a probability charge on
F . Then a function f : X → R is called Dunford integrable with respect to µ if
and only if there is a sequence of F -simple gambles fn such that

(i) limn,m→+∞D
∫ ∣

∣

∣ fn − fm
∣

∣

∣ dµ→ 0, and

(ii) for any ǫ > 0 it holds that limn→+∞ µ∗
({

x ∈ X :
∣

∣

∣ f (x) − fn(x)
∣

∣

∣ > ǫ
})

→ 0.

In such a case, the Dunford integral of f with respect to µ is defined as

D

∫

f dµ := lim
n→+∞

D

∫

fn dµ, (4.44)

where we should note that the limit on the right hand side is independent of

the sequence fn satisfying the two conditions above. Such sequence is called

a determining sequence for f .

In order to show that Dunford integrals and µ-integrals coincide on gam-

bles, we shall need the following lemma.

Lemma 4.61. Let P be any coherent lower prevision on L(X). Let fn be a bounded
sequence of gambles on X, that is, there is an α ∈ R such that supn∈N sup

∣

∣

∣ fn
∣

∣

∣ ≤ α.
Then the following statements are equivalent.

(i) limn→+∞ P
(∣

∣

∣ fn
∣

∣

∣

)

= 0.

(ii) For any ǫ > 0 it holds that limn→+∞ P
({

x ∈ X :
∣

∣

∣ fn(x)
∣

∣

∣ > ǫ
})

= 0.

Proof. Define An,ǫ :=
{

x ∈ X :
∣

∣

∣ fn(x)
∣

∣

∣ > ǫ
}

.

(i) =⇒ (ii). Let ǫ > 0 and δ > 0 such that δ < ǫ. Then there is an Nδ ∈ N
such that P

(∣

∣

∣ fn
∣

∣

∣

)

< δ2 for every n ≥ Nδ. Since ǫIAn,ǫ ≤
∣

∣

∣ fn
∣

∣

∣ IAn,ǫ , it follows from

the coherence of P that

P
(

An,ǫ
) ≤
P
(∣

∣

∣ fn
∣

∣

∣An,ǫ
)

ǫ
≤
P
(∣

∣

∣ fn
∣

∣

∣

)

ǫ
<
δ2

ǫ
< δ (4.45)
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for every n ≥ Nδ. So limn→+∞ P
(

An,ǫ
)

= 0.

(ii) =⇒ (i). Let ǫ > 0. Then there is an Nǫ ∈ N such that P
(

An,ǫ
)

< ǫ
α+1 for

every n ≥ Nǫ. It follows from the coherence of P that

P
(∣

∣

∣ fn
∣

∣

∣

)

≤ P
(∣

∣

∣ fn
∣

∣

∣An,ǫ
)

+ P
(∣

∣

∣ fn
∣

∣

∣∁An,ǫ
)

< α
ǫ

α + 1
+ ǫ < 2ǫ (4.46)

for every n ≥ Nǫ. �

A rather long proof for the equivalence of Dunford integrability and S-

integrability for gambles, and a proof for the equality of the corresponding

integrals on gambles, was given by Bhaskara Rao and Bhaskara Rao [9, The-

orem 4.5.7 and Proposition 4.5.8]. We give a much shorter and conceptually

simpler proof by repeated application of Lemma 4.61.

Theorem 4.62. Let F be a field on X and let µ be a probability charge on F . Let f
be any gamble. Then the following conditions are equivalent.

(i) f is Dunford integrable with respect to µ.

(ii) f is S-integrable with respect to µ.

(iii) f is µ-integrable.

If any (and hence all) of these conditions are satisfied, then

D

∫

f dµ = S

∫

f dµ = Eµ( f ). (4.47)

Proof. Equivalence of S-integrability with respect to µ and µ-integrability,

and equality of the corresponding integrals, has already been established in

Theorem 4.43 on p. 131.

For F -simple gambles, equality of the Dunford integral and natural ex-
tension, and hence, equality of the Dunford integral and the S-integral, was

noted in Section 4.3.3, p. 112 ff. Equality of the S-integral and the Dunford

integral for F -simple gambles is also immediate from their respective defi-
nitions; see Definition 3.19 on p. 65 and Definition 4.40 on p. 129. To prove

the general case, we shall extensively use the equality of the S-integral and

the Dunford integral for F -simple gambles.
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Suppose that f is S-integrable with respect to µ. Then, for any n ∈ N,
n > 0, there is a finite partition Bn ∈ P(F ) such that

∑

B∈Bn
PB( f )µ(B) −

∑

B∈Bn
PB( f )µ(B) <

1

n
.

Define the gambles gn :=
∑

B∈Bn PB( f )IB and hn :=
∑

B∈Bn PB( f )IB, then, since gn

and hn areF -simple, the above condition can bewritten as S
∫

(gn−hn) dµ < 1
n ,

or, since gn ≥ hn, also as S
∫ ∣

∣

∣gn − hn
∣

∣

∣ dµ < 1
n . But gn ≥ f ≥ hn, and hence

∣

∣

∣gn − hn
∣

∣

∣ ≥
∣

∣

∣gn − f
∣

∣

∣. In particular, we find that, given that the lower S-integral

is coherent,

S

∫

∣

∣

∣gn − f
∣

∣

∣ dµ ≤ S
∫

∣

∣

∣gn − hn
∣

∣

∣ dµ = S

∫

(gn − hn) dµ <
1

n
. (4.48)

Since, again by the coherence of the lower S-integral, S
∫ ∣

∣

∣gn − gm
∣

∣

∣ dµ ≤
S
∫ ∣

∣

∣gn − f
∣

∣

∣ dµ + S
∫ ∣

∣

∣ f − gm
∣

∣

∣ dµ, this implies that S
∫ ∣

∣

∣gn − gm
∣

∣

∣ dµ converges

to zero. But gn − gm is F -simple, so S
∫ ∣

∣

∣gn − gm
∣

∣

∣ dµ = D
∫ ∣

∣

∣gn − gm
∣

∣

∣ dµ,

and so D
∫ ∣

∣

∣gn − gm
∣

∣

∣ dµ must converge to zero as well. Also observe that

supn∈N sup
∣

∣

∣ f − gn
∣

∣

∣ ≤ 2 sup
∣

∣

∣ f
∣

∣

∣, and hence, Lemma 4.61 applies on Eq. (4.48):

for any ǫ > 0 it holds that S
∫ {

x ∈ X :
∣

∣

∣ f (x) − gn(x)
∣

∣

∣ > ǫ
}

dµ converges to zero.

Now apply Theorem 4.36(v) on p. 117 and Theorem 4.42 on p. 130 to see

that µ∗
({

x ∈ X :
∣

∣

∣ f (x) − gn(x)
∣

∣

∣ > ǫ
})

converges to zero. We have demonstrated

that f is Dunford integrable with respect to µ. Again by Eq. (4.48), and the

coherence of the lower S-integral (Theorem 3.5(xii) on p. 55) it holds that

S

∫

f dµ = lim
n→+∞

S

∫

gn dµ = D

∫

f dµ,

so the corresponding integrals are equal as well.

Conversely, assume that f is Dunford integrable with respect to µ. Then

there is a sequence fn of F -simple gambles such that for every ǫ > 0 the
sequenceµ∗

({

x ∈ X :
∣

∣

∣ f (x) − fn(x)
∣

∣

∣ > ǫ
})

converges to zero. In particular, there

is an F -simple gamble fǫ such that

µ∗
({

x ∈ X :
∣

∣

∣ f (x) − fǫ(x)
∣

∣

∣ > ǫ
})

< ǫ.

Define the set Aǫ :=
{

x ∈ X :
∣

∣

∣ f (x) − fǫ(x)
∣

∣

∣ > ǫ
}

, so µ∗(Aǫ) = inf{µ(B) : Aǫ ⊆ B ∈
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F } < ǫ. This means that there must also be a Bǫ ∈ F such that Aǫ ⊆ Bǫ but
still µ(Bǫ) < ǫ. Since fǫ is F -simple there is a finite partition Aǫ ∈ P(F ) on
whose elements fǫ is constant. Define the finite partition

Bǫ := {Bǫ} ∪ {A ∩∁Bǫ : A ∈ Aǫ}.

FixA ∈ Aǫ. Observe that for any x ∈ A∩∁Bǫ it holds in particular that x < Aǫ,
and hence

∣

∣

∣ f (x) − fǫ(x)
∣

∣

∣ ≤ ǫ. Since actually fǫ is constant on A ∩∁Bǫ, we also
find that, since PA∩∁Bǫ is coherent,

PA∩∁Bǫ ( f ) − PA∩∁Bǫ ( f ) = PA∩∁Bǫ ( f − fǫ) − PA∩∁Bǫ ( f − fǫ)
≤ 2PA∩∁Bǫ (| f − fǫ|) ≤ 2ǫ.

Look at the definition of the S-integral, and define theF -simple functions
gǫ :=

∑

B∈Bǫ PB( f )IB and hǫ :=
∑

B∈Bǫ PB( f )IB. If we can show that S
∫

(gǫ −
hǫ) dµ ≤ Kǫ for some K > 0 which may depend on f , then we have proved
that f is S-integrable. Indeed, in such a case, since gǫ ≥ f ≥ hǫ, and by the
coherence of the lower S-integral,

S

∫

gǫ dµ ≥ S
∫

f dµ ≥ S
∫

f dµ ≥ S
∫

hǫ dµ ≥ S
∫

gǫ dµ + Kǫ,

for any ǫ > 0, and hence, in the limit for ǫ to zero, we recover that S
∫

f dµ =

S
∫

f dµ: f is S-integrable.

So, let’s show that S
∫

(gǫ − hǫ) dµ ≤ Kǫ for some K > 0:

S

∫

(gǫ − hǫ) dµ =
∑

B∈Bǫ

(

PB( f ) − PB( f )
)

µ(B)

=
(

PBǫ ( f ) − PBǫ ( f )
)

µ(Bǫ)

+
∑

A∈Aǫ

(

PA∩∁Bǫ ( f ) − PA∩∁Bǫ ( f )
)

µ(A ∩∁Bǫ)

≤ 2ǫ sup | f | + 2ǫ
∑

A∈Aǫ

µ(A ∩∁Bǫ)

≤ 2(sup | f | + 1)ǫ

and hence, the desired inequality is satisfied forK = 2(sup | f |+1). Thismeans
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that f is S-integrable, with S-integral S
∫

f dµ = limǫ>0 S
∫

gǫ dµ. From this

equality, which can also be written as limǫ>0 S
∫

|gǫ − f |dµ = 0, we can infer
two things. Firstly:

lim
n,m→+∞

D

∫

∣

∣

∣

∣

g 1
n
− g 1

m

∣

∣

∣

∣

dµ = lim
n,m→+∞

S

∫

∣

∣

∣

∣

g 1
n
− g 1

m

∣

∣

∣

∣

dµ

≤ lim
n→+∞

S

∫

∣

∣

∣

∣

g 1
n
− f

∣

∣

∣

∣

dµ + lim
m→+∞

S

∫

∣

∣

∣

∣

f − g 1
m

∣

∣

∣

∣

dµ = 0,

and secondly, noting that supn∈N
∣

∣

∣ f − g 1
n

∣

∣

∣ ≤ 2 sup| f |, and once more applying
Lemma 4.61: for any ǫ > 0 it holds that S

∫ {

x ∈ X :
∣

∣

∣ f (x) − g 1
n
(x)

∣

∣

∣ > ǫ
}

dµ

converges to zero. NowapplyTheorem4.36(v) onp. 117 andTheorem4.42 on

p. 130 to see that for any ǫ > 0 also µ∗
({

x ∈ X :
∣

∣

∣

∣

f (x) − g 1
n
(x)

∣

∣

∣

∣

> ǫ
})

converges

to zero. Hence, g 1
n
is a determining sequence for f , so

D

∫

f dµ = lim
n→+∞

D

∫

g 1
n
dµ = lim

n→+∞
S

∫

g 1
n
dµ = S

∫

f dµ.

So, f is not only S-integrable, also itsDunford integral is equal to its S-integral.

This concludes the proof. �

We shall need the following results on Dunford integration further on,

we refer to Bhaskara Rao and Bhaskara Rao [9] for a proof.

Lemma 4.63. Let F be a field onX and let µ be a probability charge on F . Let f be
a Dunford integrable random quantity, and let fn be a determining sequence for f .

Then limn→∞D
∫

| f − fn|dµ = 0.

Theorem 4.64. Let F be a field on X and let µ be a probability charge on F . Let f
be a random quantity on X, and let fn be a sequence of Dunford integrable random

quantities. If

(i) limn,m→+∞D
∫ ∣

∣

∣ fn − fm
∣

∣

∣ dµ = 0, and

(ii) for any ǫ > 0 it holds that limn→+∞ µ∗
({

x ∈ X :
∣

∣

∣ f (x) − fn(x)
∣

∣

∣ > ǫ
})

= 0,

then f is Dunford integrable, and D
∫

f dµ = limn→∞D
∫

fn dµ.
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4.3.9 Intermezzo: More Properties of the Riemann-Stieltjes

Integral

The results derived in this sectionwill be used in Section 4.3.10. Most of them

are well-known properties, except for Proposition 4.69 and Proposition 4.70.

In Proposition 4.69, we shall give a formula for partial integration of lower

and upper Riemann-Stieltjes integrals, i.e., without imposing any integrabil-

ity, continuity, or other regularity conditions, except for monotonicity. In

Proposition 4.70, we shall generalise a well-known result about modifying

the integrand without changing the value of the Riemann-Stieltjes integral.

Proposition 4.65. Let X = [a, b] be a compact interval in R, let F be a real-valued
non-decreasing bounded function on X. Then

R-S

∫ y

a

f (x) dF(x) + R-S

∫ b

y

f (x) dF(x) = R-S

∫ b

a

f (x) dF(x).

for any gamble f on X and y ∈ X.

Proof. Immediately from Definition 4.48, and the observation that for every

subdivision S of [a, b], there is a subdivision of [a, b] that refines both S and
{[a, y], [y, b]}. �

Proposition 4.66. Let X = [a, b] be a compact interval in R, let F be a real-valued
non-decreasing bounded function on X. The lower and upper Riemann-Stieltjes
integral are uniformly continuous on L(X) with respect to the supremum norm.

Proof. This follows from the coherence of the lower Riemann-Stieltjes integral

and Theorem 3.5(xiii). �

Proposition 4.67. Let X = [a, b] be a compact interval in R, and let F be a
real-valued non-decreasing bounded function on X. The set of Riemann-Stieltjes
integrable gambles with respect to F is a uniformly closed linear lattice, on which the

Riemann-Stieltjes integral is a positive linear functional.

Proof. Immediately from Theorem 4.49 on p. 137 and Proposition 4.18(vi) on

p. 102. �

Proposition 4.68. Let X = [a, b] be a compact interval in R, and let f be a non-
decreasing or non-increasing gamble on X. Then f is Riemann integrable.
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Proof. Suppose f is non-decreasing. For each ǫ > 0, select a subdivision

Sǫ ∈ S(X) such that λ(S) < ǫ for each S ∈ Sǫ. We find that
∑

S∈Sǫ

[

PS( f ) − PS( f )
]

λ(S) < ǫ
∑

S∈Sǫ

[

PS( f ) − PS( f )
]

= ǫ
(

sup f − inf f ) ,

where the last equality holds because f is non-decreasing. We find that

R

∫ b

a

f (x) dx − R
∫ b

a

f (x) dx = inf
S∈S(X)

∑

S∈S

[

PS( f ) − PS( f )
]

λ(S)

≤ inf
ǫ>0

∑

S∈Sǫ

[

PS( f ) − PS( f )
]

λ(S)

≤ inf
ǫ>0
ǫ
(

sup f − inf f ) = 0.

Therefore, f is Riemann integrable.

If f is non-increasing, then − f is non-decreasing, and hence, Riemann
integrable. FromProposition 4.67 it follows that f is also Riemann integrable.

�

Proposition 4.69. Let X = [a, b] be a compact interval in R, and let f and g be
non-decreasing gambles on X. Then

R-S

∫ b

a

f (x) dg(x) + R-S

∫ b

a

g(x) d f (x)

= f (b)g(b) − f (a)g(a).

= R-S

∫ b

a

f (x) dg(x) + R-S

∫ b

a

g(x) d f (x)

Hence, f is Riemann-Stieltjes integrable with respect to g if and only if g is Riemann-

Stieltjes integrable with respect to f , and in such a case

R-S

∫ b

a

f (x) dg(x) + R-S

∫ b

a

g(x) d f (x) = f (b)g(b) − f (a)g(a).

Proof. Since f and g are non-decreasing, for any closed interval S inX it holds
that PS( f ) = f (min S) and PS(g) = g(max S). We find
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R-S

∫ b

a

f (x) dg(x) + R-S

∫ b

a

g(x) d f (x)

= lim
S∈S(X)

∑

S∈S

[

PS( f )ρg(S) + PS(g)ρ f (S)
]

= lim
S∈S(X)

∑

S∈S

{

f (min S)[g(max S) − g(min S)]

+ g(max S)[ f (max S) − f (min S)]
}

= lim
S∈S(X)

∑

S∈S

{− f (min S)g(min S) + g(max S) f (max S)}

= − f (a)g(a) + f (b)g(b).

�

It is well-known that if two gambles f and g are Riemann integrable,

and differ at most on a countable set, or more general, on a set of outer

Lebesgue measure zero, then their Riemann integrals are equal; for instance,

see Darboux [14, Section IV, p. 75, ll. 12–20] in case f and g differ only

on a finite set, see Hildebrandt [43, Chapter II, Theorem 15.9, p. 74] for a

generalisation to Riemann-Stieltjes integrals, and requiring only that f and g

differ at most on a set of measure zero (with respect to what could be called

the outer Riemann-Stieltjes measure).

We give a very short proof of a stronger version of this property: if

both f and g are Riemann-Stieltjes integrable, then their Riemann-Stieltjes

integrals are equalwhenever theydiffer only on a setwhose indicator has zero

lower Riemann-Stieltjes integral. Indeed, surprisingly, and perhaps counter-

intuitively, we only need the lower Riemann-Stieltjes integral of the indicator

to be zero. For instance: if two Riemann integrable gambles f and g differ

only on a set of inner Lebesgue measure zero, then their Riemann integrals

are equal.

Proposition 4.70. Let X = [a, b] be a compact interval of R, let F be a bounded
non-decreasing real-valued function on X, and let f and g be gambles on X that are
Riemann-Stieltjes integrable with respect to F. If f = g except on a set of zero lower

Riemann-Stieltjes integral, i.e., if f (x) = g(x) for all x ∈ X \ N, where N is some
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subset of X such that R-S
∫ b

a
IN(x) dF(x) = 0, then

R-S

∫ b

a

f (x) dF(x) = R-S

∫ b

a

g(x) dF(x).

Proof. Immediately from the 2-monotonicity of the lower Riemann-Stieltjes

integral (Theorem 4.49 on p. 137) and Proposition 4.19(ii) on p. 104. �

Enrique Miranda (personal communication) has proved that, if f and

g are Riemann integrable gambles that are equal except on N ⊆ X, then
R
∫ b

a
IN(x) dx = 0 if and only if λ∗(N) = 0; this tells us that the above condition

reduces to a well-known condition in case of Riemann integration:

Corollary 4.71. Let X = [a, b] be a compact interval of R, and let f and g be
gambles on X that are Riemann integrable. Let N = {x ∈ X : f (x) , g(x)}. Then
R
∫ b

a
IN(x) dx = 0 if and only if the outer Lebesgue measure of N is zero, and in that

case, R
∫ b

a
f (x) dx = R

∫ b

a
g(x) dx.

Proof. Equality of the Riemann integrals follows from Proposition 4.70. It

remains to show the equivalence of the two conditions. Let us denote by ρ is

the restriction of the Lebesgue measure to F[](X).
“if”. If the outer Lebesguemeasure ofN is zero, then somust be the lower

Riemann integral of IN, since

λ∗(N) ≥ λ∗(N) ≥ ρ∗(N) = R
∫ b

a

IN(x) dx,

where we used Lemma 4.50(i) on p. 139 in the final step.

“only if”. Since f and g are Riemann-integrable, so is | f − g| (by Proposi-
tion 4.67), and sinceR

∫ b

a
IN(x) dx = 0 it also follows thatR

∫ b

a
| f (x)−g(x)|dx = 0.

Indeed,

0 ≤ R
∫ b

a

| f (x) − g(x)|dx ≤ sup| f − g|R
∫ b

a

IN(x) dx = 0

By Theorem 4.56, it follows in fact that | f − g| is domλ-measurable, and so
there is a sequence hn of non-negative domλ-simple gambles that converges
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uniformly to | f − g| from below. But, for every n inN,

0 ≤ S
∫

hn dλ ≤ S
∫

| f − g|dλ

≤ R
∫ b

a

| f (x) − g(x)|dx = R
∫ b

a

| f (x) − g(x)|dx = 0,

so S
∫

hn dλ = 0. Now, fix n inN. Since hn is domλ-simple, there is an ǫ > 0

such that, for any x in X, hn(x) > 0 if and only if hn(x) > ǫ. Therefore,

0 = S

∫

hn dλ ≥ ǫλ({x ∈ X : hn(x) > ǫ}) ≥ 0,

which in turn implies that λ({x ∈ X : hn(x) > 0} must be zero as well. But,
since the non-negative sequence of gambles hn converges uniformly to the

non-negative gamble | f − g| from below,

{x ∈ X : f (x) > 0} =
⋃

n∈N
{x ∈ X : hn(x) > 0},

and so, since λ is a measure, it follows that λ({x ∈ X : f (x) > 0}) = 0 as well.
But, λ∗ is an extension of λ, so the equivalence is established. �

4.3.10 Natural Extension of 2-Monotone Set Functions: The

Choquet Integral

Let us now proceed with a general definition of the Choquet integral, due

to Choquet [11, Section 48.1, p. 265], and introduced before as a behavioural

extension of 2-monotone set functions to simple gambles, and investigate its

relation to natural extension. The most general, and I think also the most

elegant way of extending the Choquet integral with respect to 2-monotone

set functions for arbitrary gambles, is suggested by Walley; see Walley [85,

Section 6, p. 52, ll. 22–24] and Walley [86, Note 2 of Section 3.2, p. 502]:

he observes that through natural extension we don’t need to impose any

measurability conditions—compare for instance with Greco’s [38] upper ν-

measurability; a definition is given below.

Walley’s argument is as follows. First, we extend, through natural ex-

tension, the 2-monotone set function ν defined on a field F to a set function
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ν∗ defined on the power set ℘(X). This set function ν∗ is 2-monotone; see
Theorem 4.36(iv). Now, generalising a result by Walley [85], we can show

that, for gambles, Greco’s [38] Choquet integral with respect to ν is equal, on

its domain of upper ν-measurable gambles, to the natural extension of Pν.

Hence, since ν∗ is equal, on its domain, to the natural extension of ν, also the

Choquet integral with respect to ν∗ is the natural extension of Pν to upper

ν∗-measurable gambles; this is a consequence of Proposition 4.8. But, every

gamble on X is upper ν∗-measurable, since ν∗ is defined on the σ-field ℘(X)
and every gamble on X is ℘(X)-measurable. So, the Choquet integral with
respect to ν∗ is the natural extension of Pν to the set of all gambles. The details

of the proof will be given below.

In conclusion, for 2-monotone measures, it makes perfect sense to take

Greco’s [38] Choquet integral with respect to ν∗ also as the Choquet integral

with respect to ν, unless you like unnecessarily complicated measurability

conditions. Of course, as described in great detail by Denneberg [28], Greco’s

[38] approach is more general because it allows for a Choquet integral with

respect to an arbitrary set function, not just 2-monotone set functions defined

on a field. However, Walley [85, Corollary 6.2] proved that the Choquet

integral with respect to a set function ν—defined on the power set, positive,

and ν(∅) = 0—corresponds to a coherent lower prevision if and only if ν is
2-monotone; in a completely different context, this result was first proved

by Choquet [11, Theorem on p. 289], and a very general formulation of this

result can be found in Denneberg [28, Chapter 6]. Therefore, in our study

of the interplay between integration and natural extension, it is not exactly

clear what is the rôle of the Choquet integral with respect to set functions

that are not 2-monotone. However, we shall not concern ourselves with this

question any further.

In the definition below, the Choquet integral expressed as Riemann and

Riemann-Stieltjes integrals are well-known results. Our contribution is also

an expression of the Choquet integral in terms of a Dunford and an S-integral

with respect to the Lebesgue measure—or any sufficiently dense restriction

of the Lebesgue measure, as suggested by Theorem 4.52. These are simple

consequences of Proposition 4.55 on p. 156 and Theorem 4.62 on p. 163

Definition 4.72. Let F be a field onX and let ν be a 2-monotone set function
on F . Let f be any gamble on X. Let G∗ν, f be the lower decreasing distribution
function of f with respect to ν, and F∗ν, f the upper distribution function of f
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with respect to ν, that is,

G∗ν, f (z) := ν∗({x ∈ X : f (x) > z}), and
F∗ν, f (z) := π

∗({x ∈ X : f (x) ≤ z}) = 1 − G∗ν, f (z),

for any z ∈ R, where π denotes the dual 2-alternating set function induced
by ν. The Choquet integral of f with respect to ν is defined as

C

∫

f dν := inf f +D

∫

[inf f ,sup f ]
G∗ν, f dλ,

= inf f + S

∫

[inf f ,sup f ]
G∗ν, f dλ,

= inf f + R

∫ sup f

inf f

G∗ν, f (z) dz,

=R-S

∫ sup f

inf f−ǫ
zdF∗ν, f (z),

=R

∫ 0

0∧inf f
[G∗ν, f (z) − 1] dz + R

∫ 0∨sup f

0

G∗ν, f (z) dz,

=R

∫ 1

0

Ǧ∗ ν, f (t) dt,

where the Dunford integral and the S-integral are taken with respect to the

Lebesgue measure λ onB(R), ǫ > 0 is arbitrary, and Ǧ∗ ν, f is the pseudo-inverse
of G∗ν, f which is defined as

Ǧ∗ ν, f (t) := inf f ∨ sup{z ∈ [inf f , sup f ] : G∗ν, f (z) > t}, for all t ∈ [0, 1].

Proof of existence and equality of all integrals. Since G∗ν, f is non-increasing it is

Riemann integrable on [inf f , sup f ] by Proposition 4.68. The Riemann in-

tegral of G∗ν, f can be converted into an S-integral using Proposition 4.55 on

p. 156. The S-integral is equal to the Dunford integral by Theorem 4.62

on p. 163. The Riemann integral converts into a Riemann-Stieltjes integral

through Proposition 4.69 on p. 168:

inf f + R

∫ sup f

inf f

G∗ν, f (z) dz
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= inf f − R
∫ sup f

inf f

[

−G∗ν, f (z)
]

dz

and since −G∗ν, f is non-decreasing, we can apply Proposition 4.69,

= inf f −
{

− R-S
∫ sup f

inf f

zd
[

−G∗ν, f (z)
]

+ sup f
(

−G∗ν, f (sup f )
)

− inf f
(

−G∗ν, f (inf f )
)

}

and since−G∗ν, f = F∗ν, f −1, we can replace the Riemann-Stieltjes integral with
respect to −G∗ν, f with a Riemann-Stieltjes integral with respect to F∗ν, f . Also,
G∗ν, f (sup f ) = ν∗(∅) = 0, hence,

= inf f −
{

−R-S
∫ sup f

inf f

zdF∗ν, f (z) + (inf f )G∗ν, f (inf f )

}

= inf f
(

1 − G∗ν, f (inf f )
)

+ R-S

∫ sup f

inf f

zdF∗ν, f (z)

= (inf f )F∗ν, f (inf f ) + R-S

∫ sup f

inf f

zdF∗ν, f (z)

Now, observe that, since F∗ν, f is non-decreasing and again applying Proposi-

tion 4.69,

R-S

∫ inf f

inf f−ǫ
zdF∗ν, f (z) = −R

∫ inf f

inf f−ǫ
F∗ν, f (z) dz

+ (inf f )F∗ν, f (inf f ) − (inf f − ǫ)F∗ν, f (inf f − ǫ)
= (inf f )F∗ν, f (inf f ).

and apply Proposition 4.65.

Next, observe that

inf f = 0 ∧ inf f + 0 ∨ inf f

= R

∫ 0

0∧inf f
(−1) dz + R

∫ 0∨inf f

0

(+1) dz
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and since G∗ν, f (z) = ν∗(X) = 1 whenever 0 ≤ x < inf f ,

= R

∫ 0

0∧inf f
(−1) dz + R

∫ 0∨inf f

0

G∗ν, f (z) dz,

and, by Proposition 4.65,

R

∫ sup f

inf f

G∗ν, f (z) dz = R

∫ 0

0∧inf f
G∗ν, f (z) dz + R

∫ sup f

0∨inf f
G∗ν, f (z) dz,

Hence, by Proposition 4.65 and Proposition 4.67,

inf f + R

∫ sup f

inf f

G∗ν, f (z) dz

= R

∫ 0

0∧inf f
(−1) dz + R

∫ 0∨inf f

0

G∗ν, f (z) dz

+ R

∫ 0

0∧inf f
G∗ν, f (z) dz + R

∫ sup f

0∨inf f
G∗ν, f (z) dz

= R

∫ 0

0∧inf f
[G∗ν, f (z) − 1] dz + R

∫ 0∨sup f

0

G∗ν, f (z) dz.

For the equality involving the Riemann integral over Ǧ∗ ν, f we refer to

Denneberg [28, Proposition 1.2, Lemma 1.3 and Corollary 1.5]. �

To see why we need to integrate from inf f − ǫ when expressing the
Choquet integral as a Riemann-Stieltjes integral, let ν be any 2-monotone set

function and consider a constant gamble a ∈ R(X). Then

F∗ν,a(z) = π
∗({x ∈ X : a ≤ z}) =



















0, if z < a,

1, if z ≥ a.

Clearly, inf a = sup a = a, and hence,

R-S

∫ a

a

zdF∗ν,a(z) = 0,
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which is not the Choquet integral of the constant gamble a. But,

R-S

∫ a

a−ǫ
zdF∗ν,a(z) = sup

0<δ<ǫ

[

0 + P[a−ǫ+δ,a](z) × 1
]

= a,

and similar for the upper Riemann-Stieltjes integral,

R-S

∫ a

a−ǫ
zdF∗ν,a(z) = inf

0<δ<ǫ

[

0 + P[a−ǫ+δ,a](z) × 1
]

= a.

In the literature, when the Choquet integral is defined as a Riemann-

Stieltjes integral, the Riemann-Stieltjes integral is over R instead of over

[inf f − ǫ, sup f ]. This agrees with our definition since

lim
c→−∞

R-S

∫ inf f−ǫ

c

zdF∗ν, f (z) = 0, and lim
d→+∞

R-S

∫ d

sup f

zdF∗ν, f (z) = 0.

Now apply Proposition 4.65 to see that

R-S

∫ +∞

−∞
zdF∗ν, f (z) := lim

c→−∞
d→+∞

R-S

∫ d

c

zdF∗ν, f (z) = R-S

∫ sup f

inf f−ǫ
zdF∗ν, f (z).

A similar argument shows that

R

∫ 0

−∞
[G∗ν, f (z) − 1] dz + R

∫ +∞

0

G∗ν, f (z) dz

= R

∫ 0

0∧inf f
[G∗ν, f (z) − 1] dz + R

∫ 0∨sup f

0

G∗ν, f (z) dz.

Our definition of lower decreasing distribution function extends and

simplifies the definition of the decreasing distribution function for upper

ν-measurable gambles in case ν is a 2-monotone set function. As a conse-

quence, our definition of the Choquet integral extends the definition of the

Choquet integral for upper ν-measurable gambles. The proof of this claim,

given below for the sake of completeness, is immediate.

Definition 4.73. Let ν be a 2-monotone set function defined on a field F .
A gamble f is called upper ν-measurable if there is an at most countable set
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N ⊆ R such that

ν∗({x ∈ X : f (x) > z}) = ν∗({x ∈ X : f (x) > z})

for all z ∈ R \ N; note that the left hand side is G∗ν, f (z). If f is upper ν-
measurable, then any real-valued function equal toG∗ν, f except on an at most

countable set is called a decreasing distribution function of f with respect to ν.

The definition of upper ν-measurability relies on both the inner set func-

tion ν∗ and the outer set function ν∗ induced by ν. Recall that ν∗ is 2-monotone,

as stated in Theorem 4.36(iv), but usually ν∗ will not be 2-monotone.

Proposition 4.74. Let ν be a 2-monotone set function defined on a field F . Let f
be an upper ν-measurable function. Then G∗ν, f is a decreasing distribution function

of f with respect to ν.

Proof. G∗ν, f is equal to G∗ν, f except on the empty set, which is an at most

countable subset of R. Now, apply the definition of decreasing distribution

function. �

Corollary 4.75. Let ν be a 2-monotone set function defined on a field F . Let f be
an upper ν-measurable function, and let Gν, f be a decreasing distribution function

of f with respect to ν. Then

C

∫

f dν = R

∫ 0

0∧inf f
[Gν, f (z) − 1] dz + R

∫ 0∨sup f

0

Gν, f (z) dz,

Proof. Simply observe that the Riemann integral over Gν, f is equal to the

Riemann integral over G∗ν, f , since they are equal except on an at most count-

able subset of R: every countable subset of R has Lebesgue measure zero,

and therefore, the lower Riemann integral of its indicator is zero too, so

Proposition 4.70 applies. �

So, our definition of the Choquet integral is a generalisation of the Cho-

quet integral found in Greco [38] andDenneberg [28] for upper ν-measurable

gambles, at least, when ν is 2-monotone. Again, the Choquet integral of set

functions that are not 2-monotone may not give us the natural extension; this

was established by Walley [85], Corollary 6.2.

The previously defined notions of lower decreasing distribution function

and Choquet integral of Definition 3.29 on p. 74, which deals with F -simple
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gambles only, are compatible with Definition 4.72. Indeed, let ν be a 2-

monotone set function defined on a fieldF , and let f be anF -simple gamble.
For any z ∈ R,

G∗ν, f (z) = ν∗({x ∈ X : f (x) > z}) = ν({x ∈ X : f (x) > z}),

since {x ∈ X : f (x) > z} is in F for any z ∈ R, ν∗ is the natural extension of ν
and ν is coherent; see Theorem 4.36 on p. 117. This is establishes equivalence

of the two definitions, for F -simple gambles.
Let’s now proceed with the main result of this section, which is due to

Walley [85]: the Choquet integral with respect to a 2-monotone set function

ν is equal to the natural extension of ν. Below, we give more direct proof—in

contradistinction to Walley, we do not rely on duality results (i.e., results of

Section 4.4).

Theorem 4.76. Let F be a field on X and let ν be a 2-monotone set function on F .
For any gamble f on X it holds that

Eν( f ) = C

∫

f dν = inf f + R

∫ sup f

inf f

G∗ν, f (z) dz.

Proof. Let f be a ℘(X)-simple gamble on X. We can write the gamble f as
b0 +

∑n
i=1 biIBi with b0 in R, b1, . . . , bn in R and strictly positive, and X % B1 %

B2 % · · · % Bn % ∅. It follows easily from Definition 4.72, Theorem 4.36 and
Proposition 4.8 that G∗ν, f = G∗ν∗, f , since (ν∗)∗ = ν∗. Therefore, also C

∫

f dν =

C
∫

f dν∗. Hence,

C

∫

f dν = C

∫

f dν∗ = b0 +
n

∑

i=1

biν∗(Bi),

where the last equality was established in Eq. (3.12) on p. 75. From the

coherence of Eν and Theorem 4.36, it follows that

Eν















b0 +

n
∑

i=1

biIBi















≥ b0 +
n

∑

i=1

biEν(IBi ) = b0 +

n
∑

i=1

biν∗(Bi),

hence,

Eν( f ) ≥ C
∫

f dν.
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It was established in Lemma 3.30 that C
∫

•dν∗ is a coherent lower previ-
sion on the set of ℘(X)-simple gambles. Obviously, C

∫

•dν∗ is a behavioural
extension of ν∗. Hence, by thedefinition of natural extension as the point-wise

smallest behavioural extension,

C

∫

f dν = C

∫

f dν∗ ≥ Eν∗ ( f ) = Eν( f ),

where we again applied Theorem 4.36 and Proposition 4.8.

We conclude that C
∫

•dν = Eν on the set of ℘(X)-simple gambles. But,
with respect to the topology of uniform convergence onL(X), this set is dense
in L(X), so if we can show that both lower previsions Eν and C

∫

•dν are
continuous on L(X), then C

∫

•dν = Eν on the set of all gambles on X, and
the theorem is established.

Indeed, Eν is coherent, so it is continuous with respect to the topology of

uniform convergence by Theorem 3.5(xiii) on p. 55. Also, for any ǫ > 0 and

any gambles f and g on X, if sup| f − g| < ǫ, then

C

∫

f dν = inf f + R

∫ sup f

inf f

ν∗({x ∈ X : f (x) > z}) dz

and since {x ∈ X : f (x) > z} ⊆ {x ∈ X : g(x) + ǫ > z}, and inf f ≤ inf g + ǫ,

≤ inf g + ǫ + R
∫ sup f

inf f

ν∗({x ∈ X : g(x) + ǫ > z}) dz

= inf g + ǫ + R

∫ sup f−ǫ

inf f−ǫ
ν∗({x ∈ X : g(x) > z}) dz

but, ν∗({x ∈ X : g(x) > z}) = G∗ν,g(z), and invoking Proposition 4.65 on p. 167,

= inf g + ǫ + R

∫ sup g

inf g

G∗ν,g(z) dz

+ R

∫ inf g

inf f−ǫ
G∗ν,g(z) dz − R

∫ sup g

sup f−ǫ
G∗ν,g(z) dz
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and since 0 ≤ G∗ν,g(z) ≤ 1, it follows that R
∫ inf g

inf f−ǫ G∗ν,g(z) dz ≤ inf g−inf f+ǫ ≤
sup| f − g| + ǫ < 2ǫ, and −R

∫ sup g

sup f−ǫ G∗ν,g(z) dz ≤ 0, so

< 3ǫ + C

∫

gdν.

Reversing the rôles of f and g, we find that also C
∫

gdν < 3ǫ + C
∫

f dν.

Concluding, if sup| f − g| < ǫ, then it must hold that
∣

∣

∣

∣

∣

C

∫

f dν − C
∫

gdν

∣

∣

∣

∣

∣

< 3ǫ,

so C
∫

•dν is uniformly continuous with respect to the topology of uniform
convergence on L(X). (Note: now we have proved that C

∫

•dν is coher-
ent, the bound 3ǫ in the above equation can actually be improved to ǫ; see

Theorem 3.5(xiii) on p. 55.) �

We can now also prove the following quite remarkable result. The “only

if” part of the proof is due toHugo Janssen (personal communication). Recall

the definition of 2-monotone lower previsions: see Definition 3.32 on p. 76.

Proposition 4.77. A coherent lower prevision, defined on the setL(X) of all gambles
on X, is 2-monotone, if and only if there is a field F on X such that the set function
ν, defined by ν(A) := P(IA) for all A in F , is 2-monotone, and

P( f ) = EPν
( f ) = C

∫

f dν,

for all gambles f on X.

Proof. “if”. It suffices to show that

C

∫

f ∨ gdν + C
∫

f ∧ gdν ≥ C
∫

f dν + C

∫

gdν

for all gambles f and g on X. This is a well-known result; see for instance

Denneberg [28, p. 162, ll. 1–3, and Exercise 13.1, p. 170].

“only if”. Define F := ℘(X) and ν(A) := P(IA) for all A ⊆ X. The natural
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extension of Pν is given by

Eν( f ) = sup















n
∑

i=1

λiP(IAi) : n ∈N, λi ≥ 0,Ai ⊆ X,
n

∑

i=1

λiIAi ≤ f














.

It is easy to see that Eν ≤ P. Indeed, by definition, Eν is the smallest coherent
extension of Pν, and obviously, P is a coherent extension of Pν, so it should

hold that Eν ≤ P.
If we can now show that, for any℘(X)-simple gamble f = ∑m

j=1 µ jIB j , there

is a particular choice of µ j’s and B j’s such that
∑m
j=1 µ jP(IB j) ≥ P( f ), then we

have proved that Eν( f ) ≥ P( f ), and hence, Eν( f ) = P( f ), for all ℘(X)-simple
gambles f .

Indeed, assuming that f is ℘(X)-simple, it may be written as µ1IB1 +
∑m
j=2 µ jIB j with µ1 ∈ R, B1 = X, µ j ≥ 0 for j > 1, and B j % B j+1 for 1 < j < m.
From the coherence and the 2-monotonicity of P, it follows that

P( f ) = µ1 − µ2 + P
















m
∑

j=2

µ jB j

















+ P(µ2)

≤ µ1 − µ2 + P
















min



















µ2,
m

∑

j=2

µ jB j



































+ P

















max



















µ2,
m

∑

j=2

µ jB j



































= µ1 − µ2 + P
(

µ2B2
)

+ P

















µ2 +
m

∑

j=3

µ3B j

















= µ1 + µ2P (B2) + P

















m
∑

j=3

µ3B j

















= µ1 − µ3 + µ2P (B2) + P
















m
∑

j=3

µ3B j

















+ P(µ3)

≤ µ1 − µ3 + µ2P (B2) + P
















min



















µ3,
m

∑

j=3

µ jB j



































+ P

















max



















µ3,
m

∑

j=3

µ jB j



































= µ1 − µ3 + µ2P (B2) + P
(

µ3B3
)

+ P

















µ3 +
m

∑

j=4

µ jB j

















= µ1 + µ2P (B2) + µ3P (B3) + P

















m
∑

j=4

µ jB j
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≤ . . .

≤ µ1 +
m

∑

j=2

µ jP
(

B j
)

.

This ends the proof for ℘(X)-simple gambles.
Now, for any gamble f on X, there is a sequence of simple gambles fn

converging uniformly to f such that f ≥ fn for all n ∈ N. Hence, it holds
that Eν( f ) ≥ Eν( fn) = P( fn) for every n ∈ N. Since, by the coherence of
P, P( fn) converges to P( f ), and ≥ is preserved in the limit, we find that
Eν( f ) ≥ P( f ). �

So, any coherent lower prevision that is 2-monotone on L(X) is repre-
sentable by a Choquet integral. Krätschmer [53, Proposition 4.3, p. 477, and

Theorem 4.4(3), p. 478] has given necessary and sufficient conditions for a

coherent lower prevision to be representable by a Choquet integral, with only

very few restrictions on the domain of the lower prevision, based on Greco’s

representation theorem; he assumes that P is Stonean (whereas we assumed

2-monotonicity), which is in case of a coherent lower prevision P on L(X)
equivalent to P( f ∨ a) + P( f ∧ a) = P( f ) + a for all gambles f (this is a weak
version of co-monotone additivity).

4.3.11 Natural Extension of Nested Set Functions

Theorem 4.78. Let ν and π be nested set functions. For any gamble f on X, it holds

that

EPν
( f ) = inf f + R

∫ sup f

inf f

sup{ν(A) : A ∈ dom ν, A ⊆ {x ∈ X : f (x) > z}}dz,

EPπ ( f ) = sup f − R
∫ sup f

inf f

inf{π(A) : A ∈ domπ, A ⊇ {x ∈ X : f (x) ≤ z}}dz.

Proof. The first equality follows from Theorem 4.36(i)&(ii) on p. 117, Theo-

rem 3.46 on p. 85, Corollary 4.9 on p. 98, and Theorem 4.76. The second

equality follows then from Proposition 4.10 on p. 99: if ν denotes the dual of
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π, then

EPπ ( f ) = EPν
( f )

= inf f + R

∫ sup f

inf f

sup{ν(A) : A ∈ dom ν, A ⊆ {x ∈ X : f (x) > z}}dz

= inf f + R

∫ sup f

inf f

sup{1 − π(∁A) : A ∈ dom ν, A ⊆ {x ∈ X : f (x) > z}}dz

= sup f − R
∫ sup f

inf f

inf{π(A) : A ∈ domπ, A ⊇ {x ∈ X : f (x) ≤ z}}dz

�

4.3.12 Natural Extension of Belief Functions

We already constructed the natural extension of a belief function in Theo-

rem 3.44 on p. 84; the proof of this claim is immediate from Theorem 4.76.

4.3.13 Natural Extension of Necessity and Possibility Mea-

sures

The equations below are alternative expressions for natural extension of

necessity and possibility measures given by De Cooman and Aeyels [21],

Eq. (1)&(2) for arbitrarygambles (i.e., not necessarilyF -measurable gambles).

Theorem 4.79. Let N be a necessity measure with necessity distribution ν, and let

Π be a possibility measure with possibility distribution π. For any gamble f on X,

it holds that

EPN
( f ) = inf f + R

∫ sup f

inf f

inf
x∈X
f (x)≤z

ν(x) dz,

EPΠ( f ) = sup f − R
∫ sup f

inf f

sup
x∈X
f (x)≤z

π(x) dz.

Proof. Toprove thefirst equality, useTheorem4.36(vi) onp. 117, Theorem3.46

on p. 85, Corollary 4.9 on p. 98, and Theorem 4.76—indeed,

G∗N, f (z) = N∗({x ∈ X : f (x) > z}) = inf
x∈X
f (x)≤z

ν(x).
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The second equality follows then from Proposition 4.10 on p. 99. �

4.4 Duality

4.4.1 Avoiding Sure Loss, Coherence, andNatural Extension:

An Alternative Characterisation

There is a nice connection between lower previsions and compact convex

sets of linear previsions.

Definition 4.80. We can define a map from lower previsions to sets of linear

previsions. LetK ⊆ L(X), and assume thatK is negation invariant: K = −K .
With any lower prevision P such that domP ⊆ K , we can associate the set of
all linear behavioural extensions of Pwith domain K

MKP =
{

Q : Q ∈ PK (X), (∀ f ∈ domP)
(

Q( f ) ≥ P( f )
)}

. (4.49)

The setML(X)
P
is denoted byM

P
.

Conversely, we can define a map from sets of linear previsions to lower

previsions. With any setM of linear previsions whose domain includes K ,
we can associate a lower prevision EKM onK , defined by

EKM( f ) := inf{Q( f ) : Q ∈ M}. (4.50)

for any f ∈ K .

The following theorem is a generalisation of a result by Walley [86, Sec-

tions 3.3.3&3.4.1, pp. 134–136].

Theorem 4.81. Let P be any lower prevision, let K be a negation invariant subset
of L(X), and assume that domP ⊆ K . Then the following propositions hold.

(i) P avoids sure loss if and only if

MKP , ∅. (4.51)
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(ii) If P avoids sure loss, then its natural extension EP satisfies

EP( f ) = min
{

EQ( f ) : Q ∈MKP
}

for any gamble f on X; hence, (4.52)

= min
{

Q( f ) : Q ∈MKP
}

for any f ∈ K . (4.53)

(iii) P is coherent if and only if

P( f ) = min
{

Q( f ) : Q ∈MKP
}

(4.54)

for any f ∈ domP.

Proof. See Walley [86, Sections 3.3.3&3.4.1, pp. 134–136] for the case in which

K = L(X). The general case is then straightforward. Let’s prove Eq. (4.52).
Let f ∈ L(X). Any Q ∈ MK

P
is a coherent (even linear) behavioural

extension of P. So, by Proposition 4.7 on p. 98, for any Q ∈ MK
P
, EQ is a

coherent behavioural extension of EP, and hence,

EP( f ) ≥ inf
{

EQ( f ) : Q ∈MKP
}

.

If we now can show that there is a linear prevision Q ∈ MK
P
such that

EP( f ) ≤ EQ( f ), then Eq. (4.52) is established. By Walley [86, Section 3.4.1,
p. 136], we know that

EP( f ) = min
{

R( f ) : R ∈MP
}

,

or equivalently, there is a linear prevision S in M
P
such that EP( f ) = S( f ).

Define Q as the restriction of S to K : Q := S|K . Then, again by Walley [86,
Section 3.4.1, p. 136],

EQ( f ) = min
{

R( f ) : R ∈MQ
}

≤ S( f ) = EP( f ),

since S ∈M
Q
.

The remainder of the proof is easy. �

The two mappings given in Definition 4.80 constitute isomorphisms be-

tween particular sets of sets of linear previsions and lower previsions. To

characterise these isomorphisms, we endow the set PK (X) of linear previ-
sions defined on a common domain K ⊆ L(X) with the topology of point-wise
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convergence on members of K , or simply, the topology of point-wise convergence:
Qα → Q if and only if Qα( f )→ Q( f ) for all f in K (with respect to the usual
topology on R).

If K is a linear space, and if we view PK (X) as a subset of the setVK (X)
of all continuous linear real-valued maps on K (where K is endowed with
the topology of uniform convergence), i.e., the topological dual of K , then
the topology of point-wise convergence is nothing but the so-called weak-

* topology. The weak-* topology is well-studied in the literature: it turns

VK (X) into a locally convex topological vector space (see Schechter [70,
28.15(a), p. 760]) that is Hausdorff (see Schechter [70, 28.15(b), p. 760]) and

paracompact (see Kelley [49, ProblemN(c), p. 242]). In particular, the weak-*

topology is normal (see Kelley [49, Chapter 5, Corollary 32, p. 159]): this

turns out to be crucial in linking the weak-* topology on VK (X) with the
topology of point-wise convergence on PK (X).
For an arbitrary negation invariant set K of gambles, and a gamble f in

K , the real-valued map f ∗ defined by

f ∗(Q) := Q( f )

for any linear previsionQ inPK (X) is called evaluation map onPK (X) induced
by f . The set of all evaluation maps on PK (X) induced by gambles in K is
denoted by

K ∗ := { f ∗ : f ∈ K}.

Note that the topology of point-wise convergence is the weakest topology

under which all elements of K ∗ are continuous: it is the topology induced by
K ∗.
We first link the topology on PK (X) of point-wise convergence on mem-

bers of K , the weak-* topology on the topological dual of Vspan(K )(X), and
the subset Pspan(K )(X) ofVspan(K )(X), in the lemma below.

Lemma 4.82. Let K ⊆ L(X), and assume that K is negation invariant. Endow
PK (X) with the topology of point-wise convergence, and endow Vspan(K )(X) with
the weak-* topology. Consider E

span(K )
• as a mapping from PK (X) to Vspan(K )(X).

The following statements hold.

(i) E
span(K )
• is one-to-one, and maps PK (X) onto Pspan(K )(X).

(ii) E
span(K )
• establishes an embedding of PK (X) intoVspan(K )(X).
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(iii) Pspan(K )(X) is a compact subset ofVspan(K )(X), and hence,PK (X) is a compact
space.

Proof. To simplify our notation, we shall denote E
span(K )
P

by P′.

(i). By Proposition 4.13 on p. 100 and Proposition 4.18(v) on p. 102, every

linear prevision P on K has a unique linear extension P′ to span(K ), which
satisfies

P′















n
∑

i=1

λi fi















=

n
∑

i=1

λiP( fi),

for all n ∈ N, non-negative real numbers λ1, . . . , λn, and gambles f1, . . . ,
fn in K ; this equality simply follows from the self-conjugacy and the coher-
ence of P (Theorem 3.5(v)&(vi) on p. 55). This establishes a one-to-one and

onto mapping between PK (X) and Pspan(K )(X)—one-to-one because of the
uniqueness of the linear extension, and onto because any linear prevision R

on span(K ) is uniquely determined by its values on K , i.e., R = Q′ for some
linear prevision Q onK .
(ii). First, note that the relative topology on Pspan(K )(X), as a subset

of Vspan(K )(X) equipped with the weak-* topology, is exactly the topology
of point-wise convergence on members of span(K ). So we must prove
that E

span(K )
• establishes a homeomorphism between PK (X) equipped with

the topology of point-wise convergence on members of K , and its image
Pspan(K )(X) equipped with the topology of point-wise convergence on mem-
bers of span(K ): let Qα denote a net in PK (X), let Q denote an element of
PK (X), and let Q′α and Q′ denote the unique linear extensions of Qα and
Q to span(K ); does it hold that Qα( f ) → Q( f ) for all f ∈ K if and only if
Q′α(g)→ Q′(g) for all g ∈ span(K )?
Clearly, if Q′α(g) → Q′(g) for all gambles g ∈ span(K ), then also Qα( f ) =

Q′α( f )→ Q′( f ) = Q( f ) for all f ∈ K .
Conversely, if Qα( f )→ Q( f ) for all f ∈ K , then

Q′α















n
∑

i=1

λi fi















=

n
∑

i=1

λiQα( fi)→
n

∑

i=1

λiQ( fi) = Q
′















n
∑

i=1

λi fi















for all n ∈ N, non-negative real numbers λ1, . . . , λn, and gambles f1, . . . , fn
inK . So, Q′α(g)→ Q′(g) for all g ∈ span(K ).
(iii). (Method of proof due toWalley [86, Section 3.6, pp. 145–146]) Clearly,
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by Theorem 3.7 on p. 56, it follows that

Pspan(K )(X) =
⋂

f∈span(K )
[ f ∗]−1([inf f ,+∞)),

where f ∗ is the evaluation map onVspan(K )(X) induced by f . So, Pspan(K )(X)
is a closed subset ofVspan(K )(X). Also, for any ǫ > 0, if sup| f − g| < ǫ for two
gambles f and g in span(K ), then for any P in Pspan(K )(X) it holds that

∣

∣

∣P( f ) − P(g)
∣

∣

∣ < ǫ,

by the coherence of P (Theorem 3.5 on p. 55). So, Pspan(K )(X) is also equicon-
tinuous. Compactness of Pspan(K )(X) is now immediate from the Banach-
Alaoglu-Bourbaki theorem; see for instance Schechter [70, 28.29(UF26)].

Compactness of Pspan(K )(X) now simply follows from (i) and (ii): since
Pspan(K )(X) is a compact subset ofVspan(K )(X), it follows that the topological
spacePspan(K )(X), equippedwith the relative topology, is compact; the inverse
of E

span(K )
• is continuous on this compact space, and maps Pspan(K )(X) onto

PK (X). But, the continuous image of a compact set is compact, whencePK (X)
is compact too. �

Surprisingly, span(K ∗) characterises all continuous real-valuedmappings
on PK (X):

Corollary 4.83. Let K ⊆ L(X), and assume that K is negation invariant. A real-
valued mapping on PK (X) is continuous with respect to the topology of point-wise
convergence on members ofK if and only if it belongs to span(K ∗).

Proof. LetΛ be a real-valuedmapping onPK (X). Obviously, ifΛ ∈ span(K ∗),
then Λ is continuous, since if Qα → Q, then

Λ(Qα) =

n
∑

i=1

λi f
∗
i (Qα) =

n
∑

i=1

λiQα( fi)→
n

∑

i=1

λiQ( fi) =
n

∑

i=1

λi f
∗
i (Q) = Λ(Q).

Conversely, assume thatΛ is continuous onPK (X). Define the real-valued
mapping Λ′ on Pspan(K )(X) by

Λ′(Q′) := Λ ◦
[

E
span(K )
•

]−1
(Q′) = Λ(Q),
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for every Q ∈ PK (X); where Q′ is the unique linear extension of Q. By
Lemma 4.82, Pspan(K )(X) is a weak-* compact, and hence, a weak-* closed
subset of Vspan(K )(X). Moreover, the weak-* topology is paracompact (see
Kelley [49, Problem N(c), p. 242]), and hence, normal (see Kelley [49, Chap-

ter 5, Corollary 32, p. 159]). Therefore, by Tietze’s extension theorem (see

Kelley [49, ProblemO(a), p. 242] orWillard [91, p. 103]), we can continuously

extend Λ′ toVspan(K )(X).
It is well-known thatΛ′ is continuouswith respect to theweak-* topology

if and only if it is an evaluationmap onVspan(K )(X); see for instance Schechter
[70, 28.15(c)]. Therefore, there is a gamble f ∈ span(K ) such that Λ′(Q′) =
Q′( f ) for allQ′ inPspan(K )(X), sincePspan(K )(X) ⊆ Vspan(K )(X); see for instance
Kelley [49, Problem W(c), p. 108], or Schechter [70, 28.15(c)]. Consequently,

there are n ∈ N, real numbers λ1, . . . , λn, and gambles f1, . . . , fn in K , such
that for everyQ inPK (X) (recall thatPK (X) is homeomorphic toPspan(K )(X)):

Λ(Q) = Λ′(Q′) = Q′















n
∑

i=1

λi fi















where the right hand side can also be written as

=

n
∑

i=1

λiQ( fi) =
n

∑

i=1

λi f
∗
i (Q).

So, Λ ∈ span(K ∗). �

We are now ready to prove our isomorphism. It is convenient to first

introduce the following definition.

Definition 4.84. Let K ⊆ L(X), and assume that K is negation invariant. A
compact (with respect to the topology of point-wise convergence) convex set

M of linear previsions on K is called decomposable if, for every λ1, . . . , λn in
R, f1, . . . , fn inK , and ǫ > 0, there are µǫ in R, nǫ inN, non-negative λǫ1, . . . ,
λǫnǫ in R, and gambles f

ǫ
1
, . . . , f ǫnǫ in K , such that µǫ +

∑nǫ

i=1 λ
ǫ
i
f ǫ
i
≤ ∑n

i=1 λi fi
and

min
Q∈M

n
∑

i=1

λiQ( fi) ≤ ǫ + µǫ +
nǫ
∑

i=1

λǫi min
Qi∈M

Qi( f
ǫ
i )

IfK is a linear space, then every compact convex setMof linear previsions
on K is decomposable: we can always choose µǫ = 0, nǫ = 1, λǫ

1
= 1, and
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f ǫ
1
=

∑n
i=1 λi fi. It then follows from the linearity of Q inM that

∑n
i=1 λiQ( fi) =

Q( f ǫ
1
).

In general, if K is not a linear space, then not every compact convex set
of linear previsions on K is decomposable. For instance, let X = {1, 2, 3},
f = I{1}, and g = I{2}, and define the linear previsionsQ and R on { f ,− f , g,−g}
as

Q( f ) = −Q(− f ) = 0.1, R( f ) = −R(− f ) = 0.2,
Q(g) = −Q(−g) = 0.1, R(g) = −R(−g) = 0.2,

and define the compact and convex set

M := {λQ + (1 − λ)R : λ ∈ [0, 1]} ,

ThenM is not decomposable: indeed, it’s not hard to see thatMK
EKM
,M:

MK
EKM
=

{

S ∈ PK (X) : Q( f ) ∧ R( f ) ≤ S( f ) ≤ Q( f ) ∨ R( f ) and

Q(g) ∧ R(g) ≤ S(g) ≤ Q(g) ∨ R(g)
}

,

for instance, S( f ) = −S(− f ) = Q( f ) ∧ R( f ) = 0.1 and S(g) = −S(−g) = Q(g) ∨
R(g) = 0.2 is a linear prevision that belongs to MK

EKM
but not toM. As the

theorem below tells us, it follows thatM is not decomposable.

Theorem 4.85. Let K ⊆ L(X), and assume that K is negation invariant. Then
EK• andM

K
• establish onto and one-to-one maps between non-empty compact (with

respect to the topology of point-wise convergence) convex decomposable sets of linear

previsions onK and coherent lower previsions onK .

Proof. Walley [86, Section 3.6.1, pp. 145–146] proved the case in which K =
L(X). The general case is straightforward, once the condition of decompos-
ability is recognised; let’s complete the details.

LetM be a non-empty compact convex decomposable set of linear previ-
sions onK , and let P be a coherent lower prevision onK : it suffices to show
that EKM is a coherent lower prevision on K , that MKP is a compact convex
decomposable set of linear previsions onK , and that

MK
EKM
=M and EK

MK
P

= P.
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Indeed, EKM(•) = inf{Q(•) : Q ∈ M} is a coherent lower prevision on K by
Lemma 3.11 on p. 57: it is the lower envelope of coherent previsions.

Clearly,MK
P
is convex: for any Q and R inMK

P
and any λ ∈ [0, 1], it holds

that S := λQ+ (1−λ)R is a linear prevision onK (Lemma 3.10(iii)), and since
λQ + (1 − λ)R ≥ λP + (1 − λ)P = P, it follows that S is a linear behavioural
extension of P toK , so S belongs toMK

P
.

To show that MK
P
is compact with respect to the topology of point-wise

convergence, it suffices by Lemma 4.82 to prove that M
span(K )
P

is weak-*

compact. Equivalently, we must show that every real-valued continuous

map on M
span(K )
P

achieves a minimum and a maximum; see Schechter [70,

17.26(B)&17.30(c)] (and recall thatM
span(K )
P

is paracompact). Let Λ be a real-

valued continuous map on M
span(K )
P

. By Corollary 4.83, there is a gamble

f ∈ span(K ) such that that Λ = f ∗. But by Theorem 4.81(iii), f ∗ achieves a
minimum and a maximum, namely E

span(K )
P

( f ) and E
span(K )
P ( f ), on M

span(K )
P

.

Hence, M
span(K )
P

is weak-* compact, or equivalently, MK
P
is compact with

respect to the topology of point-wise convergence.

Also,MK
P
is decomposable: let λ1, . . . , λn inR, and f1, . . . , fn inK . Apply

Theorem 4.81(ii) and Lemma 4.82(i) to see that

EP















n
∑

i=1

λi fi















= min















Q′















n
∑

i=1

λi fi















: Q′ ∈Mspan(K )
P















= min















n
∑

i=1

λiQ( fi) : Q ∈MKP















.

Now apply the expression for natural extension, Eq. (4.1) on p. 96, and use

the fact that P( f ) = EP( f ) for any f ∈ domP (which holds since P is coherent):
for every ǫ > 0, there are µǫ in R, nǫ inN, non-negative λǫ

1
, . . . , λǫnǫ in R, and

gambles f ǫ
1
, . . . , f ǫnǫ inK , such that µǫ +

∑nǫ

i=1 λ
ǫ
i
f ǫ
i
≤ ∑n

i=1 λi fi and

EP















n
∑

i=1

λi fi















≤ ǫ + µǫ +
nǫ
∑

i=1

λǫiEP( f
ǫ
i ).

This establishes the decomposability ofMK
P
.

To see that MK
EKM
⊇ M, observe that any linear prevision in M is a be-

havioural extension of EKM.
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Conversely, to establish that MK
EKM
⊆ M, we show that if Q ∈ PK (X) but

Q <M, then Q is not a behavioural extension of EKM. Assume that Q <M.

Denote by Q′ the linear extension of Q to span(K ), and byM′ the set of

linear extensions of elements ofM to span(K ): clearly,M′ is weak-* compact,

and Q′ <M′, by Lemma 4.82. So, {Q′} andM′ are disjoint non-empty weak-

* compact convex subsets of the set Vspan(K )(X) of continuous real-valued
linear maps on span(K ), if we endow span(K ) with the topology of uniform
convergence; note that Pspan(K )(X) is a weak-* compact subset ofVspan(K )(X).
Hence, by the Hahn-Banach theorem (see Schechter [70, 28.4(HB19)]) there

is a weak-* continuous linear functional Λ defined on Vspan(K )(X) such that
Λ(Q′) < min{Λ(R′) : R′ ∈ M′}. Since Λ is weak-* continuous, it must be an
evaluation map on Vspan(K )(X) (see Schechter [70, 28.15(c)]), i.e., there are
n ∈N, real numbers λ1, . . . , λn, and gambles f1, . . . , fn inK , such that

n
∑

i=1

λiQ( fi) = Q
′















n
∑

i=1

λi fi















< min















R′















n
∑

i=1

λi fi















: R′ ∈ M′















= min















n
∑

i=1

λiR( fi) : R ∈ M














.

By the decomposability of M, for any ǫ > 0, there are µǫ
0
in R, mǫ in N,

non-negative µǫ
1
, . . . , µǫmǫ in R, and g

ǫ
1
, . . . , gǫmǫ inK such that

µǫ0 +
mǫ
∑

j=1

µǫjQ(g
ǫ
j ) ≤

n
∑

i=1

λiQ( fi)

< min















n
∑

i=1

λiR( fi) : R ∈ M














≤ ǫ + µǫ0 +
mǫ
∑

j=1

µǫj min
{

R(gǫj ) : R ∈ M
}

.

Choosing for instance ǫ := 12
[

min
{∑n
i=1 λiR( fi) : R ∈ M

} −∑n
i=1 λiQ( fi)

]

> 0,2

µǫ0 +
mǫ
∑

j=1

µǫjQ(g
ǫ
j ) < µ

ǫ
0 +

mǫ
∑

j=1

µǫj min
{

R(gǫj ) : R ∈ M
}

.

2Hint: if a ≤ b < c ≤ d, then 0 < 12 [c − b] < c − b ≤ d − a. . . so a < d − 12 [c − b]. . .
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This strict inequality can only hold if there is some j ∈ {1, . . . ,mǫ} such that

Q(gǫj ) < min
{

R(gǫj ) : R ∈ M
}

= EKM(g
ǫ
j ).

Thus, Q is not a behavioural extension of EKM. �

In other words, the set of non-empty compact convex decomposable sets

of linear previsions on K equipped with EK• is isomorphic to the set of
coherent lower previsions onK equipped with the identity map.

4.4.2 Consequences of Duality

If the domain K consists of a set of measurable gambles with respect to a
field, we can invoke the isomorphism established in Theorem 4.30 on p. 114.

Note that we endow the set of probability charges on F with the topology
of point-wise convergence: it is immediate that this space is homeomorphic

to the set of linear previsions on IF ∪ −IF endowed with the topology of
point-wise convergence; the homeomorphism is simply P•.

In the corollary below, we view E
LF (X)
• as a mapping from sets of proba-

bility charges on a field F to sets of linear previsions on LF (X):

E
LF (X)
m :=

{

E
LF (X)
µ : µ ∈ m

}

,

where m is an arbitrary set of probability charges on F . Similarly, we view
µµµF• as amapping from sets of linear previsions onLF (X) to sets of probability
charges on F :

µµµFM :=
{

µµµF
Q
: Q ∈ M

}

,

whereM is an arbitrary set of linear previsions on LF (X).

Corollary 4.86. Let F be a field on X. Then ELF (X)• ◦ ELF (X)• and µµµF• ◦M
LF (X)
•

establish one-to-one and onto maps between non-empty compact convex sets of

probability charges on F and coherent lower previsions on LF (X).

Proof. Immediate from Theorem 4.30 on p. 114 and Theorem 4.85 on p. 190.

Note that, because LF (X) is a linear space, decomposability of ELF (X)m , where

m is an arbitrary non-empty compact convex set of probability charges on F ,
is immediate. �
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Corollary 4.86 induces another characterisation of natural extension, for

instance through the lower S-integral. If F is a field such that domP consists
of F -measurable gambles only, let’s denote by mF

P
the set of charges on F ,

whose linear extensions to LF (X) are behavioural extensions of P:

mF
P
:= µµµF• ◦M

LF (X)
P

= µµµF
M
LF (X)
P

, (4.55)

The following proposition provides equivalent expressions formF
P
.

Proposition 4.87. Let P be any lower prevision, let F be a field on X and assume
that domP ⊆ LF (X). Then

mF
P
=

{

µ ∈ P(F ) : ∀ f ∈ domP, P( f ) ≤ S
∫

f dµ

}

and if additionally P avoids sure loss and EP is 2-monotone,

=

{

µ ∈ P(F ) : ∀A ∈ F , EP(IA) ≤ µ(A)
}

.

Proof. The first equality is a consequence of Eq. (4.55) and Theorem 4.43, by

which the natural extension Eµ of µ coincides with the lower S-integral with

respect to µ. To prove the second equality, we show that P( f ) ≤ S
∫

f dµ for

all f in domP if and only if EP(IA) ≤ µ(A) for all A in F .
Indeed, if P( f ) ≤ S

∫

f dµ for all f , then S
∫

•dµ is a behavioural extension
of P, and so by Proposition 4.7 on p. 98, it follows that also EP must be a

behavioural extension of the natural extension of S
∫

•dµ, which is equal
to S

∫

•dµ. So EP(g) ≤ S
∫

gdµ for all gambles g, and in particular, for all

indicator gambles IA, A ∈ F .
Conversely, suppose that P avoids sure loss, EP is 2-monotone, and

EP(IA) ≤ µ(A) for all A in F , and let f ∈ domP. Since f is F -measurable,
there is a sequence fn of F -simple gambles converging uniformly to f (see
Definition 4.25 on p. 109). Without loss of generality, we may write the fn as

b0,n +
∑mn
j=1
b j,nIA j,n , with b0,n, b1,n, . . . , bmn,n in R, b1,n, . . . , bmn,n non-negative,

andA1,n, . . . ,Amn,n inF . By the coherence and 2-monotonicity of EP it follows
that
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EP( fn) = EP

















b0,n +

mn
∑

j=1

b j,nIA j,n

















= b0,n +

mn
∑

j=1

b j,nEP

(

IA j,n
)

≤ b0,n +
mn
∑

j=1

b j,nµ
(

IA j,n
)

= S

∫

fn dµ,

using Proposition 4.77 on p. 180 and Eq. (3.12) on p. 75. Since fn converges

uniformly to f , and EP and S
∫

•dµ are continuous with respect to the topol-
ogy of uniform convergence, it follows that also

P( f ) ≤ EP( f ) = limn→+∞EP( fn) ≤ limn→+∞ S
∫

fn dµ = S

∫

f dµ,

which establishes the desired inequality. �

Corollary 4.88. Let P be any lower prevision, let F be a field onX and assume that
domP ⊆ LF (X). Then the following propositions hold.

(i) P avoids sure loss if and only if there is a probability charge µ on F such that

P( f ) ≤ S
∫

f dµ for all f ∈ domP.

(ii) If P avoids sure loss, then

EP( f ) = min

{

S

∫

f dµ : µ ∈ mF
P

}

for any gamble f on X; hence,

= min

{

S

∫

f dµ : µ ∈ mF
P

}

for any F -measurable gamble f .

(iii) P is coherent if and only if

P( f ) = min

{

S

∫

f dµ : µ ∈ mF
P

}

for all f ∈ domP.

For ample fields, we actually do not have to use the lower S-integral, the

S-integral is sufficient. This generalises a result by Aeyels and De Cooman

[21, Section 3, p. 182] in connection with the natural extension of possibility

measures.
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Corollary 4.89. Let P be any lower prevision that avoids sure loss, let F be an
ample field on X, and assume that all gambles in domP are constant on the atoms
of F . If P avoids sure loss, then

EP( f ) = min

{

S

∫

[ f ]↓F dµ : µ ∈ m
F
P

}

for any gamble f on X, where the gamble [ f ]↓F is defined as

[ f ]↓F (x) := P[x]F ( f ) = infy∈[x]F
f (y)

for any x in X.

Proof. By Proposition 4.27, domP ⊆ LF (X), and hence, Corollary 4.88 ap-
plies. Now, use Theorem 4.44. �

4.4.3 A Dual Characterisation of 2-Monotonicity

The following is a straightforward generalisation of a result by Walley [85].

Corollary 4.90. A set function ν defined on a field F is 2-monotone if and only if
for any two sets A and B in F such that A ⊆ B, there is a probability charge µ on F
such that µ(A) = ν(A), µ(B) = ν(B) and µ(C) ≥ ν(C) for all C ∈ F .

Proof. See Walley [85, Corollary 6.4] in case F = ℘(X). For the sake of
completeness, let’s give the proof for the general case.

“if”. Let D and E be sets in F . Then, identifying D ∩ E with A and D ∪ E
with B, we find that there is a probability charge µ such that

ν(D ∪ E) + ν(D ∩ E) = µ(D ∪ E) + µ(D ∩ E) = µ(D) + µ(E) ≥ ν(D) + ν(E).

So ν is 2-monotone.

“only if”. Let A and B be sets in F , and assume that A ⊆ B. By The-
orem 3.31 on p. 76 we know that Pν is coherent. By Corollary 4.88, there

is a probability charge on F such that µ(C) ≥ ν(C) for all C ∈ F , and
Eµ(IA + IB) = Eν(IA + IB). But, by Theorem 4.76 and Eq. (3.12), it follows that

Eν(IA+ IB) = ν(A)+ν(B). Also, Eµ(IA+ IB) = µ(A)+µ(B). Since µ(A) ≥ ν(A) and
µ(B) ≥ ν(B), the equality µ(A)+µ(B) = ν(A)+ν(B) can only hold if µ(A) = ν(A)
and µ(B) = ν(B). �



Chapter 5

Cauchy Extension of Lower

Previsions

As we discussed in Chapter 4, any lower prevision onX that avoids sure loss

can be extended to a coherent lower prevision on the set of all gambles on X,

i.e., to the set of all bounded real-valued random variables that are a function

of X. In this chapter, we further extend a lower prevision, to a set containing

also unbounded real-valued random variables. We draw inspiration from

the Dunford integral (see Section 4.3.8 on p. 161), which is defined not only

for gambles, but also for unbounded real-valued random variables satisfying

the conditions of Definition 4.60.

5.1 Random Quantities and Extended Lower Pre-

visions

A random quantity f on a random variable X is a real-valued gain, expressed

in a fixed linear utility scale, that is a function of X; it is an X–R-mapping,
interpreted as an uncertain gain: if x turns out to be the realisation of X,

then we receive an amount f (x) of utility. Considering random quantities on

different random variables, we may write f (X) in order to emphasise that f

is a random quantity on X.

The set of all random quantities on X is denoted by R(X). The setL(X) of
gambles onX is a subset ofR(X), and alsoR(X) is a linear lattice—an ordered

197
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linear space such that every two vectors have a supremum and an infimum—

with respect to the point-wise addition, the point-wise scalar multiplication

and the point-wise ordering; the operations, f + g, λ f , f ≤ g, f ∨ g, and
f ∧ g, for random quantities f and g and real numbers λ, can be generalised
from L(X)—defined in Section 3.3.1—to R(X) by verbatim translation. The
definitions of sup f and inf f generalise as follows:

sup f := min{a ∈ R∗ : a ≥ f }, and
inf f := max{a ∈ R∗ : a ≤ f },

where R∗ is the set of extended real numbers, that is, R ∪ {−∞,+∞}.
The extended lower prevision P( f ) of a random quantity f is defined as the

supremumbuying price for f ; P( f ) is the highest extended real number s ∈ R∗
such that for any real price t ∈ R that is strictly lower than s, we are willing
to pay t prior to observation of X, if we are guaranteed to receive f (x) when

observing X = x. Mathematically, we define an extended lower prevision on

X as a real-valued mapping defined on some subset domP, the domain of P,

of the set R(X) of random quantities. Indeed, we do not require an extended
lower prevision to be defined on the set of all random quantities. Troffaes

and De Cooman [79, Proposition 3(iii)] have shown that, by generalising

the notions of avoiding sure loss and coherence in a straightforward way,

any extended lower prevision that avoids sure loss has a least committal

coherent behavioural extension to the set of all random quantities; we shall

briefly summarise these results below in Section 5.2.

Extended lower previsions differ from lower previsions, defined in Sec-

tion 3.3.1, in two ways: they are defined on a larger set—the set of random

quantities—and they take values in a larger set—the set of extended real

numbers. If P( f ) = −∞, then this means that we are not willing to buy f
at any price t ∈ R; this can be reasonable if f is unbounded from below. If
P( f ) = +∞, then this means that we are willing to buy f at any price; whether
this is reasonable or not is arguable, but, for instance, the Saint Petersburg

paradox, introduced by Jakob Bernoulli [7], provides an instance of a random

quantity, unbounded from above, that is possibly worth to be bought at any

price—although this does not go without any controversy.

Similar to gambles, we can also interpret random quantities f as an un-

certain loss: if x turns out to be the true value of X, we lose an amount f (x)
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of linear utility. The extended upper prevision P( f ) of the gamble f is then the

infimum selling price for f ; it is the lowest extended real number s, such that

for any real price t ∈ R strictly larger than s, we are willing to receive t prior
to observation of X, if we are guaranteed to lose f (x) when observing X = x.

Since a gain r is equivalent to a loss−r it should hold thatP( f ) = −P(− f ): from
any extended lower prevision P we can infer a so-called conjugate extended

upper prevision P on domP = −domPwhich represents the same behavioural
dispositions. We can therefore restrict our attention to the study of extended

lower previsions only, without loss of generality. Also, if we use the notation

P for an extended lower prevision, P always denotes its conjugate.

It may happen that P is self-conjugate, that is, domP = domP and P( f ) =

P( f ) for all random quantities f ∈ domP. In such a case, we may simply
write P instead of P or Pwhenever it is clear from the context whether we are

considering either buying or selling prices (or both). We call a self-conjugate

extended lower prevision P simply an extended prevision, and P( f ) represents

a so-called fair price for the randomquantity f : we arewilling to buy f for any

price t < P( f ), and we are willing to sell f for any price t > P( f ). Extended

previsions, interpreted as fair prices, were considered by Crisma, Gigante

and Millossovich [13, 12], as an extension of the work of De Finetti [26].

5.2 Inference Revisited

For the sake of completeness, let’s briefly summarise the main results of

Troffaes and De Cooman [79] on avoiding sure loss, coherence, and natu-

ral extension of extended lower previsions, discuss the main problem that

arises, and propose a solution, which is also due to Troffaes and De Cooman

[78]. This section consists mainly of an approximately verbatim translation

of results byWalley [86], and observing that, despite all technical difficulties,

many—but not all—of the results for lower previsions carry over to extended

lower previsions. Perhaps, the reader may wish to skip to Section 5.3 and

refer back to Section 5.2 only when needed; we only rely on it in motivat-

ing the need for a behavioural extension that is different from the natural

extension described in Section 5.2.3, and in proving that the Dunford-type

extension described further on, really is a coherent behavioural extension—in

the following we characterise coherence for extended lower previsions: it

turns out that, when extending a lower prevision to a real-valued extended
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lower prevision defined on a linear space, the conditions for coherence are a

verbatim generalisation of Theorem 3.6 on p. 56, however, unfortunately, the

proof of this, at first sight, simple result, only follows after a rather technical

analysis.

We shall accept the following axioms of rationality governing dispositions

towards buying and selling random quantities; this is a literal generalisation

of the rules described in Section 3.3.3.

Axiom 5.1 (Axioms of Rationality for Random Quantities). For arbitrary

random quantities f and g on X and arbitrary real numbers s and t the

following should hold.

(i) We are disposed to buy f for any price strictly less than inf f (accepting

a sure gain).

(ii) We are disposed not to buy f for any price strictly larger than sup f

(avoiding a sure loss).

(iii) If we are disposed to buy f for s then we should be disposed to buy λ f

for λs, for any strictly positive λ ∈ R (scale independence).

(iv) If we are disposed to buy f for s and g for t then we should be disposed

to buy f + g for s + t (accepting combined transactions).

(v) If we are disposed to buy f for s and g ≥ f then we should be disposed
to buy g for s (monotonicity).

5.2.1 Avoiding Sure Loss Revisited

Definition 5.2. An extended lower prevision P on X is said to avoid sure loss

if for every n ∈ N, non-negative λ1, . . . , λn in R, and random quantities f1,
. . . , fn in domP such that

∑n
i=1 λiP( fi) is well-defined, we have that

sup















n
∑

i=1

λi fi















≥
n

∑

i=1

λiP( fi). (5.1)

Explanation. Suppose that Eq. (5.1) fails for some n ∈ N, non-negative λ1,
. . . , λn inR, and random quantities f1, . . . , fn in domP such that

∑n
i=1 λiP( fi)
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is well-defined. Then,

α :=
n

∑

i=1

λiP( fi) > sup















n
∑

i=1

λi fi















=: γ.

This can only hold if α , −∞ and γ ∈ R. It implies that we may choose a
β ∈ R such that α > β > γ ≥ ∑n

i=1 λi fi, which means that if we buy
∑n
i=1 λi fi

at a price β, we incur a sure loss of at least β − γ. But, by Axiom 5.1, we are
disposed to buy

∑n
i=1 λi fi at this price β, since α =

∑n
i=1 λiP( fi) > β (recall that

α = −∞ does not occur). �

Compare with Definition 3.2 on p. 50: contrary to lower previsions, we

cannot restrict the coëfficients λ1, . . . , λn to integer values in order to charac-

terise avoiding sure loss of extended lower previsions; roughly said, Defini-

tion 3.2(A)&(B) are not equivalent when generalised to extended lower pre-

visions, so we need to take the strongest condition. Of course, Definition 5.2

generalises Definition 3.2: a lower prevision avoids sure loss according to

Definition 3.2 if and only if it avoids sure loss according to Definition 5.2.

Why does it not suffice to consider only integer combinations? LetX = R,
define the random quantity f by f (x) := x for all x ∈ X, and consider the
extended lower prevision P, with domain { f ,−

√
2 f }, defined by P( f ) = 1 and

P(−
√
2 f ) = 2. Since n − m

√
2 , 0 for every n and m in N not both zero,

we find that sup
[

n f −m
√
2 f

]

= +∞ for every n and m in N not both zero.
Consequently, the inequality

sup
[

n f −m
√
2 f

]

≥ n + 2m,

holds for every n and m in N not both zero, and if n and m are both zero,

then the inequality also holds: we constructed an extended lower prevision

P such that

sup















n
∑

i=1

fi















≥
n

∑

i=1

P( fi)

for every n ∈N, and randomquantities f1, . . . , fn in domP such that
∑n
i=1 P( fi)

is well-defined such that
∑n
i=1 P( fi) is well-defined; but P does not avoid sure

loss: for λ1 =
√
2, f1 = f , λ2 = 1, and f2 = −

√
2 f , it holds that

sup
[

λ1 f1 + λ2 f2
]

= 0 < λ1 + 2λ2 = λ1P( f1) + λ2P( f2).
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5.2.2 Coherence Revisited

Definition 5.3. An extended lower prevision P is called coherent if for every

n ∈N, non-negative λ0, λ1, . . . , λn in R, and random quantities f0, f1, . . . , fn
in domP such that

∑n
i=1 λiP( fi) − λ0P( f0) is well-defined, we have that

sup















n
∑

i=1

λi fi − λ0 f0















≥
n

∑

i=1

λiP( fi) − λ0P( f0). (5.2)

Explanation. Suppose that Eq. (5.2) fails for some n ∈ N, non-negative λ0,
λ1, . . . , λn in R, and random quantities f0, f1, . . . , fn in domP such that
∑n
i=1 λiP( fi) − λ0P( f0) is well-defined. Then,

n
∑

i=1

λiP( fi) − λ0P( f0) > sup














n
∑

i=1

λi fi − λ0 f0















.

The case λ0 = 0 was explained in Section 5.2.1; assume that λ0 , 0. Then,

α :=
n

∑

i=1

λi
λ0
P( fi) − P( f0) > sup















n
∑

i=1

λi
λ0
fi − f0















=: β.

This can only hold if β ∈ R and α , −∞, and therefore P( f0) < +∞, and
α1 :=

∑n
i=1

λi
λ0
P( fi) is well defined. So, α1 − β > P( f0) and α1 > −∞. Observe

that, by the definition of β,

n
∑

i=1

λi
λ0
fi − β ≤ f0. (5.3)

Since α = α1 − P( f0) is well defined and α , −∞, it suffices to consider the
following cases, since we know that P( f0) < +∞:

(a) P( f0) ∈ R. We are disposed to buy the right hand side of Eq. (5.3) for
any price strictly less than P( f0). But, we may also infer from the other

assessments P( f1), . . . , P( fn) and Axiom 5.1, that we are disposed to

buy the left hand side of Eq. (5.3) for any price strictly less than α1 − β.
Consequently, by Axiom 5.1(v), we are disposed to buy the right hand

side of Eq. (5.3), f0, for any price strictly less than α1 − β. But this price
α1−β is strictly larger than the supremum price P( f0) for f0, which points
to an inconsistency in the assessments.
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(b) P( f0) = −∞. Since there is no price we are disposed to buy the right hand
side of Eq. (5.3) for, there is also no price we are disposed to buy the left

hand side of Eq. (5.3) for, by Axiom 5.1(v). But, since α1 > −∞, we are
disposed to buy

∑n
i=1

λi
λ0
fi for any price strictly smaller than α1, which

again points to a contradiction in the assessments.

�

Compare to Definition 3.3 on p. 52: again, contrary to lower previsions,

we cannot restrict the coëfficients λ0, λ1, . . . , λn to integer values in order to

characterise coherence of extended lower previsions: Definition 3.3(A)&(B)

are not equivalentwhen generalised to extended lower previsions, sowe take

the strongest condition. Of course, Definition 5.3 generalises Definition 3.3:

a lower prevision is coherent according to Definition 3.3 if and only if it is

coherent according to Definition 5.3. We even have a slightly stronger result:

Corollary 5.4. An extended lower prevision P, defined on a subset of gambles on

X, is coherent, if and only if P is a coherent lower prevision.

Proof. Immediate, if we can show that P is real-valued. This follows from

Theorem 5.5(i) below. �

By the way, Corollary 5.4 has no equivalent for avoiding sure loss: for

instance, the extended lower prevision P defined on {0} by P(0) := −∞ clearly
avoids sure loss, but P is not a lower prevision.

The following theorem summarises the most important properties of co-

herence; it is a straightforward generalisation of Theorem 2.6.1 ofWalley [86].

In the proof, we make extensive use of Appendix A.

Theorem 5.5. Let P be a coherent extended lower prevision on X. Let f and g be

random quantities on X, let fα be a net of random quantities on X, let a be a constant

random quantity on X, and let λ be a non-negative real number. Then the following

statements hold whenever every term and every operation is well defined.

(i) inf[ f ] ≤ P( f ) ≤ P( f ) ≤ sup[ f ]

(ii) P(a) = P(a) = a

(iii) P( f + a) = P( f ) + a, P( f + a) = P( f ) + a

(iv) f ≤ g + a =⇒ P( f ) ≤ P(g) + a and P( f ) ≤ P(g) + a
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(v) P( f ) + P(g) ≤ P( f + g) ≤ P( f ) + P(g) ≤ P( f + g) ≤ P( f ) + P(g)

(vi) P(λ f ) = λP( f ), P(λ f ) = λP( f )

(vii) P(| f |) ≥ P( f ), P(| f |) ≥ P( f )

(viii)
∣

∣

∣P( f ) − P(g)
∣

∣

∣ ≤ P(| f − g|),
∣

∣

∣P( f ) − P(g)
∣

∣

∣ ≤ P(| f − g|)

(ix) P(| f + g|) ≤ P(| f |) + P(|g|), P(| f + g|) ≤ P(| f |) + P(|g|)

(x) P( f ∨ g) + P( f ∧ g) ≤ P( f ) + P(g) ≤ P( f ∨ g) + P( f ∧ g),
P( f ) + P(g) ≤ P( f ∨ g) + P( f ∧ g) ≤ P( f ) + P(g) and
P( f ) + P(g) ≤ P( f ∨ g) + P( f ∧ g) ≤ P( f ) + P(g).

(xi) P(| fα − f |) −→ 0 =⇒ P( fα) −→ P( f ) and P( fα) −→ P( f )

Proof. (i). Take n = 0, λ0 = 1 and f0 = f in Eq. (5.2). We find that − inf[ f ] =
sup[− f ] ≥ −P( f ). Take n = 0, λ0 = 1 and f0 = − f in Eq. (5.2). We find that
sup[ f ] ≥ −P(− f ) = P( f ). Take n = 2, λ1 = λ2 = 1, λ0 = 0 and f1 = − f2 = f
in Eq. (5.2). We find that 0 ≥ P( f ) + P(− f ) = P( f ) − P( f ) whenever the right
hand side is well defined. By Lemma A.9(iv) we find that P( f ) ≤ P( f ).
(ii). This follows from (i).

(iii). Take n = 1, λ1 = λ0 = 1, f1 = f and f0 = f + µ in Eq. (5.2). We

find that −µ ≥ P( f ) − P( f + µ) whenever the right hand side is well defined.
Take n = 1, λ1 = λ0 = 1, f1 = f + µ and f0 = f in Eq. (5.2). We find that

µ ≥ P( f + µ) − P( f ) whenever the right hand side is well defined. Therefore
µ = P( f + µ) − P( f ) whenever the right hand side is well defined, whence
P( f + µ) = P( f ) + µ by Lemma A.9(iv).

(iv). By Eq. (5.2) we find that µ ≥ sup[ f − g] ≥ P( f ) − P(g) whenever
the right hand side is well defined. Using Lemma A.9(iv) we find that

P( f ) ≤ P(g) + µ.
(v). We prove the first inequality. Take n = 2, λ1 = λ2 = λ0 = 1, f1 = f , f2 =

g and f0 = f + g. By Eq. (5.2) we find that 0 ≥ P( f )+P(g)−P( f + g) whenever
the right hand side is well defined, and consequently, by Lemma A.9(iv),

P( f ) + P(g) ≤ P( f + g) whenever the left hand side is well defined.
Next, we prove the second inequality. Take n = 2, λ1 = λ2 = λ0 = 1,

f1 = f + g, f2 = −g and f0 = f . By Eq. (5.2) we find that 0 ≥ P( f + g)+P(−g)−
P( f ) = P( f + g) − P(g) − P( f ) whenever the right hand side is well defined.
Now use Lemma A.9(iv).
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Next, we prove the third inequality. Take n = 2, λ1 = λ2 = λ0 = 1,

f1 = − f − g, f2 = f and f0 = −g. By Eq. (5.2) we find that 0 ≥ P(− f − g) +
P( f ) − P(−g) = −P( f + g) + P( f ) + P(g) whenever the right hand side is well
defined. Apply Lemma A.9(iv).

Finally, we prove the fourth inequality. Take n = 2, λ1 = λ2 = λ0 = 1,

f1 = − f , f2 = −g and f0 = − f − g. By Eq. (5.2) we find that 0 ≥ P(− f ) +
P(−g) − P(− f − g) = −P( f ) − P(g) + P( f + g) whenever the right hand side is
well defined. Invoke Lemma A.9(iv).

(vi). Take n = 1, f0 = f , f1 = λ f , λ0 = λ and λ1 = 1 in Eq. (5.2). We

find that 0 ≥ P(λ f ) − λP( f ) whenever the right hand side is well defined.
Next take n = 1, f0 = λ f , f1 = f , λ0 = 1 and λ1 = λ in Eq. (5.2). We find

that 0 ≥ λP( f ) − P(λ f ) whenever the right hand side is well defined. By
Lemma A.9(iv), P(λ f ) = λP( f ).

(vii). This follows from f ≤ | f | and (iv).
(viii). From (v) and (iv) it follows thatwheneverP( f )−P(g) iswell defined,

we have that

P( f ) − P(g) = P( f ) + P(−g) ≤ P( f − g) ≤ P(| f − g|), and
P(g) − P( f ) = P(g) + P(− f ) ≤ P(g − f ) ≤ P(| f − g|).

Weconclude that
∣

∣

∣P( f ) − P(g)
∣

∣

∣ ≤ P(| f−g|)wheneverP( f )−P(g) iswell defined.
To prove the second inequality, notice that

∣

∣

∣P( f ) − P(g)
∣

∣

∣ =
∣

∣

∣P(− f ) − P(−g)
∣

∣

∣ ≤ P(| f − g|),

whenever the left hand side is well defined.

(ix). This follows from
∣

∣

∣ f + g
∣

∣

∣ ≤
∣

∣

∣ f
∣

∣

∣ +
∣

∣

∣g
∣

∣

∣, (iv) and (v).

(x). This follows from f ∨ g + f ∧ g = f + g and (v).
(xi). If P( f ) is real, then

∣

∣

∣P( fα) − P( f )
∣

∣

∣ is well-defined and P( fα) −→ P( f )
follows from (viii).

If P( f ) = −∞, then, by (viii) and Lemma A.9(iv),

P( fα) ≤ P( f ) + P(| fα − f |),

whenever the right hand side is well-defined. But, eventually, this is the

case, since, eventually, P(| fα − f |) is real: it converges to zero. It follows that,
eventually, P( fα) = −∞.
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If P( f ) = +∞, then, by (viii) and Lemma A.9(iv),

P( f ) ≤ P( fα) + P(| fα − f |),

whenever the right hand side is well-defined. But, eventually, this is the

case, since, eventually, P(| fα − f |) is real: it converges to zero. So, eventually,
P( fα) = +∞.
For P use

∣

∣

∣ f − fα
∣

∣

∣ =
∣

∣

∣(− f ) − (− fα)
∣

∣

∣. �

If domP is a linear space, then we have the following simple necessary

and sufficient condition for coherence; compare toWalley [86, Theorem 2.5.5,

p. 75]. For extended previsions, this result was proved by Crisma, Gigante

and Millossovich [12, Theorem 3.6].

Theorem 5.6. Let P be an extended lower prevision and assume that domP is a

linear space. Then P is coherent if and only if the following statements hold for any

random quantities f and g in domP and any non-negative real number λ:

(1) P( f ) ≥ inf[ f ],

(2) P(λ f ) = λP( f ), and

(3) P( f + g) ≥ P( f ) + P(g), whenever the right hand side is well defined.

Proof. If P is coherent, then (1), (2), and (3) follow from Theorem 5.5

Conversely, suppose thatP satisfies (1), (2), and (3). Weprove that Eq. (5.2)

holds. Take n ∈ N, non-negative λ0, λ1, . . . , λn in R, and random quantities
f0, f1, . . . , fn in domP such that

∑n
i=1 λiP( fi) − λ0P( f0) is well-defined, and

define f = λ0 f0, g =
∑n
i=1 λi fi, and h = f − g; since domP is a linear space, f ,

g, and h are in domP. By (2), P( f ) = λ0P( f0), and by (2) and (3),

P(g) ≥
n

∑

i=1

P(λi fi) =
n

∑

i=1

λiP( fi), (5.4)

whenever the right hand side is well defined. Moreover, by (3), P( f ) ≥
P(g)+P(h) whenever the right hand side is well defined, and therefore, again

by Lemma A.9(iv), also P( f )−P(g) ≥ P(h) whenever the left hand side is well
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defined. Using (1), we have that P(h) ≥ inf[h]. Summarising,

sup















n
∑

i=1

λi fi − λ0 f0















= sup[g − f ] = sup[−h] = − inf[h]

≥ −P(h) ≥ P(g) − P( f )

whenever the right hand side is well defined, and thus by Eq. (5.4) and

Lemma A.9(v),

≥
n

∑

i=1

λiP( fi) − λ0P( f0),

whenever the right hand side is well defined—which is the case by assump-

tion. This proves that P is a coherent extended lower prevision. �

There is a subtle difference between Theorem 5.6 and its counterpart for

lower previsions on gambles, Theorem 3.6 on p. 56: for Theorem 5.6 to hold,

condition (2) must also hold for λ = 0. To see why, consider the extended

lower prevision defined by P( f ) = +∞ for all random quantities f on X: P
satisfies Theorem 5.6(1)&(2)&(3) for any random quantities f and g on X

and any non-negative real number λ, except for λ = 0, but, P is clearly not

coherent; it does not even avoid sure loss.

Let’s not forget to mention the following important result.

Lemma 5.7. The following statements hold.

(i) The restriction of an extended lower prevision avoiding sure loss also avoids

sure loss.

(ii) The restriction of an extended coherent lower prevision is also coherent.

(iii) The restriction of an extended linear prevision to a prevision is also linear.

Proof. Immediately from Definition 5.2 and Definition 5.3. �

5.2.3 Natural Extension Revisited

LetP be any extended lower prevision, and letK be a set of randomquantities
that includes domP. As in Section 4.1 on p. 95, let’s, again, carefully sum up

the properties which the natural extension EKP of P toK should satisfy. First,
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any behavioural disposition expressed by P should also be expressed by EKP ;

it should be a behavioural extension of P:

Definition 5.8. Anextended lowerprevisionQ is called a behavioural extension

of an extended lower prevision P if domP ⊆ domQ and P( f ) ≤ Q( f ) for any
random quantity f ∈ domP.

Thus, domP ⊆ K and EKP ( f ) ≥ P( f ) for all f in domP. Secondly, EKP
must be coherent. And, last but not least, we want the buying prices EKP
to be as low as possible: any coherent behavioural extension of P to K
must also be a behavioural extension of EKP . This can only be the case

when EKP is the point-wise smallest coherent behavioural extension of P to

K . Summarising, defining natural extension as the least committal coherent
behavioural extension, we find that natural extension for extended lower

previsions is nothing but the following verbatim translation of Definition 4.2:

Definition 5.9. Let P be an extended lower prevision, and let domP ⊆ K ⊆
R(X). The point-wise smallest coherent behavioural extension of P toK , if it
exists, is called the natural extension of P toK , and is denoted by EKP .

Note that the notation EP is reserved for the natural extension of a lower

prevision P to the setL(X) of all gambles onX; see Definition 4.2. The natural
extension of an extended lower prevision to the set of all random quantities

will be explicitly denoted by ER(X)
P
.

For now, it is still not yet clear how compatible Definition 5.9 is with Def-

inition 4.2: is the natural extension of lower previsions to random quantities,

as in Definition 5.9, an extension of the natural extension of lower previsions

to gambles, as in Definition 4.2? This will follow from the following theorem,

which also tells us that avoiding sure loss of P is necessary and sufficient for

the existence of its natural extension EKP . It also gives an explicit expression

for EKP , and number of criteria to check avoiding sure loss—but, note that

there are some subtle but important differences from Theorem 4.3.

Theorem 5.10. Let P be an extended lower prevision, and let domP ⊆ K ⊆ R(X).
Define the extended lower prevision E on R(X) by

E( f ) := sup

{

α +
n

∑

i=1

λiP( fi) w.d. : α ∈ R, n ∈N,
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λ1, . . . , λn ≥ 0, f1, . . . , fn ∈ domP, α +
n

∑

i=1

λi fi ≤ f
}

(5.5)

for any random quantity f ∈ R(X). The following conditions are equivalent.

(i) −∞ < E( f ) < +∞ for some random quantity f on X.

(ii) −∞ < E( f ) < +∞ for any gamble f on X.

(iii) E is a coherent extended lower prevision on R(X).

(iv) The natural extension of P toK exists and is equal to E restricted toK .

(v) P has at least one coherent behavioural extension.

(vi) P has at least one behavioural extension that avoids sure loss.

(vii) P avoids sure loss.

Proof. It suffices to establish (vii) =⇒ (iv) =⇒ (v) =⇒ (vi) =⇒ (vii) and

(vii) =⇒ (iii) =⇒ (ii) =⇒ (i) =⇒ (vii).
(vii) =⇒ (iv). Suppose that P avoids sure loss. Before going into detail,

let’s sketch the proof. (a) First, we prove that E is a coherent extended lower

prevision on R(X); it immediately follows that also its restriction to K is a
coherent extended lower prevision. (b) We then prove that E( f ) ≥ P( f ) for
every random quantity f ∈ domP. This establishes that E, restricted to K ,
is a coherent behavioural extension of P. (c) Next, we prove that, for any

coherent extended lower prevision Q on K , if Q( f ) ≥ P( f ) for all f ∈ domP,
then Q( f ) ≥ E( f ) for all f ∈ K . This establishes that E is the point-wise
smallest coherent behavioural extension of P to K . Let’s fill in the details
now.

(a) We check that E, which is an extended lower prevision defined on the

linear space of all random quantities on X, satisfies the conditions of

Theorem 5.6:

(1). Let f be any random quantity on X. If inf f is real, then E( f ) ≥ inf f
is immediate: consider α = inf f and n = 0 in Eq. (5.5). If inf f = −∞,
then the inequality E( f ) ≥ inf f is immediate. The case inf f = +∞ never
occurs.

(2). Let f be any random quantity on X, and let λ be any strictly pos-

itive real. Then the equality E(λ f ) = λE( f ) follows from Lemma A.8
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(distributivity in R∗), and the observation that, there are α ∈ R, n ∈ N,
non-negative λ1, . . . , λn in R, and random quantities f1, . . . , fn in domP

such that α+
∑n
i=1 λiP( fi) is well defined and α+

∑n
i=1 λi fi ≤ f , if and only

if, there are β ∈ R, n ∈ N, non-negative κ1, . . . , κn in R, and random
quantities f1, . . . , fn in domP such that β +

∑n
i=1 κiP( fi) is well defined

and β +
∑n
i=1 κi fi ≤ λ f : identify β with λα and κi with λλi.

The case λ = 0 follows if we can show that E(0) ≤ 0; the converse
inequality already follows from (1). By Eq. (5.5), we must show that

α +
∑n
i=1 λiP( fi) ≤ 0 for any α ∈ R, n ∈ N, non-negative λ1, . . . , λn in R,

and random quantities f1, . . . , fn in domP such that α +
∑n
i=1 λiP( fi) is

well defined and α+
∑n
i=1 λi fi ≤ 0. Indeed, since α is real, also

∑n
i=1 λiP( fi)

is well defined, so, since P avoids sure loss, it follows from Eq. (5.1) that

n
∑

i=1

λiP( fi) ≤ sup














n
∑

i=1

λi fi















.

But, sinceα+
∑n
i=1 λi fi ≤ 0, we also find that sup

[∑n
i=1 λi fi

] ≤ −α. Together
with the above inequality, this implies that

∑n
i=1 λiP( fi) ≤ −α, and hence,

by LemmaA.9(iv), also α+
∑n
i=1 λiP( fi) ≤ 0. This shows that E(0) ≤ 0, and

hence, the case λ = 0 is established too.

(3). Let f and g be two random quantities on X, and suppose that

E( f ) + E(g) is well defined. Then,

E( f ) + E(g) = sup

{

α +
n

∑

i=1

λiP( fi) w.d. : α ∈ R, n ∈N,

λ1, . . . , λn ≥ 0, f1, . . . , fn ∈ domP, α +
n

∑

i=1

λi fi ≤ f
}

+ sup

{

β +
m

∑

i=1

κiP(gi) w.d. : β ∈ R, m ∈N,

κ1, . . . , κm ≥ 0, g1, . . . , gm ∈ domP, β +
m

∑

i=1

λigi ≤ g
}



5.2 INFERENCE REVISITED 211

and by Lemma A.9(viii),

= sup

{

α + β +
n

∑

i=1

λiP( fi) +
m

∑

i=1

κiP(gi) w.d. :

α, β ∈ R, n,m ∈N,
λ1, . . . , λn, κ1, . . . , κm ≥ 0, f1, . . . , fn, g1, . . . , gm ∈ domP,

α +
n

∑

i=1

λi fi ≤ f , β +
m

∑

i=1

λigi ≤ g
}

and sinceα+
∑n
i=1 λi fi ≤ f and β+

∑m
i=1 λigi ≤ g imply thatα+β+

∑n
i=1 λi fi+

∑m
i=1 λigi ≤ f + g,

≤ E( f + g).

We find that E is a coherent extended lower prevision on R(X). By
Lemma 5.7, it follows that also the restriction of E to K is a coherent
extended lower prevision.

(b) We show that E( f ) ≥ P( f ) for all random quantities f ∈ domP: indeed,
consider α = 0, n = 1, λ1 = 1, and f1 = f in Eq. (5.5).

(c) Let Q be a coherent extended lower prevision on K , and assume that
Q( f ) ≥ P( f ) for all f ∈ domP. We must show that Q( f ) ≥ E( f ) for all
f ∈ K . Let f ∈ K , then

E( f ) = sup

{

α +
n

∑

i=1

λiP( fi) w.d. : α ∈ R, n ∈N,

λ1, . . . , λn ≥ 0, f1, . . . , fn ∈ domP, α +
n

∑

i=1

λi fi ≤ f
}

and applying Lemma A.9(vii),

= sup

{

α +
n

∑

i=1

λiP( fi) w.d. and > −∞ : α ∈ R, n ∈N,

λ1, . . . , λn ≥ 0, f1, . . . , fn ∈ domP, α +
n

∑

i=1

λi fi ≤ f
}
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and observe that, since P( fi) ≤ Q( fi) for all i ∈ {1, . . . ,n}, if α+
∑n
i=1 λiP( fi)

is well defined and strictly larger than −∞, then also α +∑n
i=1 λiQ( fi) is

well defined and α +
∑n
i=1 λiP( fi) ≤ α +

∑n
i=1 λiQ( fi). Hence,

≤ sup
{

α +
n

∑

i=1

λiQ( fi) w.d. : α ∈ R, n ∈N,

λ1, . . . , λn ≥ 0, f1, . . . , fn ∈ domP, α +
n

∑

i=1

λi fi ≤ f
}

but, since Q is coherent, it follows by Theorem 5.5 that α +
∑n
i=1 λiQ( fi) ≤

Q(α+
∑n
i=1 λi fi) ≤ Q( f )whenever the left hand side iswell defined. Hence,

≤ Q( f ).

(iv) =⇒ (v) =⇒ (vi). Immediate.
(vi) =⇒ (vii). Let Q be any behavioural extension of P that avoids sure

loss. We need to show that P avoids sure loss: take any n ∈ N, non-
negative λ1, . . . , λn inR, and random quantities f1, . . . , fn in domP such that
∑n
i=1 λiP( fi) is well-defined. If

∑n
i=1 λiP( fi) = −∞, then Eq. (5.1) is immediate.

Otherwise, since P( fi) ≤ Q( fi) for all i ∈ {1, . . . ,n}, also
∑n
i=1 λiQ( fi) is well

defined, and

n
∑

i=1

λiP( fi) ≤
n

∑

i=1

λiQ( fi)

and since Q avoids sure loss,

≤ sup














n
∑

i=1

λi fi















.

Hence, P avoids sure loss.

(vii) =⇒ (iii). SupposeP avoids sure loss. We already established (vii) =⇒
(iv), andhence, (iv) holds forK = R(X): in particular, E is a coherent extended
lower prevision on R(X).
(iii) =⇒ (ii). By Theorem 5.5(i).
(ii) =⇒ (i). Immediate.



5.2 INFERENCE REVISITED 213

(i) =⇒ (vii). We show that, if P does not avoid sure loss, then E( f ) > −∞
implies that E( f ) = +∞, for any random quantity f . So, if P does not avoid
sure loss, then E( f ) = ±∞ for all random quantities f . Equivalently, if P
avoids sure loss, then −∞ < E( f ) < +∞ for at least one random quantity f .

Suppose that P does not avoid sure loss, and assume that E( f ) > −∞.
Then, there are n ∈ N, non-negative λ1, . . . , λn in R, and random quantities
f1, . . . , fn in domP such that

∑n
i=1 λiP( fi) is well-defined and sup

[∑n
i=1 λi fi

]

<
∑n
i=1 λiP( fi). Hence, there is an α ∈ R such that

∑n
i=1 λi fi ≤ −α and −α <

∑n
i=1 λiP( fi), that is,

α +
n

∑

i=1

λi fi ≤ 0 < α +
∑

λiP( fi).

So, from the expression for natural extension,

E( f ) = sup

{

β +
m

∑

i=1

κiP(gi) w.d. : β ∈ R, m ∈N,

κ1, . . . , κm ≥ 0, g1, . . . , gm ∈ domP, β +
m

∑

i=1

κigi ≤ f
}

we get by Lemma A.9(vii)

= sup

{

β +
m

∑

i=1

κiP(gi) w.d. and > −∞ : β ∈ R, m ∈N,

κ1, . . . , κm ≥ 0, g1, . . . , gm ∈ domP, β +
m

∑

i=1

κigi ≤ f
}

which is obviously also equal to

= sup

{

β +
m

∑

i=1

κiP(gi) + ζ
(

α +
∑

λiP( fi)
)

w.d. and > −∞ :

β ∈ R, m ∈N, ζ ≥ 0,
κ1, . . . , κm ≥ 0, g1, . . . , gm ∈ domP,

β +
m

∑

i=1

κigi + ζ















α +
n

∑

i=1

λi fi















≤ f
}



214 CAUCHY EXTENSION OF LOWER PREVISIONS

and—this is rather subtle—since E( f ) > −∞, there are β ∈ R, m ∈ N, non-
negative κ1, . . . , κm in R, and random quantities g1, . . . , gm in domP such

that
∑m
i=1 κiP(gi) is well-defined, β +

∑m
i=1 κiP(gi) > −∞, and β +

∑m
i=1 κigi ≤ f .

Fixing these β, m, κ1, . . . , κm, and g1, . . . , gm in the above supremum, and

using the fact that α +
∑n
i=1 λi fi ≤ 0, we see that

≥ sup
{

β +
m

∑

i=1

κiP(gi) + ζ
(

α +
∑

λiP( fi)
)

: ζ ≥ 0
}

.

since, by construction, β +
∑m
i=1 κigi + ζ

(

α +
∑n
i=1 λi fi

) ≤ f is satisfied for all
ζ ≥ 0. Now, since β+∑m

i=1 κiP(gi) > −∞ by construction, and α+
∑

λiP( fi) > 0,

the argument tends to +∞ as ζ increases, so

= +∞;

which establishes the proof. �

Again, there are some subtle differences between Theorem 4.3 on p. 96

and Theorem 5.10. Firstly, even if there is a random quantity f onX such that

E( f ) < +∞, Pmay still incur sure loss. Indeed, let X = R, define the random
quantity f on X by f (x) := x for all x ∈ X, and define the extended lower
prevision P on { f , 0} by P( f ) = −∞, and P(0) = 1. Clearly, P does not avoid
sure loss: sup[0] < P(0). Nevertheless, E( f ) = −∞ < +∞; however, note that
E(g) = ±∞ for every random quantity g on X: E(g) = −∞ if g is unbounded
from below, and E(g) = +∞ otherwise. In connection with Theorem 5.6,
observe that E only satisfies condition (1) for random quantities that are

unbounded from below, condition (2) for strictly positive λ, and condition

(3): even though E is not coherent, it does have a coherent restriction. This

phenomenon did not occur for lower previsions, by Theorem 4.3(i).

Secondly, it may happen that E( f ) = ±∞ for some random quantity f ,
even if P is a coherent lower prevision, i.e., real-valued, defined on gambles

only, and coherent. Indeed, for any lower prevision P, E( f ) is −∞ whenever
f is unbounded from below. As an example of a lower prevision P and a

random quantity f such that E( f ) = +∞, let X = {x ∈ R : x ≥ 0}, let f be the
identity map on X, and define P on the set { f ∧ n : n ∈ N} of gambles by
P( f ∧ n) := n. Then, P is a coherent lower prevision; it is a restriction of the
coherent lower prevision Q(g) := limn→∞ infx≥n g(x) defined for all gambles
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g on X. Nevertheless, since E( f ) ≥ P( f ∧ n) = n for all n ∈ N, it holds that
E( f ) = +∞. Observe that, in this case, E is coherent.
E
R(X)
P
uniquely determines the natural extension EKP of P to any domain

K that includes domP:

Corollary 5.11. Let P be an extended lower prevision, and let domP ⊆ K ⊆ R(X).
Then EKP exists if and only if E

R(X)
P
exists, and in such a case

EKP ( f ) = E
R(X)
P
( f ) for all f ∈ K .

So, as before, from now on, in proofs, we can focus our attention on

the natural extension ER(X)
P
of P to the set of all random quantities on X.

Corollary 5.11 also tells us that the natural extension of a lower prevision P to

a larger setK of gambles, as defined in Section 4.1, is given by the restriction
of ER(X)

P
toK : ER(X)

P
is an extension of EP, in the mathematical sense.

Again, an alternative, and simpler expression for natural extension is

obtained when P is defined on a linear space and is coherent; also see Theo-

rem 4.5.

Theorem 5.12. Let P be any coherent extended lower prevision defined on a linear

space, and let domP ⊆ K ⊆ L(X). Then the natural extension of P to K exists,
and for any random quantity f ∈ K ,

EKP ( f ) := sup{a + P(g) : a ∈ R, g ∈ domP, a + g ≤ f }. (5.6)

Proof. Look at Eq. (5.5) and note that, by Theorem 5.5,

n
∑

i=1

λiP( fi) ≤ P














n
∑

i=1

λi fi















, (5.7)

whenever the left hand side is well defined. Since we are looking for the

supremum, we can replace
∑n
i=1 λiP( fi) by P(g) with g =

∑n
i=1 λi fi. �

Again, EKP coincides with P on domP if P is coherent; this follows directly

from the definition of natural extension in case domP = K .

Proposition 5.13. Let P be an extended lower prevision, and let domP ⊆ K ⊆
R(X). If P is coherent then P and EKP coincide on domP.
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Proof. By the definition of natural extension, P coincides with E
domP

P
on

domP. But, by Theorem 5.10(iv), EKP is an extension of E
domP

P
, and hence,

also EKP coincides with P on domP. �

Also Proposition 4.7, Proposition 4.8, and Corollary 4.9 generalise to ex-

tended lower previsions.

Proposition 5.14. Let P and Q be extended lower previsions on X that avoid sure

loss. If Q is a behavioural extension of P, then ER(X)
Q
is a behavioural extension of

E
R(X)
P
too: ER(X)

Q
( f ) ≥ ER(X)

P
( f ) for every random quantity f on X.

Proof. If Q is a behavioural extension of P, then any coherent behavioural

extension of Q is also a coherent behavioural extension of P; now apply the

definition of natural extension to R(X): it is the point-wise smallest coherent
behavioural extension to the set of all random quantities on X. �

Proposition 5.15. Let P be an extended lower prevision that avoids sure loss. Let

Q be any coherent behavioural extension of P. Then P is equivalent to Q (that is,

E
R(X)
P
= E

R(X)
Q
) if and only if Q and ER(X)

P
coincide on domQ.

Proof. “if”. SinceQ is a behavioural extensionofP, anybehavioural extension

of Q is also a behavioural extension of P. Hence, ER(X)
Q
≥ ER(X)

P
. To prove the

converse inequality, let R be any coherent behavioural extension of P to the

set of random quantities on X. The claim is established if we can show that

R is also a behavioural extension of Q. Indeed, R ≥ ER(X)
P
by definition of

natural extension. Since Q = ER(X)
P
on domQ it follows that also R ≥ Q on

domQ, which means that R is a behavioural extension of Q.

“only if”. Suppose ER(X)
P
= E

R(X)
Q
. Since Q is coherent, it follows from

Proposition 4.6 that Q and ER(X)
Q
coincide on domQ, and hence, ER(X)

P
and Q

coincide on domQ. �

Corollary 5.16. Let P be an extended lower prevision that avoids sure loss, and let

domP ⊆ J ⊆ K ⊆ R(X). Then

EK
EJ
P

( f ) = EKP ( f ), for all f ∈ K , and E
J
P
( f ) = EKP ( f ), for all f ∈ J .
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5.2.4 Duality Revisited

In order to prove duality results, we must first try to endow R(X) with a
sufficiently strong topological structure, required to apply versions of the

Hahn-Banach theorem.

Definition 5.17. For any extended lower prevision P that avoids sure loss,

the extended real number
∥

∥

∥ f
∥

∥

∥

P
:= E

R(X)
P (| f |), defined for any random quantity

f on X, is called the P-norm of f .

Definition 5.18. For any extended lower prevision P that avoids sure loss,

the set KP :=
{

f ∈ R(X) : ER(X)P (| f |) < +∞
}

=

{

f ∈ R(X) :
∥

∥

∥ f
∥

∥

∥

P
< +∞

}

is called

the P-space.

Proposition 5.19. Suppose P avoids sure loss. The following propositions hold.

(i) KP contains any random quantity f ∈ domP that is bounded from below and
satisfies P( f ) < +∞.

(ii) If f ∈ KP and |g| ≤ | f |, then g ∈ KP.

(iii) L(X) ⊆ KP, i.e., any gamble on X belongs to the P-space.

(iv) KP, equipped with ‖•‖P, is a semi-normed linear lattice.

Proof. (i) Indeed, for any x ∈ X, it holds that | f (x)| ≤ f (x) + 0 ∨ (− inf f ): if
f (x) ≥ 0, then | f (x)| = f (x), and if f (x) < 0, then | f (x)| = − f (x) ≤ − inf f ; in
both cases, the desired inequality follows. Hence, | f | ≤ f + 0 ∨ (− inf f ), and
therefore, by the coherence of E

R(X)
P and Theorem 5.5(iv),

E
R(X)
P (| f |) ≤ ER(X)P ( f ) + 0 ∨ (− inf f )

and, by definition, E
R(X)
P is a behavioural extension of P, so E

R(X)
P ( f ) ≤ P( f ):

≤ P( f ) + 0 ∨ (− inf f )

and since, by assumption, P( f ) < +∞ and inf f > −∞,

< +∞.
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(ii). Immediate.

(iii). Immediate by the coherence of ER(X)
P
and Theorem 5.5(i): E

R(X)
P (| f |) ≤

sup| f | < +∞ for any gamble f on X.
(iv). Immediate the coherence of ER(X)

P
and Theorem 5.5: E

R(X)
P (| f |) ≥ 0

for any random quantity f , E
R(X)
P (|λ f |) = |λ|ER(X)P (| f |) for any λ ∈ R and any

random quantity f , and E
R(X)
P (| f + g|) ≤ ER(X)P (| f |) + ER(X)P (|g|), for any random

quantities f and g. �

Lemma 5.20. Let P be a real-valued coherent extended lower prevision defined

on a linear lattice of random quantities, that contains all constant gambles. Let

D ⊆ domP. Then the following conditions are equivalent.

(A) P
(∑n
i=1 fi

) ≥ 0 for every n ∈N and f1 ,. . . , fn inD.

(B) P
(

∑n
i=1 λ j f j

)

≥ 0 for every n ∈ N, non-negative λ1 ,. . . , λn in R, and f1, . . . ,
fn inD.

(C) There is a linear behavioural extension Q of P such that Q( f ) ≥ 0 for every f in
D.

Proof. (A) =⇒ (B). Suppose that (A) holds, and assume ex absurdo that

P
(

∑n
j=1 λ j f j

)

= −δ < 0 for a particular choice of n ∈ N, λ1, . . . , λn ≥ 0 and
f1, . . . , fn in D. Let α = P

(

∑n
j=1

∣

∣

∣ f j
∣

∣

∣

)

and let ǫ = δ
2α+1 . Since Q is dense in R,

there are non-negative rational numbers ρ j ∈ Q such that λ j ≤ ρ j ≤ λ j + ǫ
for every j ∈ {1, . . . ,n}. By Lemma 3.4 we find that ρ j f j ≤ λ j f j + ǫ

∣

∣

∣ f j
∣

∣

∣ for

every j ∈ {1, . . . ,n}. Let k ∈N be a common denominator of ρ1, . . . , ρn and let
m j = kρ j ∈N. We find that

P

















n
∑

j=1

ρ j f j

















≤ P
















n
∑

j=1

λ j f j + ǫ
∣

∣

∣ f j
∣

∣

∣

















≤ P
















n
∑

j=1

λ j f j

















+ ǫP

















n
∑

j=1

∣

∣

∣ f j
∣

∣

∣

















= −δ + ǫα < −δ/2.

We conclude that P
(

∑n
j=1m j f j

)

< −kδ/2 < 0. This contradicts (A).
(B) =⇒ (C). Define

E = {g ∈ domP;P(g) ≥ 0},
V = {g ∈ domP; g ≥ ∑n

j=1 λ j f j for some n ∈N, f j ∈ D ∪ E, λ j ≥ 0}.
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It is straightforward to show thatV is a convex subset of domP. By Propo-
sition 5.19(iv), it follows that domP, equipped with ‖•‖P, is a topological
(semi-normed) linear space. First, we give some properties ofV.

(a) First we prove that g ∈ V =⇒ P(g) ≥ 0. If g ∈ V then we can write that
g ≥ ∑k

j=1 λ j f j +
∑l
j=1 µ jh j with k, l ∈ N, λ j, µ j ≥ 0, f j ∈ D and h j ∈ E. By

(B) and the coherence of P it follows that indeed

P(g) ≥ P
















k
∑

j=1

λ j f j

















+ P

















l
∑

j=1

µ jh j

















≥ 0 + 0.

(b) Next we prove that g ∈ intV =⇒ P(g) > 0, where intV denotes the
topological interior ofV. If g ∈ intV then there is an ǫ > 0 such that

{

h ∈ domP;
∥

∥

∥h − g
∥

∥

∥

P
< ǫ

}

⊆ V.

The inequality
∥

∥

∥h − g
∥

∥

∥

P
< ǫ is satisfied for h = g− ǫ/2, which implies that

g − ǫ/2 ∈ V. From (a) it follows that P(g − ǫ/2) ≥ 0 and we find that
indeed P(g) ≥ ǫ/2 > 0.

(c) Next we prove that P(g) > 0 =⇒ g ∈ intV. Suppose that P(g) > 0. It
suffices to prove that the neighbourhood

{

h ∈ domP;
∥

∥

∥h − g
∥

∥

∥

P
< P(g)/2

}

of g is a subset ofV. Assume that
∥

∥

∥h − g
∥

∥

∥

P
< P(g)/2. We find that

P(g) + P(−h) ≤ P(g − h) ≤ P(|g − h|) < P(g)/2.

This implies that P(−h) < −P(g)/2, or equivalently P(h) > P(g)/2 > 0. We
find that h ∈ E ⊆ V. We conclude that g ∈ intV.

(d) Finally, we prove that 0 < intV. Take the contraposition of (b) and use
the fact that P(0) = 0 ≯ 0.

Now we are ready to apply a version of the Hahn-Banach theorem. By

assumption, 1 ∈ domP, and P(1) = 1 > 0. By (c) this implies that 1 ∈ intV ,
∅. Define the non-empty sets A = V and B = {0}. A is convex, intA , ∅,



220 CAUCHY EXTENSION OF LOWER PREVISIONS

B is convex and intA ∩ B = ∅. By a version of the Hahn-Banach theorem
(see for instance Holmes [44, 11E, p. 63]), there is a continuous real-valued

linear mappingΛ on domP such that for every f ∈ A and g ∈ Bwe have that
Λ( f ) ≥ Λ(g). Since B only contains the zero gamble, it follows that Λ( f ) ≥ 0
for every f ∈ V.
Define the extended prevision Q = Λ/Λ(1). We have that Q( f ) ≥ 0 for

every f ∈ V; clearly, Q is self-conjugate. So, to prove that Q is a linear
extended lower prevision, it suffices to check the conditions of Theorem 5.6.

(1). We shall prove that Q( f ) = Λ( f )/Λ(1) ≥ P( f ) for every f ∈ domP:
then, clearly, also Q( f ) ≥ inf f . Let f ∈ domP. The inequality is satisfied if
Λ( f ) ≥ Λ(1)P( f ). By the linearity of Λ this is equivalent to Λ

(

f − P( f )
)

≥ 0;
recall that P is assumed to be real-valued. This holds since P

(

f − P( f )
)

≥ 0
which implies that f − P( f ) ∈ E ⊆ V, and Λ is non-negative on V by
construction.

(2)&(3). Immediate, since Q is a real-valued linear mapping.

It remains to prove that Q is a behavioural extension of P—but this was

shown above in (1)—and that is non-negative onD: this follows at once from
the observation thatD ⊆ V, and thatΛ is non-negative onV by construction.
(C) =⇒ (A) Suppose thatQ is a linear extended lower prevision such that

domP ⊆ domQ,Q( f ) ≥ P( f ) for all f ∈ domP, andQ( f ) ≥ 0 for every f ∈ D.
Letn ∈N and f1, . . . , fn ∈ D. It follows thatP

(

∑n
j=1 f j

)

≥ Q
(

∑n
j=1 f j

)

, and from

(C) it follows that Q
(

∑n
j=1 f j

)

≥ 0, We conclude that indeed P
(

∑n
j=1 f j

)

≥ 0 for
every n ∈N and every f1, . . . , fn ∈ D. �

LetMK
P
denote the set of linear extended previsions that are behavioural

extensions of P to a negation invariant set of random quantities K that in-
cludes domP.

Theorem 5.21. Let P be any extended lower prevision, and let domP ⊆ K ⊆ R(X).
The following statements hold.

(i) If MK
P
, ∅, then P avoids sure loss. Conversely, if P avoids sure loss and

domP ⊆ K ⊆ KP, thenMKP , ∅.

(ii) If P avoids sure loss and domP ⊆ K ⊆ KP, then its natural extension ER(X)P
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satisfies

E
R(X)
P
( f ) = inf

Q∈MK
P

E
R(X)
Q
( f ) for any f in R(X), (5.8)

E
KP
P
( f ) = min

Q∈MK
P

E
KP
Q
( f ) for any f inKP, and hence, (5.9)

EKP ( f ) = min
Q∈MK

P

Q( f ) for any f inK . (5.10)

(iii) If P avoids sure loss and domP ⊆ K ⊆ KP, then P is coherent if and only if

P( f ) = min
Q∈MK

P

Q( f ) for any f ∈ domP. (5.11)

Proof. (i). If MK
P
, ∅, choose any Q ∈ MK

P
. Then for every n ∈ N, non-

negative λ1, . . . , λn in R, and random quantities f1, . . . , fn in domP such

that
∑n
i=1 λiP( fi) is well-defined, we have that

sup















n
∑

i=1

λi fi















≥
n

∑

i=1

λiQ( fi) ≥
n

∑

i=1

λiP( fi),

since Q avoids sure loss, so P avoids sure loss as well.

Conversely, if P avoids sure loss, defineD := ∅. Note that since domP ⊆
K ⊆ KP, it holds that EKPP is real-valued. Also, since D = ∅, Lemma 5.20(B)
trivially applies, and by Lemma 5.20(C), there is a linear behavioural exten-

sion Q of E
KP
P
, and hence, of P.

(ii). Let f be any gamble on X. Clearly, ER(X)
P
( f ) ≤ inf

{

E
R(X)
Q
( f ) : Q ∈

MK
P

}

, since the natural extension of P is the point-wise smallest coherent

behavioural extension of P, and the natural extensions of linear extensions of

Pmust also be behavioural extensions of P.

We first show that, for any f ∈ KP, there is a Q inMKP such that E
KP
P
( f ) ≥

E
KP
Q
( f ), establishingEq. (5.9). Indeed, let f ∈ KP, and chooseD := {EKPP ( f )− f };

note that E
KP
P
is coherent, real-valued, and is defined on a linear lattice that

contains all constant gambles, and moreover E
KP
P

(

λE
KP
P
( f ) − λ f

)

≥ 0 for any
λ ≥ 0: so Lemma 5.20(B) applies. By Lemma 5.20(C), there is a linear
behavioural extension R of E

KP
P
, and hence, of P, such that R

(

E
KP
P
( f ) − f

)

≥ 0,
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i.e., E
KP
P
( f ) ≥ R( f ). The restriction Q of R toK still is a behavioural extension

of P: Q belongs to MK
P
. Clearly, R( f ) ≥ EKP

Q
( f ), since R is a behavioural

extension of Q, by definition of Q. We conclude that E
KP
P
( f ) ≥ EKP

Q
( f ).

Eq. (5.10) simply follows from the fact that Q = EKQ for any coherent

prevision Q onK ; see Proposition 5.13 on p. 215.

Finally, we prove that, for any random quantity f , there is aQ inMK
P
such

that

E
R(X)
P
( f ) ≥ inf

Q∈MK
P

E
R(X)
Q
( f ),

establishing Eq. (5.8). This is trivially satisfied in case ER(X)
P
( f ) = +∞. Note

that, by the transitivity of natural extension (Corollary 5.16 on p. 216), the

expression of natural extension from a linear space (Theorem 5.12 on p. 215),

and Eq. (5.9), it follows that

E
R(X)
P
( f ) = sup

g∈KP, g≤ f
E
KP
P
(g) = sup

g∈KP, g≤ f
min
Q∈MK

P

E
KP
Q
(g).

If ER(X)
P
( f ) = −∞, then, since EKP

P
(g) belongs to R for every g ∈ KP, it must be

that there is no g ∈ KP such that g ≤ f . Consequently, also

E
R(X)
Q
( f ) = sup

g∈KP, g≤ f
E
KP
Q
(g) = −∞,

for any Q inMK
P
: so in this case,

inf
Q∈MK

P

E
R(X)
Q
( f ) = −∞ = ER(X)

P
( f ),

and the desired inequality holds too. Finally, if ER(X)
Q
( f ) ∈ R, then, for every

ǫ > 0, there is a gǫ ∈ KK such that gǫ ≤ f and

E
R(X)
P
( f ) ≤ min

Q∈MK
P

E
KP
Q
(gǫ) + ǫ.

Since gǫ ≤ f , it follows that ER(X)Q
(gǫ) ≤ ER(X)Q

( f ) for all Q inMK
P
, and hence,

E
R(X)
P
( f ) ≤ inf

Q∈MK
P

E
R(X)
Q
( f ) + ǫ,



5.2 INFERENCE REVISITED 223

for all ǫ > 0 (note that theminimum is now an infimum: we cannot guarantee

that the minimum is still achieved), and therefore, also for ǫ = 0: again, we

recover the desired inequality.

(iii). Immediate from (ii), and the fact that, whenever P is coherent, it

must holds that EKP ( f ) = P( f ) for all f ∈ domP. �

It’s nice to know when exactly domP ⊆ KP. The following corollary
may serve as a guidance to construct extended lower previsions that satisfy

exactly this requirement.

Corollary 5.22. Suppose P avoids sure loss. Then domP ⊆ KP whenever there are
random quantities f1, . . . , fn in domP that are bounded from below, such that

(i) P( f1) < +∞, . . . , P( fn) < +∞, and

(ii) for all g in domP there are non-negative real numbers a0, a1, . . . , an inR such

that |g| ≤ a0 +
∑n
i=1 ai| fi|.

Proof. Immediate from Proposition 5.19. �

For instance, if P is a lower prevision (i.e., real-valued and defined on

gambles only) that avoids sure loss, then the conditions of Corollary 5.22 are

satisfied, and hence, domP ⊆ KP.

5.2.5 Duality and Lower Integrals for Random Quantities?

The lower S-integral of a random quantity f with respect to a probability

chargeµonafieldF canbedefinedas follows; this is similar toKolmogoroff’s
[50, Zweites Kapitel, §2, p. 663, Nr. 12] definition of the S-integral, and also
similar to (but slightly more general than) Bhaskara Rao and Bhaskara Rao’s

[9, Definition 9.1.1, p. 231] definition ofwhat they call the refinement integral:

S

∫

f dµ := lim
B∈P(F )

∑

B∈B
PB( f )µ(B);

the sum in the right-hand side is always well defined, since always PB( f ) <

+∞. Similarly, we define the upper S-integral S
∫

f dµ, and the S-integral

S
∫

f dµ if the lower and upper S-integral coincide. This generalises Defini-

tion 4.40 on p. 129 to random quantities. However, with the above definition,

we don’t have anymore that ER(X)µ (•) coincides with S
∫

•dµ; the proof of
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Theorem 4.42 on p. 130 does not generalise to random quantities, because

PB( f ) may be −∞, and µ(B) = 0 at the same time, for some random quantity
f on X and some B in F .
For instance, the lower S-integral of the randomquantity f ( 1n ) := −n for all

n ∈N, n ≥ 1, and f (x) := 0 for all other x ∈ [0, 1], with respect to the Lebesgue
measureλ on [0, 1], is equal to zero, butER(X)λ ( f ) = −∞: indeed, ER(X)

P
( f ) = −∞

for any lower prevision P that avoids sure loss, and any random quantity f

that is unbounded from below, simply because there are no gambles g such

that g ≤ f , so the expression for natural extension, Eq. (5.5) on p. 209, results
in a supremum over the empty set, which is −∞.
A similar consideration holds for the Dunford integral, which is defined

in Section 4.3.8 not only for gambles, but also for random quantities, as long

as they satisfy the conditions of Dunford integrability: with the same gamble

f , again it holds that D
∫

f dλ = 0—the sequence fn of gambles defined by

fn := 0 is a determining sequence for f—which is different from E
R(X)
λ ( f ).

Another consequence of these observations, is that we have no equivalent

of Corollary 4.88 on p. 195 for extended lower previsions: there are coherent

extended lower previsions R and random quantities f in domR such that,

for every field F and every set m of probability charges on F , still

R( f ) <















inf
µ∈m
ER(X)µ ( f ), inf

µ∈m
S

∫

f dµ, inf
µ∈m
D

∫

f dµ















;

we have to assume that f is Dunford integrable with respect to all µ in m

for the last expression to have any meaning. Concluding, there is no gen-

eral equivalence between sets of probability charges and coherent extended

lower previsions on R(X) similar to Corollary 4.88, neither through natural
extension, lower S-integrals, or Dunford integrals.

We now turn to the following question: are there coherent extended

lower previsions, not necessarily defined only on gambles, that are repre-

sentable by natural extension, lower S-integrals, or Dunford integrals? As

the Dunford integral already guarantees the existence of an extension of a

probability charge to a real-valued coherent extended prevision, which may

be defined also on unbounded random quantities, we try to construct ex-

tended lower previsions from lower previsions through Cauchy sequences,

similar to the construction of the Dunford integral, and we prove that these
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are representable through a lower envelope of Dunford integrals.

This yields two results at once: (i) a representation of real-valued co-

herent extended lower previsions through Dunford integrals, and (ii) a way

to extend coherent lower previsions to coherent extended lower previsions

that are still real-valued, and that are not overly conservative—recall that

E
R(X)
P
( f ) = −∞ for any lower prevision P that avoids sure loss and any ran-

dom quantity f unbounded from below; simply taking the natural extension

of a lower prevision, we are not disposed to buy any random quantity that

is unbounded from below: that’s rather conservative.

5.3 Extension of Lower Previsions to Essentially

Bounded Random Quantities

5.3.1 Null Sets and Null Random Quantities

From now on, unless stated otherwise, we shall assume that P is a coherent

lower prevision defined onL(X), and P is its conjugate upper prevision. If we
start out with a lower prevision Q that avoids sure loss, then we can always

end up with such a P by natural extension of Q as explained in Chapter 4.

We shall only rely on the coherence of P, and on nothing else.

A first step towards an extension of lower previsions to possibly un-

bounded random quantities, is initiated by the observation that a coherent

lower prevision may be invariant under a change of the values of gambles

in some states x ∈ X. For instance, suppose we throw a pebble and when it
lands, the distance between its centre and a reference point near us is mea-

sured. Consider themeasured distanceX (inmetres); X is a random variable,

and it takes values in the set of non-negative reals. Prior to the throw, we

are guaranteed to receive a reward f (x) := x ∧ 100 in units of some linear
utility: we receive the gamble f . Alternatively, consider the unbounded ran-

dom quantity g(x) := x for every x ≤ 100 and g(x) := −x otherwise. If we
are very confident that we cannot throw a pebble further than 100m, then f

is equivalent with g: changing this gamble f at any state x ≥ 100 does not
change our expected reward.

This shows that, depending on your beliefs, the values of a gamble can

sometimes be modified in some states without changing our expected re-
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ward. Already observe that there is a similar phenomenon in the theory of

integration: for example, changing the value of the integrand in a countable

number of points of the real line does not change the value of the Lebesgue

integral. Therefore, it does not matter whether the integrand is bounded on

these points or not.

Definition 5.23. A subset A of X is called P-null if P(IA) = 0. The set of all
P-null sets is denoted byNP.

The following theorem states that P-null sets are just those sets for which

we are absolutely certain—prepared to bet at all odds on the fact—that they

do not contain the outcome of X.

Theorem 5.24. A subset A of X is P-null if and only if P(−KIA + ǫI∁A) > 0 for all
K ≥ 0 and ǫ > 0.

Proof. IfA could contain the outcome ofX, accepting−KIA+ǫI∁A could result
in an arbitrary large loss by choosing K sufficiently large and ǫ sufficiently

small. Hence, intuitively, it is clear that the condition yields a sufficient

condition for A to be a P-null set. Mathematically, this follows from the

coherence of P:

0 < P(−KIA + ǫI∁A) ≤ KP(−IA) + ǫP(I∁A),

and hence,

KP(IA) < ǫP(I∁A),

for all K ≥ 0 and ǫ > 0. This can only be satisfied if P(IA) = 0. Indeed, if
P(IA) , 0 then any K > ǫ

P(I∁A)

P(IA)
will violate the inequality.

Conversely, assume that IA is P-null. Then P(−IA) = −P(IA) = 0 and
P(I∁A) = P(1 − IA) = 1 − P(−IA) = 1. Using these equalities, we find that

P(−KIA + ǫI∁A) ≥ KP(−IA) + ǫP(I∁A) = ǫ > 0.

for all K ≥ 0 and ǫ > 0. �

Proposition 5.25. The following statements hold.

(i) ∅ is a P-null set. X is not a P-null set.

(ii) If A is a P-null set and B ⊆ A, then B is a P-null set.
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(iii) If A1, . . . ,An are P-null sets, then
⋃n
i=1 Ai is a P-null set.

Proof. (i) follows from [86, Theorem 2.7.4(b)]. (ii) follows from [86, Theo-

rem 2.7.4(a)&(c)]. (iii) follows from [86, Theorem 2.7.4(a)&(j)]. �

Corollary 5.26. The following statements hold.

(i) NP is a proper ideal of subsets of X.

(ii) (NP,⊆) is a directed set.

Proof. (i). Simply observe that Proposition 5.25(i)&(ii)&(iii) are the defining

properties of a proper ideal.

(ii). Recall that a directed set is a partially pre-ordered set in which any

two elements are dominated by another element, i.e., which satisfies the

composition property. This follows from Proposition 5.25(iii). Indeed, if A

and B ∈ NP then A ⊆ C and B ⊆ C for C = A ∪ B ∈ NP. �

Definition 5.27. A random quantity f is called P-null if for every ǫ > 0,

P({x ∈ X : | f (x)| > ǫ}) = 0.

The set of all P-null random quantities is denoted by R0
P
.

A random quantity is P-null if, for all ǫ > 0, we are absolutely certain—

prepared to bet at all odds, in the sense of Theorem 5.24, on the fact—that its

absolute value will not exceed ǫ.

Coherence does not imply downward continuity, but still, why not P({x ∈
X : | f (x)| , 0}) = 0 as a definition? Clearly, it implies our definition, but
it is too restrictive as demonstrated by the following example, adapted

from Bhaskara Rao and Bhaskara Rao [9, Proposition 4.2.7(ii) and Exam-

ple 2.3.5(1)]. Let X = N. Let P be an upper prevision defined by P(IA) := 0
if A is finite and P(IA) := 1 otherwise; P is coherent and can therefore be

extended to a coherent upper prevision on all gambles through natural ex-

tension. Let f (n) := 1/(n + 1). Then, as intuitively expected, f is a P-null

gamble, but P({n ∈N : | f (n)| , 0}) = 1 , 0.

Definition 5.28. Two random quantities f and g are equal almost everywhere

with respect to P if f − g is P-null. In this case, we use the notation f = g a.e. P.
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Definition 5.29. A random quantity f is dominated almost everywhere with

respect to P by a random quantity g if there is a P-null random quantity N

such that f ≤ g + N. In this case, we use the notation f ≤ g a.e. P. We also
define the expressions f ≤ +∞ a.e. P and −∞ ≤ f a.e. P to be true for every
random quantity f .

The following proposition gives some properties of P-null random quan-

tities.

Proposition 5.30. Let A ⊆ X. Let f , g, h, f1, f2, g1, and g2 be random quantities.
Let a and b be real numbers. Then the following statements hold.

(i) A is a P-null set if and only if IA is a P-null gamble.

(ii) If A is P-null, then IA f is P-null.

(iii) If f and g are P-null, then
∣

∣

∣ f
∣

∣

∣, a f + bg, f ∨ g and f ∧ g are P-null.

(iv) If
∣

∣

∣ f
∣

∣

∣ ≤
∣

∣

∣g
∣

∣

∣ a.e. P and g is P-null, then f is P-null.

(v) If f ≤ g a.e. P and g ≤ h a.e. P, then f ≤ h a.e. P.

(vi) f ≤ g a.e. P and g ≤ f a.e. P if and only if f = g a.e. P.

(vii) Assume that a and b are non-negative. If f1 ≤ f2 a.e. P and g1 ≤ g2 a.e. P,
then a f1 + bg1 ≤ a f2 + bg2 a.e. P.

(viii) If f = g a.e. P and g = h a.e. P, then f = h a.e. P.

(ix) If f1 = f2 a.e. P and g1 = g2 a.e. P, then
∣

∣

∣ f1
∣

∣

∣ =
∣

∣

∣ f2
∣

∣

∣ a.e. P, a f1 + bg1 =

a f2 + bg2 a.e. P, f1 ∨ g1 = f2 ∨ g2 a.e. P and f1 ∧ g1 = f2 ∧ g2 a.e. P.

Proof. (i). This follows from Definition 5.23 and Definition 5.27.

(ii). For any ǫ > 0, we have that {x ∈ X : |IA(x) f (x)| > ǫ} ⊆ A. Using the
monotonicity of P, we find that IA f is a P-null random quantity.

(iii). Treating sum and scalar multiplication separately and assuming that

a , 0 (the case a = 0 is immediate), this follows from

{x ∈ X : || f |(x)| > ǫ} = {x ∈ X : | f (x)| > ǫ},
{x ∈ X : |a f (x)| > ǫ} = {x ∈ X : | f (x)| > ǫ/ |a|},

{x ∈ X : | f (x) + g(x)| > ǫ} ⊆ {x ∈ X : | f (x)| > ǫ/2} ∪ {x ∈ X : |g(x)| > ǫ/2},
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and the monotonicity and sub-additivity of P. The maximum and the mini-

mum of f and g can be written as linear combinations of f , g and | f − g|,

f ∨ g = ( f + g + | f − g|)/2, f ∧ g = ( f + g − | f − g|)/2,

so these cases follow from the previous ones.

(iv). By definition of | f | ≤ |g| a.e. P there is a P-null random quantity N
such that | f | ≤ |g| +N. We find that

{x ∈ X : | f (x)| > ǫ} ⊆ {x ∈ X : |g(x)| > ǫ/2} ∪ {x ∈ X : |N(x)| > ǫ/2}.

Now use the monotonicity and sub-additivity of P.

(v). By definition there are two P-null random quantities N and M such

that f ≤ g +N and g ≤ h +M. It follows that f ≤ h + (N +M). By (iii) N +M
is a P-null random quantity. We find that f ≤ h a.e. P.
(vi). “if”. Obvious. “only if”. By definition there are two P-null random

quantities N and M such that f ≤ g + N and g ≤ f + M. It follows that
− |M| ≤ f − g ≤ |N|, which implies that

∣

∣

∣ f − g
∣

∣

∣ ≤ |N| ∨ |M|. By (iii) |N| ∨ |M|
is a P-null random quantity. It follows from (iv) that f − g is also a P-null
random quantity. We find that f = g a.e. P.

(vii). By definition there are two P-null random quantities N andM such

that f1 ≤ f2+N and g1 ≤ g2+M. It follows that a f1+bg1 ≤ a f2+bg2+(aN+bM).
By (iii) aN + bM is a P-null random quantity. We find that a f1 + bg1 ≤
a f2 + bg2 a.e. P.

(viii). By definition there are two P-null random quantitiesN andM such

that f = g +N and g = h +M. It follows that f = h + (N +M). By (iii) N +M

is a P-null random quantity. We find that f = h a.e. P.

(ix) By definition there are two P-null random quantities N and M such

that f1 = f2 + N and g1 = g2 +M. It follows that
∣

∣

∣ f2
∣

∣

∣ − |N| ≤
∣

∣

∣ f1
∣

∣

∣ ≤
∣

∣

∣ f2
∣

∣

∣ + |N|.
By (iii) − |N| and |N| are P-null random quantities. From (vi) we find that
∣

∣

∣ f1
∣

∣

∣ =
∣

∣

∣ f2
∣

∣

∣ a.e. P. It also follows that a f1 + bg1 = a f2 + bg2 + (aN + bM).

By (iii) aN + bM is a P-null random quantity. We find that a f1 + bg1 =

a f2 + bg2 a.e. P. The maximum and the minimum of f1 and g1 can be written

as linear combinations of f1, g1 and
∣

∣

∣ f1 − g1
∣

∣

∣, and a similar statement holds

for the maximum and the minimum of f2 and g2, so these cases follow from

the previous ones. �
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Corollary 5.31. The set of P-null random quantities constitutes a linear lattice with

respect to the point-wise ordering of random quantities.

Corollary 5.32. The binary relation ≤ a.e. P is a partial pre-order on the set of
random quantities with associated equivalence relation = a.e. P.

5.3.2 Null Gambles

Lemma 5.33. Let f be a gamble. Let a be a real number. If P(| f |) = 0 then
P(a f ) = P(a f ) = 0.

Proof. Assume that P(| f |) = 0. Then we also have P(|a f |) = |a|P(| f |) = 0. It
follows from the coherence of P that

0 = −P(|a f |) = P(−|a f |) ≤ P(a f ) ≤ P(a f ) ≤ P(|a f |) = 0.

We may therefore conclude that P(a f ) = P(a f ) = 0. �

Proposition 5.34. Let f and g be gambles . Let a and b be real numbers. Then the

following statements hold.

(i) f is a P-null gamble if and only if P(| f |) = 0.

(ii) If f and g are P-null gambles then P(a f + bg) = P(a f + bg) = 0.

Proof. (i). Immediate from Lemma 4.61 on p. 162, with a constant sequence

fn := f .

(ii). By (i) we have that P(| f |) = 0 and P(|g|) = 0. From Lemma 5.33
it follows that P(a f ) = P(a f ) = 0 and P(bg) = P(bg) = 0. Using the super-

linearity of the coherent P, the sub-linearity of P and P(h) ≤ P(h) for every
gamble h, we find that

0 = P(a f ) + P(bg) ≤ P(a f + bg) ≤ P(a f + bg) ≤ P(a f ) + P(bg) = 0,

so indeed P(a f + bg) = P(a f + bg) = 0. �

5.3.3 Essentially Bounded Random Quantities

We now explain how lower and upper previsions can be extended easily to

random quantities that are bounded on the complement of a P-null set.
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Definition 5.35. Let f be a random quantity. Then the following conditions

are equivalent; if any (hence all) of them are satisfied, we say that f is P-

essentially bounded above.

(A) There is a P-null set A ⊂ X such that f is bounded above on ∁A.

(B) There is a gamble g such that f ≤ g a.e. P.

(C) There is a gamble g such that P({x ∈ X : f (x) > g(x)}) = 0.

Proof of equivalence. (A) =⇒ (B). Let A ⊂ X be a P-null set such that f is
bounded above on ∁A. Define the gamble g := ( f ∁A) ∨ 0 and define the
random quantity N := IA f , then f ≤ g +N. If we can prove that N is a P-null
random quantity, then (B) is established. Let ǫ > 0. Since |N(x)| > ǫ implies
that x ∈ A, we find that

{x ∈ X : |N(x)| > ǫ} ⊆ A.

Now use the monotonicity of P (which again follows from the coherence of

P).

(B) =⇒ (C). Let g be a gamble such that f ≤ g a.e. P. Then there is a
P-null random quantityN such that f ≤ g+N. We also have that f ≤ g+ |N|.
It follows that if f (x) > g(x) + 1 then |N(x)| > 1. Define the gamble h := g + 1.
Then we find that

{x ∈ X : f (x) > h(x)} ⊆ {x ∈ X : |N(x)| > 1}.

Now use the monotonicity of the coherent P and the fact that N is a P-null

random quantity.

(C) =⇒ (A). Let g be a gamble such that P({x ∈ X : f (x) > g(x)}) = 0.
Define A := {x ∈ X : f (x) > g(x)} then A is a P-null set. Since I∁A f ≤ I∁Ag it
follows that f is bounded above on ∁A. This establishes (A). �

Definition 5.36. A random quantity f is called P-essentially bounded below if

− f is P-essentially bounded above.

Definition 5.37. Let f be a random quantity. Then the following conditions

are equivalent; if any (hence all) of them are satisfied, we say that f is P-

essentially bounded; the set of all P-essentially bounded random quantities is

denoted byK ♯
P
(X).



232 CAUCHY EXTENSION OF LOWER PREVISIONS

(A) f is P-essentially bounded above and below.

(B) | f | is P-essentially bounded above.

(C) There is a gamble f♭ such that f = f♭ a.e. P.

Proof of equivalence. (A) =⇒ (B). Assume that there are gambles g1 and g2

such that g1 ≤ f a.e. P and f ≤ g2 a.e. P. This implies that there are P-null
random quantitiesN1 andN2 such that g1 ≤ f +N1 and f ≤ g2+N2 It follows
that | f | ≤ |g1| + |g2| + |N1| + |N2|. We find that | f | ≤ |g1| + |g2| a.e. P.
(B) =⇒ (C). Assume that there is a gamble g such that P({x ∈ X : | f (x)| >

g(x)}) = 0. Define A := {x ∈ X : | f (x)| > g(x)} and f♭ := f ∁A. If we can show
that f − f♭ is a P-null random quantity then f = f♭ a.e. P. Let ǫ > 0. Then

{x ∈ X : | f (x) − f♭(x)| > ǫ} ⊆ A.

Now use the monotonicity of the coherent P.

(C) =⇒ (A). Notice that f = f♭ a.e. P implies that f ≤ f♭ a.e. P and
f♭ ≤ f a.e. P. �

Corollary 5.38. K ♯
P
(X) is a linear lattice.

Proof. ByDefinition 5.37(C), we canwriteK ♯
P
(X) as { f+N : f ∈ L(X), N ∈ R0

P
}.

This is a linear space by Corollary 5.31 on p. 229.

Is it also a lattice? By Definition 5.37(B), it is immediate that a random

quantity f onX is essentially bounded if and only if | f | is essentially bounded,
and hence f ∈ K ♯

P
(X) if and only if | f | ∈ K ♯

P
(X). Since we already proved that

K ♯
P
(X) is a linear space, it follows that K ♯

P
(X) is a lattice: f ∨ g and f ∧ g can

be written as linear combinations of | f − g| and | f + g|. �

5.3.4 Extension to Essentially Bounded Random Quantities

Since for every P-essentially bounded random quantity f , there is a gamble

f♭ such that f = f♭ a.e. P, we can define P( f♭) and P( f♭) to be the lower and

upper prevision of f . This extends the domain of P and P from the set of all

gambles to the set of all P-essentially bounded random quantities. However,

we still have to check whether the lower prevision does not depend on the

particular choice of f♭. This is the subject of the following proposition and

corollary.
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Proposition 5.39. Let f and g be gambles. If f ≤ g a.e. P then P( f ) ≤ P(g) and
P( f ) ≤ P(g).

Proof. Assume that f ≤ g a.e. P. By Definition 5.29, there is a P-null random
quantity N′ such that f ≤ g + N′. But, this means that there is also a P-null
gambleN such that f ≤ g+N. Indeed, takeN = |N′|∧ | f − g|. ThenN is P-null
because N ≤ |N′|, and N is a gamble because sup|N| ≤ sup| f − g| < +∞.
It follows from the coherence of P that

P( f ) ≤ P(g +N) ≤ P(g) + P(N),
P( f ) ≤ P(g +N) ≤ P(g) + P(N).

By Proposition 5.34(i) we know that P(N) = 0. We conclude that P( f ) ≤ P(g)
and P( f ) ≤ P(g). �

Corollary 5.40. Let f and g be gambles. If f = g a.e. P then P( f ) = P(g) and

P( f ) = P(g).

Definition 5.41. For anyP-essentially bounded randomquantity f , wedefine

the extended lower and upper previsions by P♯( f ) := P( f♭) and P
♯
( f ) := P( f♭),

where f♭ is any gamble on X such that f = f♭ a.e. P. The gamble f♭ is called a

determining gamble for f with respect to P, or simply a determining gamble for f .

Note that, if f is P-essentially bounded, then it follows from Defini-

tion 5.37(C) that f♭ exists, and it follows from Corollary 5.40 that the lower

and upper prevision of f are independent of the choice of the determining

gamble f♭.

Theorem 5.42. P♯ and P
♯
are extensions of P and P, respectively.

Proof. Let f be a gamble on X. Then f is a determining gamble for itself. It
follows from Definition 5.41 that P

♯
( f ) = P( f ) and P♯( f ) = P( f ). �

Theorem 5.43. P♯ is a coherent extended lower prevision on K ♯
P
(X), and P

♯
is its

conjugate.

Proof. Obviously, for any P-essentially bounded random quantity f , it holds

that P♯( f ) = P( f♭) = −P(− f♭) = −P
♯
(− f ), so, P♯ is indeed the conjugate of P♯.
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Since, by Corollary 5.38 on p. 232, K ♯
P
(X) is a linear space, it suffices to

check that P♯ satisfies the conditions of Theorem 5.6 on p. 206. Let f and g be

random quantities inK ♯
P
(X), and let λ be a non-negative real number.

(1). We must show that P♯( f ) ≥ inf f . If inf f = −∞, then the claim is
immediate. Otherwise, if inf f > −∞, let f♭ be any determining gamble for
f : f♭ = f a.e. P. Then, also f♭ ∨ inf f = f ∨ inf f a.e. P, so, f♭ ∨ inf f is a
determining gamble for f ∨ inf f = f . Hence,

P♯( f ) = P( f♭ ∨ inf f ) ≥ inf f ,

since f♭ ∨ inf f ≥ inf f .
(2). We must show that P♯(λ f ) = λP♯( f ). If λ = 0, then the claim is

evident. If λ > 0, then f♭ is a determining gamble for f if and only if λ f♭ is a

determining gamble for λ f , and hence,

P♯(λ f ) = P(λ f♭) = λP( f♭) = λP
♯( f ).

(3). We are left to show that P♯( f + g) ≥ P♯( f )+P♯(g). If f♭ is a determining
gamble for f , and g♭ is a determininggamble for g, then f♭+g♭ is a determining

gamble for f + g, whence:

P♯( f + g) = P( f♭ + g♭) ≥ P( f♭) + P(g♭) = P♯( f ) + P♯(g).

So, P♯ is coherent. �

5.3.5 Examples

Let P := PX be the vacuous lower prevision on L(X). Then the empty set
is the only P-null set. The only P-null random quantity is 0. We have that

L(X) = K ♯
P
(X), P = P♯ and P = P

♯
.

More generally, let P := PA be the vacuous lower prevision on L(X) with
respect to a non-empty subset A of X: P( f ) = infx∈A f (x). Then, NP = {B ⊆
X : B ∩ A = ∅}, R0

P
= { f ∈ R(X) : IA f = 0}, K ♯

P
(X) = { f ∈ R(X) : IA f ∈ L(X)},

and

P♯( f ) = inf
x∈A
f (x), (5.12)

for any f inK ♯
P
(X), i.e., any f that is bounded on A.



5.3 EXTENSION TO ESSENTIALLY BOUNDED RANDOM QUANTITIES 235

For another example, let F be a field, let µ be a probability charge on F ,
and let P := Eµ. A set A is a P-null set if and only if it is a µ-null set, as

defined for instance by Bhaskara Rao and Bhaskara Rao [9, Definition 4.2.2],

i.e., if and only if µ∗(A) = 0; this is immediate from Theorem 4.36(v) on p. 117.

Consequently, a random quantity is a P-null random quantity if and only if

it is a µ-null function, as for instance defined by Bhaskara Rao and Bhaskara

Rao [9, Definition 4.2.4], i.e., if and only if {x ∈ X : | f (x)| > ǫ} is a µ-null set
for all ǫ > 0. A random variable is P-essentially bounded if and only if it

is µ-essentially bounded, again as defined for instance by Bhaskara Rao and

Bhaskara Rao [9, Definition 4.2.8], i.e., if and only if it is bounded on the

complement of a µ-null set. In fact, if f is a P-essentially bounded random

quantity, and f has an F -simple determining gamble f♭, then f is Dunford
integrable with respect to µ, and

P♯( f ) = D

∫

f dµ;

indeed, simply observe that any determining gamble f♭ for f determines a

determining sequence fn := f♭ for f , in the sense of Definition 4.60.

We shall prove further on that, for an arbitrary lower prevision Q that

avoids sure loss, and whose domain is a subset of LF (X), it holds that

E
♯
Q
( f ) = min

µ∈mF
Q

D

∫

f dµ,

for any EQ-essentially bounded random quantity f that has an F -simple
determining gamble f♭: on this set of random quantities, the extended lower

prevision E♯
Q
is representable by a lower envelope of Dunford integrals. Of

course, having an F -simple determining gamble is quite a strong condition
in general, even if F is the power set on X. Therefore, further on, we shall
prove a more general result; see Theorem 5.76 on p. 265.
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5.4 Extension of Lower Previsions by Hazily Con-

vergent Cauchy Sequences

5.4.1 Introduction

Instead of approximating a random quantity f by a gamble f♭ that is equal

to f outside a null set, we now shall try approximating f by a sequence of

gambles fn, converging hazily to f , i.e., converging to f outside a null set (see

Definition 5.44 on p. 236): in this way, we may extend a lower prevision P to

a larger set of random quantities, i.e., larger than K ♯
P
(X). However, it is easy

to construct different sequences of gambles, that converge hazily to the same

random quantity f , but for which the lower prevision doesn’t converge to the

same number. In Proposition 5.48 on p. 239, we shall give sufficient condi-

tions for such candidate sequences to converge to the same lower prevision,

which are very similar to the conditions of Dunford integrability; compare

to Definition 4.60 on p. 162. In essence, this comes down to requiring fn to be

a Cauchy sequence with respect to the P-norm. The random quantities for

which this Cauchy construction is possible are called previsible, and we shall

prove that the resulting extension yields coherent extended lower and upper

previsions.

A very reasonableway of approximating an unbounded randomquantity

is by a sequence of cuts: we shall prove that every previsible randomvariable

can be approximated by a sequence of cuts. Moreover, the converse also

holds: if a random variable can be approximated by cuts, then it is previsible.

We shall prove ananalogonof theLebesguedominated convergence theorem,

in order to establish this.

Finally, we shall show that, for linear previsions, our extension coincides

with the Dunford integral, and, for arbitrary lower previsions, our extension

is given by a lower envelope of Dunford integrals.

5.4.2 Hazy Convergence

Definition 5.44. Let f be a random quantity, and let fα be a net of random

quantities. Then the following conditions are equivalent; if any (hence all)

of them are satisfied, we say that the net fα converges P-hazily to f and we use

the notation fα
P−→ f .
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(A) For every ǫ > 0, lim
α
P({x ∈ X : | f (x) − fα(x)| > ǫ}) = 0.

(B) For every ǫ > 0, eventually P({x ∈ X : | f (x) − fα(x)| > ǫ}) < ǫ.

Proof of equivalence. We first prove that (A) implies (B). Let ǫ > 0 and δ > 0.

Then (A) implies that there is a Nǫ,δ such that for every α ≥ Nǫ,δ

P({x ∈ X : | f (x) − fα(x)| > ǫ}) < δ.

Take δ := ǫ.

Next we prove that (B) implies (A). Let ǫ > 0 and δ > 0. Then (B) implies

that there is an Nǫ such that for every α ≥ Nǫ

P({x ∈ X : | f (x) − fα(x)| > ǫ}) < ǫ.

LetMǫ,δ := Nmin{ǫ,δ}. It follows that for every α ≥Mǫ,δ we have that

P({x ∈ X : | f (x) − fα(x)| > min{ǫ, δ}}) < min{ǫ, δ} < δ.

Since

{x ∈ X : | f (x) − fα(x)| > ǫ}) ⊆ {x ∈ X : | f (x) − fα(x)| > min{ǫ, δ}}).

we find that indeed

P({x ∈ X : | f (x) − fα(x)| > ǫ}) < δ.

for every α ≥Mǫ,δ. �

Proposition 5.45. Let f and g be random quantities. Let fα be a net of random

quantities. Then the following statements hold.

(i) If fα
P−→ f and f = g a.e. P then fα

P−→ g.

(ii) Conversely, if fα
P−→ f and fα

P−→ g then f = g a.e. P.

Proof. The proof follows from

{x ∈ X : | fα(x) − g(x)| > ǫ}
⊆ {x ∈ X : | fα(x) − f (x)| > ǫ/2} ∪ {x ∈ X : | f (x) − g(x)| > ǫ/2},
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{x ∈ X : | f (x) − g(x)| > ǫ}
⊆ {x ∈ X : | f (x) − fα(x)| > ǫ/2} ∪ {x ∈ X : | fα(x) − g(x)| > ǫ/2},

and the monotonicity and sub-additivity of the coherent P. �

Proposition 5.46. Let f and g be two random quantities. Let fα and gα be two

nets of random quantities. Assume that fα
P−→ f and gα

P−→ g. Let a and b be real
numbers. Then a fα + bgα, | fα|, fα ∨ gα and fα ∧ gα converge P-hazily to a f + bg,
| f |, f ∨ g and f ∧ g, respectively.

Proof. For the linear combination, we treat addition and scalar multiplication

separately. For the addition we have that

{x ∈ X : | f (x) + g(x) − fα(x) − gα(x)| > ǫ}
⊆ {x ∈ X : | f (x) − fα(x)| > ǫ/2} ∪ {x ∈ X : |g(x) − gα(x)| > ǫ/2}.

Using the monotonicity and sub-additivity of the coherent P, it follows that

lim
n→∞
P({x ∈ X : | f (x) + g(x) − fα(x) − gα(x)| > ǫ})

≤ lim
n→∞
P({x ∈ X : | f (x) − fα(x)| > ǫ/2})

+ lim
n→∞
P({x ∈ X : |g(x) − gα(x)| > ǫ/2})

= 0 + 0,

whence indeed fα + gα
P−→ f + g.

For scalar multiplication, wemay assume that the scalar a is non-zero (the

case a = 0 is immediate). Then

lim
n→∞
P({x ∈ X : |a f (x) − a fα(x)| > ǫ})

= lim
n→∞
P({x ∈ X : | f (x) − fα(x)| > ǫ/|a|}) = 0,

whence a fα
P−→ a f .

For the absolute value we have

{x ∈ X :
∣

∣

∣| f (x)| − | fα(x)|
∣

∣

∣ > ǫ} ⊆ {x ∈ X : | f (x) − fα(x)| > ǫ}.
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Again use the monotonicity of the coherent P.

The maximum and the minimum of f and g can be written as linear

combinations of f , g and | f − g|,

f ∨ g = ( f + g + | f − g|)/2, f ∧ g = ( f + g − | f − g|)/2,

so this case follows from the previous cases. �

5.4.3 Previsibility

Lemma 5.47. Let f be a non-negative gamble. Then, for every ǫ > 0 there is a

δǫ > 0 such that for every A ⊆ X, if P(A) < δǫ then P( fA) < ǫ.

Proof. Let ǫ > 0. If sup f = 0 then f ≡ 0 and P( fA) = 0 independently of
A ⊆ X, whence P( fA) < ǫ. Hence, we may assume that sup f > 0. Define

δǫ := ǫ/ sup f . If P(A) < δǫ, then we find that P( fA) ≤ sup f P(A) < sup fδǫ =
ǫ. �

Proposition 5.48. Let fn and gn be two sequences of gambles converging P-hazily

to a random quantity h. Suppose that

lim
n,m→∞

P(| fn − fm|) = 0, and lim
n,m→∞

P(|gn − gm|) = 0,

i.e., that fn and gn are Cauchy with respect to the P-norm. Then the limits

limn→∞ P( fn) and limn→∞ P(gn) exist, are finite and coincide. Also the limits

limn→∞ P( fn) and limn→∞ P(gn) exist, are finite and coincide.

Proof. First we prove that the limits exist and are finite. This follows from the

inequalities (see the properties of coherence listed in Theorem 3.5 on p. 55)

|P( fn) − P( fm)| ≤ P(| fn − fm|), |P( fn) − P( fm)| ≤ P(| fn − fm|),
|P(gn) − P(gm)| ≤ P(|gn − gm|), |P(gn) − P(gm)| ≤ P(|gn − gm|).

Since the right hand sides converge to zero, the left hand sides must con-

verge to zero too. This means that P( fn), P( fn), P(gn) and P(gn) are Cauchy

sequences. By the completeness of R, their limits exist and are finite.

We prove limn→∞ P( fn) = limn→∞ P(gn) and limn→∞ P( fn) = limn→∞ P(gn).

Define the gamble Nn := | fn − gn|. Again by the coherence of P (Theorem 3.5
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on p. 55), we have that

|P( fn) − P(gn)| ≤ P(Nn), |P( fn) − P(gn)| ≤ P(Nn).

The proof is complete if we can show that P(Nn) converges to zero. This is

what we now set out to do.

For every n ∈N and everyA ⊆ X, define an(A) := P(NnA). Wemust prove
that an(X) converges to zero.

Every an is an element of the function space R
℘(X). Equip this function

spacewith the topology of uniform convergence on℘(X). From the complete-
ness of R, it follows that R℘(X) is complete with respect to the topology of

uniform convergence on ℘(X); see for instance Schechter [70, Section 19.12].

We first claim that an converges with respect to the topology of uniform

convergence on ℘(X). Indeed, considerA ⊆ X, then, using the coherence of P
(in particular, using that |P(h)−P(h′)| ≤ P(|h−h′|),

∣

∣

∣|h|− |h′|
∣

∣

∣ ≤ |h−h′| ≤ |h|+ |h′|,
|h|A ≤ |h| for all gambles h and h′, and the monotonicity and sub-linearity of
P), we find that

|an(A) − am(A)| =
∣

∣

∣

∣

P
(

| fn − gn|A
)

− P
(

| fm − gm|A
)

∣

∣

∣

∣

≤ P
(∣

∣

∣| fn − gn| − | fm − gm|
∣

∣

∣A
)

≤ P
(∣

∣

∣

(

fn − gn
) − (

fm − gm
)

∣

∣

∣A
)

≤ P
(∣

∣

∣

(

fn − fm
) − (

gn − gm
)

∣

∣

∣

)

≤ P
(

| fn − fm|
)

+ P
(

|gn − gm|
)

.

Since the right hand side converges to zero independently of A, it follows

that an is Cauchy with respect to the topology of uniform convergence on

℘(X). By the completeness ofR℘(X) with respect to this topology, we find that
an indeed converges uniformly on ℘(X).

Uniform convergence implies point-wise convergence, so for everyA ⊆ X
we can define a(A) := limn→∞ an(A). We must prove that a(X) = 0.

Let ǫ > 0. By the convergence of anwith respect to the topology of uniform

convergence on ℘(X), there is anMǫ ∈N such that for everyA ⊆ X and every
n ≥Mǫ

|an(A) − a(A)| < ǫ. (5.13)
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By Lemma 5.47, there is a δǫ > 0 such that for every A ⊆ X we have that if
P(A) < δǫ then P(NMǫA) = aMǫ (A) < ǫ. Since a(A) ≤ |a(A) − aMǫ (A)| + aMǫ (A), it

follows from Eq. (5.13) that for all A ⊆ X

P(A) < δǫ =⇒ a(A) < 2ǫ. (5.14)

Define B := {x ∈ X : NMǫ (x) , 0}, then NMǫ ∁B = 0. This implies that

P(NMǫ ∁B) = aMǫ (∁B) = 0. From Eq. (5.13) it follows that a(∁B) < ǫ.

Next we prove that a(X) < 5ǫ.

1. Consider the case P(B) = 0. Then a(B) = limn→∞ P(NnB) = 0 since

0 ≤ P(NnB) ≤ supNnP(B) = 0 for every n ∈ N. By the sub-additivity of
P it follows that a(X) ≤ a(B) + a(∁B) < 0 + ǫ < 5ǫ.

2. Nowconsider the other caseP(B) > 0. Since fn and gn convergeP-hazily

to h, it follows from Proposition 5.46 that Nn = | fn − gn| converges P-
hazily to 0. By the definition of P-hazy convergence, this implies that

for the ǫ,Mǫ and δǫ constructed above, there is a Kǫ ≥Mǫ, such that for

all n ≥ Kǫ
P({x ∈ X : Nn(x) > ǫ/P(B)}) < δǫ. (5.15)

Define C := {x ∈ X : NKǫ (x) ≤ ǫ/P(B)}. By the sub-additivity of the
coherent P we have that a(X) ≤ a(B ∩ C) + a(B ∩ ∁C) + a(∁B). We now
investigate each term of this sum.

(i) By Eq. (5.13) we get a(B ∩ C) < aKǫ (B ∩ C) + ǫ, since Kǫ ≥ Mǫ.

Since NKǫ(x) ≤ ǫ/P(B) for all x ∈ C and P(B ∩ C) ≤ P(B), we find
that aKǫ (B ∩ C) = P(NKǫB ∩ C) ≤ (ǫ/P(B))P(B ∩ C) ≤ ǫ. Therefore
a(B ∩ C) < 2ǫ.

(ii) We claim that a(B∩∁C) < 2ǫ. By Eq. (5.15) it follows that P(∁C) <
δǫ. The claim is establishedusingP(B∩∁C) ≤ P(∁C) andEq. (5.14).

(iii) We have already proved that a(∁B) < ǫ.

In both cases it follows that a(X) < 5ǫ. Since this holds for any ǫ > 0, we may
conclude that indeed a(X) = 0. �

Definition 5.49. A random quantity f is called P-previsible if there is a se-

quence fn of gambles such that
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(i) fn converges P-hazily to f , and

(ii) fn is a Cauchy sequence with respect to the P-norm.

The sequence fn is called a determining sequence of gambles for f with respect to

P, or simply a determining sequence for f . The set of all P-previsible random

quantities is denoted byKx
P
(X). For any P-previsible random quantity f , we

define the extended lower and upper previsions Px( f ) := limn→∞ P( fn) and

P
x
( f ) := limn→∞ P( fn), where fn is any determining sequence for f .

Recall the definition of the P-norm, Definition 5.17 on p. 217. So, since P

is a coherent lower prevision defined on L(X), condition (ii) simply means
that

lim
n,m→∞

∥

∥

∥ fn − fm
∥

∥

∥

P
= lim
n,m→∞

EP(| fn − fm|) = lim
n,m→∞

P(| fn − fm|) = 0,

whence, if a random quantity f is P-previsible, then, by Proposition 5.48,

Px( f ) and P
x
( f ) exist, are finite and are independent of the choice of the

determining sequence fn for f .

Obviously, every gamble f is P-previsible, since the constant sequence

fn := f is a determining sequence for f : L(X) ⊆ KxP(X). Moreover, every
P-essentially bounded random quantity f is P-previsible, since the constant

sequence fn := f♭ is a determining sequence for f , if f♭ is a determining

gamble for f : L(X) ⊆ K ♯
P
(X) ⊆ Kx

P
(X). We even have a stronger result:

Theorem 5.50. Px and P
x
are extensions of P♯ and P

♯
, respectively.

Proof. Let f ∈ K ♯
P
(X). Let f♭ be a determining gamble for f . Define fn := f♭

for every n ∈ N. Then fn is a determining sequence for f . It is immediate
from Definition 5.49 that P

x
( f ) = P( f♭) = P

♯
( f ) and Px( f ) = P( f♭) = P

♯( f ). �

Theorem 5.51. Let f and g be P-previsible random quantities. Let fn be a deter-

mining sequence for f and let gn be a determining sequence for g. Let a and b be real

numbers. Then a fn + bgn, | fn|, fn ∨ gn and fn ∧ gn are determining sequences for
a f + bg, | f |, f ∨ g and f ∧ g, respectively. Hence, a f + bg, | f |, f ∨ g and f ∧ g are
P-previsible.

Proof. P-hazy convergence follows from Proposition 5.46 on p. 238. To check
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the Cauchy condition, use the inequalities

P
(∣

∣

∣(a fn + bgn) − (a fm + bgm)
∣

∣

∣

)

≤ |a|P
(

| fn − fm|
)

+ |b|P
(

|gn − gm|
)

,

P
(∣

∣

∣| fn| − | fm|
∣

∣

∣

)

≤ P
(

| fn − fm|
)

and the fact that the maximum and the minimum of f and g can be written

as linear combinations of f , g and | f − g|. �

Corollary 5.52. Kx
P
(X) is a linear lattice.

Proposition 5.53. Px is a coherent extended lower prevision on Kx
P
(X), and Px is

its conjugate.

Proof. Obviously, for anyP-previsible randomquantity f , it holds thatPx( f ) =

limn→∞ P( fn) = limn→∞(−P(− fn)) = − limn→∞ P(− fn) = −P
x
(− f ), so, Px is

indeed the conjugate of Px.

Since, by Corollary 5.52, Kx
P
(X) is a linear space, it suffices to check that

Px satisfies the conditions of Theorem 5.6 on p. 206. Indeed, let f and g be

random quantities inKx
P
(X), and let λ be a non-negative real number.

(1). We must show that Px( f ) ≥ inf f . If inf f = −∞, then the claim
is immediate. Otherwise, if inf f > −∞, note that, if fn is a determining
sequence for f , then fn ∨ inf f is a determining sequence for f ∨ inf f = f , by
Theorem 5.51. Hence,

Px( f ) = lim
n→∞
P( fn ∨ inf f ) ≥ inf f ,

since fn ∨ inf f ≥ inf f , and since P is coherent.
(2). We must show that Px(λ f ) = λPx( f ). If λ = 0, then the claim is

evident. If λ > 0, then, by Theorem 5.51, fn is a determining sequence for

f if and only if λ fn is a determining sequence for λ f , and hence, using the

coherence of P,

Px(λ f ) = lim
n→∞
P(λ fn) = lim

n→∞
λP( fn) = λ lim

n→∞
P( fn) = λP

x( f ).

(3). We are left to show that Px( f + g) ≥ Px( f )+Px(g). If fn is a determining
sequence for f , and gn is a determining sequence for g, then, by Theorem 5.51,

fn+ gn is a determining sequence for f + g, whence, again using the coherence
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of P:

Px( f + g) = lim
n→∞
P( fn + gn) ≥ lim

n→∞

(

P( fn) + P(gn)
)

= lim
n→∞
P( fn) + lim

n→∞
P(gn) = P

x( f ) + Px(g).

So, Px is coherent. �

As a result of the coherence of Px, it follows that Px satisfies all of the prop-

erties listed in Theorem 5.5 on p. 203. There are a few additional properties,

which are worth mentioning here:

Proposition 5.54. Let f and g be P-previsible random quantities. If f ≤ g a.e. P
then Px( f ) ≤ Px(g) and Px( f ) ≤ Px(g).

Proof. If f ≤ g a.e. P, then, by definition, there is a P-null random quantityN
such that f ≤ g + N. Let hn be a determining sequence for g − f . Since N is
P-null, it holds that g − f = g − f + N a.e. P, and so, by Proposition 5.45, hn
also converges P-hazily to g − f + N: consequently, hn is also a determining
sequence for g − f +N. By Theorem 5.51, we find that (hn)+ := hn ∨ 0 is also
a determining sequence for (g − f + N)+ = g − f + N (recall that f ≤ g + N).
It follows that

Px(g) − Px( f ) ≥ Px(g − f ) = lim
n→∞
P(hn) = P

x(g − f +N) = lim
n→∞
P((hn)

+) ≥ 0,

P
x
(g) − Px( f ) ≥ Px(g − f ) = lim

n→∞
P(hn) = P

x(g − f +N) = lim
n→∞
P((hn)

+) ≥ 0.

This completes the proof. �

Definition 5.55. For anyP-previsible randomquantity f , theP-previsible norm

of f is defined by
∥

∥

∥ f
∥

∥

∥

x

P
:= P

x
(| f |).

Note that the P-previsible norm coincides with the restriction of the Px-

norm to the set of P-previsible random quantities. Consequently, it holds

thatKx
P
(X), equipped with ‖•‖xP, is a semi-normed linear lattice (see Proposi-

tion 5.19(iv)).

Theorem 5.56. Let f be a P-previsible random quantity. Then f is a P-null random

quantity if and only if
∥

∥

∥ f
∥

∥

∥

x

P
= 0.
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Proof. Define Aǫ := {x ∈ X : | f (x)| > ǫ}.
First we show that the condition is sufficient. Suppose

∥

∥

∥ f
∥

∥

∥

x

P
= 0. Let ǫ > 0.

Since | f | ≥ ǫAǫ ≥ 0 it follows from the monotonicity of P
x
(Theorem 5.5(iv))

that 0 =
∥

∥

∥ f
∥

∥

∥

x

P
≥ ǫP(Aǫ) ≥ 0. We find that P(Aǫ) = 0 for every ǫ > 0, i.e., f is

P-null.

Next we show that the condition is necessary. Suppose that f is a P-null

random quantity, i.e., P(Aǫ) = 0 for every ǫ > 0. We prove that the constant

sequence fn := 0 is a determining sequence for | f |. For P-hazy convergence,
we need that P({x ∈ X :

∣

∣

∣| f (x)| − fn(x)
∣

∣

∣ > ǫ}) converges to zero for every ǫ > 0.
Indeed, since {x ∈ X :

∣

∣

∣| f (x)|− fn(x)
∣

∣

∣ > ǫ} = Aǫ and P(Aǫ) = 0 for every ǫ > 0we
have P-hazy convergence. The Cauchy condition is satisfied since we have a

constant sequence. We find that fn := 0 is a determining sequence for | f |. It
follows that P

x
(| f |) = P(0) = 0. �

Finally, we showhow sequences of previsible randomquantitiesmay also

be used as determining sequences.

Lemma 5.57. Let f be a P-previsible random quantity. Let fn be a determining

sequence for f . Then fn converges to f with respect to the P-previsible norm:

P
x
(| f − fn|)→ 0.

Proof. By Theorem 5.51, | fm − fn| is a determining sequence for | f − fn|. Using
Definition 5.49, it follows that

lim
n→∞
P
x
(| f − fn|) = lim

n→∞

(

lim
m→∞

P(| fm − fn|)
)

= lim
n,m→∞

P(| fm − fn|) = 0.

This ends the proof. �

Theorem 5.58. Let fn be a sequence of P-previsible random quantities. Suppose

that

(i) fn converges P-hazily to f ,

(ii) limn,m→∞ P
x
(| fn − fm|) = 0.

Then f is P-previsible, Px( f ) = limn→∞ P
x( fn) and P

x
( f ) = limn→∞ P

x
( fn).

Proof. Fix n in N. Since fn is P-previsible and by Lemma 5.57, there is a
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gamble gn such that

P
x
(| fn − gn|) < 1/n, (5.16)

P({x ∈ X : | fn(x) − gn(x)| > 1/n}) < 1/n.

We prove that the gn constitute a determining sequence for f .

First, we show that the sequence gn converges P-hazily to f . Let ǫ > 0.

Since fn converges P-hazily to f , there is an Nǫ ∈N such that

P({x ∈ X : | fn(x) − f (x)| > ǫ/2}) < ǫ/3 (5.17)

for every n ≥ Nǫ. Define Mǫ := max{Nǫ, ⌈2/ǫ⌉}. Then for every n ≥ Mǫ we

have that

{x ∈ X : |gn(x) − f (x)| > ǫ}
⊆ {x ∈ X : |gn(x) − fn(x)| > 1/Mǫ} ∪ {x ∈ X : | fn(x) − f (x)| > ǫ/2}.

It follows from Eq. (5.16), Eq. (5.17) and the sub-additivity of the coherent P

that

P({x ∈ X : |gn(x) − f (x)| > ǫ}) ≤ 1/Mǫ + ǫ/3 < ǫ/2 + ǫ/2 = ǫ,

for every n ≥Mǫ. We find that gn converges P-hazily to f .

Next, we have that

∥

∥

∥gn − gm
∥

∥

∥

P
=

∥

∥

∥gn − gm
∥

∥

∥

x

P
≤

∥

∥

∥gn − fn
∥

∥

∥

x

P
+

∥

∥

∥ fn − fm
∥

∥

∥

x

P
+

∥

∥

∥ fm − gm
∥

∥

∥

x

P
.

Since all terms of the sum on the right side of the inequality converge to zero,

it follows that
∥

∥

∥gn − gm
∥

∥

∥

P
converges to zero, i.e., gn is Cauchy in P-norm. We

conclude that gn is a determining sequence for f , and it follows that f is

P-previsible.

Finally, we have that

∥

∥

∥ fn − f
∥

∥

∥

x

P
≤

∥

∥

∥ fn − gn
∥

∥

∥

x

P
+

∥

∥

∥gn − f
∥

∥

∥

x

P
.

Since both terms of the sum on the right side of the inequality converge to

zero (see (5.16) and Lemma 5.57), it follows that
∥

∥

∥ fn − f
∥

∥

∥

x

P
converges to zero.

Now use Theorem 5.5(xi) on p. 203. �
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5.5 Approximation by Cuts

In this section, we establish a constructiveway in order to determine whether

a randomquantity is previsible, and to find a determining sequence for an ar-

bitrary previsible random quantity. In constructing determining sequences,

it seems sensible to look at so-called cuts:

Definition 5.59. Let f be a random quantity. For a and b non-negative real

numbers the (a,b)-cut of f is defined by

fa,b(x) :=































−b if f (x) < −b,
a if f (x) > a,

f (x) otherwise.

If an and bn are sequences of non-negative real numbers converging to

infinity, we shall now establish that fan,bn is a determining sequence for f

with respect to P if and only if f is P-previsible, in which case Px( f ) =

limn→∞ P( fan,bn). The proof of this fact is simple, if we first introduce some

new mathematical machinery.

5.5.1 A New Type of Measurability

Definition 5.60. Let f be a random quantity. Then the following conditions

are equivalent; if any (hence all) of them are satisfied, we say that f is P-

measurable.

(A) There is a sequence of simple gambles fn converging P-hazily to f .

(B) For every ǫ > 0 there is a partition {F0,F1, . . . ,Fn} ofX such that P(F0) < ǫ
and | f (x) − f (x′)| < ǫ for every x, x′ ∈ Fi, i = 1, . . . , n.

(C) There are two sequences an and bn of non-negative real numbers con-

verging to infinity such that fan,bn converges P-hazily to f .

(D) For every two sequences an and bn of non-negative real numbers con-

verging to infinity we have that fan,bn converges P-hazily to f .

Proof of equivalence of Definition 5.60(A)&(B). First we prove that (A) implies

(B). Let ǫ > 0. Since fn converges P-hazily to f , there is an mǫ inN such that

P({x ∈ X : | f (x) − fmǫ(x)| > ǫ/3}) < ǫ.
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Let g := fmǫ =
∑n
i=1 ciEi. Let F0 := {x ∈ X : | f (x) − g(x)| > ǫ/3}. We have that

P(F0) < ǫ. Let Fi := Ei ∩ ∁F0, i = 1, . . . , n. Since {E1, . . . ,En} is a partition
of X, it follows that {F0,F1, . . . ,Fn} is also a partition of X. For i = 1, . . . , n
we have for every x, x′ ∈ Fi that g(x) = g(x′) = ci, | f (x) − g(x)| ≤ ǫ/3 and
| f (x′) − g(x′)| ≤ ǫ/3. We find that

| f (x) − f (x′)| = | f (x) − g(x) + g(x′) − f (x′)| ≤ ǫ/3 + ǫ/3 < ǫ.

This establishes (A) =⇒ (B).
Next we prove that (B) =⇒ (A). Let n ∈N \ {0}, and let {Fn,0,Fn,1, . . . ,Fn,kn }

be a partition of X such that P(Fn,0) < 1/n and | f (x) − f (x′)| < 1/n for every x,
x′ ∈ Fn,i, i = 1, . . . , kn. Fix some xn,i in Fn,i, i = 1, . . . , kn. Define the simple
gamble

fn :=

kn
∑

i=1

f (xn,i)Fn,i.

We claim that fn converges P-hazily to f . Let ǫ > 0. Define Mǫ := ⌈1/ǫ⌉. By
construction of fn we have for every n ≥Mǫ that

{x ∈ X : | f (x) − fn(x)| > ǫ} ⊆ Fn,0.

It follows that

P({x ∈ X : | f (x) − fn(x)| > ǫ}) ≤ P(Fn,0) < 1/n.

This establishes (B) =⇒ (A). �

Toprove equivalence ofDefinition 5.60(B)&(C)&(D)wefirst need to prove

some lemma’s. All of these use Definition 5.60(A) or (B) for P-measurability.

Lemma 5.61. Every gamble is P-measurable.

Proof. Let f be a gamble. Let ǫ > 0. Since f is bounded there is a sequence

fn of simple gambles converging uniformly to f , i.e., there is an Nǫ ∈N such
that for every n ≥ Nǫ and every x ∈ X we have that | f (x) − fn(x)| < ǫ. This
implies that

P({x ∈ X : | f (x) − fn(x)| > ǫ}) = P(∅) = 0

for all n ≥ Nǫ. We find that fn converges P-hazily to f . We conclude that f is
P-measurable. �
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Definition 5.62. A random quantity f is called P-smooth if for every ǫ > 0

there is a kǫ > 0 such that P({x ∈ X : | f (x)| > kǫ}) < ǫ.

Lemma 5.63. Every P-measurable random quantity is P-smooth.

Proof. Let f be a P-measurable random quantity. Let ǫ > 0. By Defini-

tion 5.60(B) there is a partition {F0,F1, . . . ,Fn} of X such that P(F0) < ǫ and

| f (x) − f (x′)| < ǫ for every x, x′ ∈ Fi, i = 1, . . . ,n.
Fix i ∈ {1, . . . ,n}. Fix x′ in Fi. Then | f (x)| ≤ | f (x′)| + ǫ for every x ∈ Fi. It

follows that f is bounded on Fi.

Next, define

k :=
n
max
i=1
sup{| f (x)| : x ∈ Fi},

then | f (x)| > k only if x ∈ F0. By the monotonicity of the coherent P we find
that

P({x ∈ X : | f (x)| > k}) ≤ P(F0) < ǫ.

This establishes the claim. �

Lemma 5.64. Let f be a random quantity. Let fα be a net of P-measurable random

quantities. If fα converges P-hazily to f then f is P-measurable.

Proof. We verify Definition 5.60(B). Let ǫ > 0. Since fα converges P-hazily to

f there is an α0 such that

P({x ∈ X : | f (x) − fα0(x)| > ǫ/4}) < ǫ/2.

Define A := {x ∈ X : | f (x)− fα0(x)| > ǫ/4}. Then P(A) < ǫ/2 and | f (x)− fα0(x)| ≤
ǫ/4 for all x ∈ ∁A.
Since fα0 is P-measurable there is a partition {F0,F1, . . . ,Fn} of X that

satisfies P(F0) < ǫ/2 and | fα0(x) − fα0 (x′)| < ǫ/2 for all x, x′ ∈ Fi, i = 1, . . . ,n.
Define E0 := A∪F0 and Ei := (∁A)∩Fi, i = 1, . . . ,n. Since {F0,F1, . . . ,Fn} is

a partition ofX, we have that {E0,E1, . . . ,En} is also a partition ofX. It follows
that

P(E0) = P(A ∪ F0) ≤ P(A) + P(F0) < ǫ/2 + ǫ/2 = ǫ
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and

| f (x) − f (x′)| = | f (x) − fα0 (x) + fα0(x) − fα0 (x′) + fα0(x′) − f (x′)|
≤ | f (x) − fα0 (x)| + | fα0(x) − fα0 (x′)| + | fα0(x′) − f (x′)|
< ǫ/4 + ǫ/2 + ǫ/4 = ǫ.

for all x, x′ ∈ (∁A) ∩ Fi = Ei. �

Proof of the equivalence of Definition 5.60(B)&(C)&(D). First, we prove that (B)

implies (D). Since f is P-measurable, f is also P-smooth (Lemma 5.63). This

means that for every δ > 0 there is a kδ > 0 such that

P({x ∈ X : | f (x)| > kδ}) < δ. (5.18)

Let an and bn be two sequences of non-negative real numbers converging to

infinity. For these sequences there is an Nδ in N such that for every n ≥ Nδ
we have that an ≥ kδ and bn ≥ kδ.
Let ǫ > 0. For every n ≥ Nδ we find that

{x ∈ X : | fan,bn(x) − f (x)| > ǫ} ⊆ {x ∈ X : | f (x)| > ǫ +min{an, bn}}
⊆ {x ∈ X : | f (x)| > ǫ + kδ}
⊆ {x ∈ X : | f (x)| > kδ}

Now use the monotonicity of the coherent P and inequality Eq. (5.18) to

conclude that fan,bn converges P-hazily to f .

It is clear that (D) implies (C).

Finally we prove that (C) implies (B). Assume there are two sequences

an and bn of non-negative real numbers converging to infinity such that fan,bn
converges P-hazily to f . Since fan,bn is bounded, it follows from Lemma 5.61

that fan,bn is P-measurable for every n ∈N. Now use Lemma 5.64. �

5.5.2 A Dominated Convergence Theorem

Lemma5.65. Let f be a randomquantity. Let fn be a sequence of gambles converging

P-hazily to f . Then there is a sequence gn of gambles converging P-hazily to f such

that |gn| ≤ 2| f | for every n ∈N.
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Proof. Since fn converges P-hazily to f there is a subsequence fnk such that

for all k inN

P({x ∈ X : | f (x) − fnk (x)| > 1/k}) < 1/k.

Define Ak := {x ∈ X : | f (x) − fnk (x)| > 1/k} then we have for every k ∈N that

P(Ak) < 1/k (5.19)

and for every x ∈ ∁Ak that

| f (x) − fnk (x)| ≤ 1/k. (5.20)

Define

gk(x) :=



















fnk (x) if x ∈ ∁Ak and | fnk (x)| > 2/k,
0 otherwise.

Since fnk is bounded, we have that gnk is bounded as well.

We now show that |gk| ≤ 2| f | for all k ∈N. Consider x in X.

1. If x ∈ Ak or | fnk (x)| ≤ 2/k then |gk(x)| = 0 and the inequality |gk(x)| ≤
2| f (x)| is satisfied.

2. Assume that x ∈ ∁Ak and | fnk (x)| > 2/k. By Eq. (5.20) we have that

|gk(x)| = | fnk (x)| ≤ | fnk (x) − f (x)| + | f (x)| ≤ 1/k + | f (x)|. (5.21)

From Eq. (5.20) and | fnk (x)| > 2/k we find that also

1/k ≥ | fnk (x)| − | f (x)| > 2/k − | f (x)|

which implies that

| f (x)| > 1/k. (5.22)

From Eq. (5.21) and Eq. (5.22) we find that indeed |gk(x)| ≤ 2| f (x)|.

In both cases we have that |gk(x)| ≤ 2| f (x)|. We conclude that |gk| ≤ 2| f |.
Finally, we prove that gk converges P-hazily to f . Let ǫ > 0. Then

{x ∈ X : | f (x) − gk(x)| > ǫ}
= {x ∈ Ak : | f (x) − gk(x)| > ǫ} ∪ {x ∈ ∁Ak : | f (x) − gk(x)| > ǫ}.
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If k > 1/ǫ then it follows from Eq. (5.20) that {x ∈ ∁Ak : | f (x) − gk(x)| > ǫ} = ∅.
Using Eq. (5.19) and the monotonicity and sub-linearity of P, we find that for

every k > 1/ǫ

P({x ∈ X : | f (x) − gk(x)| > ǫ}) ≤ P(Ak) + P(∅) < 1/k + 0.

This ends the proof. �

Lemma 5.66. Let f be a positive P-previsible random quantity. Then, for every

ǫ > 0 there is a δǫ > 0 such that for every A ⊆ X, if P(A) < δǫ then P
x
( fA) < ǫ.

Proof. Let ǫ > 0. By Lemma 5.57 there is a gamble g such that P
x
(| f −g|) < ǫ/2.

Define δǫ := ǫ/(2 sup|g|). LetA ⊆ X and assume that P
x
(A) = P(A) < δǫ. Then,

taking into account the coherence of Px (Theorem 5.5 on p. 203),

P
x
( fA) ≤ Px(| f − g|A) + Px(|g|A) = Px(| f − g|A) + P(|g|A)

≤ Px(| f − g|) + sup|g|P(A) < ǫ/2 + ǫ/2 = ǫ.

This ends the proof. �

Theorem5.67. Let f be a P-previsible random quantity. Let g be a random quantity.

Suppose that |g| ≤ | f | a.e. P. Then g is P-previsible if and only if g is P-measurable.

Proof. Assume P-previsibility of g. P-measurability follows from Defini-

tion 5.49, Lemma 5.61 and Lemma 5.64.

Conversely, assume that g is P-measurable. By Lemma 5.65 there is a

sequence gn of gambles converging P-hazily to g such that gn ≤ 2|g| for every
n ∈N.
Let A ⊆ X. Since |g| ≤ | f | a.e. P we have that |gn| ≤ 2| f | a.e. P which

implies that |gn − gm|A ≤ 4| f |A a.e. P for every n,m ∈ N. Applying Proposi-
tion 5.54 on p. 244, we find that

P(|gn − gm|A) ≤ P
x
(4| f |A) (5.23)

for every A ⊆ X and every n,m ∈N.
Now we show that

∥

∥

∥gn − gm
∥

∥

∥

P
converges to zero. Let ǫ > 0. Then, by

Lemma 5.66 there is a δǫ > 0 such that for every A ⊆ X

P
x
(A) < δǫ =⇒ P

x
(4| f |A) < ǫ. (5.24)
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Since gn converges P-hazily to g, there is an Nǫ in N such that for all

n,m ≥ Nǫ we have that

P({x ∈ X : |gn(x) − gm(x)| > ǫ})
≤ P({x ∈ X : |gn(x) − g(x)| > ǫ/2}) + P({x ∈ X : |g(x) − gm(x)| > ǫ/2})

< δǫ/2 + δǫ/2 = δǫ.

Define Bnm := {x ∈ X : |gn(x) − gm(x)| > ǫ}) then for all n,m ≥ Nǫ we have that
P
x
(Bnm) < δǫ. From Eq. (5.24) it follows that

P
x
(4| f |Bnm) < ǫ

for all n,m ≥ Nǫ. We also have that

|gn(x) − gm(x)| ≤ ǫ.

for all x ∈ ∁Bnm. Using Eq. (5.23) it follows that

P(|gn − gm|) ≤ P(|gn − gm|Bnm) + P(|gn − gm|∁Bnm)

≤ Px(4| f |Bnm) + ǫP
x
(∁Bnm) < ǫ + ǫ = 2ǫ.

for all n,m ≥ Nǫ.
We conclude that gn is a determining sequence for g, so g is P-previsible.

�

The next theorem is a dominated convergence theorem for our extension

Px.

Theorem 5.68. Let g be a P-previsible random quantity. Let fn be a sequence of

P-measurable random quantities such that | fn| ≤ |g| a.e. P for every n ∈ N. Let f
be a random quantity. Then the following statements are equivalent.

(i) fn converges P-hazily to f .

(ii) f is P-previsible and
∥

∥

∥ f − fn
∥

∥

∥

x

P
converges to zero and hence, Px( fn) −→ Px( f )

and P
x
( fn) −→ P

x
( f ).

Proof. By Theorem 5.67 fn is P-previsible for every n ∈N.
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We first prove that (i) implies (ii). Assume that fn converges P-hazily to

f . Then (ii) follows from Theorem 5.58, if we can show that fn is a Cauchy

sequence, that is, limn,m→∞
∥

∥

∥ fn − fm
∥

∥

∥

x

P
= 0.

Let ǫ > 0. By Lemma 5.66 there is a δǫ > 0 such that for every A ⊆ X, if
P
x
(A) < δǫ then P

x
(|g|A) < ǫ. Since | fn| ≤ |g| a.e. P for every n ∈ N, it follows

from Proposition 5.54 on p. 244 that also

P
x
(A) < δǫ =⇒ P

x
(| fn|A) < ǫ (5.25)

for every n ∈N.

Since fn converges P-hazily to f there is a Nǫ in N such that for every

n ≥ Nǫ
P({x ∈ X : | f (x) − fn(x)| > ǫ/2}) < δǫ/2.

This implies that for every n,m ≥ Nǫ

P({x ∈ X : | fn(x) − fm(x)| > ǫ}) < δǫ.

Define Enm := {x ∈ X : | fn(x) − fm(x)| > ǫ}, then

P
x
(Enm) < δǫ,

| fn − fm|∁Enm ≤ ǫ,

for every n,m ≥ Nǫ. By Eq. (5.25) we also have that P
x
(| fn|Enm) < ǫ and

P
x
(| fm|Enm) < ǫ. for every n,m ≥ Nǫ. Using the coherence of P

x
, and Theo-

rem 5.5 on p. 203 in particular, we find that

P
x
(| fn − fm|) ≤ P

x
(| fn − fm|Enm) + P

x
(| fn − fm|∁Enm)

≤ Px(| fn|Enm) + P
x
(| fm|Enm) + ǫ

< ǫ + ǫ + ǫ = 3ǫ,

for every n,m ≥ Nǫ. This establishes that (i) implies (ii).

Next we prove that (ii) implies (i). Assume that f is P-previsible and
∥

∥

∥ f − fn
∥

∥

∥

x

P
converges to zero. We need to prove that fn converges P-hazily to

f . This means that for every ǫ1, ǫ2 > 0 there is a Nǫ1,ǫ2 such that for every
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n ≥ Nǫ1,ǫ2 we have that

P({x ∈ X : | f (x) − fn(x)| > ǫ1}) < ǫ2.

This will be established if, for every ǫ1, ǫ2 > 0, we can prove the existence of a

sequence of sets En (whichmay depend on ǫ1 and ǫ2) such that P(En) < ǫ2 and

| f − fn|∁En ≤ ǫ1 hold for every n ≥ Nǫ1,ǫ2 . Indeed, suppose that the second
inequality holds, then

∁En ⊆ {x ∈ X : | f (x) − fn(x)| ≤ ǫ1},

which implies that

En ⊇ {x ∈ X : | f (x) − fn(x)| > ǫ1},

and now use the first inequality and the monotonicity of the coherent P.

Let ǫ1, ǫ2 > 0. Define r := ǫ1/3 and ǫ := ǫ1ǫ2/10.

Define gn := | f − fn|. Since
∥

∥

∥ f − fn
∥

∥

∥

x

P
converges to zero there is an Nǫ ∈N

such that for every n ≥ Nǫ
P
x
(gn) < ǫ. (5.26)

gn is non-negative and P-previsible. So it follows from Definition 5.49,

Lemma 5.57, and the coherence of Px (Theorem 5.5(xi) on p. 203) that there are

numbers Mǫ, Kr,ǫ/r ∈ N, and a sequence of non-negative (use Theorem 5.51
on p. 242) gambles hn, such that whenever n ≥ max{Mǫ,Kr,ǫ/r} it holds that

|Px(gn) − P(hn)| < ǫ, (5.27)

P({x ∈ X : |gn(x) − hn(x)| > r}) < ǫ/r. (5.28)

Let Lr,ǫ = max{Nǫ,Mǫ,Kr,ǫ/r}. Define An := {x ∈ X : |gn(x)− hn(x)| > r}, then for
all n ≥ Lr,ǫ it holds that

P(An) < ǫ/r, (5.29)

|gn − hn|∁An ≤ r. (5.30)

Define Bn := {x ∈ X : hn(x) > r}, then for all n it holds that (recall that Zn is
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non-negative, so Bn ≤ hn/r)

P(Bn) ≤ P(hn)/r, (5.31)

|hn(x)|∁Bn ≤ r. (5.32)

Finally, define En := An ∪ Bn then we have for every n ≥ Lr,ǫ that

P(En) ≤ P(An) + P(Bn) < ǫ/r + P(hn)/r < ǫ/r +
(

P
x
(gn) + ǫ

)

/r

< 3ǫ/r = 9
10ǫ2 < ǫ2,

where we subsequently used the inequalities Eq. (5.29), Eq. (5.31), Eq. (5.27)

and Eq. (5.26). We also have that

| f − fn|∁En = gn∁En ≤ (hn + r)∁En ≤ r + r = 23ǫ1 < ǫ1,

where we subsequently used the inequalities Eq. (5.30) and Eq. (5.32). This

establishes that (ii) implies (i). �

5.5.3 Previsibility by Cuts

Corollary 5.69. Let an and bn be two sequences of non-negative real numbers

converging to infinity. A random quantity f is P-previsible if and only if fan,bn is a

determining sequence for f .

Proof. If fan,bn is a determining sequence for f then f is P-previsible by Defi-

nition 5.49. This proves sufficiency.

To prove necessity, suppose that f is P-previsible, then by Theorem 5.67

f is P-measurable. It follows that the sequence fan,bn converges P-hazily to f .

Also the gamble fan,bn is P-measurable by Lemma 5.61, and | fan,bn | ≤ | f |. From
Theorem 5.68 it follows that

lim
n,m→∞

∥

∥

∥ fan,bn − fam,bm
∥

∥

∥

x

P
≤ lim
n→∞

∥

∥

∥ fan,bn − f
∥

∥

∥

x

P
+ lim
m→∞

∥

∥

∥ f − fam,bm
∥

∥

∥

x

P

= 0 + 0 = 0.

We find that fan,bn is a determining sequence for f . �
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5.5.4 The 2-Monotone Case: A Choquet Integral for Previsi-

ble Random Variables

In this section, we generalise the representation theorem for 2-monotone

lower previsions P (Proposition 4.77 on p. 180) to extended lower previsions

Px.

In Section 4.3.10, we defined the Choquet integral of an arbitrary gamble,

with respect to an arbitrary 2-monotone set function ν. Let’s generalise the

Choquet integral to random quantities:

Definition 5.70. Let F be a field onX and let ν be a 2-monotone set function
on F . Let f be any random quantity on X. Let G∗ν, f be the lower decreasing
distribution function of f with respect to ν, that is,

G∗ν, f (z) := ν∗({x ∈ X : f (x) > z}),

for any z ∈ R.The Choquet integral of f with respect to ν is defined as

C

∫

f dν := R

∫ 0

−∞
[G∗ν, f (z) − 1] dz + R

∫ +∞

0

G∗ν, f (z) dz

= lim
a→+∞

R

∫ 0

−a
[G∗ν, f (z) − 1] dz + lim

b→+∞
R

∫ b

0

G∗ν, f (z) dz,

whenever the sum in the right hand side is well defined, and in such a case,

we say that f is Choquet integrablewith respect to ν.

Proof of integrability and existence of the limits. Observe that sinceG∗ν, f (z)−1 is
non-increasing in z, it’s Riemann integrable over [−a, 0] byProposition 4.68 on
p. 167. Also, since G∗ν, f (z)− 1 ≤ 0 for all z inR, it follows that R

∫ 0

−a[G∗ν, f (z)−
1] dz is non-increasing in a: thus, the limit of R

∫ 0

−a[G∗ν, f (z)−1] dz for a→ +∞
must exist (and coincides with the infimum over a).

Riemann integrability of G∗ν, f (z) over [0, b] and existence of the limit for

b→ +∞ is proved in a similar way. �

Lemma 5.71. Let f : R × R → R. Then lima,b→∞ f (a, b) = f ∗ if and only if

limn→∞ f (an, bn) = f ∗ for every two sequences an and bn of non-negative real num-

bers converging to infinity.

Proof. “if”. Assume that f (a, b) does not converge to f ∗ as a, b → ∞. This
means that there is an ǫ > 0 such that for every R > 0 there are aR, bR ≥ R such
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that | f (aR, bR)− f ∗| ≥ ǫ. This holds in particular for everyR = n, n ∈N. Hence,
there are two sequences an and bn such that an, bn ≥ n and | f (an, bn) − f ∗| ≥ ǫ.
Consequently, there are two sequences an and bn ofnon-negative real numbers

converging to infinity for which f (an, bn) does not converge to f ∗ as n→∞.
“only if”. Let an and bn be any two sequences of non-negative real num-

bers converging to infinity, that is, for every R > 0 there is an NR ∈ N such
that n ≥ NR implies that an, bn ≥ R. Assuming that lima,b→∞ f (a, b) = f ∗, for
every ǫ > 0 there is an Rǫ > 0 such that a, b ≥ Rǫ implies that | f (a, b) − f ∗| < ǫ.
Hence, it holds in particular that | f (an, bn) − f ∗| < ǫ for every n ≥ NRǫ , or
equivalently, limn→∞ f (an, bn) = f ∗. �

Theorem 5.72. Let P be a 2-monotone coherent lower prevision on L(X). Let ν be
any 2-monotone set function, defined on a field F , such that P = Eν. If a random
quantity f is P-previsible, then f is Choquet integrable, and

Px( f ) = C

∫

f dν.

Proof. ByProposition 4.77 onp. 180, there always is a 2-monotone set function

ν defined on a field F , such that P = Eν.
Assume that f is P-previsible. By Corollary 5.69, for every two sequences

of non-negative real numbers converging to infinity, fan,bn is a determining

sequence for f . It follows that

Px( f ) = lim
n→∞
P( fan,bn)

since fan,bn is a determining sequence for f . But, fan,bn is a gamble, so we

already know that P( fan,bn) = C
∫

fan,bn dν:

= lim
n→∞

(

R

∫ 0

0∧inf fan ,bn
[G∗ν, fan ,bn (z) − 1] dz + R

∫ 0∨sup fan ,bn

0

G∗ν, fan ,bn (z) dz

)

and, since −an ≤ 0 ∧ inf fan,bn and 0 ∨ sup fan,bn ≤ bn, and moreover since
R

∫ 0∧inf fan ,bn
−an

[G∗ν, fan ,bn (z) − 1] dz = 0 and R
∫ bn

0∨sup fan ,bn
G∗ν, fan ,bn (z) dz = 0, we can

also write, applying Proposition 4.65 on p. 167,

= lim
n→∞

(

R

∫ 0

−an
[G∗ν, fan ,bn (z) − 1] dz + R

∫ bn

0

G∗ν, fan ,bn (z) dz

)
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but now, since G∗ν, fan ,bn (z) = G∗ν, f (z) for every z in [−an, bn):

= lim
n→∞

(

R

∫ 0

−an
[G∗ν, f (z) − 1] dz + R

∫ bn

0

G∗ν, f (z) dz

)

and, this holds for every two sequences an and bn of non-negative real num-

bers converging to infinity. Hence, applying Lemma 5.71:

= lim
a,b→∞

(

R

∫ 0

−a
[G∗ν, f (z) − 1] dz + R

∫ b

0

G∗ν, f (z) dz

)

= lim
a→∞
R

∫ 0

−a
[G∗ν, f (z) − 1] dz + lim

b→∞
R

∫ b

0

G∗ν, f (z) dz

and it also follows in particular that this sum iswell defined. So, f is Choquet

integrable, and

= C

∫

f dν.

The theorem is established. �

Finally, note that Choquet integrability with respect to ν, does not nec-

essarily imply Eν-previsibility: for instance, it may happen that C
∫

f dν is

not finite even if f is Choquet integrable. However, for any Choquet integrable

random quantity, we do have that

C

∫

f dν = lim
n→∞
Eν( fan,bn),

where an and bn are arbitrary sequences of non-negative real numbers, and the

limit on the right hand side is independent of the choice of these sequences;

this is immediate from the proof of Theorem 5.72.

5.6 Lower Envelopes of Dunford Integrals

We now show how the extension Px of a lower prevision P is representable as

the lower envelope of a set of Dunford integrals with respect to probability

charges on a field F . First, we need to prove some lemmas.
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Lemma 5.73. Let P andQ be two coherent lower prevision defined on the setL(X) of
all gambles on X. If Q is a behavioural extension of P, then the following statements

hold.

(i) Any determining sequence for a random quantity f with respect to P is also a

determining sequence for f with respect to Q.

(ii) If a random quantity is P-previsible, then it is also Q-previsible.

(iii) Qx is a behavioural extension of Px.

Proof. Let fn be a determining sequence for f with respect to P. We prove

that fn is also a determining sequence for f with respect to Q.

Since Q dominates P we have that Q(h) ≤ P(h) for every gamble h. It
follows that for every ǫ > 0 and every n,m ∈N

0 ≤ Q({x ∈ X : | f − fn| > ǫ}) ≤ P({x ∈ X : | f − fn| > ǫ})
0 ≤ Q(| fn − fm|) ≤ P(| fn − fm|)

From Definition 5.49 it follows that the right hand sides converge to zero.

It follows that the left hand sides converge to zero too. We find that fn is a

determining sequence for f with respect to Q.

Clearly, this implies that f is Q-previsible whenever f is P-previsible.

SinceQ dominates P,Qx also dominates Px for every P-previsible random

quantity f . Indeed, let fn be a determining sequence for f with respect

to P. We have already proved that fn is also a determining sequence for

f with respect to Q. Since Q( fn) ≥ P( fn) for every n ∈ N we find that
limn→∞Q( fn) ≥ limn→∞ P( fn), since the limits on both sides exist. It follows
that Qx( f ) ≥ Px( f ) for every P-previsible random quantity f . �

Recall Definition 4.11 on p. 99 and Theorem 4.62 on p. 163: a gamble f is

µ-integrable if and only if Eµ( f ) = Eµ( f ), if and only if f is Dunford integrable

with respect to µ, if and only if f is S-integrable.

Lemma 5.74. Let F be a field on X, let µ be a probability charge on F , and let f be
any random quantity on X. Then the following statements are equivalent.

(i) f is Dunford integrable with respect to µ.

(ii) f is Eµ-previsible and has a determining sequence fn with respect to Eµ con-

sisting of µ-integrable gambles only.
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(iii) f is Eµ-previsible and has a determining sequence fn with respect to Eµ con-

sisting of F -measurable gambles only.

(iv) f is Eµ-previsible and has a determining sequence fn with respect to Eµ con-

sisting of F -simple gambles only.

If any (and hence, all) of these conditions is satisfied, then

Exµ( f ) = D

∫

f dµ = lim
n→∞
Eµ( fn) = lim

n→∞
D

∫

fn dµ.

Proof. (iv) =⇒ (iii) =⇒ (ii). Immediate from Proposition 4.28 on p. 112.
(ii) =⇒ (i). Since fn is a determining sequence for f with respect to P, it

holds that Eµ(| fn − fm|)→ 0, and, for all ǫ > 0, Eµ({x ∈ X : | fn − f | > ǫ})→ 0.
The first condition can be written as D

∫

| fn − fm|dµ → 0; indeed, by

Theorem 4.42 on p. 130 we have that Eµ = S
∫

•dµ, by Theorem 4.41 on p. 129
it follows that S

∫

•dµ is a 2-monotone coherent lower prevision, and so by
Proposition 4.18(vi), it follows that the domain of Eµ = S

∫

•dµ is a linear
lattice: thus, for any n and m inN, we find that | fn − fm| belongs to domEµ.
Now, by Theorem 4.62 on p. 163, the S-integral and the D-integral coincide

on domEµ, so, indeed Eµ(| fn − fm|) = D
∫

| fn − fm|dµ→ 0.
By Theorem 4.36(v) on p. 117, the second condition, Eµ({x ∈ X : | fn − f | >

ǫ})→ 0, can be written as µ∗({x ∈ X : | fn − f | > ǫ})→ 0.
Now use the fact that the fn are µ-integrable, or equivalently, Dunford

integrable with respect to µ, and apply Theorem 4.64 on p. 166 to see that f

is Dunford integrable with respect to µ, with Dunford integral

D

∫

f dµ = lim
n→∞
D

∫

fn dµ = lim
n→∞
Eµ( fn) = lim

n→∞
Eµ( fn) = E

x
µ( f ),

where the last equality follows from the fact that f is Eµ-previsible, with

determining sequence fn.

(i) =⇒ (iv). If f is Dunford integrable, then there is a sequence of F -
simple gambles fn such that D

∫

| fn − fm|dµ → 0, and, for all ǫ > 0, µ∗({x ∈
X : | f (x)− fn(x)| > ǫ})→ 0. These conditions can bewritten asEµ(| fn− fm|)→ 0,
and, for all ǫ > 0, Eµ({x ∈ X : | f (x) − fn(x)| > ǫ}) → 0, so, fn is a determining
sequence for f with respect to Eµ. �
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Lemma 5.75. Let F be a field on X, and let Q be a lower prevision that avoids
sure loss, and whose domain consists of F -measurable gambles only, i.e., domQ ⊆
LF (X). Let f be an EQ-previsible random quantity that has a determining sequence
fn with respect to EQ consisting of F -simple gambles only. Then the following
statements hold.

(i) fn is a determining sequence for f with respect to every probability charge µ in

mF
Q
, and hence, f is Dunford integrable with respect to every µ inmF

Q
.

(ii) For every linear behavioural extension R of ExQ, there is a probability charge µ

inmF
Q
such that R( f ) = D

∫

f dµ.

(iii) Conversely, for every probability charge µ inmF
Q
, there is a linear behavioural

extension R of ExQ such that D
∫

f dµ = R( f ).

Proof. (i). Let µ ∈ mF
Q
. By definition (see Eq. (4.55) on p. 194), Eµ is a

behavioural extension of Q, and therefore also of EQ, so the claim follows

from Lemma 5.73(i), Lemma 5.74, and the fact that each fn is F -simple.
(ii). LetRbeany linear behavioural extensionofExQ. Define theprobability

charge µ on F by µ(A) := R(IA) for all A in F . First, we show that µ belongs
to mF

Q
(defined in Eq. (4.55) on p. 194): R|LF (X) is a coherent behavioural

extension of the linear prevision Pµ, and so, by Proposition 4.14 on p. 100,

since LF (X) ⊆ Eµ, for any F -measurable gamble g it follows that

Eµ(g) = ER|LF (X)
(g)

but R|LF (X) is coherent, and therefore coincides with its natural extension on
its domain,

= R(g)

but, by assumption, R is a behavioural extension of ExQ, so

≥ ExQ(g)
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and so, if g is in domQ ⊆ LF (X), we may applying Theorem 5.42 on p. 233
and Theorem 5.50 on p. 242 to find that

= EQ(g).

So, Eµ is a behavioural extension of EQ

∣

∣

∣

∣

LF (X)
. And since domQ consists of

F -measurable gambles only, it follows that Eµ is a behavioural extension of
Q, and therefore, µ belongs tomF

Q
.

By (i), it follows that f is Dunford integrable with respect to µ, with

determining sequence fn. It remains to prove that R( f ) = D
∫

f dµ.

Indeed, since each fn is F -simple, we may write fn =
∑mn
j=1
a j,nIA j,n , with

a1,n, . . . , amn,n in R and A1,n, . . . , Amn,n in F , and it easily follows that R( fn) =
D

∫

fn dµ using the linearity of R and Definition 3.19 on p. 65. Since, by (i), fn
is a determining sequence for µ, it follows that D

∫

fn dµ→ D
∫

f dµ. Canwe

also show that R( fn)→ R( f )? Of course: by Lemma 5.57 on p. 245, it follows
that E

x

Q(| f − fn|) → 0; but, E
x

Q(| f − fn|) ≥ R(| f − fn|) for all n ∈ N, so, it must
hold that R(| f − fn|)→ 0 as well. By the coherence of R (see Theorem 5.5(xi)
on p. 203), we find that R( f ) = limn→∞ R( fn).

(iii). Conversely, let µ be any probability charge in mF
Q
. Define the

extended lower prevision

S(g) := sup

{

ExQ(g − h) +D
∫

hdµ :

h ∈ domExQ, h Dunford integrable with respect to µ
}

for all random quantities g in domExQ. It is easy to show that S is a coherent

behavioural extension of ExQ. Clearly, it is a behavioural extension of E
x
Q:

choose h = 0. We are left to show that S is coherent. Clearly, S(g1 + g2) ≥
S(g1) + S(g2), and S(λg) = λS(g) whenever λ > 0, follow easily from the

definition of S, simply by using the coherence of ExQ. It remains to prove

that S(0) = 0. Using Lemma 5.74, it follows that D
∫

hdµ = Exµ(h) for every h

that is Dunford integrable with respect to µ. Also, by Lemma 5.73, and the

fact that Eµ is a behavioural extension of EQ (since µ belongs to m
F
Q
), it also
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follows that E
x

µ(h) ≤ E
x

Q(h) for any such h. So,

S(0) = sup

{

ExQ(0 − h) +D
∫

hdµ :

h ∈ domExQ, h Dunford integrable with respect to µ
}

≤ sup
{

ExQ(0 − h) + E
x

Q(h) :

h ∈ domExQ, h Dunford integrable with respect to µ
}

= 0,

and since S is a behavioural extension of ExQ, it follows also that S(0) ≥ 0, so,
S(0) = 0. We conclude that S is a coherent behavioural extension of ExQ.

Now, since f is Dunford integrablewith respect toµ (by (i)), it also follows

that S( f ) ≥ D
∫

f dµ (choose h = f ), and

S( f ) = −S(− f ) = − sup
{

ExQ(− f − h) +D
∫

hdµ :

h ∈ domExQ, h Dunford integrable with respect to µ
}

= inf

{

E
x

Q( f + h) −D
∫

hdµ :

h ∈ domExQ, h Dunford integrable with respect to µ
}

≤ D
∫

f dµ

(choose h = − f ). So, S( f ) = S( f ) = D
∫

f dµ.

Concluding, by Theorem 5.21(i) on p. 220, it follows that MKS
S
, ∅; take

any R in MKS
S
. But, since S is a behavioural extension of ExQ, it follows that

KExQ ⊆ KS, and hence, we find that R is indeed a linear behavioural extension
of ExQ. Finally, since S( f ) ≤ R( f ) ≤ S( f ) by construction of R, we find that
R( f ) = D

∫

f dµ. �

Here’s the icing on the cake.
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Theorem 5.76. Let F be a field on X, and let Q be a lower prevision that avoids
sure loss, and whose domain consists of F -measurable gambles only, i.e., domQ ⊆
LF (X). Then, for every EQ-previsible random quantity f that has a determining
sequence with respect to EQ consisting of F -measurable gambles only, it holds that

ExQ( f ) = min
µ∈mF

Q

D

∫

f dµ.

Proof. Note that f is Dunford integrable with respect to all µ in mF
Q
, by

Lemma 5.74. Also note that domExQ ⊆ KExQ , since E
x
Q is a real-valued coherent

lower prevision. Applying Theorem 5.21(iii) on p. 220, it follows that

ExQ( f ) = min

R∈M
domEx

Q

Ex
Q

R( f )

and by by Lemma 5.74, the sequence fnmay assumed to beF -simple instead
of F -measurable. Applying Lemma 5.75,

= min
µ∈mF

Q

D

∫

f dµ.

�





Chapter 6

Optimality under

Uncertainty

Let us consider a system, to which we may apply an action a, freely chosen

from a set A of available actions. We want to find the optimal actions from A,

i.e., those actions that perform best according to some criterion. For instance,

it is often assumed that each action induces a real-valued gain Ja: in that case,

an action a∗ is considered optimal in A if it induces the highest gain among

all actions in A. More generally, we may wish to find the set opt (A) of all

optimal actions in A, i.e., the set of all actions that induce the highest gain.

If there is no uncertainty regarding the gains Ja, a ∈ A, then the solution
to this problem is simply given by

opt (A) = argmax
a∈A
Ja.

Note that opt (A)may be empty; however, if we assume that the set {Ja : a ∈ A}
is a compact subset ofR—this holds if A is a finite set—then opt (A) contains

at least one element. Secondly, note that even if opt (A) contains more than

one action, all actions a in opt (A) induce the same gain Ja; so, if, in the

end, the gain is all that matters, it suffices to identify only one action a∗ in

opt (A)—often, this greatly simplifies the analysis.

In many situations, the gain Ja induced by an action a is influenced by

variables which may not be well-known. Assuming that these variables can

be modelled through a random variable X, it is customary to consider the

267
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gain Ja as a random quantity on X; random quantities were introduced in

Section 5.1. We view Ja as a real-valued gain that is a function of X, and that

is expressed in a fixed utility scale; so, Ja is an X–R-mapping, interpreted
as an uncertain gain: if x turns out to be the realisation of X, and we apply

action a, then we receive an amount of utility Ja(x). Which action should we

choose?

6.1 A Classical Approach: Maximising Expected

Utility

Let’s consider a common case, where our knowledge about X is modelled

through a probability charge µ on a field F on X, as we discussed in Sec-
tion 3.5.2 on p. 61 ff. and Section 4.3.2 on p. 109 ff. Usually, assuming that the

gains Ja are bounded random quantities, the field F is chosen such that all
gains Ja, a ∈ A, are F -measurable; see Definition 4.25 on p. 109, and Propo-
sitions 4.26&4.27. Then, a common way to arrive at a set of optimal actions,

goes through their expected utility:

P(Ja) := D

∫

Ja dµ = S

∫

Ja dµ = Eµ(Ja),

where the right hand side is given by the Dunford integral, S-integral, or

Pµ-integral respectively; the equality of all these integrals was established in

Theorem 4.62 on p. 163, and integrability of the random quantities Ja follows

from theirF -measurability, i.e., Proposition 4.28 on p. 112. For simplicity, we
shall assume that µ is independent of a: the action a does not influence our

beliefs about X. This is called act-state independence.

If we interpret µ as a prevision Pµ, then P(Ja) is nothing but the prevision

of Ja obtained through natural extension of Pµ: in this interpretation, the

expected utility of Ja corresponds to the prevision of Ja, i.e., the fair price for

Ja, as explained on p. 48. So, as far as it makes sense to maximise expected

utility:

opt (A) := argmax
a∈A
P(Ja). (6.1)

Again, opt (A) may be empty, but if we assume for instance that the set

{Ja : a ∈ A} is compact with respect to the topology of uniform convergence,
which holds for instance if A is finite, then opt (A) contains at least one
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element. Moreover, even if opt (A) contains more than one action, all actions

a in opt (A) induce the same expected gainP(Ja); so, if, in the end, the expected

gain is all thatmatters, it again suffices to identify only one action a∗ in opt (A),

which may simplify the analysis.

6.2 Generalising Maximal Expected Utility: Why

and How?

6.2.1 The Tossing Machine

To seewhymaximising expected utility, i.e., Eq. (6.1), is not always a desirable

criterion for selecting all optimal actions from a set A of actions, consider a

tossing machine, to which we may apply either one of the following actions:

• a0: The machine tosses the coin, and whatever the outcome, we receive
nothing, i.e., there is neither gain nor loss.

• a1: The machine tosses the coin, and if the outcome is heads, we receive
two units of utility. Otherwise, we lose one unit of utility.

• a2: The machine tosses the coin, and if the outcome is heads, we lose
one unit of utility. Otherwise, we gain two units of utility.

In the manual of the machine, it is only stated that when taking an action

in A = {a0, a1, a2}, the coin will turn up either heads or tails. The gains Ja1
and Ja2 depend on this outcome, say X. Therefore, we shall consider them

as random quantities on X; obviously, we can also consider Ja0 as a constant

random quantity onX. The random variableX assumes values inX = {H,T},
with H for heads and T for tails, so

Ja0(H) = 0, Ja1 (H) = 2, Ja2 (H) = −1,
Ja0 (T) = 0, Ja1(T) = −1, Ja2(T) = 2.

Without any further information regarding the mechanism of the tossing

machine, only three solutions for opt (A) are reasonable, once we recognise
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that the gains and the given information share a symmetry:

opt1 (A) = {Ja0},
opt2 (A) = {Ja1 , Ja2}, and
opt3 (A) = {Ja0 , Ja1 , Ja2 }.

Indeed, these are the only setswhich reflect the symmetry of the problem: our

beliefs regarding the machine’s coin do not change when switching heads

with tails, so Ja1 can be optimal if and only if Ja2 is optimal, because Ja1
transforms into Ja2 and vice versawhen switching heads with tails.

Which one is the most reasonable? Should we select a0? Should we not

select a0? Or, should we arbitrary apply any action in A? For sure, selecting

a0 is the safest choice: we are guaranteed not to lose. On the other hand, we

may gain 2 units of utility applying a1 or a2, whereas applying a0 we shall

not gain anything at all: actions a1 and a2 have more potential. However,

arguably, it may be criticised that we have insufficient knowledge about the

machine in order to weigh the risk against the potential: therefore, we might

as well consider all actions in A as optimal. These are arguments in favour

of each of the three choices opt1 (A), opt2 (A), and opt3 (A).

On the other hand, opt1 (A) excludes the potential of gaining two units

of utility. Moreover, as opt1 (A) contains one action only, it excludes the

possibility of learning: we don’t have much information to start from, so,

since we don’t have act-state independence a priori (it’s not stated in the

manual), it could be worth trying also actions that are not risk averse, in

order to gain information about how we should choose our actions in the

future. The set opt2 (A) is larger, but the actions a1 and a2 may be too risky:

perhaps, we are notwilling to lose one unit of utility, even thoughwepossibly

gain two units. Apparently, this leaves us with opt3 (A), the largest set of the

three, as the most reasonable set of optimal actions.

Let’s try and investigate how maximising expected utility solves this

problem. First of all, note that F = ℘(X) = {∅, {H}, {T}, {H,T}} is the unique
field such that all random quantities Ja0 ,Ja1 , and Ja2 are F -measurable, and
note that any probability charge µ on F is uniquely determined by its value,
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say, on {H}: if we denote µ({H}) by p, then µ is given by

µ(∅) = 0, µ({H,T}) = 1,
µ({H}) = p, µ({T}) = 1 − p.

The machine’s manual does not give us a clue about the value of p, so, in

principle, we are not able to maximise expected utility; unless we hypotheti-

cally assume that there is a value p ∈ [0, 1] governing the probabilities of the
machine’s coin: then, applying Definition 3.19 on p. 65,

P(Ja0) = D

∫

Ja0 dµ = 0,

P(Ja1) = D

∫

Ja1 dµ = 3p − 1, and

P(Ja2) = D

∫

Ja2 dµ = 2 − 3p.

As a function of the hypothetical value p ∈ [0, 1], the set of optimal actions in
A, in the sense of Eq. (6.1), maximising expected utility, is

opt (A) =































{a2}, if 0 ≤ p < 1
2 ,

{a1, a2}, if p = 12 ,
{a1}, if 12 < p ≤ 1.

What do we observe?

• For almost any value of p, maximising expected utility yields a unique
optimal action.

• For almost any value of p, maximising expected utility yields neither
opt1 (A), nor opt2 (A), nor opt3 (A), and hence, does not reflect the sym-

metry of the problem regarding heads and tails; only in the marginal

case p = 12 , it yields one of the suggested solutions, namely, opt2 (A).

• The risk-averse action a0 never belongs to the set of optimal actions:
apparently, maximising expected utility tends against risk aversion.

Concluding, maximising expected utility may not be desirable, because:

• Independently of the probability charge µ, it yields almost always a
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unique optimal action, which is rather surprising in case we have only

little information: it cannot seriously model indecision.

• If it is not a priori clear how to identify µ, an (necessarily arbitrary)
choice of µ may have an unidentifiable effect on what we call opti-

mal. In particular, maximising expected utility does not incorporate

robustness.

• It may not reflect the symmetry of the problem, unless we impose this
symmetry on µ itself. However, often there simply is no probability

charge µ reflecting the symmetry of the problem, which at the same

time also reflects our beliefs regarding X. For instance, in the above

example, symmetry dictates p = 1
2 , but nevertheless, this value of p

does not correspond to the given information: we have no clue about

the value of p.

• Apparently, maximising expected utility may tend against risk aver-
sion.

6.2.2 Assumptions and Notation

Convinced of the desirability of going beyond maximising expected utility,

we now discuss a number of ways to derive criteria of optimality based

on coherent extended lower previsions, instead of probability charges. Of

course, we wish to retain maximising expected utility as a special case, i.e.,

whenwe can represent our beliefs through a probability charge, these criteria

should coincide with maximising expected utility.

Therefore, we must be able to link coherent extended lower previsions

with probability charges, or, more generally, with expected utility. This

requires us to impose a number of technical limitations on the extended

lower previsions modelling our beliefs.

Recall how, in the previous chapters, we modelled our beliefs about a

random variable X through the assessment of supremum buying pricesQ( f )

for random quantities f in some subset domQ of the set R(X) of all random
quantities on X; we called the mapping Q an extended lower prevision (see

Section3.2 onp. 42ff., andSection5.1 onp. 197ff.). If thisQwasnotvulnerable

to so-calledDutch book arguments, thenwe said thatQ avoided sure loss (see

Definition 5.2 on p. 200), and in this case, we explained how to derive from
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Q, through natural extension (see Section 5.2.3 on p. 207 ff., Definition 5.9

in particular), and convergence methods similar to Dunford integration (see

Section 5.4.3 on p. 239 ff., Definition 5.49 on p. 241 in particular), a coherent

extended lower prevision P defined on a much larger set domP of random

quantities. Moreover, for a number of special cases, we explained how

this extension P could be viewed as the lower envelope of integrals with

respect to probability charges, or, more generally, as a lower envelope of

linear extended previsions: the key to this result was essentially thatQ had a

real-valued extension P defined on a linear lattice that contained all constant

random quantities; see Lemma 5.20 on p. 218.

For instance, if we start with an extended lower prevision Q that avoids

sure loss, we end upwith such a coherent extended lower prevision by taking

P := ER(X)
Q

∣

∣

∣

∣

∣KQ
,

whereKQ is the linear lattice of randomquantities f forwhichE
R(X)
Q (| f |) < +∞;

note that KQ contains also all bounded random quantities, and hence, all
constant random quantities. Alternatively, if we start with a lower prevision

Q (i.e., Q real-valued and defined on bounded random quantities only) that

avoids sure loss, then we also end up with such a coherent extended lower

prevision by taking

P := ExQ,

which is defined on the linear lattice of all EQ-previsible random quantities;

again, all bounded random quantities belong to this linear lattice. So, from

now on, we shall assume that P is a real-valued coherent extended lower

prevision, defined on linear lattice of random quantities on X that contains

at least the set R(X) of all constant random quantities on X, and all ran-

dom quantities Ja induced by actions a in A. Of course, there are extended

lower previsions that do not satisfy this requirement, but nevertheless, we

shall impose these restrictions, as they lead to a number of very practical

consequences, and as they cover all cases in which we start with an extended

lower prevision Q such that domQ ⊆ KQ, which can be guaranteed to hold
by restricting Q to be real-valued, and careful choice of the domain of Q, as

explained in Corollary 5.22 on p. 223; for instance, it always holds in case Q

is a lower prevision.
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Let’s briefly summarise the consequences of this assumption.

(i) The set domP equipped with the P-norm, which is defined by
∥

∥

∥ f
∥

∥

∥

P
:=

P(| f |) for all f in domP, is a topological vector space—note that | f |
belongs to domPwhenever f does, since domP is a linear lattice. How-

ever, it turns out that the P-norm topology is slightly too weak for the

purpose of this work: we need to strengthen it with point-wise conver-

gence onmembers ofX (also called the weak convergence). Concretely,
we shall say that a net fα in domP converges to f in domP if



















P(| fα − f |)→ 0, and
fα(x)→ f (x), for all x ∈ X;

(6.2)

unless explicitly stated otherwise, domP is assumed to be endowed

with the topology induced by this convergence. It turns domP into

a locally convex topological vector space, which also happens to be

Hausdorff. A topological basis at 0 consists for instance of the convex

sets

{ f ∈ domP : P(| f |) < ǫ and f (x) < δ(x)},

for ǫ > 0, and δ(x) > 0 for all x ∈ X. It hasmoreopen sets andmore closed
sets than the P-norm topology and the weak topology, but it has less

compact sets than the P-norm topology and the weak topology. In any

case, this topology is weaker than the topology of uniform convergence.

Note that in caseX is finite, it reduces to the weak topology, which is in
that case also equivalent to the topology of uniform convergence.

Interestingly, if P = ExQ, then the set L(X) of bounded random quan-
tities is dense in domP with respect to this topology; this is an im-

mediate consequence of Corollary 5.69 on p. 256 (previsibility by cuts)

and Lemma 5.57 on p. 245 (convergence in P-norm of determining se-

quences).

(ii) For ease of notation, we shall denote set M
domP

P
of linear extended

previsions on domP that are behavioural extensions of P byM, or by
MP in case we study more than one extended lower prevision at the

same time. This setM is non-empty, convex, and compact with respect
to the topology of point-wise convergence on members of domP, and
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it uniquely determines P:

P( f ) = min
Q∈M
Q( f ),

for any f in domP. If P = ExQ and all random quantities in domP have

F -measurable determining sequences with respect to EQ, then we even
have that

P( f ) = min
µ∈mF

Q

D

∫

f dµ,

i.e., M is fully characterised by a non-empty convex compact set of

probability chargesmF
Q
; see Theorem 5.76 on p. 265.

6.2.3 A Technical Lemma About Preorders

A relation that is reflexive and transitive is called a preorder, and such pre-

orders are used to model preference. In this section, we prove a technical but

very useful lemma about the existence of maximal elements with respect to

preorders; it’s an abstraction of a result proved by De Cooman and Troffaes

[23].

Let V be any set, and let Q be any preorder on V. An element v of a
subset S ofV is calledQ -maximal in S if, for all w in S, w Q v implies v Q w.

The set of Q -maximal elements is denoted by

maxQ (S) :=
{

v ∈ S : (∀w ∈ S)(w Q v =⇒ v Q w)
}

. (6.3)

For any v in S, we also define the up-set of v relative to S as

↑S
Q
v := {w ∈ S : w Q v} .

Lemma 6.1. LetV be a Hausdorff topological space. Let Q be any preorder onV
such that for any v in V, the set ↑V

Q
v is closed. Then, for any non-empty compact

subset S ofV, the following statements hold.

(i) For every v in S, the set ↑S
Q
v is non-empty and compact.

(ii) The setmaxQ (S) of Q -maximal elements of S is non-empty.

(iii) For every v in S, there is a Q -maximal element w of S such that w Q v.
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Proof. (i). Since Q is reflexive, it follows that v Q v, so ↑S
Q
v is non-empty. Is

it compact? Clearly, ↑S
Q
v = S ∩ ↑V

Q
v, so ↑S

Q
v is the intersection of a compact

set and a closed set, and therefore ↑S
Q
vmust be compact too.

(ii). Let S′ be any subset of the non-empty compact set S that is linearly
ordered with respect to Q . If we can show that S′ has an upper bound
in S with respect to Q , then we can infer from a version of Zorn’s lemma

[70, (AC7), p. 144] (which also holds for preorders) that S has a Q -maximal

element. Let then {v1, v2, . . . , vn} be an arbitrary finite subset of S′. We can
assume without loss of generality that v1 Q v2 Q · · · Q vn, and consequently
↑S

Q
v1 ⊆ ↑SQv2 ⊆ · · · ⊆ ↑SQvn. This implies that the intersection

⋂n
k=1 ↑SQvk = ↑SQv1

of these up-sets is non-empty: the collection
{

↑S
Q
v : v ∈ S′

}

of compact and

hence closed (V isHausdorff) subsets ofS has the finite intersection property.
Consequently, since S is compact, the intersection⋂

v∈S′ ↑SQv is non-empty as
well, and this is the set of upper bounds of S′ in Swith respect to Q . So, by

Zorn’s lemma, S has a Q -maximal element: maxQ (S) is non-empty.
(iii). Combine (i) and (ii) to show that the non-empty compact set ↑S

Q
v has

a maximal element wwith respect to Q . It is then a trivial step to prove that

w is also Q -maximal in S: we must show that for any u in S, if u Q w, then

w Q u. But, if u Q w, then also u Q v since w Q v by construction. Hence,

u ∈ ↑S
Q
v, and since w is Q -maximal in ↑S

Q
v, it follows that w Q u. �

6.3 P-Maximality

6.3.1 Pair-Wise Choice

Maximality is a criterion of optimality based on pair-wise choice. Let’s briefly

explain the basics of pair-wise choice, and how it leads to optimality.

Wemodel pair-wise choice by a relation R onA: for a pair of actions a and

b in A, we say that aRb, if we are disposed to choose awhenever we have the

choice between only a and b. Clearly, R is a relation on A. What properties

must R satisfy? If we are presented with only a single action a in A, then we

have no choice but to choose a. So, for any a in A, it always holds that aRa: R

is reflexive. If we are presented with only two actions a and b in A, we have

no choice but to choose a, or to choose b. So, for any actions a and b in A, it

always holds that aRb or bRa: R is complete.

Definition 6.2. A complete and reflexive relation R on A is called a choice
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relation.

So, a choice relation determines optimality on pairs: it tells us which actions

we may choose from a given pair of actions. But, how does a choice relation

lead to optimality when the set of actions contains more than two elements?

Looking at optimality through pair-wise choice can be traced back to at

least Condorcet [16]—his method is perhaps most clearly explained in his

voting examples; see for instance Condorcet [16, pp. lvj–lxix, 4.e Exemple].

More recently, Sen [73] has studied optimality based on pair-wise choice

under very general assumptions. In agreement with Condorcet’s method,

given a complete and reflexive relationR onA—a choice relation—we should

select (see Sen [73, p. 55, Eq. (1)])

optR (A) := {a ∈ A : (∀b ∈ A)(aRb)}. (6.4)

This simply means that we are disposed to choose a fromA, whenever, for all

b in A, we are disposed to choose a from {a, b}. In this way, pair-wise choice,
i.e., a notion of optimality on pairs, leads to a notion of optimality on larger

sets. Themapping optR (•), as a mapping from subsets ofA to subsets ofA, is
called a social choice function, if optR (B) is non-empty for every non-empty

subset B of A:

Definition 6.3. A mapping opt (•) : ℘(A) → ℘(A), satisfying opt (B) ⊆ B for
all B ⊆ A, and opt (B) , ∅whenever B , ∅, is called a social choice function.

Of course, as we already noted in Section 3.2 on p. 42 ff., it is an important

observation that not all reasonable social choice functions are representable

by Eq. (6.4), i.e., by choice relations.

Sen [73] extensively studied the interplay between general social choice

functions opt (•), choice relations R, and social choice functions optR (•) in-
duced by such relations R, as in Eq. (6.4). As lower previsions naturally lead

to pair-wise preference, Walley [86] inferred an optimality criterion based on

lower previsions, essentially invoking Eq. (6.4). Let’s briefly explain how this

works.

Suppose we are given a strict partial order, i.e., a transitive and anti-

reflexive relation, > on A, which models strict preference on A: we say that

a > b, whenever we strictly prefer a over b. In terms of pair-wise choice, a > b

means that we shall never choose b from {a, b}. In effect, from {a, b}, we shall
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only choose a. So, any choice relation R> that is compatible with the choices

implied by >, must satisfy that a > b if and only if aR>b and not bR>a. But,

this property uniquely determines R>.

Indeed, since R> is a choice relation, it must be complete: it always holds

that aR>b or bR>a. So, not bR>a implies aR>b. Therefore, aR>b and not bR>a, is

equivalent to not bR>a. Hence a > b is equivalent to not bR>a, or, equivalently,

a ≯ b is equivalent to bR>a: a is not strictly preferred to b, if and only if we

are disposed to choose b from {a, b}. So, within Sen’s framework [73, p. 55,
Eq. (1)], given a notion of strict preference >, the only way to end up with a

set of optimal actions is by choosing R equal to ≮:

opt
≮
(A) := {a ∈ A : (∀b ∈ A)(a ≮ b)}.

Since > is a strict partial order, it follows that ≮ is complete and reflexive, and

hence, a choice relation. Moreover, ≮ is acyclic, so, as Sen [73, p. 55] remarks,

it follows that opt
≮
(A) is non-empty whenever A is finite. In particular,

opt
≮
(•) is a social choice function on finite sets. We shall call actions in

opt
≮
(A) >-maximal because they correspond to the elements of A that are

maximal with respect to the strict partial order >, i.e., they correspond to

those actions in A for which there is no action in A that is strictly preferred

to it:

opt
≮
(A) = max> (A) := {a ∈ A : (∀b ∈ A)(a ≮ b)}. (6.5)

Now, following Walley [86, Sections 3.7–3.9], we can easily derive a strict

partial order from the coherent extended lower prevision P, which has the

interpretation of a strict preference. Recall that the extended lower prevision

P( f ) of a random quantity f has a behavioural interpretation as a supremum

acceptable price for buying f : P( f ) is the highest real number s ∈ R such that
for any price t ∈ R that is strictly lower than s, we are willing to pay t prior
to observing X, if we are guaranteed to receive f (x) once X = x has been

observed. This allows us to define a strict partial order >P on domP whose

interpretation is that of strict preference. We also introduce a preorder >P,

which satisfies max>P (•) = max>P (•); recall that we defined maximality for
preorders in Eq. (6.3) on p. 275, and maximality for strict partial orders in

Eq. (6.5) on p. 278.

Definition 6.4. For any two random quantities f and g in domP, we say that
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f is strictly preferred to g with respect to P, and write f >P g, if

P( f − g) > 0 or ( f ≥ g and f , g).

We say that f is preferred to g with respect to P, and we write f >P g, if

P( f − g) > 0 or f ≥ g.

Indeed, assuming act-state independence, if f ≥ g and f , g then we
should strictly prefer f to g, since f can only induce a higher gain than g. On

the other hand, P( f − g) > 0 expresses that we are willing to pay some strictly
positive price to exchange g for f , which again means that we strictly prefer

f to g. The preference relation >P is a preorder: it is reflexive and transitive.

Moreover, >P is the weakest preorder—i.e., comparing the fewest pairs—that

agrees with >P: f >P g if and only if either f >P g or f = g. Also, >P is

anti-symmetric: if f >P g and g >P f then f = g. A reflexive, transitive, and

anti-symmetric relation is called a partial order, so, >P is actually a partial

order on domP.

It is clear that we can also use the coherent extended lower prevision P

to express a strict preference between any two actions a and b in A, based on

their gains Ja and Jb: if Ja >P Jb, then the uncertain gain Ja is strictly preferred

to the uncertain gain Jb, and therefore the action a should also be strictly

preferred to b. In such a case, we may also write a >P b.

Similarly, we shall write a >P b if Ja >P Jb, and a ≥ b if Ja ≥ Jb. Note that,
whereas >P and ≥ are partial orders on domP, they may only be preorders
on A, since it may happen that Ja = Jb for two different actions a and b in A.

The relation >P is anti-reflexive and transitive: this follows from the

coherence of P (in particular, P( f − f ) = 0 and P(h − f ) ≥ P(h − g) + P(g − f )).
So, it is indeed a strict partial order on domP, and therefore also onA. Hence,

as we explained above, this leads to the following criterion of optimality (see

Walley [86, Section 3.9.2, p. 161]):

Definition 6.5. An action a in A is called P-maximal in A if no action in A is

strictly preferred to awith respect to >P:

opt
≮P
(A) = max>P (A) = max>P (A) = {a ∈ A : (∀b ∈ A)(a≮Pb)}.

Proof of equality. All equalities are immediate consequences of the definitions
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of opt
≮P
(A) and max>P (A), except for the equality max>P (A) = {a ∈ A : (∀b ∈

A)(a≮Pb)}. Indeed, since for any a and b in A, it holds that a≮Pb, if and only if
Ja≮PJb, if and only if Ja 
P Jb or Ja = Jb, if and only if Jb >P Ja implies Ja = Jb,

if and only if—using the fact that >P is a partial order on domP—Jb >P Ja

implies Ja >P Jb, if and only if b >P a implies a >P b. So, by Eq. (6.3) on p. 275,

it follows that that max>P (A) = {a ∈ A : (∀b ∈ A)(a≮Pb)}. �

It’s convenient to denote byJA the set of gain random quantities induced
by actions in A,

JA := {Ja : a ∈ A}.

The P-maximal actions in A are precisely those actions whose induced gain

is a maximal element of JA with respect to the strict partial order >P, or
equivalently, with respect to the partial order >P, so

a ∈ opt
≮P
(A) ⇐⇒ Ja ∈ opt≮P (JA) .

Let’s now give a number of important properties of P-maximality.

6.3.2 Monotonicity

The more determinate our beliefs, the smaller the set of P-maximal actions:

Theorem 6.6. If Q is a behavioural extension of P, thenmax>Q (A) ⊆ max>P (A).

Proof. Suppose that a is Q-maximal in A. Then, for all b in A, it holds that

a≮Qb, i.e., Q(Jb − Ja) ≤ 0, and Jb 6≥ Ja or Jb = Ja. But, if Q(Jb − Ja) ≤ 0, then it
must also hold that P(Jb − Ja) ≤ 0, since that Q is a behavioural extension of
P. So, for all b in A, it holds that P(Jb − Ja) ≤ 0, and Jb 6≥ Ja or Jb = Ja, i.e., a≮Pb:
amust be P-maximal as well. �

6.3.3 P-Maximality Through Point-Wise Maximality

In this section, we derive a simple way to find P-maximal actions, and we

show how P-maximality generalises maximising expected utility. The fol-

lowing theorem generalises a result by Walley [86, Section 3.9.2, p. 161].
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Theorem 6.7. An action a in A is P-maximal if and only if it is ≥-maximal and
P(Ja − Jb) ≥ 0 for all actions b in A:

max>P (A) = max>P (A) =
{

a ∈ max≥ (A) : (∀b ∈ A)(P(Ja − Jb) ≥ 0)
}

and if JA is compact, then a in A is P-maximal if and only if a is ≥-maximal and
P(Ja − Jb) ≥ 0 for all ≥-maximal actions b in A:

=
{

a ∈ max≥ (A) : (∀b ∈ max≥ (A))(P(Ja − Jb) ≥ 0)
}

Proof. First, note that, for any random quantity f in domP, the set ↑domP≥ f is

closed. Indeed, if a net gα in ↑domP≥ f converges to g in domP, i.e.,

P(|g − gα|)→ 0 and ∀x ∈ X : gα(x)→ g(x),

then g belongs to ↑domP≥ f : since gα(x) ≥ f (x) for all x ∈ X, it follows that also
limα gα(x) = g(x) ≥ f (x) for all x ∈ X, so g ∈ ↑domP≥ f . Hence, ↑domP≥ f is closed,

and therefore Lemma 6.1 on p. 275 applies on domPwith preorder ≥.

By the definition of P-maximality, it easily follows that

max>P (A) =
{

a ∈ A : (∀b ∈ A)
(

P(Ja − Jb) ≥ 0 and (Ja 6≤ Jb or Ja = Jb)
)}

,

but, if a does not belong to max≥ (A), then there is a b in A such that Jb ≥ Ja
and Jb , Ja, and hence, it cannot hold that Ja 6≤ Jb or Ja = Jb. Therefore, any a
in A such that Ja 6≤ Jb or Ja = Jb for all b in Amust be ≥-maximal:

=
{

a ∈ max≥ (A) : (∀b ∈ A)
(

P(Ja − Jb) ≥ 0 and (Ja 6≤ Jb or Ja = Jb)
)}

but, if a belongs to max≥ (A), then it must hold that Ja 6≤ Jb or Ja = Jb for all
b in A. Indeed, if Ja ≤ Jb and Ja , Jb, then Ja cannot belong to max≥ (A), a
contradiction. So,

=
{

a ∈ max≥ (A) : (∀b ∈ A)
(

P(Ja − Jb) ≥ 0
)}
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which establishes the first equality. Now assume that JA is compact. Con-
sider b in A. If a belongs to max≥ (A), then, by Lemma 6.1(iii), there is a

≥-maximal c in A such that Jc ≥ Jb. But, since P(Ja − Jb) ≥ P(Ja − Jc) whenever
Jc ≥ Jb, this implies that P(Ja− Jb) ≥ 0whenever P(Ja− Jc) ≥ 0 for all≥-maximal
actions c in A. So, if P(Ja − Jc) ≥ 0 for all c in max≥ (A), then this must also
hold for all b in A; and conversely, it is obvious that if P(Ja − Jb) ≥ 0 for all b
in A, then the same also holds for all c in max≥ (A). We find

=
{

a ∈ max≥ (A) : (∀c ∈ max≥ (A))
(

P(Ja − Jc) ≥ 0
)}

which establishes the second equality. �

As a consequence, if all random quantities in JA are ≥-maximal, i.e., if
Ja 6≤ Jb or Ja = Jb for all a and b in A, then the set of P-maximal actions in A
are exactly those actions a in A such that P(Ja − Jb) ≥ 0 for all actions b in A.
If additionally P is self-conjugate, i.e., if P( f ) = P( f ) for all f in domP and

using P( f ) as a notation for both P( f ) and P( f ), this condition means that

P-maximal actions amaximise their prevision P.

Corollary 6.8. Suppose that P is self-conjugate. The following statements hold.

(i) If JA = max≥ (JA), thenmax>P (A) = argmaxa∈A P(Ja).

(ii) If JA is compact, thenmax>P (A) = argmaxa∈max≥ A P(Ja).

Proof. Apply Theorem 6.7, and observe that, for any a and b inA, P(Ja− Jb) ≥ 0
if and only if P(Ja) ≥ P(Jb) by the self-conjugacy and coherence of P. �

So, in case P is self-conjugate, P-maximality corresponds in essence to

maximising expected utility as defined in Eq. (6.1) on p. 268. Note that, in

Corollary 6.8(i), we don’t need to impose compactness of JA.

6.3.4 Existence of Dominating P-Maximal Actions

P-maximal actions do not always exist: not every preordered set hasmaximal

elements. A fairly general sufficient condition for the existence of P-maximal

elements in A is that JA should be compact with respect to the topology in-
troduced in Eq. (6.2) on p. 274. This generalises a result mentioned byWalley

[86, Section 3.9.2]. In fact, we prove a stronger result in Theorem 6.9 below,
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which turns out to be very important in proving that the dynamic program-

ming approach works for P-maximality in Chapter 7, p. 299 ff. Theorem 6.9

is a slightly stronger version of an earlier result proved by De Cooman and

Troffaes [23]: Theorem 6.9 does not hold only for extended lower previsions

defined on bounded random quantities only, as was the case for the earlier

version, and secondly, it requires compactness ofJA with respect to a topol-
ogy that is weaker than the topology of uniform convergence (and therefore

has more compact sets).

Theorem 6.9. If JA is non-empty and compact, then for every action a in A, there
is a P-maximal action b in A such that b >P a.

Proof. We already observed that max>P (A) = max>P (A); see Definition 6.5.

So, by Lemma 6.1(iii) on p. 275, it would suffice to prove that for any random

quantity f in domP, the set ↑domP>P
f is closed. Unfortunately, ↑domP>P

f is not

closed in general. Therefore, instead, for a given random quantity Ja in JA,
we shall identify a random quantity Jb in max>P (JA) such that Jb >P Ja, using
preorders Q for which ↑domP

Q
f is closed.

Indeed, consider the point-wise order ≥ (which is not only a preorder, but
even a partial order) defined by f ≥ gwhenever f (x) ≥ g(x) for all x ∈ X, and
the preorder <P defined by f <P gwhenever P( f − g) ≥ 0. We first show that
the sets ↑domP≥ f and ↑domP<P

f are closed, for any random quantity f in domP.

The closedness of ↑domP≥ f has been demonstrated in the proof of Theorem 6.7.

Let’s prove that ↑domP<P
f is closed.

For instance, let gα be any net in ↑domP<P
f , and suppose that gα converges

to a random quantity g in domP:

P(|g − gα|)→ 0 and ∀x ∈ X : gα(x)→ g(x).

We must show that g belongs to ↑domP<P
f . Indeed, since P(|g − gα|) → 0, it

follows by Theorem 3.5(xi) on p. 55 that P(g − gα) → P(g − g) = 0. Also,
for every α, it holds that P(g − f ) ≥ P(g − gα) + P(gα − f ) ≥ P(g − gα), since
gα ∈ ↑domP<P

f . Therefore, P(g − f ) ≥ limα P(g − gα) = 0, so g ∈ ↑domP<P
f .

Now, given Ja, we construct Jb as follows. By Lemma 6.1(iii), there is a

≥-maximal element Jc in JA such that Jc ≥ Ja. In particular, it follows that
Jc >P Ja, so, if Jc happens to be P-maximal, then we may take b = c and the

theorem is established. If Jc is not P-maximal, then
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(a) by Theorem 6.7, there is at least one action d in max≥ (A) such that P(Jc −
Jd) < 0,

(b) by Lemma 6.1(i) ↑JA<P Jd is compact, and therefore, since P is continuous
(see Theorem 3.5(xi)), the mapping P achieves a maximum on ↑JA<P Jd, say,
at Je ∈ ↑JA<P Jd. For every random quantity Js in ↑

JA
<P
Jd, it holds that

P(Je − Js) ≥ P(Je) + P(−Js) = P(Je) − P(Js) ≥ 0, (6.6)

(c) by Lemma 6.1(iii) there is a ≥-maximal element Jb inJA such that Jb ≥ Je.

We now show that Jb is P-maximal in JA, and that Jb >P Ja.
But, by construction, Jb is ≥-maximal inJA, so, by Theorem 6.7 it suffices

to show that P(Jb − Js) ≥ 0 for all s in max≥ (A). Indeed, if Js ∈ ↑JA<P Jd, then
P(Jb− Js) ≥ P(Je− Js) since Jb ≥ Je by construction, and P(Je− Js) ≥ 0 by Eq. (6.6).
On the other hand, if Js < ↑JA<P Jd, then P(Js − Jd) < 0, and hence, since Jb ≥ Je,

P(Jb − Js) ≥ P(Je − Js) ≥ P(Je − Jd) + P(Jd − Js) > 0,

because P(Je − Jd) ≥ 0 by construction of Je, and P(Jd − Js) = −P(Js − Jd) > 0
since Js < ↑JA<P Jd.
So, Jb is P-maximal in JA. It remains to show that Jb >P Ja. Indeed, since

Jb ≥ Je and Jc ≥ Ja,

P(Jb − Ja) ≥ P(Je − Jc) ≥ P(Je − Jd) + P(Jd − Jc) > 0,

because P(Je − Jd) ≥ 0 by construction of Je, and P(Jd − Jc) = −P(Jc − Jd) > 0 by
construction of Jd. �

6.4 M-Maximality

6.4.1 Robustifying Preference

In the theory of Bayesian sensitivity analysis, also called Bayesian robustness,

belief is modelled through a setm of probability measures, which is assumed

to contain the ‘true’, but unknown, probability measure µ; see for instance

Berger [6], in casem corresponds to set of posterior probability distributions.
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A similar model is obtained in quasi-Bayesian theory, where sets of probability

measures represent partial preference orderings that satisfy certain systems

of axioms, similar to the axioms of rationality, given in Axiom 3.1 on p. 49;

see Giron and Rios [35] in caseX is a finite set; also see Seidenfeld, Schervish
and Kadane [72] for a very general representation of preferences, using sets

of probability/utility pairs.

Central to these theories is that a random quantity f is to be preferred

to a random quantity g whenever it is preferred under all candidate models

µ ∈ m. This leads to the definition (or representation) of a ‘robustified’
preference ordering >m. Let us denote by Pµ( f ) the expected utility of f with

respect to µ, i.e., say that the Pµ are linear behavioural extensions of the µ in

m defined on a common domain K ⊆ R(X); for simplicity, assume that K is
a linear space, and JA ⊆ K . Then, for each µ we already have a preference
ordering, namely >Pµ , defined in Definition 6.4. These preference orderings

induce the following robustified preference:

Definition 6.10. For any a and b in A, we say that a >m b whenever a >Pµ b

for all µ ∈ m.

We have already established an onto and one-to-one correspondence be-

tween coherent extended lower previsions of the form P = ExQ (where Q is a

lower prevision that avoids sure loss) and convex compact sets of probability

charges on ℘(X); see Theorem 5.76 on p. 265. For these lower previsions, the
above definition can also be written as:

Definition 6.11. For any a and b in A, we say that a >M b whenever a >R b

for all R ∈ M.

Recall thatM denotes the set of extended linear previsions on domP which
are behavioural extensions of P.

We shall take the above definition as a general definition of robustified

preference >M: the set M is assumed to contain the ‘true’, but unknown,
prevision (i.e., expected utility operator) R.

SinceM is assumed to be compact and convex, it is not difficult to show
that the partial orders >M and >P on domP are one and the same, simply

through observation that P is the lower envelope ofM. Indeed, since P( f ) =
minR∈M R( f ) for all f in domP, for any a and b in A it holds that Ja ≥ Jb or
P(Ja − Jb) > 0, if and only if Ja ≥ Jb or minR∈M R(Ja − Jb) > 0, and, since this
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minimum is actually reached for some R inM, this holds if and only if Ja ≥ Jb
or R(Ja − Jb) > 0 for all R inM. So, >M is equal to >P.
As a result, Bayesian robustness can be modelled through P-maximality,

whenever (i) m induces a compact and convex set of previsions (expected

utility operators) defined on a common linear space K ⊆ R(X), and (ii)
the lower envelope P of this set of previsions satisfies the conditions of

Section 6.2.2 on p. 272 ff. Note that these assumptions are in particular

satisfiedwhenX is a finite space,m is a convex and compact set of probability
measures on ℘(X), and K = R(X), i.e., the case discussed by Giron and Rios
[35].

6.4.2 Robustifying Choice Functions: E-Admissibility

But there is in the literature yet another notion of optimality that can be as-

sociated with the compact convex set of extended linear previsionsM: an
action a can be considered optimal inA if it is amaximal element ofAwith re-

spect to the preorder >R for some R ∈ M. This notion of optimality is a special
case of what Levi [54, Section 4.8] calls ‘E-admissibility’ (we have a unique

utility function, whereas Levi allows for a convex set of utility functions, and

secondly, we only consider the static case here, whereas E-admissibility also

extends to dynamic systems). This notion of optimality does not generally

coincide with the ones associated with the preorders >M and >P, unless the

set JA is convex; see for instance Walley [86, Section 3.9.5, pp. 162–163]. We
are therefore led to consider the following notion of optimality:

Definition 6.12. An action a in A is calledM-maximal, if it is R-maximal for
some R inM:

optM (A) :=
⋃

R∈M
opt

≮R
(A) =

⋃

R∈M
max>R (A) . (6.7)

6.4.3 Monotonicity

The more determinate our beliefs, the smaller the set ofM-maximal actions
(this is similar to Theorem 6.6 on p. 280).

Theorem6.13. If Q is a behavioural extension of P, thenmaxMQ (A) ⊆ maxMP (A).
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Proof. If Q is a behavioural extension of P, then any linear behavioural ex-

tension S of Q is also a linear behavioural extension of P, and hence, a linear

behavioural extension of an element—namely, the restriction of S to domP—

ofMP.

Suppose that a isMQ-maximal in A. Then, there is a linear behavioural

extension Sa of Q such a is Sa-maximal in A. But, since Sa is also a linear

behavioural extension of an Ra inMP, it follows from Theorem 6.6 on p. 280

that a is Ra-maximal, and henceMP-maximal. �

6.4.4 M-Maximality Through Point-Wise Maximality
Theorem 6.14. An action a in A isM-maximal if and only if it is ≥-maximal in A
and there is an Ra inM such that Ra(Ja − Jb) ≥ 0 for every action b in A:

max>P (A) =
{

a ∈ max≥ (A) : (∃Ra ∈ M)(∀b ∈ A)(Ra(Ja − Jb) ≥ 0)
}

,

and if JA is compact, then a in A is P-maximal if and only if a is ≥-maximal in A
and there is an Ra inM such that Ra(Ja− Jb) ≥ 0 for every ≥-maximal action b in A:

=
{

a ∈ max≥ (A) : (∃Ra ∈ M)(∀b ∈ max≥ (A))(Ra(Ja − Jb) ≥ 0)
}

.

Proof. Immediate from Eq. (6.7) and Theorem 6.7 on p. 280. �

6.4.5 When P-Maximality andM-Maximality Coincide
In any case,M-maximality implies P-maximality (see Walley [86, Sect. 3.9.4,
p. 162, ll. 26–28]):

Proposition 6.15. If a isM-maximal in A, then it is also P-maximal in A.

Proof. If a is M-maximal in A, then, by Theorem 6.14, a is ≥-maximal and
there is a linear extended prevision Ra inM such that Ra(Ja − Jb) ≥ 0 for all b
in A. But, by definition ofM, Ra is a behavioural extension of P: Ra( f ) ≥ P( f )
for all f in domP. Hence, a is ≥-maximal and P(Ja − Jb) ≥ Ra(Ja − Jb) ≥ 0 for
all b in A. Applying Theorem 6.7, we find that a is P-maximal in A. �

The converse does not need to hold: we have demonstrated in Sec-

tion 6.2.1 on p. 269 ff. that optM (A) does not need to coincide with opt≮P (A);

also see Walley [86, Section 3.9.9, p. 165] for a counterexample. As already
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mentioned before, the converse is however guaranteed to hold if A contains

no more than two elements (Schervish, Seidenfeld, Kadane, and Levi [71]) or

if JA is convex (Walley [86, Section 3.9.5, “maximality theorem”]):

Theorem6.16. If A contains nomore than two actions, then optM (A) = opt≮P (A).

Proof. Immediate. �

Theorem 6.17. If JA is convex, then optM (A) = opt≮P (A).

Proof. (Proof adapted fromWalley [86, Section 3.9.5, “maximality theorem”])

Let a ∈ A and define K = {Ja − Jb : b ∈ A}. Since JA is convex, so is K . By
Theorems 6.7&6.14, it suffices to prove that P( f ) ≥ 0 for all f inK if and only
if there is a Q inM such that Q( f ) ≥ 0 for all f inK .
“if”. Immediate since P( f ) ≥ Q( f ) for all f inK .
“only if”. Assume that P( f ) ≥ 0 for all f in K . Since K is convex, condi-

tion (B) of Lemma 5.20 on p. 218 is satisfied, so, condition (C) of Lemma 5.20

must be satisfied as well: there is a linear behavioural extension R of P such

that R( f ) ≥ 0 for all f in K . Now take the restriction Q of R to domP: Q
belongs toM and satisfies the desired property. �

6.5 P-Maximinity and P-Maximaxity

6.5.1 Worst-Case and Best-Case Ranking

Another commongeneralisation ofmaximising expected utility ranks actions

according to the lower (or upper) prevision of their gain gambles:

Definition 6.18. An action a in A is called P-maximin in A if it is maximal in

Awith respect to the preorder ⊒P defined by a ⊒P bwhenever

P(Ja) > P(Jb) or Ja ≥ Jb.

Similarly, an action a in A is called P-maximax in A if it is maximal in A with

respect to the preorder ⊒P defined by a ⊒P bwhenever

P(Ja) > P(Jb) or Ja ≥ Jb.

For an axiomatic study of P-maximin, we refer to Gilboa and Schmeidler

[34]. For some reason, P-maximax does not enjoy the same popularity as
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P-maximin, but it has been applied as a criterion of optimality in the theory

of Markov decision processes, see Satia and Lave [68].

6.5.2 No Monotonicity

More determinate beliefs usually do not lead to a smaller set P-maximin

or P-maximax actions. Indeed, consider the example of Section 6.2.1 on

p. 269 ff.: without any further information about the coin, P is the vacuous

lower prevision on {H,T}, and the P-maximin solution is {a0}. Suppose we
receive additional information: the coin will always land heads up. This

information is modelled by taking P equal to the vacuous lower prevision on

{H}; the corresponding P-maximin solution is {a1}, which is clearly no subset
of {a0}.

6.5.3 Through Pointwise Maximality

Again, point-wise maximality helps (also see Walley [86, Sect. 3.9.7, pp. 163–

164]):

Theorem 6.19. An action a in A is P-maximin if and only if it is ≥-maximal and
P(Ja) ≥ P(Jb) for all actions b in A:

max⊒P (A) =
{

a ∈ max≥ (A) : (∀b ∈ A)(P(Ja) ≥ P(Jb))
}

and if JA is compact, then a in A is P-maximin if and only if a is ≥-maximal and
P(Ja) ≥ P(Jb) for all ≥-maximal actions b in A:

= arg max
a∈max≥(A)

P(Ja).

Proof. Similar to the proof of Theorem 6.7 on p. 280. �

Theorem 6.20. An action a in A is P-maximax if and only if it is ≥-maximal and
P(Ja) ≥ P(Jb) for all actions b in A:

max⊒P (A) =
{

a ∈ max≥ (A) : (∀b ∈ A)(P(Ja) ≥ P(Jb))
}
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and if JA is compact, then a in A is P-maximax if and only if a is ≥-maximal and
P(Ja) ≥ P(Jb) for all ≥-maximal actions b in A:

= arg max
a∈max≥(A)

P(Ja).

Proof. Similar to the proof of Theorem 6.7 on p. 280. �

Corollary 6.21. The following statements hold.

(i) If JA = max≥ (JA), then

max⊒P (A) = argmax
a∈A
P(Ja) and max⊒P (A) = argmaxa∈A

P(Ja).

(ii) If JA is compact, then

max⊒P (A) = arg max
a∈max≥ A

P(Ja) and max⊒P (A) = arg maxa∈max≥ A
P(Ja).

6.5.4 P-Maximin and P-Maximax Imply P-Maximality

The following proposition connects P-maximinity and P-maximaxity with

P-maximality.

Proposition 6.22. If an action a is P-maximin or P-maximax in A, then it also

P-maximal in A.

Proof. By the coherence of P, it follows that P(Ja − Jb) ≥ P(Ja) − P(Jb) and
P(Ja − Jb) ≥ P(Ja) − P(Jb) for any a and b in A. So, if a is P-maximin or P-
maximax inA, then, by these inequalities and Theorem 6.19 or Theorem 6.20,

it follows that a is ≥-maximal in A and P(Ja − Jb) ≥ 0 for all b in A. But, by
Theorem 6.7 on p. 280, this means that a is P-maximal in A. �

6.5.5 P-Maximax ImpliesM-Maximality

P-maximin does not necessarily imply M-maximality: that was demon-
strated by the example of Section 6.2.1 on p. 269 ff. However, P-maximax

does implyM-maximality.

Proposition 6.23. If an action a is P-maximax in A, then it alsoM-maximal in A.
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Proof. Suppose that a isP-maximax inA, i.e., by Theorem6.20, a is≥-maximal,
and P(Ja) ≥ P(Jb) for all b in A. Since P(Ja) = maxQ∈MQ(Ja), there is an R inM
such that R(Ja) = P(Ja). So, for all b in A,

R(Ja) = P(Ja) ≥ P(Jb) = max
Q∈M
Q(Jb) ≥ R(Jb),

and therefore, amust beM-maximal as well, by Theorem 6.14. �

6.5.6 Existence of Dominating P-Maximin and P-Maximax

Actions

The existence of dominating P-maximin and P-maximax actions, which will

turn out to be very important in dynamic programming, is again guaranteed

if JA is compact.

Theorem 6.24. IfJA is non-empty and compact, then for every action a in A, there
is a P-maximin action b in A such that b ⊒P a. Similarly, for every action a in A,
there is a P-maximax action b in A such that b ⊒P a.

Proof. By Lemma 6.1(iii), there is a ≥-maximal element Jc in JA such that
Jc ≥ Ja. In particular, it follows that Jc ⊒P Ja, so, if Jc happens to be P-
maximin, then we may take b = c and the theorem is established. If Jc is not

P-maximin, then

(a) by Theorem 6.19, there is at least one action d in max≥ (A) such that

P(Jc) < P(Jd),

(b) by the continuity of P (see Theorem 3.5(xi)) and the compactness of JA,
P achieves a maximum onJA, say, at Je. For every random quantity Js in
JA, it holds that

P(Je) ≥ P(Js). (6.8)

(c) by Lemma 6.1(iii) there is a ≥-maximal element Jb inJA such that Jb ≥ Je.

We now show that Jb is P-maximin in JA, and that Jb ⊒P Ja (note that this b
has been constructed independently of a).

By construction, Jb is ≥-maximal in JA, so, by Theorem 6.19 it suffices to
show that P(Jb) ≥ P(Js) for all s in A. But this follows from P(Jb) ≥ P(Je) since
Jb ≥ Je by construction, and P(Je) ≥ P(Js) by Eq. (6.8).
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So, Jb is P-maximin in JA. It remains to show that Jb ⊒P Ja. Indeed, since
Jb ≥ Je and Jc ≥ Ja,

P(Jb) ≥ P(Je) ≥ P(Jd) > P(Jc) ≥ P(Ja),

because P(Je) ≥ P(Jd) by construction of Je, and P(Jd) > P(Jc) by construction
of Jd.

The construction of a dominating P-maximax action is similar. �

6.6 Interval Dominance and Weak P-Maximality

6.6.1 Definition

Yet another criterion of optimality is obtained as follows:

Definition 6.25. An action a in A is called weakly P-maximal in A if it is

maximal in Awith respect to the preorder ⊇P defined by a ⊇P bwhenever

P(Ja) > P(Jb) or Ja ≥ Jb.

The inequality P(Ja) > P(Jb) is sometimes also called interval dominance:

it says that the interval [P(Ja),P(Ja)] is completely on the right side of the

interval [P(Jb),P(Jb)].

6.6.2 Weak?

By the coherence of P, it follows that P(Ja− Jb) ≥ P(Ja)−P(Jb), so P-maximality
implies weak P-maximality; whence the name weak P-maximality.

Proposition 6.26. If a is P-maximal in A, then it is also weakly P-maximal in A.

6.6.3 Monotonicity

The more determinate our beliefs, the smaller the set of weakly P-maximal

actions (this is similar to Theorem 6.6 on p. 280 and Theorem 6.13 on p. 286).

Theorem 6.27. If Q is a behavioural extension of P, thenmax⊇Q (A) ⊆ max⊇P (A).
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Proof. Suppose that a is ⊇Q-maximal in A. Then, for all b in A, it holds that
Q(Ja) ≥ Q(Jb), and Jb 6≥ Ja or Jb = Ja. But, if Q(Ja) ≥ Q(Jb), then it must also
hold that P(Ja) ≥ P(Jb), since that Q is a behavioural extension of P. So, for
all b in A, it holds that P(Ja) ≥ P(Jb), and Jb 6≥ Ja or Jb = Ja: a must be weakly
P-maximal as well. �

6.6.4 Weak P-Maximality Through Point-Wise Maximality

Also for this type of optimality, point-wise maximality helps.

Theorem 6.28. An action a in A is weakly P-maximal if and only if it is ≥-maximal
and P(Ja) ≥ P(Jb) for all actions b in A:

max⊇P (A) =
{

a ∈ max≥ (A) : (∀b ∈ A)(P(Ja) ≥ P(Jb))
}

and ifJA is compact, then a in A is weakly P-maximal if and only if a is ≥-maximal
and P(Ja) ≥ P(Jb) for all ≥-maximal actions b in A:

=
{

a ∈ max≥ (A) : (∀b ∈ max≥ (A))(P(Ja) ≥ P(Jb))
}

Proof. Similar to the proof of Theorem 6.7 on p. 280. �

6.6.5 Existence of Dominating Weakly P-Maximal Actions

Theorem 6.29. IfJA is non-empty and compact, then for every action a in A, there
is a weakly P-maximal action b in A such that b ⊇P a.

Proof. By Lemma 6.1(iii), there is a ≥-maximal element Jc in JA such that
Jc ≥ Ja. In particular, it follows that Jc ⊇P Ja, so, if Jc happens to be weakly
P-maximal, then we may take b = c and the theorem is established. If Jc is

not weakly P-maximal, then

(a) by Theorem 6.28, there is at least one action d in max≥ (A) such that

P(Jc) < P(Jd),

(b) by the continuity of P (see Theorem 3.5(xi)) and the compactness of JA,
P achieves a maximum onJA, say, at Je. For every random quantity Js in
JA, it holds that

P(Je) ≥ P(Js). (6.9)
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(c) by Lemma 6.1(iii) there is a ≥-maximal element Jb inJA such that Jb ≥ Je.

We now show that Jb is weakly P-maximal inJA, and that Jb ⊇P Ja (note that
this b has been constructed independently of a).

By construction, Jb is ≥-maximal in JA, so, by Theorem 6.28 it suffices to
show that P(Jb) ≥ P(Js) for all s in A. But this follows from P(Jb) ≥ P(Je) since
Jb ≥ Je by construction, and P(Je) ≥ P(Je) ≥ P(Js) by Eq. (6.9).
So, Jb is weakly P-maximal inJA. It remains to show that Jb ⊇P Ja. Indeed,

since Jb ≥ Je and Jc ≥ Ja,

P(Jb) ≥ P(Je) ≥ P(Jd) > P(Jc) ≥ P(Ja),

because P(Je) ≥ P(Jd) by construction of Je, and P(Jd) > P(Jc) by construction
of Jd. �
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6.7 Summary of Optimality Criteria

• In general, the following implications hold:

P-maximax P-maximin

M-maximal P-maximal

weakly P-maximal

≥-maximal

?

HHHHHHj ?
-

HHHHHHj ?

?

• IfP is self-conjugate, thenM = {P}, andall criteria of optimality coincide
(except of course for ≥-maximality):

P-maximax P-maximin

M-maximal P-maximal

weakly P-maximal

?

HHHHHHj ?

6

-
HHHHHHj

HHHHHHY 6

?

�

6

HHHHHHY

• All criteria derived directly from pair-wise preference (such as P-maxi-
mality, weak P-maximality, ≥-maximality, P-maximinity, and P-maxi-
maxity) satisfy the following principle: ifJA is compact, then for every
action a in A there is an optimal b in A such that b is preferred to a.

• All refine max≥ (•): any optimal action a in A is ≥-maximal in A.

• For any of these criteria, except for P-maximinity and P-maximaxity, if
Q dominates P, then optimality with respect to Q, implies optimality

with respect to P. Roughly said, the more determinate our beliefs, the

smaller the set of optimal actions.
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The last property, which we have called monotonicity, has a nice intuitive

interpretation: the more determinate our beliefs, the more decisive we are.

P-maximinity and P-maximaxity violate this principle: they imply strong

decisiveness even if our beliefs are very weak. This is demonstrated by the

example of Section 6.2.1 on p. 269 ff.: P-maximin yields a unique solution,

namely a0, “the safest choice”.
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Chapter 7

Dynamic Programming with

Uncertain Gain

In this chapter, we shall generalise the optimisation technique of dynamic

programming for discrete-time systems with an uncertain gain function, as-

suming that uncertainty about the gain function is described by an extended

lower prevision P. We shall show that, in general, only for P-maximality

and M-maximality an optimal feedback can be constructed by solving a
Bellman-like equation. This result is due to De Cooman and Troffaes [24, 23].

7.1 Introduction

The main objective in optimal control is to find out how a system can be

influenced, or controlled, in such a way that its behaviour satisfies certain

requirements, while at the same time maximising a given gain function.

A very efficient method for solving optimal control problems for discrete-

time systems is the recursive dynamic programming technique, introduced by

Richard Bellman [4].

7.1.1 The Principle of Optimality

In Figure 7.1 we depict a situation where a system can go from state a to

state c through state b in three ways: following the paths αβ, αγ and αδ. We

denote the gains associated with these paths by Jαβ, Jαγ and Jαδ respectively.

299
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Figure 7.1: Principle of Optimality
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Figure 7.2: Dynamic Programming

Assume that path αγ is optimal, meaning that Jαγ > Jαβ and Jαγ > Jαδ. Then

it follows that path γ is the optimal way to go from b to c. To see this,

observe that Jαν = Jα + Jν for ν ∈ {β, γ, δ} (we shall assume throughout that
gains are additive along paths) and derive from the inequalities above that

Jγ > Jβ and Jγ > Jδ. This simple observation, which Bellman called the

principle of optimality, forms the basis for the recursive technique of dynamic

programming for solving an optimal control problem. To see how this is

done in principle, consider the situation depicted in Figure 7.2. Suppose we

want to find the optimal way to go from state a to state e. After one time step,

we can reach the states b, c and d from state a, and the optimal paths from

these states to the final state e are known to be α, γ and η, respectively. To

find the optimal path from a to e, we only need to compare the costs Jλ + Jα,

Jµ + Jγ and Jν + Jη of the respective candidate optimal paths λα, µγ and νη,

since the principle of optimality tells us that the paths λβ, νδ and νǫ cannot

be optimal: if they were, then so would be the paths β, δ and ǫ. This, written

down in a more formal language, is what is essentially known as Bellman’s

equation. It allows us to solve an optimal control problem fairly efficiently

through a recursive procedure, by calculating optimal paths backwards from

the final state.
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7.1.2 Uncertain Gain

In applications, it may happen that the gain function, which associates a

gain with every possible control action and the resulting behaviour of the

system, is not well known. This problem is most often treated by modelling

the uncertainty about the gain by means of a probability measure, and by

maximising the expected gain under this probability measure, as in Section 6.1

on p. 268 ff. Due to the linearity of the expectation operator, this approach

does not change the nature of the optimisation problem in any essential way,

and the usual dynamic programming method can therefore still be applied.

As an example, consider the simple linear system described by

xk+1 = axk + buk, k = 0, . . . ,N − 1 (7.1)

where xk ∈ R denote the system state and uk ∈ R the control at time k, and
where a and b are non-zero real numbers. Given an initial state x0 and a

sequence u• of successive controls u0, u1, . . . , uN−1, the systems goes through

the successive states x1, x2, . . . , xN determined by Eq. (7.1), and we assume

that with this control there is associated a gain

J(x0,u•, ω) = −
N−1
∑

k=0

[x2k + ωu
2
k],

where ω is some strictly positive real constant. Solving the present optimal

control problem consists in finding a control u• that brings the system at

time N in a given final state x f , while at the same time maximising the gain

J(x0,u•, ω). The dynamic programming approach achieves this by reasoning

backwards in time. First, the control uN−1 is determined that maximises the

gain

−x2N−1 − ωu2N−1 = −
(x f − buN−1

a

)2
− ωu2N−1.

This control alsodetermines aunique xN−1, and theprocedure is then repeated

by finding a control uN−2 that maximises the gain x2N−2 + ωu
2
N−2 . . . The

principle of optimality then ensures that theu• found in this recursivemanner

indeed solves the optimal control problem. When ω is not well known, and

only its probability distribution is given, the optimal control problem is

solved by maximising the expected value of the gain, i.e., by maximising
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expected utility, which can in this special example be done by replacing ω

with its expectation.

We have argued in Chapter 6 that optimality cannot always be modelled

adequately through maximising expected utility, because, roughly speaking,

theremay not be enough information available to identify a single probability

measure. In those cases, it is more appropriate to represent the available

knowledge by an extended coherent lower prevision, or what is in many cases

mathematically equivalent, a set of probability measures. This approach has

been applied to estimation and control by for instance Wolfe [93], Chevé

and Congar [10], Utkin and Gurov [81], and Kozine and Utkin [52]. In the

example above, it may for instance happen that the probability distribution

for ω is only known to belong to a given set: e.g., ω is normally distributed

with mean zero, but the variance is only known to belong to an interval

[σ2, σ2]; or ω itself is only known to belong to an interval [ω,ω].

Two questions now arise naturally. First of all, how should we formu-

late the optimal control problem: what does it mean for a control to be

optimal with respect to an uncertain gain function, where the uncertainty is

represented through an extended coherent lower prevision? In Chapter 6,

under the assumption that our beliefs are not affected by our actions, we

have identified five different optimality criteria, each with a different inter-

pretation (although they coincide for precise probability models), and we

have studied the relations between them. A second question, which we shall

address in this chapter, is whether it is still possible to solve the correspond-

ing optimal control problems using the ideas underlying Bellman’s dynamic

programming method? We shall show in Section 7.2 that this is the case for

only two of the five optimality criteria we have studied: only for these a gen-

eralised principle of optimality holds, and the optimal controls are solutions

of suitably generalised Bellman-like equations. In order to arrive at this con-

clusion, we study the properties that an abstract notion of optimality should

satisfy for the Bellman approach to work. To illustrate how our ideas can be

implemented, we shall present two numerical example in Sections 7.3&7.4.

Of course, other authors, such as Satia and Lave [68], White and Eldeib

[90], Givan, Leach, and Dean [36], and Harmanec [41], have extended the

dynamic programming algorithm to systems with uncertain gain and/or un-

certain dynamics, where the uncertainty is modelled by a set of probability

distributions. But none of them seem to have questioned in what sense their
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generalised dynamic programming method leads to optimal paths. Here we

approach the problem from the opposite, and in our opinion, more logical

side: one should first define a notion of optimality and investigate whether

the dynamic programming argument holds for it, rather than blindly “gen-

eralise” Bellman’s algorithm without showing that it actually yields optimal

controls.

In the remainder of this section, we introduce the basic concepts and

notation used in the remainder of this chapter.

7.1.3 The System

For a and b inN, the set of natural numbers c that satisfy a ≤ c ≤ b is denoted
by [a, b]. Let

xk+1 = f (xk,uk, k)

describe a discrete-time dynamical system with k ∈ N, xk ∈ X and uk ∈ U.
The set X is the state space (e.g., Rn, n ∈N \ {0}), and the setU is the control
space (e.g., Rm, m ∈ N \ {0}). The map f : X × U ×N → X describes the
evolution of the state in time: given the state xk ∈ X and the control uk ∈ U
at time k ∈ N, it returns the next state xk+1 of the system. For practical
reasons, we impose a final time N beyond which we are not interested in

the dynamics of the system. Moreover, it may happen that not all states and

controls are allowed at all times: we demand that xk should belong to a set of

admissible states Xk at every instant k ∈ [0,N], and that uk should belong to a
set of admissible controlsUk at every instant k ∈ [0,N − 1], where Xk ⊆ X and
Uk ⊆ U are given. The setXN may be thought of as the set we want the state
to end up in at time N.

7.1.4 Paths

A path is a triple (x, k,u•), where x ∈ X is a state, k ∈ [0,N] a time instant, and
u• : [k,N − 1] → U a sequence of controls. Such a path fixes a unique state
trajectory x• : [k,N] → X, which is defined recursively through xk = x and
xℓ+1 = f (xℓ,uℓ, ℓ) for every ℓ ∈ [k,N − 1]. It is said to be admissible if xℓ ∈ Xℓ
for every ℓ ∈ [k,N] and uℓ ∈ Uℓ for every ℓ ∈ [k,N−1]. We denote the unique
map from the empty set ∅ toU by u∅. If k = N, the control u• does nothing:
it is equal to u∅. The unique path starting and ending at time k = N in x ∈ X
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is denoted by (x,N,u∅).

The set of admissible paths starting in the state x ∈ Xk at time k ∈ [0,N] is
denoted byU(x, k), i.e.,

U(x, k) = {

(x, k,u•) : (x, k,u•) admissible path
}

.

For example, U(x,N) = {(x,N,u∅)} whenever x ∈ XN andU(x,N) = ∅ other-
wise.

If we consider a path with final time M different from N, then we write

(x, k,u•)M (assume k ≤ M ≤ N). Observe that (x, k,u•)k can be identified
with (x, k,u∅)k; it is the unique path (of length zero) starting and ending at

time k in x. Let 0 ≤ k ≤ ℓ ≤ m. Two paths (x, k,u•)ℓ and (y, ℓ, v•)m can be
concatenated if y = xℓ. The concatenation is denoted by (x, k,u•, ℓ, v•)m or by

(x, k,u•)ℓ ⊕ (y, ℓ, v•)m. It represents the path that starts in state x at time k, and
results from applying control ui for times i ∈ [k, ℓ− 1] and control vi for times
i ∈ [ℓ,m − 1]. In particular,

(x, k,u•)ℓ = (x, k,u•)k ⊕ (x, k,u•)ℓ = (x, k,u•)ℓ ⊕ (xℓ, ℓ,u•)ℓ.

The set of admissible paths starting in state x ∈ Xk at time k ∈ [0,N] and
ending at time ℓ ∈ [k,N] is denoted by U(x, k)ℓ. In particular we have that
U(x, k)k = {(x, k,u∅)k} if x ∈ Xk, andU(x, k)k = ∅ otherwise. Moreover, for any
(x, k,u•)ℓ ∈ U(x, k)ℓ and anyV ⊆ U(xℓ, ℓ), we use the notation

(x, k,u•)ℓ ⊕V = {(x, k,u•)ℓ ⊕ (xℓ, ℓ, v•) : (xℓ, ℓ, v•) ∈ V}.

7.1.5 The Gain Function

We assume that applying the control action u ∈ U to the system in state x ∈ X
at time k ∈ [0,N−1] yields a real-valued gain g(x,u, k, ω). Moreover, reaching
the final state x ∈ X at time N also yields a gain h(x, ω). The parameter ω
collects all variables that influence the gain. If we knew its value, say ω∗, we

would know the gains to be g(x,u, k, ω∗) and h(x, ω∗). As it is, the value of ω

is uncertain, so we shall consider ω as the uncertain outcome of a random

variable Ω that takes values in a set ΩΩΩ. So the gains are uncertain as well,

and we shall consider them as random quantities on Ω. It is important to

note thatΩ only influences the gains; it has no effect on the system dynamics,
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which are assumed to be known perfectly well. We shall also assume that

our beliefs about Ω are influenced nor by the initial state of the system, nor

by the sequence of controls applied to the system: essentially, this is what we

have called act-state independence in Chapter 6—beware of the fact that the

standard terminology is rather unfortunate in the context of systems theory,

as the word “state” in “act-state dependence” refers to the random variable

Ω, and not the state of the system.

We shall only consider the important case that the gains are additive along

paths, i.e., with a path (x, k,u•) we associate a gain J(x, k,u•, ω) given by:

J(x, k,u•, ω) =
N−1
∑

i=k

g(xi,ui, i, ω) + h(xN, ω),

for any ω ∈ΩΩΩ (gain additivity). IfM < N, we also use the notation

J(x, k,u•, ω)M =
M−1
∑

i=k

g(xi,ui, i, ω).

It will be convenient to associate a zero gain with an empty control action:

for k ∈ [0,N] we let J(x, k,u•, ω)k = 0.
The main objective of optimal control can now be formulated as follows:

given that the system is in the initial state x ∈ X at time k ∈ [0,N], find a
control sequence u• : [k,N − 1]→U resulting in an admissible path (x, k,u•)
such that the corresponding gain J(x, k,u•, ω) is maximal. Moreover, we

would like this control sequence u• to be such that its value uk at time k is a

function of x and k only, since in that case the control can be realised through

state feedback.

If ω is known, then the problem reduces to the classical problem of dy-

namic programming, first studied and solved by Bellman [4]. We shall

assume here that the available information about the true state of the world

is modelled through an extended coherent lower prevision P defined on a suf-

ficiently large set domP of random quantities on Ω. A special case of this

obtains when P is an extended linear prevision. Recall from Chapter 5 that

extended linear previsions are precise probability models; they are previsions

or fair prices in the sense of de Finetti [27], and in many cases, they can be

interpreted as expectation operators associated with probability measures,

or more generally, probability charges.
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For a given path (x, k,u•), the corresponding gain J(x, k,u•, ω) can be seen

as a real-valued map on ΩΩΩ, which is denoted by J(x, k,u•) and is called the

gain random quantity associated with (x, k,u•). In the same way we define

the gain random quantities g(xk,uk, k), h(xN) and J(x, k,u•)M. There is gain

additivity: J(x, k,u•, ℓ, v•)m = J(x, k,u•)ℓ + J(xℓ, ℓ, v•)m for k ≤ ℓ ≤ m ≤ N, and
J(x, k,u•)k = 0. We denote by J(x, k) the set of gain random quantities for
admissible paths from initial state x ∈ Xk at time k ∈ [0,N]:

J(x, k) = {J(x, k,u•) : (x, k,u•) ∈ U(x, k)} .

We shall assume that P is a real-valued coherent extended lower prevision,

and that domP is a linear lattice that contains at least all constant random

quantities and all gain random quantities g(xk,uk, k) and h(xN), for all k ∈
[0,N−1], all xk inXk, all uk inUk, and all xN inXN. As a consequence, we can
endow domP with a topology that suits our purpose very well, and we can

also associate with P a compact convex setM of extended linear previsions
defined on domP such that P( f ) = minQ∈MQ( f ) for any f in domP; this has

been discussed in Section 6.2.2 on p. 272 ff.

7.2 Conditions for Dynamic Programming Under

a General Notion of Optimality

In Chapter 6, we have discussed five different ways of associating optimal

paths with a lower prevision P, all of which occur in the literature. We

now propose to find out whether, for these different types of optimality, we

can use the ideas behind the dynamic programming method to solve the

corresponding optimal control problems.

To this end, we take a closer look at Bellman’s analysis as described in

Section 7.1, and we investigate which properties a generic notion of optimal-

ity must satisfy for his method to work. Let us therefore assume that there

is some property, called ∗-optimality, which a path in a given set of paths P
either has or does not have. If a path in P has this property, we say that it
is ∗-optimal in P. We shall denote the set of the ∗-optimal elements of P by
opt∗ (P). By definition, opt∗ (P) ⊆ P. Further on, we shall apply our findings
to the various instances of ∗-optimality described above.
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Figure 7.3: AMore General Type of Dynamic Programming

We may also view opt∗ as an operator on subsets of a space P, that
maps any subset T of P to a (possibly empty) subset opt∗ (T) of that set T.
Social choice functions are a particular type of optimality operators, which

additionally satisfy opt∗ (T) , ∅ whenever T , ∅.

7.2.1 The Principle of Optimality

Consider Figure 7.3, where we want to find the ∗-optimal paths from state a
to state e. Suppose that after one time step, we can reach the states b, c and

d from state a. The ∗-optimal paths from these states to the final state e are
known to be α, γ, and δ and η, respectively. For the dynamic programming

approach to work, we need to be able to infer from this a generalised form

of the Bellman equation, stating essentially that the ∗-optimal paths from
a to e, a priori given by opt∗

({λα, λβ, µγ, νδ, νǫ, νη}), are actually also given
by opt∗

({λα, µγ, νδ, νη}), i.e., the ∗-optimal paths in the set of concatenations
of λ, µ and ν with the respective ∗-optimal paths α, γ, and δ and η. It is
therefore necessary to exclude that the concatenations λβ and νǫ with the

non-∗-optimal paths β and ǫ can be ∗-optimal. This amounts to requiring that
the operator opt∗ should satisfy some appropriate generalisation of Bellman’s

principle of optimality that will allow us to conclude that λβ and νǫ cannot be

∗-optimal because then β and ǫ would be ∗-optimal as well. Definition 7.3
below provides a precise general formulation.



308 DYNAMIC PROGRAMMINGWITH UNCERTAIN GAIN

7.2.2 Insensitivity to The Omission of Non-Optimal Paths

But, perhaps surprisingly for someone familiar with the traditional form

of dynamic programming, opt∗ should satisfy an additional property: the

omission of the non-∗-optimal paths λβ and νǫ from the set of candidate ∗-
optimal paths should not have any effect on the actual ∗-optimal paths: we
need that

opt∗
({λα, λβ, µγ, νδ, νǫ, νη}) = opt∗

({λα, µγ, νδ, νη}) .

This is obviously true for the simple type of optimality that we have looked

at in Section 7.1, but it need not be true for the more abstract types that

we want to consider here. Equality will be guaranteed if opt∗ is insensitive

to the omission of non-∗-optimal elements from {λα, λβ, µγ, νδ, νǫ, νη}, in the
following sense.

Definition 7.1. Consider a set S , ∅ and an optimality operator opt∗ defined
on the set ℘(S) of subsets of S such that opt∗ (T) ⊆ T for all T ⊆ S. Elements
of opt∗ (T) are called ∗-optimal in T. The optimality operator opt∗ is called
insensitive to the omission of non-∗-optimal elements from S if opt∗ (S) = opt∗ (T)
for all T such that opt∗ (S) ⊆ T ⊆ S.

The following proposition gives an interesting sufficient condition for this

insensitivity in case optimality is associated with a (family of) strict partial

order(s): it suffices that every non-optimal path is strictly dominated by an

optimal path.

Proposition 7.2. Let S be a non-empty set provided with a family of strict partial

orders > j, j ∈ J. Define for T ⊆ S, opt> j (T) =
{

a ∈ T : (∀b ∈ T)(b 6> j a)
}

as the set

of maximal elements of T with respect to > j, and let optJ (T) =
⋃

j∈J opt> j (T). Then

opt> j , j ∈ J and optJ are optimality operators. If for some j ∈ J,

(∀a ∈ S \ opt> j (S))(∃b ∈ opt> j (S))(b > j a), (7.2)

then opt> j is insensitive to the omission of non-> j-optimal elements from S. If

Eq. (7.2) holds for all j ∈ J, then optJ is insensitive to the omission of non-J-optimal
elements from S.

Proof. Consider j in J, and assume that Eq. (7.2) holds for this j. Let opt> j (S) ⊆
T ⊆ S, thenwemust prove that opt> j (S) = opt> j (T). First of all, if a ∈ opt> j (S)
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then b 6> j a for all b in S, and a fortiori for all b in T, whence a ∈ opt> j (T).
Consequently, opt> j (S) ⊆ opt> j (T). Conversely, let a ∈ opt> j (T) and assume
ex absurdo that a < opt> j (S). It then follows from Eq. (7.2) that there is some c

in opt> j (S) and therefore in T such that c > j a, which contradicts a ∈ opt> j (T).
Next, assume that Eq. (7.2) holds for all j ∈ J. Let optJ (S) ⊆ T ⊆ S, then

we must prove that optJ (S) = optJ (T). Consider any j ∈ J, then opt> j (S) ⊆
optJ (S) ⊆ T ⊆ S, sowemay infer from thefirst part of theproof that opt> j (S) =
opt> j (T). By taking the union over all j ∈ J, we find that indeed optJ (S) =
optJ (T). �

We are now ready for a precise formulation of the dynamic programming

approach for solving optimal control problems associated with general types

of optimality. We assume that we have some type of optimality, called ∗-
optimality, that allows us to associate with the set of admissible pathsU(x, k)
starting at time k in initial state x, an optimality operator opt∗ defined on

the set ℘(U(x, k)) of subsets of U(x, k). For each such subset V, opt∗ (V) is
then the set of admissible paths that are ∗-optimal in V. The principle of
optimality states that the optimality operators associated with the various

U(x, k) should be related in a special way.

Definition 7.3 (Principle of Optimality). ∗-optimality satisfies the principle of
optimality if it holds for all k ∈ [0,N], x ∈ Xk, ℓ ∈ [k,N] and (x, k,u•) inU(x, k)
that if (x, k,u•) is ∗-optimal inU(x, k), then (xℓ, ℓ,u•) is ∗-optimal inU(xℓ, ℓ).

This may also be expressed as:

opt∗ (U(x, k)) ⊆
⋃

(x,k,u•)ℓ∈U(x,k)ℓ
(x, k,u•)ℓ ⊕ opt∗ (U(xℓ, ℓ)) .

The Bellman equation now states that applying the optimality operator to

the right hand side suffices to achieve equality. (Usually this is stated with

ℓ = k + 1.)

Theorem 7.4 (Bellman Equation). Let k ∈ [0,N] and x ∈ Xk. Assume that ∗-op-
timality satisfies the principle of optimality, and that the optimality operator opt∗ for

U(x, k) is insensitive to the omission of non-∗-optimal elements fromU(x, k). Then
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for all ℓ ∈ [k,N]:

opt∗ (U(x, k)) = opt∗

















⋃

(x,k,u)ℓ∈U(x,k)ℓ
(x, k,u)ℓ ⊕ opt∗ (U(xℓ, ℓ))

















,

that is, a path is ∗-optimal if and only if it is a ∗-optimal concatenation of an admissible
path (x, k,u•)ℓ and a ∗-optimal path of U(xℓ, ℓ).

Proof. Fix k in [0,N], ℓ ∈ [k,N] and x ∈ Xk. Define

V1 =
⋃

(x,k,u)ℓ∈U(x,k)ℓ
(x, k,u)ℓ ⊕ opt∗ (U(xℓ, ℓ)) , and,

V2 =
⋃

(x,k,u)ℓ∈U(x,k)ℓ
(x, k,u)ℓ ⊕

(

U(xℓ, ℓ) \ opt∗ (U(xℓ, ℓ))
)

.

Obviously, U(x, k) = V1 ∪ V2 and V1 ∩ V2 = ∅. We have to prove that
opt∗ (U(x, k)) = opt∗ (V1). By the principle of optimality, no path in V2 is ∗-
optimal inU(x, k), soV2∩opt∗ (U(x, k)) = ∅. This implies that opt∗ (U(x, k)) ⊆
V1 ⊆ U(x, k), and since opt∗ is assumed to be insensitive to the omission of
non-∗-optimal elements fromU(x, k), it follows that opt∗ (U(x, k)) = opt∗ (V1).

�

Let us now apply these general results to the specific types of optimality

introduced in Chapter 6. For all five optimality operators opt>P , optM, opt⊒P ,

opt⊒P
, and opt⊇P , we shall check whether we can use a Bellman equation to

solve the corresponding optimal control problem.

7.2.3 P-Maximality

We first consider the optimality operator opt>P that selects from a set of paths

S those that are the maximal elements of S with respect to the preorder >P.

The following lemma roughly states that strict preference amongst pathswith

respect to >P is preserved under concatenation and truncation. As a result,

the principle of optimality with respect to P-maximality holds.

Lemma 7.5. Let k ∈ [0,N] and ℓ ∈ [k,N]. Consider the paths (x, k,u•)ℓ inU(x, k)ℓ
and (xℓ, ℓ, v•), (xℓ, ℓ,w•) in U(xℓ, ℓ). Then (xℓ, ℓ, v•) >P (xℓ, ℓ,w•) if and only if
(x, k,u•)ℓ ⊕ (xℓ, ℓ, v•) >P (x, k,u•)ℓ ⊕ (xℓ, ℓ,w•).
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Proof. Let f , g, and h be randomquantities in domP. The statement is proved

if we can show that g >P h if and only if f + g >P f + h. But P(g− h) > 0 if and
only if P(( f + g)− ( f + h)) = P(g− h) > 0, g ≥ h if and only if f + g ≥ f + h, and
finally, g , h if and only if f + g , f + h. This establishes the equivalence. �

Proposition 7.6 (Principle of Optimality). Let k ∈ [0,N], x ∈ Xk and (x, k,u∗•) ∈
U(x, k). If (x, k,u∗•) is P-maximal inU(x, k) then (xℓ, ℓ,u∗•) is P-maximal inU(xℓ, ℓ)
for all ℓ ∈ [k,N].

Proof. If (xℓ, ℓ,u∗•) is not P-maximal, then there is a path (xℓ, ℓ,u•) such that

(xℓ, ℓ,u•) >P (xℓ, ℓ,u∗•). By Lemma 7.5 we find that

(x, k,u∗•)ℓ ⊕ (xℓ, ℓ,u•) >P (x, k,u∗•)ℓ ⊕ (xℓ, ℓ,u∗•) = (x, k,u∗•).

This means that (x, k,u∗•)ℓ ⊕ (xℓ, ℓ,u•) is preferred to (x, k,u∗•), and therefore
(x, k,u∗•) cannot be P-maximal, a contradiction. �

As a direct consequence of Theorem 6.9 on p. 283, and Proposition 7.2, we

see that if J(x, k) is compact, then the optimality operator opt>P associated
with U(x, k) is insensitive to the omission of non-P-maximal elements. To-
gether with Proposition 7.6 and Theorem 7.4, this allows us to infer a Bellman

equation for P-maximality.

Corollary 7.7. Let k ∈ [0,N] and x ∈ Xk. If J(x, k) is compact, then for all
ℓ ∈ [k,N]

opt>P (U(x, k)) = opt>P

















⋃

(x,k,u)ℓ∈U(x,k)ℓ
(x, k,u)ℓ ⊕ opt>P (U(xℓ, ℓ))

















, (7.3)

that is, a path is P-maximal if and only if it is a P-maximal concatenation of an

admissible path (x, k,u•)ℓ and a P-maximal path of U(xℓ, ℓ).

Corollary 7.7 results in a procedure to calculate all P-maximal paths. In-

deed, opt>P (U(x,N)) = {u∅} for every x ∈ XN, and opt>P (U(x, k)) can be
calculated recursively through Eq. (7.3). It also provides a method for con-

structing a P-maximal feedback: for every x ∈ Xk, choose any (x, k,u∗•(x, k)) ∈
opt>P (U(x, k)). Then φ(x, k) = u

∗
k
(x, k) realises a P-maximal feedback.
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Figure 7.4: A Counterexample

7.2.4 M-Maximality
We now turn to the optimality operator optM, defined through Eq. (6.7)

on p. 286. If we recall Proposition 7.2, we see that optM is insensitive to the

omissionof non-M-maximal elements ofU(x, k)wheneverJ(x, k) is compact.
By Proposition 7.6, optM satisfies the principle of optimality (indeed, if a

path isM-maximal, then it must be P-maximal for some P ∈ M, and by the
proposition any truncation of it is also P-maximal, hence alsoM-maximal).
This means that the Bellman equation also holds for M-maximality under
similar conditions as for P-maximality. As shown in Theorem 6.17 on p. 288,

both types of optimality coincide if J(x, k) is convex.

7.2.5 P-Maximinity and P-Maximaxity

We come to the types of optimality associated with the strict partial orders

⊒P and ⊒P. It follows from Theorem 6.24 on p. 291 and Proposition 7.2
that if J(x, k) is compact, the optimality operator opt⊒P is insensitive to the
omission of non-P-maximin paths from U(x, k), and a similar observation
holds for opt⊒P

. But, as the following counterexample shows, the principle of

optimality holds for neither P-maximinity, nor P-maximaxity, and therefore

the dynamic programming approach may not work here. Essentially, this

is because the preorders ⊒P and ⊒P are not vector orderings—they are not
compatiblewith gain additivity: contrary to expected gains, lower and upper

expected gains are not additive.

Example 7.8. Consider the dynamical system depicted in Figure 7.4. LetΩΩΩ =

{♯, ♭} and denote the random quantity that maps ♯ 7→ x and ♭ 7→ y by 〈

x, y
〉

.

Let P be the vacuous lower prevision on Ω, defined by P(
〈

x, y
〉

) = min{x, y}.
Assume that J(α) = 〈2, 0〉, J(β) = 〈0,−1〉 and J(γ) = 〈−2, 0〉 (there is zero gain
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associatedwith the final state). Then αβ bP αγ: indeed, 〈2,−1〉 does not dom-
inate 〈0, 0〉 point-wise, and P(〈2,−1〉) = min{2,−1} ≯ min{0, 0} = P(〈0, 0〉) or
equivalently 〈0, 0〉maximises the smallest expected gain. Hence, we find that
αγ is P-maximin. But β ⊐P γ: indeed, P(〈0,−1〉) = min{0,−1} > min{−2, 0} =
P(〈−2, 0〉), which means that γ is not P-maximin. So P-maximinity does not
satisfy the principle of optimality.

It’s not so hard to construct a similar counterexample for P-maximaxity.

7.2.6 Weak P-Maximality

It can be shown easily that ifJ(x, k) is compact, the optimality operator opt⊇P
onU(x, k) is insensitive to the omission of non-weakly-P-maximal paths from
U(x, k). But, as the following counterexample shows, we cannot guarantee
that the principle of optimality holds for weak P-maximality, and therefore

the dynamic programming approach may not work here. Again, this is

because the partial order ⊇P is not compatible with gain additivity. It also
indicates that by solving the Bellman-type equation advocated in [41], we

will not necessarily get paths that are optimal in the sense described above.

Example 7.9. Consider again the dynamical system depicted in Figure 7.4.

As before, let ΩΩΩ = {♯, ♭}, let P be the vacuous lower prevision on Ω, and
denote the random quantity that maps ♯ 7→ x and ♭ 7→ y by 〈

x, y
〉

. Assume

that J(α) = 〈2, 0〉, J(β) = 〈0, 0〉 and J(γ) = 〈−1,−1〉 (there is zero gain associated
with the final state). Then αβ 2P αγ: indeed, 〈2, 0〉 does not dominate 〈1,−1〉
point-wise, and, P(〈2, 0〉) = min{2, 0} ≯ max{1,−1} = P(〈1,−1〉). Hence, we
find that αγ is weakly P-maximal. But β ⊃P γ: indeed, P(〈0, 0〉) = min{0, 0} >
max{−1,−1} = P(〈−1,−1〉), which means that γ is not weakly P-maximal. So,
weak P-maximality does not satisfy the principle of optimality.

7.3 Example: Pol&Jo versus Renthouse

Suppose we have a total amount of money x at our disposal, which we can

invest into two companies, named Pol&Jo and Renthouse, and which we

shall simply denote by 0 and 1. We denote our investment in company 0 by

u0, and in company 1 by u1. Observe that x, u0 and u1 are non-negative real
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numbers, and u0 + u1 ≤ x. The total gain is

J(x,u0,u1) = ω0u0 + ω1u1 + ω2(x − u0 − u1),

where ω0 > 0, ω1 > 0 are gain factors (for companies 0 and 1), and ω2 > 0

is the devaluation factor (of the money we have not invested). We wish to

maximise the gain, but, we are uncertain about ω0, ω1 and ω2. We know that

ω0 = 1 + g0 + ǫ and ω1 = 1 + g1 + ǫ. g0 and g1 model the productivities of

the companies, and ǫmodels economical variations that affect each company

in the same way, such as the global economical state. We do not make any

assumption about the dependence between g0, g1, ǫ and ω2. We only know

that g0 ∈ [0.0, 0.3], g1 ∈ [0.1, 0.2], ǫ ∈ [−0.1, 0.2] and ω2 ∈ [0.85, 0.95]. This
leads to the following lower prevision on the set L(Ω0,Ω1,Ω2) of bounded
random quantities on (Ω0,Ω1,Ω2):

P( f ) = inf
{

f (1 + g0 + ǫ, 1 + g1 + ǫ, ω2) :

g0 ∈ [0.0, 0.3], g1 ∈ [0.1, 0.2], ǫ ∈ [−0.1, 0.2], ω2 ∈ [0.85, 0.95]
}

.

This P is intuitively acceptable as a supremum buying price for any bounded

random quantity f onΩ0 ×Ω1 ×Ω2, as we have explained in Section 3.5.1 on
p. 60, Eq. (3.5) in particular.

We formulate this problem in terms of a dynamical system. If we define

x0 = x and, recursively xk+1 = xk − uk, the total gain is precisely equal to
J(x,u•, 0), with g(xk,uk, k, ω) = ωkuk and h(x2, ω) = ω2x2. Each state xk repre-

sents the money we can invest in companies ℓ ≥ k, and should therefore be
non-negative. Obviously, there is gain additivity.

Note that the gain random quantities ω0u0, ω1u1, and ω2x2, are P-essen-

tially bounded, so, for the purpose of optimal control, it suffices to consider

the (real-valued) extended lowerprevisionP♯ definedon the set (linear lattice)

of all P-essentially bounded random quantities; see Chapter 5, Section 5.3 on

p. 225 ff, Eq. (5.12) on p. 234 in particular. We now wish to find all u0 and

u1 such that the gain J(x,u0,u1) is P
♯-maximal. Observe that this is a two-

dimensional optimisation problem. For any initial state x, the set J(x, 0) of
admissible gain random quantities is compact: the set A = {(u0,u1) : u0 ≥
0,u1 ≥ 0,u0 + u1 ≤ 1} is closed and bounded, and therefore compact with
respect to the usual topology on R2, and J(x, •, •), as a mapping from A to
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K ♯
P
(Ω1,Ω2,Ω3), is continuous: if uα0 → u0 and uα1 → u1, then

uα0ω0 + u
α
1ω1 + (x − uα1 − uα2 )ω2 → u0ω0 + u1ω1 + (x − u1 − u2)ω2

for all (ω0, ω1, ω2) inΩΩΩ0 ×ΩΩΩ1 ×ΩΩΩ2 (point-wise convergence), and

P
♯
(|J(x,uα0 ,uα1 ) − J(x,u0,u1)|)
≤ (1 + 0.3 + 0.2 − 0.85)|uα0 − u0| + (1 + 0.2 + 0.2 − 0.85)|uα0 − u0| → 0

(P♯-norm convergence).

So, there is gain additivity, andJ(x, 0) is compact, soCorollary 7.7 applies:
we can solve this problem using dynamic programming.

For k = 1, we find that the control u1 = x1 is optimal from state x1 at

time 1. Indeed, first observe that all controls are maximal with respect to the

point-wise order. In that case, optimality of u1 is equivalent to P
♯
(J(x1,u1, 1)−

J(x1, v1, 1)) ≥ 0 for all v1. This holds if and only if

sup
{

(1 + g1 + ǫ − ω2)(u1 − v1) :

g1 ∈ [0.1, 0.2], ǫ ∈ [−0.1, 0.2], ω2 ∈ [0.85, 0.95]
}

≥ 0,

and thus, if and only if u1 ≥ v1 for all v1. Hence, optimal paths maximise u1.
The highest u1 we can choose such that x2 is still non-negative is u1 = x1.

For k = 0, the dynamic programming argument says that we only have

to consider concatenations of (x0,u0, 0)1 with optimal paths from state x1 =

x0−u0, of which there is only one, (x1, x1, 1), as we showed. Again all controls
are maximal with respect to the point-wise order. But

P
♯(

J((x0,u0, 0)1 ⊕ (x0 − u0, x0 − u0, 1)) − J((x0, v0, 0)1 ⊕ (x0 − v0, x0 − v0, 1))
)

≥ 0

also holds for any u0 and any v0. Indeed, the inequality is equivalent to

sup
{

(g0 − g1)(u0 − v0) : g0 ∈ [0.0, 0.3], g1 ∈ [0.1, 0.2], ǫ ∈ [−0.1, 0.2]
}

≥ 0

which obviously holds for any choice of u0 and v0. Thus, all paths (x0,u0, 0)1⊕
(x0 − u0, x0 − u0, 1) are optimal.
In conclusion, the information implies that we should invest all money x,
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but we cannot infer how we should divide x over the two companies.

By our dynamic programming approach we have have managed to solve

this two-dimensional optimisation problem by reducing it to two one-dimen-

sional ones, which are each very easy to solve. In the more general case of

uncertain investment with n companies, we initially have a n-dimensional

optimisation problem, and dynamic programming reduces this to n very

simple one-dimensional optimisation problems.

Let’s now discuss a more sophisticated example.

7.4 Example: Robust Sequence Alignment

7.4.1 Introduction

Aligning genetic sequences is a very widely used and important technique

in bioinformatics, see for instance Mount [58]. To give a few examples,

through sequence alignment we can determine evolutionary relationships

among species, and in particular, we can reconstruct phylogenetic trees. An

alignment may also reveal functional regions in genetic sequences. Such

information may for example lead to the discovery of new or improved

drug treatments, or may help in deciding what treatment is best fitted for

a particular patient genotype. Sequence alignment is also a handy tool in

predicting structural and biochemical properties of sequences.

The alignment problem is usually formulated as an optimisation problem.

Basically, positive scores are assigned to matches, and negative scores are

assigned to mismatches and gaps. These scores are summarised in what is

called a score matrix. We aim to find the alignmentwith the highest total score.

This approach has two benefits: (i) it allows us to characterise the optimal

(“best”) alignment from all possible alignments in an objective way, and (ii)

the highest score, corresponding to the best alignment, provides us with an

objectivemeasure of the quality of this alignment. Moreover, Needleman and

Wunsch [60] have developed an efficient dynamic programming algorithm

to calculate the optimal alignment of a small number of sequences (say,

two or three sequences). In this article, we will focus on pair-wise sequence

alignment, that is, the alignment of only two sequences.

Clearly, aligning genetic sequences relies heavily on the choice of the

score matrix: how should we reward matches, and how should punish gaps
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and mismatches? In practice, a large number of score matrices are being

used, and precise choice of the score matrix relies on additional assumptions

about the sequences under study. For example, when using PAM score

matrices, introduced by Dayhoff, Schwartz, and Orcutt [15], and on which

we will focus here, the following assumptions are made (a more detailed

explanation follows in Section 7.4.2):

• the evolutionary distance of the sequences to their closest common
ancestor is known,

• evolution is in an equilibrium point,

• in this equilibrium point, there is evolutionary reversibility—any point
mutation is as probable as its reverse,

• point mutations at different locations in the sequence are i.i.d., and

• point mutations at different times are i.i.d.

Different evolutionary distances induce different score matrices. These ma-

trices are denoted by PAM(T), where T denotes the evolutionary distance

between the sequences under study and their closest common ancestor. Of

course, the above assumptions are not meant to summarise the current state

of the art—much research in molecular evolution is devoted to generalising

these assumptions.

Estimating the evolutionary distance is a major issue in molecular evolu-

tion, especially when comparing short sequences. Indeed, ‘estimation bias

usually occurs when the sequence length is short so that stochastic effects

are strong’ (Gu and Li [39, p. 5899, right column, ll. 25–27]). In many cases,

one can only rely on the sequences under study to estimate evolutionary

distance—no additional information is available.

One approach is somehow to guess the evolutionary distance from the

similarity of the two sequences. Typically, PAM250 is chosen if the sequences

are 20% similar, PAM120 if they are 40% similar, PAM60 if they are 60% simi-

lar, etc. It is however not entirely clear how in general similarity percentages

can be derived from two sequences, prior to alignment.

Another approach consists in solving the optimisation problem not for

one, but for a set of PAM matrices, or even with different other methods,

and then choose the method that returns the highest optimal score. The



318 DYNAMIC PROGRAMMINGWITH UNCERTAIN GAIN

X 10 20

H-alpha V-LSPADKTNVKAAWGKVGAHAGEYGAEA

| | | | | | |||| | | ||

H-beta VHLTPEEKSAVTALWGKV--NVDEVGGEA

X 10 20

Figure 7.5: Anextract fromapossible alignment of hemoglobin alpha and beta chains,
produced by ‘Alion’ (Nevill-Manning, Huang, and Brutlag [61]).

performance of different alignment methods has been studied, and one of

the interesting results that have come out of such studies is that ‘for different

pairs many different methods create the best alignments’, and hence, that ‘if

a method that could select the best alignment method for each pair existed,

a significant improvement of the alignment quality could be gained’ (see

Elofsson [32]). However, in practice it is computationally unfeasible to try out

a large numbers of methods and to tune all parameters (such as evolutionary

distance, gap penalty, etc.) for each one of them.

We shall investigate whether a bias in the evolutionary distance also leads

to a bias in the optimal alignment. In particular, we shall generalise the well-

known Needleman-Wunsch algorithm (see Needleman and Wunsch [60]) in

order to determine whether an alignment, or parts of it, are insensitive to

the evolutionary distance in an interval. In order to do so, we rely on the

extension of the dynamic programming formalism developed before.

7.4.2 Optimal Sequence Alignment

What is Sequence Alignment?

A sequence alignment consists of writing two (or more) sequences in rows,

and writing similar characters in the same column. In doing so, one is

allowed to introduce so-called gaps, denoted by a dash ‘-’ in either one of

the sequences. Assuming that the sequences are derived from a common

ancestor sequence, matches correspond to conserved regions, mismatches

correspond to mutations and gaps correspond to deletions or insertions,

briefly called indels, in either one of the sequences. Figure 7.5 gives an

example of an amino acid alignment.

It is convenient to represent alignments in a grid, as depicted in Figure 7.6.

All paths from the upper left corner to the lower right corner represent pos-
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sible alignments. The path drawn in Figure 7.6 corresponds to the alignment

given in Figure 7.5. A diagonal move introduces no gaps, a downwards

move introduces a gap in the upper sequence, a rightwards move introduces

a gap in the lower sequence.

- V L S P A D K T N V K A A W G K V G A H A G E Y G A E A

A
E
G
G
V
E
D
V
N
V
K
G
W
L
A
T
V
A
S
K
E
E
P
T
L
H
V
-

Figure 7.6: Alignments can be conveniently represented in a grid.

When trying to explain evolutionary relationships between sequences,

we should identify the alignment that has the highest chance of being the

result of an evolutionary process. That is, we try to explain the alignment as

the result of evolution from a common ancestor.

We first showhow evolutionary dynamics can be described on the level of

genetic sequences. Then we show how a score matrix is obtained from these

dynamics, and how the resulting optimisation problem indeed identifies the

alignment that has the highest chance of being the result of evolution from a

common ancestor.

Evolutionary Sequence Dynamics

The PAM (‘point accepted mutation’) matrices are widely accepted as the

standard scoring systemwhen looking for evolutionary relationships in pro-

tein sequences. They are related to the evolution of amino acid sequences
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described by a Markov model for amino acid substitution (see Dayhoff,

Schwartz, and Orcutt [15]). Indels, which introduce alignment gaps, are

not modelled by PAM and are treated separately. We will only give a very

brief description of the basic ideas underlying the dynamics. A more ex-

tensive discussion and improvements of this approach can be found in for

instanceDayhoff, Schwartz, andOrcutt [15], Jones, Taylor, and Thornton [46],

Benner, Cohen, and Gonnet [5], and Müller and Vingron [59].

LetAt(i) denote the amino acid at site i at (discrete) time t of a sequence of

length N. It is first assumed that amino acids mutate independently at each

site of the sequence. This implies that the probability of the sequence At to

evolve to the sequence At+s is equal to

P[At+s|At] =
∏N
i=1 P[At+s(i)|At(i)]. (7.4)

Hence, it suffices to know only the probabilities P[At+s(i)|At(i)] at each site i
of the sequence. It is also assumed that amino acids mutate independently

in time,

P[At+s(i)|At(i)] =
∏t+s−1
r=t P[Ar+1(i)|Ar(i)]. (7.5)

We thus only need to know the probabilities P[Ar+1(i)|Ar(i)] at each site i and
time r.

Finally, assuming that the transition probabilities are identically dis-

tributed in time and space, P[Ar+1(i)|Ar(i)] does not depend on the actual
values of r and i, but only on the amino acids Ar(i) and Ar+1(i). Hence, if

we know for any pair (a, b) of amino acids the probability P[b|a] of a being
substituted by b after one unit of time, then we also know the probability

of any sequence At evolving to At+s, through Eqs. (7.4) and (7.5). Under the

assumptions made so far, this establishes that we can model evolution of

amino acid sequences through a Markov model.

It is convenient to assume that evolution from ancestors to descendants

is modelled by the same Markov process as the evolution from descendants

to ancestors, that is, that the Markov process is time-reversible. Assuming

P[b|a] > 0 for all aminoacidpairs (a, b), theMarkovprocess attains a stationary
distribution π after a sufficient long time. Moreover, π is independent of the
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initial distribution, and is the unique solution of

∑

a

P[b|a]π[a] = π[b]. (7.6)

Assuming we attained this equilibrium, the process is time-reversible if and

only if (Ross [67])

P[b|a]π[a] = P[a|b]π[b]. (7.7)

Consider two amino acid sequences, B and C, that have evolved from

a common ancestor A in t time units. Assuming time-reversibility, and

assuming that all amino acids in A are i.i.d. according to the stationary

distribution π, evolution from A to B and C in t time units is equivalent to

evolution from B to A in t time units, and then from A to C in t time units.

But this is equivalent to evolution from B to C in 2t time units. Hence, we can

calculate the probability of B and C having evolved from a common ancestor

in t time units simply by calculating the probability ofC having evolved from

B in 2t time units.

In practice, the transition probabilities P[b|a] of the Markov model are
estimated using a large dataset of sequences that have already been aligned

(originally, sequences from closely related species were considered, that is,

sequences of at least 85% similarity). Many generalisations of this model

have been developed, dropping stationarity of the transition probabilities,

allowing different transition probabilities on different sites, etc.

A Log Likelihood Ratio Scoring

Using theMarkovmodel for amino acid evolution, a scoringmatrix is derived

that has the interpretation of a log likelihood ratio. The entries of the matrix

are roughly given by (up to a normalisation factor)

st(a, b) = log
Levol[a, b](t)

Lrand[a, b]
, (7.8)

that is, the logarithm of the likelihood that a and b are aligned as a conse-

quence of the evolutionary Markov process from a common ancestor t time

units ago, divided by the likelihood that a and b are aligned ‘by chance’, that

is, as a consequence of a multinomial process, where amino acid frequencies

are obtained from the same data used to construct the Markov model. A
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positive score st(a, b) means that a and b are more likely to be aligned by

evolution than by chance, a negative score means the opposite. Remark that

st(a, b) = st(b, a).

To obtain a score for sequences, recall that we assumed different sites on

sequences to be independent. Hence, the log likelihood ratio of two aligned

sequencesB andC—of equal length andwithout gaps—is obtainedby adding

the log likelihood ratios at each site of the sequences:

St(B,C) =
N

∑

i=1

st(B(i),C(i)) (7.9)

If we interpret the score as a gain and sequences as paths, we already observe

that there is ‘gain additivity’; we shall rely on this property when applying

dynamic programming.

Gap Scoring

More generally, let B be a sequence of length N, and let C be a sequence of

length M. Consider any alignment u of B and C, and denote the characters

(amino acids or gaps) at site i in the alignment by Bu(i) and Cu(i). The score

of the alignment is given by

St(B,C)(u) =
K

∑

i=1

st(Bu(i),Cu(i)), (7.10)

whereK is the length of the alignment. If both Bu(i) andCu(i) are amino acids,

the st(Bu(i),Cu(i)) is given by the log likelihood ratio (Eq. (7.8)). If either one

of them, say Bu(i), is a gap, then the score is given by minus the gap opening

penalty g if Bu(i − 1) is not a gap, and by minus the gap extension penalty r if
Bu(i − 1) is a gap (g and r are positive).

Choice of Score Matrix and Gap Penalties

As argued before, the score for a pair of amino acids is given by Eq. (7.8). This

score rewards alignments that are more likely by evolution than ‘by chance’,

and punishes alignments that are less likely by evolution than ‘by chance’.

Gap openings are less likely than gap extensions, and therefore the gap

opening penalty g is chosen substantially higher than the gap extension
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penalty r. The gap penalties should also be chosen relative to the range of

scores in the score matrix. If the gap penalty is too high, gaps will never

appear in the optimal alignment. And if it is too low, too many gaps will

appear in the optimal alignment.

Much research has been devoted to analysing how the score matrix and

gap penalties should be chosen. The choice of the score matrix is based

mainly on the evolutionary dynamical model and estimates of the evolu-

tionary distance. Through statistical analysis, appropriate gap opening and

extension penalties have been motivated for various score matrices (see for

instance Pearson [64]).

One result is that a good choice for the scorematrix, and consequently also

a good choice for the gap penalties, can be made based on the evolutionary

distance between sequences and their closest common ancestor.

Needleman-Wunsch Algorithm

Finding the optimal alignment is at first sight an extremely hard computa-

tional task. The number of possible alignments of two sequences of lengthN

grows exponentially with N. Even for sequences of modest length, comput-

ing power is far from able to compare that many sequences in a reasonable

amount of time.

Dynamic programming provides a method for exponentially reducing

the number of alignments that need to be considered in order to find the

optimal one (see Needleman and Wunsch [60]). We shall not discuss the

original algorithm here; instead, we shall immediately discuss a generalised

version of the algorithm in Section 7.4.4 further on, as the original version is

then simply obtained as a special case.

7.4.3 Modelling Evolutionary Distance by a Coherent Lower

Prevision

In Section 7.4.2, it was argued that a good choice of the score matrix and the

gap penalties can be made based on the evolutionary distance between the

sequences under study and their closest common ancestor. Unfortunately,

for short sequences, estimation of evolutionary distance is subject to serious

bias due to stochastic effects (see Gu and Li [39]). Instead of somehow

trying to improve evolutionary distance estimates between short sequences



324 DYNAMIC PROGRAMMINGWITH UNCERTAIN GAIN

by reducing stochastic effects—this may well be impossible—we propose a

different approach.

Instead, does a bias in the evolutionary distance also lead to a bias in the

optimal alignment? Or, in other words, how sensitive is the alignment to

the chosen value for evolutionary distance? It is well-known that optimal

alignment is quite sensitive to the choice of the score matrix, especially for

long sequences (see Elofsson [32]). But for short sequences, this does not

need to be the case. To give an extreme example: if we would find that

the optimal alignment is independent of the evolutionary distance, we also

should not have to worry about it.

Lower previsions provide the perfect tool for performing such a sensi-

tivity analysis. Let us briefly recall the essentials of the theory of lower

previsions that we need and apply them to the alignment problem.

Let T = {t ∈ R : t ≥ 0} be the space of possible evolutionary distances t
between two sequences B and C and their closest common ancestor. Let T

denote the corresponding randomvariable, which takes values inT . Assume
that the only additional information we have about T is that it takes a value

in the interval [t1, t2], for some t1 ≤ t2. This information is modelled by
a vacuous lower prevision relative to [t1, t2] (see Section 3.5.1 on p. 60 and

Section 5.3 on p. 225 ff, Eq. (5.12) on p. 234 in particular), and leads to the

following strict preference relation between alignments (see Definition 6.4

on p. 278; note that for simplicity of exposition, we omit the point-wise

ordering):

Definition 7.10 (Preference). Let u and v be two alignments (of B and C).

Then, u is said to be strictly preferred to v, and we write u >[t1,t2] v, if

inf
t∈[t1,t2]

[St(B,C)(u) − St(B,C)(v)] > 0. (7.11)

The total scores S•(B,C)(u), interpreted as random quantities on T, are

assumed to be bounded on [t1, t2]; this is usually the case, and it allows us to

apply the dynamic programming results of this chapter without any further

complications.

If u >[t1,t2] v then there is an ǫ > 0 such that St(B,C)(u) > St(B,C)(v) + ǫ for

every t ∈ [t1, t2]. This means that, independently of the evolutionary distance
in [t1, t2], u is (uniformly) a strictly better alignment of B and C than v. In

such a case, we should of course prefer u over v.
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The optimisation problem can now also be restated. Usually, the partial

order >[t1,t2] will not have a greatest element. Therefore, it makes more

sense to look for undominated, or maximal elements, as we have argued in

Section 6.3.1 on p. 276 ff.

Definition 7.11 (Maximality). Say an alignment u is maximal with respect to

[t1, t2] if v ≯[t1,t2] u, that is, if

sup
t∈[t1,t2]

[St(B,C)(u) − St(B,C)(v)] ≥ 0, (7.12)

for all possible alignments v of B and C.

The idea behind this definition is that, if we do not prefer any other

alignment v over u, thenwe should consider u as a good alignment candidate.

Through pair-wise comparison, the information we have does not allow us

to make a better choice than u. An efficient algorithm for finding all maximal

alignmentswill be given in Section 7.4.4. But let us firstmake a few important

remarks.

Firstly, the notion of maximality generalises the classical notion of opti-

mality. Indeed, if t1 = t2 = t then any maximal alignment actually maximises

the score St(B,C)(v) over all possible alignments v (this is a very simple in-

stance of Corollary 6.8 on p. 282).

Secondly, it is often argued that it is important to find the best alignment.

But, when looking for maximal alignments, we do not obtain a single solu-

tion, but rather a set of solutions—perhaps even a pretty large set. At first

sight, this may seem undesirable. Nevertheless, even a set of best possible

alignments can be useful:

• If we obtain a large set, then this simplymeans thatwe have insufficient
information in order to construct the best alignment.

• Wemight be lucky andfind that there is only onemaximal alignment. If
that is the case, we actually also know that this alignment is insensitive

to any assumptions made about evolutionary distance in the interval

[t1, t2].

• More generally, there may be certain constant patterns in the set of
maximal alignments, i.e., it may happen that certain regions are con-

sistently aligned over the whole set of maximal alignments. We then
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do not only know that these regions are optimally aligned, but also

that they are insensitive to any assumptions made about evolutionary

distance in the interval [t1, t2].

7.4.4 Finding Maximal Alignments Through Dynamic Pro-

gramming

Webriefly discuss how the dynamic programming algorithm is implemented

to find all maximal alignments.

Let B be a sequence of length N, and let C be a sequence of length M.

First, finding maximal alignments of B and C is restated in terms of finding

the maximal paths of a dynamical system. This is done by interpreting

alignments as paths of a dynamical system, and scores as gains associated

with that path. Figure 7.6 on p. 319 illustrates how to interpret pair-wise

alignment as a dynamical system. The grid represents the state space. At

each point in the grid we can move either rightwards, downwards, or along

the diagonal (except at the right and bottom borders). The gain associated

with a move from position (i, j) if the previous move was p, is given by

Gt(i, j, p, ↓) =



















rt, if p =↓
gt, otherwise

Gt(i, j, p,→) =



















rt, if p =→
gt, otherwise

Gt(i, j, p,ց) = St(B(i),C( j))

The gain associated with a path is simply given by the sum of the gains of

each move.

The gain depends on the evolutionary distance t. Since the gain also

depends on the previous move we must extend the state space with an addi-

tional state variable p at each point (i, j) in order to remember our previous

move. Otherwise, we cannot apply the dynamical programming formalism.

Let U(i, j, p) denote the set of all paths from (i, j, p) to the right bottom
corner. Observe that p denotes the previous move, p ∈ {↓,→,ց}, which is
needed in order to calculate the gain (in order to tell the difference between

a gap opening and a gap extension). LetV(i, j, p) denote the set of maximal
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paths from (i, j, p) to the bottom right corner, that is,

V(i, j, p) = max>[t1 ,t2]U(i, j, p) (7.13)

It is convenient to define V(i, j, p) = ∅ whenever i > N or j > M. Observe
that U(i, j, p) is a finite set for every state (i, j, p). Hence, the compactness
condition under which the generalised Bellman equation holds is trivially

satisfied [24].

Theorem 7.12 (Generalised Bellman Equation). For any state (i, j, p) the follow-

ing equality holds:

V(i, j, p) = max
>[t1 ,t2]

{

(i, j, p; ↓) ⊕V(i + 1, j, ↓), (i, j, p;→) ⊕V(i, j + 1,→),

(i, j, p;ց) ⊕V(i + 1, j + 1,ց)
}

(7.14)

where (i, j, p; ↓)⊕V(i+ 1, j, ↓) denotes the set of all concatenations of the downward
move from state (i, j, p), with a maximal path from state (i + 1, j, ↓), etc.

Eq. (7.14) yields an efficient recursive algorithm to calculate the set of all

maximal paths V(0, 0,ց), and hence, all maximal alignments. It solves a
global maximisation problem by solving 3MN smaller maximisation prob-

lems (see Figure 7.7).

7.4.5 Test Case

As a demonstration of our approach, consider two sequences of length 80:

VLSPADKTNVKAAWGKVGAHAGYGAEALERMFLSFPTTKTYFPHFDLSHGSAVKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGL

The relation between these sequences is quite well known, but, for the sake

of exposition, let’s assume we don’t know anything about the evolutionary

distance between these two sequences. Let’s therefore consider the collection

of all PAM matrices ever considered in sequence alignment: PAM2, PAM3,

. . . , up to PAM450: PAM2 corresponds to a very short evolutionary distance,

and PAM450 corresponds to an extremely long evolutionary distance (see

Dayhoff, Schwartz, and Orcutt [15]).
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** initialisation **

for p=|,-,\

MAX(N,M,p)={(M,N,p)}

for i=0 to N

MAX(i,M+1,p)={}

next i

for j=0 to M

MAX(N+1,j,p)={}

next j

next p

** dynamic programming **

for i=N to 0

for j=M to 0

for p=|,-,\

if (i<N) or (j<M)

** Bellman **

MAX(i,j,p)=max{

(i,j,p;|)+MAX(i+1,j,|),

(i,j,p;-)+MAX(i,j+1,-),

(i,j,p;\)+MAX(i+1,j+1,\)

}

next p

next j

next i

Figure 7.7: A rough sketch of the algorithm for calculating maximal alignments.
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Running the above algorithm, we find a very modest number of optimal

alignments: the set of all alignments has only 18 maximal elements (see

Table 7.1).

Moreover, within this set, there are surprisingly long robust segments: in

all of the 18 maximal alignments, the pattern

V--LSPADKTNVKAAWGKVGAHAGYGAEALE??--??FLSFPTTKTYFPHF-DLSHGSA????????????????????????????

MVHLTPEEKSAVTALWGKVNVDEV-GGEALG??VS??LVVYPWTQRFFESFGDLSTPDA????????????????????????????

is present. Consequently, the choice of the PAM matrix is irrelevant to the

alignment of these subsequences. The simulation, implemented through

a very simple, hardly optimised C++ program, takes 5 minutes, 37 sec-

onds, and 660 milliseconds, on a 1.8GHz Mobile Intel R© Pentium with 512
megabytes of memory. As a comparison, on the same machine, this docu-

ment was LATEX’ed from raw LATEX source in 27 seconds and 491milliseconds.

This example demonstrates one possible way of how the theory of lower

previsions can be applied in bioinformatics, allowing us to substantially

weaken assumptions we have to make about data, for instance about the

evolutionary distance. In this example, we did that by means of an interval

rather than using a point estimate: it turns out that a good alignment (or set

of alignments) still can be found in an efficient way, through a generalisation

of the well-known Needleman-Wunsch algorithm.



33
0

D
Y
N
A
M
IC
P
R
O
G
R
A
M
M
IN
G
W
IT
H
U
N
C
E
R
T
A
IN
G
A
IN

1 V--LSPADKTNVKAAWGKVGAHAGYGAEALE----RMFLSFPTTKTYFPHF-DLSHGSA------VKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFS--------DGL----

2 V--LSPADKTNVKAAWGKVGAHAGYGAEALE----RMFLSFPTTKTYFPHF-DLSHGSA------VKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKV--------LGAFSDGL----

3 V--LSPADKTNVKAAWGKVGAHAGYGAEALE----RMFLSFPTTKTYFPHF-DLSHGSAV------KGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFS--------DGL----

4 V--LSPADKTNVKAAWGKVGAHAGYGAEALE----RMFLSFPTTKTYFPHF-DLSHGSAV------KGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKV--------LGAFSDGL----

5 V--LSPADKTNVKAAWGKVGAHAGYGAEALE----RMFLSFPTTKTYFPHF-DLSHGSAVKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPK--VKAHGKKVLGAFSDGL----

6 V--LSPADKTNVKAAWGKVGAHAGYGAEALE----RMFLSFPTTKTYFPHF-DLSHGSAVKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPK--VKA----HGKKVLGAFSDGL

7 V--LSPADKTNVKAAWGKVGAHAGYGAEALER----MFLSFPTTKTYFPHF-DLSHGSA------VKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFS--------DGL----

8 V--LSPADKTNVKAAWGKVGAHAGYGAEALER----MFLSFPTTKTYFPHF-DLSHGSA------VKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKV--------LGAFSDGL----

9 V--LSPADKTNVKAAWGKVGAHAGYGAEALER----MFLSFPTTKTYFPHF-DLSHGSAV------KGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFS--------DGL----

10 V--LSPADKTNVKAAWGKVGAHAGYGAEALER----MFLSFPTTKTYFPHF-DLSHGSAV------KGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKV--------LGAFSDGL----

11 V--LSPADKTNVKAAWGKVGAHAGYGAEALER----MFLSFPTTKTYFPHF-DLSHGSAVKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPK--VKAHGKKVLGAFSDGL----

12 V--LSPADKTNVKAAWGKVGAHAGYGAEALER----MFLSFPTTKTYFPHF-DLSHGSAVKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPK--VKA----HGKKVLGAFSDGL

13 V--LSPADKTNVKAAWGKVGAHAGYGAEALERM----FLSFPTTKTYFPHF-DLSHGSA------VKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFS--------DGL----

14 V--LSPADKTNVKAAWGKVGAHAGYGAEALERM----FLSFPTTKTYFPHF-DLSHGSA------VKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKV--------LGAFSDGL----

15 V--LSPADKTNVKAAWGKVGAHAGYGAEALERM----FLSFPTTKTYFPHF-DLSHGSAV------KGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFS--------DGL----

16 V--LSPADKTNVKAAWGKVGAHAGYGAEALERM----FLSFPTTKTYFPHF-DLSHGSAV------KGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKV--------LGAFSDGL----

17 V--LSPADKTNVKAAWGKVGAHAGYGAEALERM----FLSFPTTKTYFPHF-DLSHGSAVKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPK--VKAHGKKVLGAFSDGL----

18 V--LSPADKTNVKAAWGKVGAHAGYGAEALERM----FLSFPTTKTYFPHF-DLSHGSAVKGHGKKVAKALSAVHLDDMPNALSALS

MVHLTPEEKSAVTALWGKVNVDEV-GGEALGRLVSRLLVVYPWTQRFFESFGDLSTPDAVMGNPK--VKA----HGKKVLGAFSDGL

Table 7.1: Test case: all 18 maximal alignments.



Chapter 8

Dynamic Programming and

Learning Dynamics

Throughout Chapter 7, we have assumed the system dynamics to be de-

terministic. This greatly simplified the discussion, still encompassed a large

number of interesting applications, anddidnot suffer from the computational

problems which are often encountered when dealing with non-deterministic

dynamical systems—simply because in general the number of possible (ran-

dom) paths tends to grow exponentially with the size of the state spaceX and
the number of time steps. Nevertheless, when studying the optimal control

of dynamical systems, one easily finds examples where the dynamics itself

is subject to uncertainty. It certainly seems an interesting challenge to study

also these systems from the view-point of the theory of lower previsions, and

to know in what cases those computational problems can be overcome. As

a initial step in that direction, we investigate in this chapter the applicability

of Bellman’s dynamical programming algorithm to a very simple type of

dynamical system, namely with

• finite state space X, and

• finite control spaceU.

First, we shall review the most important results already achieved in this

field, and identify their shortcomings. Then, in an attempt to remedy those

shortcomings, we shall suggest a different model, and try to find all optimal

paths based on the notions introduced in Chapter 6 and Chapter 7.

331
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8.1 Introduction

One of the most important models describing non-deterministic finite-state

systems are Markov decision processes, which are essentially controlled

Markov chains—note that Markov chains were originally devised to study

natural language texts; see Markov [55]. Markov decision processes model

the uncertainty about the dynamics through so-called transition probabilities.

Assuming the reward for each transition under each control action to be

known, an optimal control is then obtained by maximising the expected

reward; this comes down tomaximising expected utility, as explained in Sec-

tion 6.1 on p. 268. This maximisation problem, and many variants thereof,

can be solved efficiently using dynamic programming techniques; see for

instance Bertsekas [8] for an excellent overview.

Already early in the development of the theory of Markov decision pro-

cesses it was recognised that the transition probabilities themselves are often

subject to uncertainty, simply because they are often hard tomeasure in prac-

tice. To deal with the lack of information about the transition probabilities,

two solutions have been suggested and studied in the literature:

(i) learning—we update our knowledge about the transition probabilities

as we observe transitions; see for instance Bellman [3], Martin [56], and

Satia and Lave [68].

(ii) sets—we only assume that the transition probabilities belong to some

convex set; see for instance Wolfe and Dantzig [93], Satia and Lave [68],

White and Eldeib [90], Givan, Leach, and Dean [36], Harmanec [41],

and Kozine and Utkin [52].

Both solutions have their drawbacks. The learning-based solution relies

heavily on prior information about the transition probabilities. If this prior

information is incorrect, the optimal control law can be subject to serious

bias in the initial phase of the control process. A drawback of the set-based

solution is that it does not involve learning, and ignores possibly useful

information that is available in many practical problems. Moreover, it has

a problematic relation with optimality: working with a set of transition

probabilities, we can only associate a lower and upper expected reward,

i.e., an interval for the expected reward, with each control law. Almost all

authors therefore have considered onlymaximin ormaximax solutions. They
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develop algorithms, based on dynamic programming, to find control laws

that either maximise the minimal expected gain (pessimistic, maximin), or

that maximise the maximal expected gain (optimistic, maximax), ignoring

possibly optimal control laws in between.

One notable exception is provided by Harmanec [41], who suggests a dy-

namic programming algorithm to calculate the set of all maximal elements

with respect to a partial preference order which is based on comparing in-

tervals, i.e., interval dominance (introduced in Section 6.6 on p. 292). In that

way, not only the extreme solutions are recovered. However, Harmanec [41]

did not question in what sense his proposed dynamic programming method

leads to optimal policies. As we have already argued, we should approach

the problem from the opposite side: we first define a notion of optimal-

ity and investigate whether the dynamic programming argument holds or

not for this notion of optimality, instead of blindly “generalising” Bellman’s

algorithm.

We have shown in Chapter 7 that the dynamic programming argument

holds if our notion of optimality satisfies two conditions: (i) the principle of

optimality, and (ii) insensitivity with respect to the omission of non-optimal

elements. Unfortunately, the principle of optimality is not satisfied when

using the partial ordering, namely interval dominance, suggested by Har-

manec [41]: this follows from the counterexample of Section 7.2.6 on p. 313.

Hence, Harmanec’s [41] algorithm actually does not result in optimal control

laws in the sense of maximality with respect to the suggested partial order-

ing. In Chapter 7, we suggested a different partial order for deterministic

systems with uncertain gain, which does satisfy the principle of optimality

and the insensitivity property. However, as is also noted by Harmanec [41],

this partial order does not simply generalise to non-deterministic systems.

As we shall see in Section 8.3, the reason is that inMarkov decision processes

there is so-called act-state dependence.

Our primary goal is to combine the learning-based solution with the set-

based solution in order to overcome the problems from which each of these

methods suffer separately. Basically, we wish to update the set of transition

probabilities based on observations of previous transitions. A Markov deci-

sion process can be considered as a collection of independent multinomial

sampling models (see Martin [56]), and we have a well-developed tool for

updating imprecise prior information about multinomial sampling models:
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the imprecise Dirichlet model, which is due toWalley [87]. Before doing this,

we first need to generalise preference to the case of act-state dependence. We

then show that there are fairly general conditions under which the princi-

ple of optimality and insensitivity with respect to omission of non-optimal

elements still hold.

The main result of this quest shall be that, under fairly general assump-

tions, which are satisfied if we invoke the imprecise Dirichlet model, we

can apply dynamic programming to find, not only maximin or maximax,

but the set of all optimal control laws. In doing so, we make only very

weak assumptions about the transition probabilities, and we can incorporate

learning about them. Unfortunately, for the learning approach to work, the

control laws must depend on the complete state history (as with its classi-

cal counterpart; see Bertsekas [8]), and therefore, a direct implementation

of the suggested dynamic programming algorithm will only be feasible for

problems with relatively small state spaces and small control spaces.

Section 8.2 is concerned with the definition and properties of conditional

lower previsions, which we shall need extensively further on. In Section 8.3

we motivate a new partial preference order which allows for act-state de-

pendence. In Section 8.4 we precisely define the class of dynamical systems

under study and describe how to compare control laws according to the

preference order introduced in Section 8.3. Our main result is in Section 8.5,

where we state conditions for the principle of optimality to hold. Together

with the insensitivity property, which is almost trivially satisfied for the sys-

tems under study, this means that we can construct a dynamic programming

algorithm. In order to demonstrate that the conditions for which the prin-

ciple of optimality holds are not overly restrictive, we show in Section 8.6

that they are satisfied in case of simultaneous learning and optimal control

of a Markov decision process by means of an imprecise Dirichlet model. In

Section 8.7 we present a numerical example.

8.2 Conditional Lower Previsions

8.2.1 Definition

Let us consider two randomvariables, sayX andY. For the sake of simplicity,

and as we do not need the more general case, we shall assume that they can
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only assume a finite number of values: X andY are finite sets. Consequently,
all random quantities involved are bounded, and hence, are gambles.

The conditional lower prevision P( f |y) of a gamble f on X conditional on
y ∈ Y is defined as the supremum buying price for f , conditional on the
observation of the value y of Y; P( f |y) is the highest price s such that for any
t < s, we are willing to pay t after observing Y = y, but prior to observation of

X, ifweareguaranteed to receive f (x)whenobservingX = x. Mathematically,

P(•|•) is a real-valued mapping defined on some subset of

L(X) ×Y = {( f , y) : f ∈ L(X), y ∈ Y}.

Only to simplify the notation in the proof of Theorem 8.1 below, we shall

assume that thedomainofP(•|•) is finite. All results extend straightforwardly
to the general case.

Fixing y, we can view P(•|y) as a lower prevision on X. We shall say
that P(•|•) separately avoids sure loss if P(•|y) avoids sure loss for each y ∈ Y.
Similarly, we shall say that P(•|•) is separately coherent if P(•|y) is coherent
for each y ∈ Y. Note that Walley [86, Section 6.2, pp. 289–293] has a slightly
different notion of separate coherence. Our definition of separate coherence

is not as general as Walley’s, but it is much simpler, and it suffices for the

purpose of this work.

As we have explained in Section 4.1 on p. 95 ff., if P(•|•) separately avoids
sure loss, then for each y inY, the natural extension of P(•|y) to the set L(X)
of all gambles on X exists, and is real-valued. We shall denote this natural

extension by E(•|y). Note that E(•|•) is now a separately coherent conditional
lower prevision on all ofL(X)×Y. We shall call it the separate natural extension
of P(•|•).
It is convenient to view the separate natural extension E(•|•) in a slightly

different way, namely, as aL(X,Y)–L(Y)-mapping, which we shall denote by
E(•|Y):

E( f (X,Y)|Y)(y) := E( f (X, y)|y), (8.1)

for any gamble f (X,Y) in L(X,Y). Here, f (X, y) denotes a gamble on X by
fixing the value y of Y in f , i.e., f (X, y)(x) := f (x, y).

In case of n variablesX1, . . . , Xn, each of the conditional lower previsions,

resp. P(•|x1) defined on a subset of L(X2) for each x1 in X1, P(•|x1x2) de-
fined on a subset of L(X3) for each (x1, x2) in X1 ×X2, . . . , and P(•|x1 . . . xn−1)
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defined on a subset ofL(Xn) for each (x1, . . . , xn−1) inX1×· · ·×Xn−1, extends—
through the method described above—resp. to a L(X1,X2)–L(X1)-mapping,
aL(X1,X2,X3)–L(X1,X2)-mapping, . . . , and aL(X1, . . . ,Xn)–L(X1, . . . ,Xn−1)-
mapping. Concatenating all of these mappings, we end up with a collec-

tion ofL(X1, . . . ,Xn)–L(X1, . . . ,Xi)-mappings (i ∈ {1, . . . ,n − 1}), which corre-
spond in fact to the following conditional lower previsions, each defined on

L(X1, . . . ,Xn):

E( f |X1 . . .Xn−1) := E( f |X1 . . .Xn−1) (8.2a)

E( f |X1 . . .Xn−2) := E(E( f |X1 . . .Xn−1)|X1 . . .Xn−2) (8.2b)

= E(•|X1 . . .Xn−2) ◦ E(•|X1 . . .Xn−1)( f )
E( f |X1 . . .Xn−3) := E(E( f |X1 . . .Xn−2)|X1 . . .Xn−3) (8.2c)

= E(•|X1 . . .Xn−3) ◦ E(•|X1 . . .Xn−2) ◦ E(•|X1 . . .Xn−1)( f )
...

E( f |X1) := E(E( f |X1X2)|X1) (8.2d)

= E(•|X1) ◦ E(•|X1X2) ◦ · · · ◦ E(•|X1X2 . . .Xn−1)( f )

for any gamble f on (X1, . . . ,Xn). We shall call these conditional lower pre-

visions the marginal extensions of the conditional lower previsions P(•|•),
P(•| • •), . . . , and P(•| • . . . •). In the classical theory of probability Eq. (8.2)
is Bayes rule. It generalises Walley’s marginal extension [86, Section 6.7,

pp. 313–314] for the special case we study.

Note that, when for instance x1 is fixed in Eq. (8.2d), it follows thatE(•|x1)
is a coherent lower prevision on L(X2, . . . ,Xn). This simply follows from
the separate coherence of each of the mappings E(•|X1), E(•|X1X2), . . . , and
E(•|X1X2 . . .Xn−1). So, Eq. (8.2d) defines a separately coherent conditional
lower prevision. In the sameway, it follows that all of themarginal extensions

are separately coherent.

8.2.2 Marginal Extension Theorem

We now prove that Eq. (8.2) agrees with the conditional lower prevision

obtained by application of the axioms of rationality (Axiom 3.1 on p. 49) on

the original assessments P(•|•), P(•|••), . . . , andP(•|•. . . •), as in Theorem 4.3
on p. 96 for the unconditional case. This works simply as follows: for any g
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in domP(•|x1 . . . xi), we are marginally disposed to accept the gain gamble
[

g(Xi+1) − P(g(Xi+1)|x1 . . . xi)
]

I(X1,...,Xi)=(x1,...,xi).

Indeed, if the outcome of (X1, . . . ,Xi) is not equal to (x1, . . . , xi), then this gain

gamble has zero gain, which is marginally acceptable: we’re willing to accept

it if we also receive an arbitrary small amount of strictly positive utility

along with the gamble. If the outcome is (x1, . . . , xi), then we are disposed

to pay any price strictly less than P(g(Xi+1)|x1 . . . xi) for the gamble g(Xi+1),
so g(Xi+1) − P(g(Xi+1)|x1 . . . xi) + ǫ is acceptable for any ǫ > 0, or equivalently,
g(Xi+1) − P(g(Xi+1)|x1 . . . xi) is marginally acceptable.

Now, the axioms of rationality imply that if a collection of gambles is

marginally acceptable, then so must be any non-negative linear combination

of them, and so must be any gamble that is point-wise larger than such a

sum. So, fix for instance x1 in X1, and let f be any gamble on (X1, . . . ,Xn). If
for some choice of λg,x1,...,xi ≥ 0 and α in R, it holds that

[

f (X1,X2, . . . ,Xn) − α
]

IX1=x1

≥
∑

(x2,...,xn)

n−1
∑

i=1

∑

g∈domP(•|x1...xi)

λg,x1,...,xi
[

g(xi+1) − P(g(Xi+1)|x1 . . . xi)
]

I(X1,X2,...,Xi)=(x1,x2,...,xi)

or equivalently, if

f (x1,X2, . . . ,Xn) − α

≥
n−1
∑

i=1

∑

g∈domP(•|x1X2...Xi)
λg,x1,X2,...,Xi

[

g(Xi+1) − P(g(Xi+1)|x1X2 . . .Xi)
]

,

then the gamble
[

f (X1,X2, . . . ,Xn) − α
]

IX1=x1 should also be marginally ac-

ceptable, or equivalently, the lower prevision of f , conditional on x1, should

be at least α. The idea of the theorem below, and of natural extension in

general, is to maximise α subject to the constraints implied by the axioms of

rationality.

Let’smention that Eq. (8.2) can also be given an interpretation as the small-

est coherent lower prevision that is a behavioural extension of the original
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assessments, however, the precise formulation of this result is not straightfor-

ward, and therefore we shall simply accept Eq. (8.2) as the natural extension

of the original assessments. The theorem below supports that choice. We

refer to Walley’s book [86, Chapters 7–8] for an in depth discussion of the

conceptual difficulties encounteredwhendealingwith conditional lower pre-

visions. Note that the equation below is essentially an instance of Walley’s

muchmore general definition of natural extension; seeWalley [86, Section 8.1,

pp. 408–415]. In case that the conditional lower previsions P(•| • . . . •) are
independent of their conditioning random variables (i.e., if P(•|x1) is inde-
pendent of the value of x1 in X1, P(•|x1x2) is independent of the values of
x1 in X1 and x2 in X2, etc.), then Theorem 8.1 also proves that our marginal
extension agrees with the forward irrelevant product, see De Cooman and

Miranda [22, p. 454, Eq. (4) and Theorem 1]. De Cooman and Zaffalon [25,

p. 118, TheoremA.1] proved a stronger version of Theorem 8.1 in case of two

conditioning random variables.

Theorem 8.1. Let k ∈ {1, . . . ,n − 1}, let f be any gamble on (X1, . . . ,Xn), and
let (x1, . . . , xk) be any element of X1 × · · · × Xk. The marginal extension of f
conditional on (x1, . . . , xk), that is, E( f (x1, . . . , xk,Xk+1, . . . ,Xn)|x1 . . . xk), is equal
to the maximum achieved by α subject to the constraints

f (x1, x2, . . . , xn) − α ≥
n−1
∑

i=k

∑

g∈domP(•|x1...xi)
λg,x1,...,xi

[

g(xi+1) − P(g|x1 . . . xi)
]

(8.3)

for all (xi+1, . . . , xn) in Xi+1 × · · · × Xn, where each λg,x1,...,xi may vary over the set of
non-negative real numbers.

Proof. It suffices to prove the case k = 1: the general case then follows simply

by considering (X1, . . . ,Xk) as a single variable.

If Eq. (8.3) is satisfied, then, since E( f (x1,X2, . . . ,Xn)|x1) corresponds to a
coherent lower prevision when x1 is fixed,

E( f (x1,X2, . . . ,Xn)|x1) − α

≥
n−1
∑

i=k

E

(

∑

g∈domP(•|x1...xi)
λg,x1,X2,...,Xi

[

g(Xi+1) − P(g(Xi)|x1X2 . . .Xi)
]

∣

∣

∣

∣

∣

∣

x1

)

.



8.2 CONDITIONAL LOWER PREVISIONS 339

The term for i = n − 1 is bounded from below by zero:

E

(

∑

g∈domP(•|x1...xn−1)
λg,x1,X2,...,Xn−1

[

g(Xn) − P(g(Xn)|x1X2 . . .Xn−1)
]

∣

∣

∣

∣

∣

∣

x1

)

= E(•|x1) ◦ E(•|x1X2) ◦ · · · ◦ E(•|x1X2 . . .Xn−1)
(

∑

g∈domP(•|x1...xi)
λg,x1,X2,...,Xn−1

[

g(Xn) − P(g(Xn)|x1X2 . . .Xn−1)
]

)

= E(•|x1) ◦ E(•|x1X2) ◦ · · · ◦ E(•|x1X2 . . .Xn−2)
(

∑

g∈domP(•|x1...xi)
λg,x1,X2,...,Xn−1

E
(

g(Xn) − P(g(Xn)|x1X2 . . .Xn−1)
∣

∣

∣

∣

x1X2 . . .Xn−1
)

)

≥ 0,

since we defined E(•|x1X2 . . .Xn−1) exactly as the separate natural extension
of P(•|x1X2 . . .Xn−1). In the same way, it follows that all other terms, for
i ∈ {1, . . . ,n − 2}, are non-negative as well. Hence, we find that

E( f (x1,X2, . . . ,Xn)|x1) − α ≥ 0,

and therefore,E( f (x1,X2, . . . ,Xn)|x1) must be at least as large as themaximum
achieved by α under the given constraints.

To prove the converse inequality, fix any ǫ > 0. Consider again i = n − 1.
By Theorem 4.3 on p. 96, for each (x2, . . . , xn−1) in X2 × · · · × Xn−1 and each g
in domP(•|x1 . . . xn−1), we may choose λǫg,x1,x2,...,xn−1 ≥ 0 such that

E( f (x1, x2, . . . , xn−1,Xn)|x1x2 . . . xn−1) − ǫ

≤ α +
∑

g∈domP(•|x1...xi)
λǫg,x1,x2,...,xn−1P(g(Xn)|x1x2 . . . xn−1)

and at the same time

f (x1, x2, . . . , xn−1,Xn) ≥ α +
∑

g∈domP(•|x1...xn−1)
λǫg,x1,x2,...,xn−1 g(Xn),
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so,

∑

g∈domP(•|x1...xn−1)
λǫg,x1,x2,...,xn−1

[

g(Xn) − P(g(Xn)|x1x2 . . . xn−1)
]

≤ f (x1, x2, . . . , xn−1,Xn) − E( f (x1, x2, . . . , xn−1,Xn)|x1x2 . . . xn−1) + ǫ

Similarly, for i = n − 2, we may choose λǫg,x1,x2,...,xn−2 ≥ 0 such that

∑

g∈domP(•|x1...xn−2)
λǫg,x1,x2,...,xn−2

[

g(Xn−1) − P(g(Xn−1)|x1x2 . . . xn−2)
]

≤ fn−1(x1, x2, . . . , xn−2,Xn−1) − E( fn−1(x1, x2, . . . ,Xn−1)|x1x2 . . . xn−2) + ǫ,

where we choose fn−1(x1, x2, . . . , xn−2,Xn−1) such that it cancels with a term

in the previous expression, namely E( f (x1, x2, . . . ,Xn−1,Xn)|x1x2 . . .Xn−1). For
i = n − 3, we choose λǫg,x1,x2,...,xn−3 ≥ 0 such that

∑

g∈domP(•|x1...xn−3)
λǫg,x1,x2,...,xn−3

[

g(Xn−2) − P(g(Xn−2)|x1x2 . . . xn−3)
]

≤ fn−2(x1, x2, . . . , xn−3,Xn−2) − E( fn−2(x1, x2, . . . ,Xn−2)|x1x2 . . . xn−3) + ǫ,

choosing fn−2(x1, x2, . . . , xn−3,Xn−2) such that it cancels with a term in the pre-

vious expression, namely E( fn−1(x1, . . . , xn−3,Xn−2,Xn−1)|x1 . . . xn−3Xn−2). Con-
tinuing this process until i = 1 and summing all inequalities, we recover

that

n−1
∑

i=1

∑

g∈domP(•|x1...xi)
λǫg,x1,...,xi

[

g(xi+1) − P(g|x1 . . . xi)
]

≤ f (x1, . . . , xn) − E( f2(x1,X2)|x1) + (n − 1)ǫ,

for every ǫ > 0. Expressing f2 directly as a function of f , i.e., tracing back its

definition, we find that

f2(x1,X2|x1)
= E(•|x1) ◦ E(•|x1X2) ◦ · · · ◦ E(•|x1X2 . . .Xn−1)( f (x1,X2, . . . ,Xn))

= E( f (x1,X2, . . . ,Xn)|x1),
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which establishes the desired inequality. Indeed, for every ǫ, the constraints

are satisfied by choosing λǫg,x1,...,xi ’s as constructed above, and choosing α =

E( f (x1,X2, . . . ,Xn)|x1)−(n−1)ǫ. Therefore, themaximumachieved byαunder
thegiven constraintsmust be at leastE( f (x1,X2, . . . ,Xn)|x1)−(n−1)ǫ. Since this
holds for any ǫ > 0, the maximum is actually at least E( f (x1,X2, . . . ,Xn)|x1).

�

8.3 P-Maximality under Partial Act-State Depen-

dence

In this section we generalise P-maximality to the case in which there is (par-

tial) act-state dependence. This will allow us tomodel simultaneous learning

and optimal control. The analysis that follows may seem overly complicated

and unnecessary, but these ideas are nevertheless essential to explain under

what conditions dynamic programming fails when we simultaneously learn

and act.

Let X be a combination of two random variables Ξ and Θ, i.e., X = (Ξ,Θ)

and X = ΞΞΞ ×ΘΘΘ. Assume that actions a ∈ A do not influence the value of
Θ. So, our beliefs about Θ can be modelled by a coherent extended lower

prevision P on some linear subspace of R(Θ), independent of the action awe
take. For each action a ∈ A and each θ ∈ΘΘΘ, suppose that our (act-dependent)
beliefs aboutΞ are modelled through a conditional extended lower prevision

Pa(•|θ) defined on some linear subspace of R(Ξ).
We assume that for all actions a and all possible values of θ, the random

quantity Ja(Ξ, θ), as an element of R(Ξ), belongs to domPa, and that for all
actions a, the random quantity Pa(Ja|Θ), as an element of R(Θ), belongs to
domP.

Definition 8.2. For any two actions a and b in A, we say that a is strictly

preferred to b with respect to P and P•(•|Θ) if

P(Pa(Ja|Θ) − Pb(Jb|Θ)) > 0. (8.4)

Let’s explain how Eq. (8.4) establishes a strict preference of action a over

action b. First, note that since there is act-state independence with respect to

Θ, taking an action does not influence the value θ of Θ, so whatever action
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we take, the value ofΘ is the same. Moreover, it does not matter whether we

observe Θ prior to taking an action, or after taking an action. However, we

cannot say anything about Ξ prior to taking an action (at this point, we could

only model it using the vacuous lower prevision on Ξ). So, it does matter

whether we observe Ξ prior to taking an action, or after taking an action, and

the outcome of Ξ is expected to depend on the action we take. We’re now

ready for a precise formulation:

If Eq. (8.4) is satisfied, then we are willing to pay a strictly positive price

prior to the observation of Ξ and Θ in order to engage in the two-stage

gamble that consists of taking action a and gaining Ja(θ, ξ) after observation

ofΘ = θ andΞ = ξ, and then taking action b and losing Jb(θ, ξ′) after a second

observation of Θ = θ and Ξ = ξ′. Indeed:

• Using the behavioural interpretation of P, Eq. (8.4) says that we are
willing to pay a strictly positive price prior to observation ofΘ in order

to receive Pa(Ja|θ)− Pb(Jb|θ), if θ turns out to be the value ofΘ, and this
independent of the action we take. Hence, it also holds that for some

ǫ > 0, we are, prior to observing Θ, willing to pay a strictly positive

price in order to receive Pa(Ja|θ)− ǫ and to lose Pb(Jb|θ)+ ǫ if θ has been
observed.

• Suppose now θ has been observed. Then, using the behavioural in-

terpretation of Pa(Ja|θ), for any ǫ > 0 we are willing to lose Pa(Ja|θ) − ǫ
prior to observation of Ξ, in order to take action a and receive Ja(ξ, θ)

after observation of Ξ = ξ.

• But, we are also willing to take action b and lose Jb(ξ′, θ) after observa-
tion of Ξ = ξ′, if we receive Pb(Jb|θ) + ǫ prior to observation of Ξ.

Combining all these dispositions, we conclude that prior to any observation

of Ξ and Θ, we are willing to pay a strictly positive price in order to take

action a and receive Ja(ξ, θ), and then to take action b and lose Jb(ξ′, θ). Let’s

emphasise again that we can take the same value θ of Θ because the action

we take has no influence on the value of this variable.

If there is full act-state dependence, we can identify Ξwith X, and we re-

cover the ordering used byHarmanec [41] in the context of impreciseMarkov

decision processes: Pa(Ja) > Pb(Jb). This corresponds to interval dominance,

i.e., weak preference without point-wise ordering; see Definition 6.25 on

p. 292.
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In case of full act-state independence,we can identifyΘwithX, recovering

P( fa− fb) > 0; we used this strict preference relation before (again, if we ignore
point-wise dominance), see Definition 6.4 on p. 278. This order is stronger

than the interval ordering, so it leads to a smaller set of optimal actions:

this makes sense according to the principle that the stronger our beliefs, the

smaller the set of optimal actions, if we view act-state independence as an

additional piece of information.

8.4 Imprecise Statistical Decision Processes

We now introduce dynamical systems with uncertain dynamics described

by conditional lower previsions. These systems, which we term imprecise

statistical decision processes, includeMarkov decision processes and generalise

them to imprecise probabilities. However, we do not assume the Markov

condition to hold a priori because predictions about the dynamics of the

system must be allowed to depend on the full system history, if we are to

learn about the dynamics based on observations of the behaviour of the

system in the past.

8.4.1 States, Controls and Control Laws

Let X denote the finite set of states the system can assume, and letU denote
the finite set of controlswe can apply. The variable that represents the system

state at time k is denoted by Xk, and a particular value of Xk is denoted by

xk. We assume that there is a time N beyond which we are not interested in

dynamics of the system. Consider the system at time k. We can imagine

• observing Xk = xk,

• applying the control µk(xk) ∈ U and observing Xk+1 = xk+1,

• applying the control µk+1(xkxk+1) ∈ U and observing Xk+2 = xk+2,

• etc.,

• applying the control µN−1(xkxk+1 . . . xN−1) ∈ U and observing XN = xN.

This control operation is characterised by a finite sequence of functions πk =

(µk, µk+1, . . . , µN−1), where µℓ : Xℓ−k+1 →U. We call πk a control law from time
k. We denote the set of all control laws from time k by Πk.
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With each control law πk ∈ Πk we can associate a gain gamble from time ℓ
after observation of xk . . . xℓ−1 (with ℓ ≥ k; if ℓ = k then xk . . . xℓ−1 is assumed to
be an empty sequence, i.e., there is no observation, and we may also write

Jπk (xk, . . . , xN)),

Jπk(xk ...xℓ−1)(xℓ, . . . , xN) =
N−1
∑

q=ℓ

gq(xq, µq(xk . . . xq), xq+1) + gN(xN) (8.5)

It is interpreted as a gamble on (Xℓ, . . . ,XN). Each transition incurs a gain:

starting at time q in state xq, applying control uq ∈ U and arriving in
state xq+1 ∈ X, we receive an amount gq(xq,uq, xq+1) of linear utility. Ar-
riving in the final state xN at time N, we receive an additional gain gN(xN).

Observe that Jπk(xk ...xℓ−1) depends on πk only through µℓ(xk . . . xℓ−1Xℓ), . . . ,

µN−1(xk . . . xℓ−1Xℓ . . .XN−1). This sequence, which corresponds to the control

law πk after observation of xk . . . xℓ−1, is denoted by πk(xk . . . xℓ−1).

Our goal is to findoptimal control laws, that is, control laws thatmaximise

their corresponding gain gamble. In order to do so, we construct a strict

partial order on gain gambles, as in Eq. (8.4). This order is derived from

conditional lower previsions that describe the uncertain dynamics of the

system.

8.4.2 A Learning Model for Uncertain Dynamics

A simple way to describe uncertain dynamics, including learning, is as fol-

lows. Suppose at time k we select πk, and applying πk up to time ℓ (ℓ ≥ k)
we observe xk . . . xℓ. We can now model our knowledge about the state at

time ℓ + 1 by a lower prevision on some finite subset of L(Xℓ+1), conditional
on xk . . . xℓ, and depending on the control history µk(xk), . . . , µℓ−1(xk . . . xℓ−1)

and the current control µℓ(xk . . . xℓ). The lower previsions may depend on

the full system history, and not only on the current control and state as is

the case with Markov decision processes. This allows us to adapt our model

according to observations of the system history, and hence, to incorporate

learning the system dynamics.

As in Section 8.3, we separate those variables Θwhich are not influenced

by the control law. Hence,wedescribe thedynamics bya lowerprevisionP on

some finite subset of L(Θ), and conditional lower previsions Pπk (•|xk . . . xℓθ)
on some finite subset of L(Xℓ+1), for each πk ∈ Πk, each k ≤ ℓ < N, each state
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sequence xk . . . xℓ and each value of θ.1 The conditional lower prevision is

allowed to depend on the control law πk, but the parameters θ are assumed

not to be influenced by the control law.

At first sight, the separation of act-state independent variables may ap-

pear to be merely a technical matter. But in fact, from Theorem 8.5 it will

follow that this separation is essential tomake the principle of optimalitywork

when the dynamics is described by an imprecise probability model. If we do

not separate those variables, we naturally arrive at the weaker ordering used

by Harmanec [41] which does not satisfy the principle of optimality.

How can we identify act-state independent variables? Looking at the

example invoking the imprecise Dirichlet model for learning dynamics at

the end of Section 8.5, these variables naturally arise as the hyper-parameters

of the model, because they only model prior information. Thus in general,

modelling learningby an imprecise hierarchicalmodel, the hyper-parameters

of the model, which are commonly used to represent prior information, are

a natural choice for act-state independent variables. The remaining vari-

ables, in particular the states at different time points, will usually be act-state

dependent.

The conditional lower previsions Pπk (•|xk . . . xℓθ) combine, through sepa-
rate natural extension and the marginal extension theorem, to

Eπk
(•|xk . . . xℓθ) = Eπk (•|xk . . . xℓθ) ◦ Eπk (•|xk . . . xℓXℓ+1θ) ◦ · · ·

· · · ◦ Eπk (•|xk . . . xℓXℓ+1 . . .XN−1θ) (8.6)

onL(Xℓ+1, . . . ,XN), as inEq. (8.2). We cannowuseEq. (8.4) to compare control
laws after observation of a state sequence. Of course, after such observation

it only makes sense to compare control laws with the same control history.

LetΠk(xk . . . xℓ,uk . . . uℓ−1) denote the set of those elements πk ofΠk for which

πk(xk) = uk, πk(xkxk+1) = uk+1, . . . , πℓ−1(xk . . . xℓ−1) = uℓ−1. (8.7)

It is convenient to identify Πk(xk) with Πk.

The natural extension of the unconditional lower prevision P to the set of

all gambles on Θ is denoted by EP.

Definition 8.3. Letπk, ρk ∈ Πk(xk . . . xℓ,uk . . . uℓ−1). We say thatπk is preferred
1A better but very heavy notation would be Pµk(xk)...µℓ(xk ...xℓ)

(•|xk . . . xℓθ).
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Figure 8.1: A simple sequential decision process

to ρk after observation of state sequence xk . . . xℓ and application of control

sequence uk . . . uℓ−1, and we write πk >xk ...xℓ ,uk ...uℓ−1 ρk, if

EP(Eπk (Jπk(xk ...xℓ)|xk . . . xℓΘ) − Eρk (Jρk(xk ...xℓ)|xk . . . xℓΘ)) > 0. (8.8)

Observe that, once xk . . . xℓ and uk . . . uℓ−1 are fixed, the ordering depends

on πk and ρk only through πk(xk . . . xℓ) and ρk(xk . . . xℓ). It is easy to show that

>xk ...xℓ ,uk...uℓ−1 is a strict partial order. Using Eq. 6.5 on p. 278, we obtain an

optimality criterion for control laws by selecting as optimal the set of those

actions which are maximal with respect to the partial order of Eq. (8.8).

Definition 8.4. A control law πk ∈ Πk is said to be optimal if it is max-
imal in Πk(xk) with respect to >xk for each each xk ∈ X. Let k ≤ ℓ <

N − 1. The control law πk is said to be optimal from time ℓ if it is maxi-

mal in Πk(xk . . . xℓ, µk(xk) . . . µℓ−1(xk . . . xℓ−1)) with respect to the partial order

>xk ...xℓ ,µk(xk)...µℓ−1(xk ...xℓ−1) for each state sequence xk . . . xℓ.

Does this definition make sense? By assumption, Πk is finite, and the

existence of maximal control laws with respect to >xk ...xℓ ,µk(xk)...µℓ−1(xk ...xℓ−1) is

easy to prove, as is the existence of control laws which are simultaneously

maximal with respect to >xk ...xℓ ,µk(xk)...µℓ−1(xk ...xℓ−1) for all state sequences xk . . . xℓ.

8.5 The Principle of Optimality

Consider the sequential decision process depicted in Fig. 8.1. At each time k

we can choose between two actions, u and v. We shall make no assumption

on the connection between actions and dynamics, nevertheless, it may be

convenient for the reader to assume such a connection. Consider the control
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law π0 which applies v at time 0, and u if x1 = x and v if x1 = y at time 1:

µ0(x) = v,

µ1(xx) = u,

µ1(xy) = v.

The principle of optimality stipulates that if π0 belongs to the set of optimal

control laws from time 0, then the control law π0(x), which applies u if x1 = x

and v if x1 = y at time 1, should belong to the set of optimal control laws

from time 1. As a consequence, we can significantly reduce the complexity

of calculating the set of optimal control laws. To see how this works, assume

that for instance ρ1, specified by ν1(x) = v and ν1(y) = u, is not optimal from

time 1. Using the principle of optimality, σ0 and σ′0, specified by

κ0(x) = u, κ′0(x) = v

κ1(xx) = ν1(x) = v, κ′1(xx) = ν1(x) = v,

κ1(xy) = ν1(y) = u, κ′1(xy) = ν1(y) = u,

cannot be optimal from time 0, because otherwise ρ1 should have to be

optimal by the principle of optimality. Hence, when we already know the

optimal control laws from time ℓ + 1, we can use this information in order to

reduce the search space when looking for optimal control laws from time ℓ.

Of course, we cando this only if reducing the search spacedoes not change the

set of optimal elements we eventually end up with: our notion of optimality

must be insensitive to the omission of non-optimal elements. Observe that the

number of control laws grows exponentially with the length of the paths

under consideration, but by the principle of optimality and the insensitivity

property we do not need to consider most of them. In this way, we arrive at

an exponential speedup in the search for the set of all optimal control laws.

Writing this down in a formal way, we arrive at a generalisation of Bellman’s

equation.

Fortunately, the insensitivity property holds in all cases where the search

space is finite and optimality is induced by a partial ordering: it suffices

that every non-optimal element is dominated by an optimal element. But

this is immediate, as the set of all possible actions is finite. The principle

of optimality is more difficult to establish. The following theorem states
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sufficient conditions under which the principle of optimality holds for the

imprecise statistical decision problems under study.

Theorem 8.5 (Principle of Optimality). Let k < N and πk ∈ Πk. For any
k ≤ ℓ < N, it holds that if πk is optimal from time ℓ then it is optimal from time
ℓ + 1, whenever all of the following conditions are satisfied:

• The conditional lower previsions Eπk (•|xk . . . xℓθ) are linear, for all k ≤ ℓ < N,
all values of θ, and all state sequences xk . . . xℓ.

• EP is vacuous, that is, there is a subset T ofΘ such thatEP( f (Θ)) = infθ∈T f (θ)
for any gamble f on Θ.

• For any xℓ+1 ∈ X it holds that

EP(Eπk (IXℓ+1=xℓ+1 |xk . . . xℓΘ)) > 0. (8.9)

Proof. First, observe that for any control law ρk = (νk, . . . , νN−1) it holds that

the marginal extension Eq. (8.6) is linear, and

Eρk (Jρk(xk ...xℓ)|xk . . . xℓθ) = Eρk (g(xℓ, νℓ(xk . . . xℓ),Xℓ+1)|xk . . . xℓθ)

+ Eρk
(

Eρk (Jρk(xk ...xℓXℓ+1)|xk . . . xℓXℓ+1θ)
∣

∣

∣

∣

xk . . . xℓθ
)

(8.10)

We prove the theorem by contraposition. Assume that πk = (µk, . . . , µN−1) is

not optimal from time ℓ + 1. Then there must be a state sequence xk . . . xℓ+1
and a control law ρk = (νk, . . . , νN−1) which is preferred to πk after observation

of xk . . . xℓ+1 and application of control sequence µk(xk) . . . µℓ(xk . . . xℓ),

νk(xk) = µk(xk),

. . . ,

νℓ(xk . . . xℓ) = µℓ(xk . . . xℓ), (8.11)

and

inf
θ∈T
(Eρk (Jρk(xk ...xℓ+1)|xk . . . xℓ+1θ) − Eπk (Jπk(xk ...xℓ+1)|xk . . . xℓ+1θ)) > 0, (8.12)

Since Eq. (8.11) and Eq. (8.12) only depend on ρk through ρk(xk . . . xℓ+1),
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we are free to choose the remaining components of ρk. For instance, choose

νℓ+1(xk . . . xℓXℓ+1) = µℓ+1(xk . . . xℓXℓ+1),

. . . ,

νN−1(xk . . . xℓXℓ+1 . . .XN−1) = µN−1(xk . . . xℓXℓ+1 . . .XN−1), (8.13)

whenever Xℓ+1 , xℓ+1. But, for this choice of ρk, it holds that ρk is also pre-

ferred to πk after observation of only xk . . . xℓ and application of the controls

µk(xk) . . . µℓ(xk . . . xℓ−1).

Indeed, this statement follows if we can prove that

inf
θ∈T
(Eρk (Jρk(xk ...xℓ)|xk . . . xℓθ) − Eπk (Jπk(xk ...xℓ)|xk . . . xℓθ)) > 0. (8.14)

By Eq. (8.11) it holds that

Eπk (•|xk . . . xℓθ) = Eρk (•|xk . . . xℓθ)

since Eρk (•|xk . . . xℓθ) only depends on ρk through ρk(xk . . . xℓ). Using this
equality when applying Eq. (8.10) on both πk and ρk, we find that Eq. (8.14)

is equivalent to

inf
θ∈T
(Eπk (Eρk (Jρk(xk ...xℓXℓ+1)|xk . . . xℓXℓ+1θ)

− Eπk (Jπk(xk ...xℓXℓ+1)|xk . . . xℓXℓ+1θ)|xk . . . xℓθ)) > 0.

ByEq. (8.13), and again sinceEπk (Eρk (Jρk(xk ...xℓXℓ+1)|xk . . . xℓXℓ+1θ)) only depends
on ρk through ρk(xk . . . xℓXℓ+1), this is equivalent to

inf
θ
(Eπk (IXℓ+1=xℓ+1 [Eρk (Jρk(xk ...xℓ+1)|xk . . . xℓ+1θ)

− Eπk (Jπk(xk ...xℓ+1)|xk . . . xℓ+1θ)]|xk . . . xℓθ)) > 0,

where IXℓ+1=xℓ+1 is the indicator function of the singleton {xℓ+1}. But this strict
inequality follows fromEq. (8.9), Eq. (8.12) and the linearity ofEπk (•|xk . . . xℓθ).
The proof is established. �

Roughly, Theorem 8.5 states that the principle of optimality holds if all

the imprecision is concentrated in the state-independent part of the model,
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and if this imprecise part is of the vacuous type: θ is only known to belong to

some set T ⊆ Θ. It may appear that imprecision is more or less left out of the
picture by the requirement that the conditional lower previsions should be

linear. This is not the case: whenever the imprecise model can be described

by a set of precise models

{Eπk (•|xk . . . xℓθ) : θ ∈ T} (8.15)

and these precise models are connected through a conditioning parameter θ (more

precisely, a conditioning random variable Θ) as in Eq. (8.15), the principle

of optimality applies when using the preference order Eq. (8.8). Imprecise

probability models are often expressed in terms of sets of precise models.

The theorem tells us that we should look for an act-state independent vari-

able which parametrises this set. If this is possible, we can apply dynamic

programming.

8.6 Invoking the Imprecise Dirichlet Model

The conditions of Theorem 8.5 are satisfiedwhenwe use an imprecise Dirich-

letmodel (introducedbyWalley [87]) in order to represent learning the system

dynamics. In this model the conditional linear previsions are given by

Eπk ( f |xk . . . xℓθ) =
∑

xℓ+1∈X
f (xℓ+1)

sθ
µℓ(xk ...xℓ)
xℓxℓ+1 + n

µℓ(xk ...xℓ)
xℓxℓ+1 (xk . . . xℓ, πk)

s +N
µℓ(xk ...xℓ)
xℓ (xk . . . xℓ, πk)

(8.16)

for any gamble f on Xℓ+1, and the imprecise (vacuous) unconditional lower

prevision is given by

P(g) = inf
θuxy≥ǫ,

∑

y∈X θ
u
xy=1

g(θ), (8.17)

for all gambles g on Θ, where ǫ > 0 is an arbitrary small strictly positive real

number (less than 1
|X| ). Let’s briefly explain what these expressions mean,

and how we arrive at them.

We use nuxy(xk . . . xℓ, πk) to denote the number of transitions from state x to

state y by applying control u, in the sequence xk . . . xℓ subject to control law

πk, and Nux (xk . . . xℓ, πk) denotes the number of transitions that start in state x
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and apply control u, in the sequence xk . . . xℓ under control law πk:

nuxy(xk, πk) = 0, (8.18)

nuxy(xk . . . xℓ+1, πk) = n
u
xy(xk . . . xℓ, πk)

+



















1, if xℓ = x, xℓ+1 = y and µℓ(xk . . . xℓ) = u

0, otherwise
(8.19)

and,

Nux (xk . . . xℓ, πk) =
∑

y∈X
nuxy(xk . . . xℓ, πk). (8.20)

Equation (8.16) is the predictive lower prevision onXℓ+1which arises from an

independent product of precise Dirichlet models on the transition probabili-

ties from state xℓ applying µℓ(xk . . . xℓ) after having observed xk . . . xℓ subject

to control law πk [56]. We assume that observation of transitions from one

state do not influence our knowledge about transitions from another state.

This motivates the use of an independent product of Dirichlet models, each

model modelling transitions from a particular state.

The hyper-parameters of these models are s and θuxy, for each x, y ∈ X
and u ∈ U. The hyper-parameter s > 0 determines the adaptivity of the
model (lower s means faster learning), and the hyper-parameters θuxy ≥ ǫ,
∑

y∈X θ
u
xy = 1, determine the prior transition probabilities from state x to state

y applying control u. Eq. (8.17) follows then from the assumption that we

know (almost) nothing about the transition probabilities a priori. Hence, we

use the vacuous lower prevision P onL(Θ), where we useΘ as a notation for
the collection of all hyper-parametersΘuxy for x, y ∈ X and u ∈ U. The hyper-
parameters s and Θ, which represent prior information about the dynamics

of the system, are obviously not influenced by the control law πk: they are

act-state independent variables. The vacuous lower prevision is chosen such

that a priori the lower probability of any transition is at least ǫ. A completely

vacuous model for the hyper-parameters Θ is obtained by setting ǫ = 0, but,

we must choose ǫ > 0 to ensure that Eq. (8.9) holds.

8.7 A Numerical Example

Consider again the Markov decision process depicted in Figure 8.1. Recall

that at each time k we can choose between two actions, u and v. Transition
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probabilities are denoted as θvyx (the probability from state y to state x when

taking action v), and the reward associated with this transition is denoted

by rvyx (so, for instance, g(y, v, x) = r
v
yx, and h(x) = h(y) = 0). Initially, all

transition probabilities are known to be at least 110 , and we precisely know

the rewards:

ruxx = r
u
yx = 1 rvxx = r

v
yx = 2

ruxy = r
u
yy = 1.5 rvxy = r

v
yy = 0.75

Intuitively, it is clear that insufficient information is available in order to

construct a unique optimal feedback. However, suppose we are in state x at

time k = 0, take action v and end up in state x at time k = 1. Then it seems

reasonable to assume that when we select action v again, the probability that

we end up in x again is higher than the probability of ending up in y. In

fact, the reward associated with this transition, rvxx, is the highest possible

reward. Even if we do not know precisely the value of θvxx, after observing

the transition from state x at time k to state x at k+1 under action v, we obtain,

through the imprecise Dirichlet model (hyper-parameter s = 1), a sufficiently

narrow probability interval for θvxx in order to ensure that we will end up

with the highest possible reward by taking action v from state x at time k = 1.

This demonstrates the possible benefit of learning.

Let’s verify this result, and apply Bellman’s dynamic programming algo-

rithm to obtain all globally optimal feedback controls.

8.7.1 Conditional Expected Gains After Observations

Assuming a Dirichlet prior with parameters s and θ, we have, by Eq. (8.10),

Eπk (Jπk(x)|xθ) = θ
πk(x)
xx

(

rπk(x)xx + Eπk (Jπk(xx)|xxθ)
)

+ θπk(x)xy

(

rπk(x)xy + Eπk (Jπk(xy)|xyθ)
)

(8.21)

Eπk (Jπk(xx)|xxθ) =



















sθ
πk (xx)
xx +1
s+1 rπk(xx)xx +

sθ
πk (xx)
xy

s+1 r
πk(xx)
xy , if πk(x) = πk(xx)

θπk(xx)xx rπk(xx)xx + θπk(xx)xy rπk(xx)xy , otherwise.
(8.22)

Eπk (Jπk(xy)|xyθ) = θ
πk(xy)
yx r

πk(xy)
yx + θπk(xy)yy r

πk(xy)
yy (8.23)
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8.7.2 Dynamic Programming

Optimal Control Laws After Observing xx

The feedback πk is optimal from xx if it holds for all π′k that

sup
θ•••≥ 110

[

Eπk (Jπk(xx)|xxθ) − Eπk (Jπ′k(xx)|xxθ)
]

≥ 0. (8.24)

• πk(x) = u & πk(xx) = u is not optimal. Indeed:

– Consider π′
k
(x) = v & π′

k
(xx) = v. Then, Eq. (8.24) becomes

sup
θ•••≥ 110

[

sθπk(xx)xx + 1

s + 1
rπk(xx)xx − sθ

π′
k
(xx)

xx + 1

s + 1
r
π′
k
(xx)

xx

+
sθπk(xx)xy

s + 1
rπk(xx)xy −

sθ
π′
k
(xx)

xy

s + 1
r
π′
k
(xx)

xy

]

≥ 0,

or equivalently,

sup
θ•••≥ 110

[

sθuxx + 1

s + 1
ruxx −

sθvxx + 1

s + 1
rvxx +

sθuxy
s + 1

ruxy −
sθvxy
s + 1

rvxy

]

≥ 0,

or equivalently,

sup
t∈[ 110 , 910 ]
t′∈[ 110 , 910 ]

[

st + 1

s + 1
ruxx −

st′ + 1

s + 1
rvxx +

s(1 − t)
s + 1

ruxy −
s(1 − t′)
s + 1

rvxy

]

≥ 0,

Equivalently, with s = 1,

max

{

11ruxx + 9r
u
xy

20
−
11rvxx + 9r

v
xy

20
,

19ruxx + r
u
xy

20
−
11rvxx + 9r

v
xy

20
,

11ruxx + 9r
u
xy

20
−
19rvxx + r

v
xy

20
,

19ruxx + r
u
xy

20
−
19rvxx + r

v
xy

20

}

≥ 0,
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which reduces to

max

{

11 × 1 + 9 × 1.5
20

− 11 × 2 + 9 × 0.75
20

,

19 × 1 + 1.5
20

− 11 × 2 + 9 × 0.75
20

,

11 × 1 + 9 × 1.5
20

− 19 × 2 + 0.75
20

,

19 × 1 + 1.5
20

− 19 × 2 + 0.75
20

}

≥ 0,

But, this inequality is not satisfied. Therefore, πk(x) = u& πk(xx) =

u is not optimal.

• πk(x) = u & πk(xx) = v is not optimal. Indeed:

– Consider π′
k
(x) = v & π′

k
(xx) = v. Then, Eq. (8.24) becomes

sup
θ•••≥ 110

[

θπk(xx)xx rπk(xx)xx − sθ
π′
k
(xx)

xx + 1

s + 1
r
π′
k
(xx)

xx

+ θπk(xx)xy rπk(xx)xy −
sθ

π′
k
(xx)

xy

s + 1
r
π′
k
(xx)

xy

]

≥ 0,

or equivalently,

sup
θ•••≥ 110

[

θvxxr
v
xx −
sθvxx + 1

s + 1
rvxx + θ

v
xyr
v
xy −

sθvxy
s + 1

rvxy

]

≥ 0,

or equivalently,

sup
t∈[ 110 , 910 ]

[

trvxx −
st + 1

s + 1
rvxx + (1 − t)rvxy −

s(1 − t)
s + 1

rvxy

]

≥ 0,

Equivalently, with s = 1,

max

{

rvxx + 9r
v
xy

10
−
11rvxx + 9r

v
xy

20
,

9rvxx + r
v
xy

10
−
19rvxx + r

v
xy

20

}

≥ 0,
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which reduces to

max

{

1 × 2 + 9 × 0.75
10

− 11 × 2 + 9 × 0.75
20

,

9 × 2 + 1 × 0.75
10

− 19 × 2 + 1 × 0.75
20

}

≥ 0,

But, this inequality is not satisfied. Therefore, πk(x) = u& πk(xx) =

v is not optimal.

• πk(x) = v & πk(xx) = v is optimal. Indeed,

– For π′
k
(x) = v & π′

k
(xx) = v, Eq. (8.24) is trivially satisfied.

– Consider π′
k
(xx) = u & π′

k
(x) = u. Then, with s = 1, Eq. (8.24)

becomes

max

{

− 11 × 1 + 9 × 1.5
20

+
11 × 2 + 9 × 0.75

20
,

−19 × 1 + 1.5
20

+
11 × 2 + 9 × 0.75

20
,

−11 × 1 + 9 × 1.5
20

+
19 × 2 + 0.75

20
,

−19 × 1 + 1.5
20

+
19 × 2 + 0.75

20

}

≥ 0,

This inequality is satisfied.

– Consider π′
k
(x) = v & π′

k
(xx) = u. Then it is similarly checked that

Eq. (8.24) is satisfied.

– Consider π′
k
(x) = u & π′

k
(xx) = v. Again, it is similarly checked

that Eq. (8.24) is satisfied.

• And finally, after similar considerations, it follows that that πk(x) = v&
πk(xx) = u is optimal too.

Optimal Control Laws After Observing xy

In a similar way, it can be shown that

• πk(x) = u & πk(xy) = u is not optimal.

• πk(x) = u & πk(xy) = v is not optimal.
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• πk(x) = v & πk(xy) = u is optimal.

• πk(x) = v & πk(xy) = v is optimal.

Applying The Principle of Optimality

By the above results, it follows that after observation of the initial state x, the

only possibly optimal controls laws are

• πk(x) = v & πk(xx) = u & πk(xy) = u.

• πk(x) = v & πk(xx) = u & πk(xy) = v.

• πk(x) = v & πk(xx) = v & πk(xy) = u.

• πk(x) = v & πk(xx) = v & πk(xy) = v.

Indeed, these are exactly the control laws which are both optimal after ob-

servation of xx, and after observation of xy, so by the principle of optimality,

and insensitivity to omission of non-optimal elements, any control law that

is optimal after observation of xmust belong to this class—note that a control

law πk belongs to this class if and only if πk(x) = v.

It turns out that all of these control laws are optimal after observation of

x: for any πk and π′k such that πk(x) = π
′
k
(x) = v, it holds that

sup
θ•••≥ 110

[

Eπk (Jπk(x)|xxθ) − Eπk (Jπ′k(x)|xxθ)
]

≥ 0,

using Eq. (8.21). So, all these control laws are incomparable after observation

of only x. This simply means that we don’t have enough initial information

to further discriminate between them.

8.7.3 Result

We conclude that a control law πk is optimal (after observation of the initial

state x) if and only if πk(x) = v. We have already argued that v is, intuitively,

a good choice as an initial control: in the given example, this is the only way

to learn about the probability θvxx of a transition that has the highest reward

rvxx = 2 associated to it.

We have also demonstrated how the principle of optimality can be in-

voked to sequentially reduce the set of candidate optimal control laws. In

the example, the number of candidates was halved after only one step.



Chapter 9

Conclusion

From the introductory chapters, Chapters 3–6, themost important conclusion

is that coherent lower previsions are belief models (Chapters 3–5), which

generalise many of the existing models for uncertainty, and which naturally

lead to a theory of robust optimality (Chapter 6). They allowus inChapters 7–

8 to study dynamical systems whose uncertain gain or uncertain dynamics

cannot be described by the classical theory of probability, for instance because

insufficient information is available in order to identify aprobabilitymeasure.

The main conclusion of Chapter 7 is that the method of dynamic pro-

gramming can in principle be extended to deterministic systems with an

uncertain gain, where the uncertainty about the gain is modelled by a lower

prevision. We have demonstrated how the principle of optimality, together

with the insensitivity property, yields an efficient recursive algorithm in or-

der to calculate optimal paths. Basically, it reduces the global optimisation

problem which requires a search over the space of all possible paths, to a

sequence of N − k (where k is the initial time, and N is the time horizon)
local optimisation problems requiring only a search over the control space

U. In this way, the principle of optimality yields an exponential speedup in
determining optimal paths. This was nicely demonstrated by the sequence

alignment algorithm (Fig. 7.7 on p. 328).

But our general study of what conditions a generalised notion of opti-

mality should satisfy for the Bellman approach to work is of some interest

in itself too. In particular, besides an obvious extension of the well-known

principle of optimality, another condition emerges that relates to the nature

357
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of the optimality operators per se: the optimality of a path should be invari-

ant under the omission of non-optimal paths from the set of paths under

consideration. If optimality is induced by a strict partial ordering of paths,

then this second condition is satisfied whenever the existence of dominating

optimal paths for non-optimal ones is guaranteed.

Another important observation is that, contrary to P-maximality andM-
maximality, the dynamic programmingmethod cannot be used to solve opti-

misation problems corresponding to P-maximinity, P-maximaxity, and weak

P-maximality: for these notions the principle of optimality does not hold in

general.

From Chapter 8, where we have investigated finite-state dynamical sys-

temswith uncertain dynamics described by conditional lower previsions, we

conclude that Bellman’s dynamic programming algorithm still works if the

lower previsions describing the dynamics satisfy a very particular structural

property: all the imprecision must be concentrated in the state-independent

part of the model, and this imprecise part must be of the vacuous type. It is

quite remarkable that the separation of act-state independent beliefs fromact-

state dependent beliefs is essential for the dynamic programming approach

to work.

However, due to the fact that the control laws must depend on the full

systemhistory in order to allow learning about the systemdynamics, wemust

repeat the algorithmat each time step for all possible systemhistories, andnot

simply for all possible states as in the case without learning. As a result, the

algorithm still needs an exponential time, but even so, the search space has

been exponentially reduced. This is inevitable also in the classical approach,

even when considering sufficient statistics; see for instance Bertsekas [8].

On the other hand, the learning approach, using the imprecise Dirichlet

model, leads to more determinate beliefs as time increases. Hence, with

longer time horizon the incomparability of control laws will be less likely,

and the size of the set of optimal control lawswill tend to stabilise. In thisway,

it is less prone to the problem of huge, exponentially growing sets of optimal

elements, as is often experienced with the method proposed in Harmanec

[41], and the non-learning method discussed in Chapter 7.



Appendix A

The Extended Real Numbers

In this appendix we recall the definition and elementary properties of the

extended real calculus. For the sake of completeness, the proofs are given

too; apparently, the properties of the extended real number system on which

we rely in this work, are rather hard to find in the literature.

A.1 Definitions

DefinitionA.1. The setR∗ of extended real numbers is defined byR∪{−∞,+∞}.

Definition A.2. The addition “+” on R is extended to R∗ as follows:

−∞ + (−∞) = −∞, +∞ + (+∞) = +∞,
a + (−∞) = −∞ + a = −∞, a + (+∞) = +∞ + a = +∞, if a ∈ R.

We call a sum of extended real numbers well defined if it cannot be reduced to

+∞ + (−∞) or −∞ + (+∞).
Asusual, “a+(+∞)” is abbreviated to “a+∞”, and“a+(−∞)” is abbreviated

to “a − ∞”. We also write, for instance, “{∑ni=1 an w.d. : a1 ∈ A1, . . . , an ∈
An}” as an abbreviation for the set “{

∑n
i=1 an :

∑n
i=1 an well defined, and a1 ∈

A1, . . . , an ∈ An}”, where A1, . . . , An are subsets of R∗.

Definition A.3. The well defined sum of two subsets A and B of R∗ is defined

by

A + B = {a + bw.d. : a ∈ A, b ∈ B}.

359
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Definition A.4. The multiplication “×” on R is extended to R∗ as follows:

−∞ × −∞ = +∞× +∞ = +∞, −∞ × +∞ = +∞× −∞ = −∞,
a × −∞ = −∞ × a = −∞, a × +∞ = +∞× a = +∞, if a > 0,
a × −∞ = −∞ × a = +∞, a × +∞ = +∞× a = −∞, if a < 0,
a × −∞ = −∞ × a = 0, a × +∞ = +∞× a = 0, if a = 0.

Definition A.5. The ordering ≤ on R is extended to R∗ by defining −∞ ≤ a
and a ≤ +∞ for any a ∈ R∗.

DefinitionA.6. The equivalence relation= onR is extended toR∗ bydefining

−∞ = −∞ and +∞ = +∞.
We shall write “x = ±∞” as an abbreviation of “x = −∞ or x = +∞”,

where x denotes any extended real number.

A.2 Properties

Proposition A.7. The addition “+” on R∗ is commutative and associative, the

multiplication “×” on R∗ is commutative and associative.

Proof. Immediate. �

Lemma A.8. For any non-zero real number λ, and any extended real numbers a1,

. . . , an, it holds that
∑n
i=1 ai is well defined if and only if

∑n
i=1 λai is well defined, and

in such a case

λ
n

∑

i=1

ai =

n
∑

i=1

λai

Proof. Immediate. �

Lemma A.9. Let a, b, c and d be sums of extended real numbers. Let A and B be

subsets of R∗. The following statements hold.

(i) If a+ b is well defined then a and b are well defined. Conversely, if a is not well

defined or b is not well defined then a + b is not well defined.

(ii) If a and b are well defined and a− b is not well defined, then it can only be that
a = b = ±∞.
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(iii) “a + b − a well defined” implies “a ∈ R, b well defined and a + b − a = b”.
Conversely, “a ∈ R and b well defined” implies “a + b − a well defined and
a + b − a = b”.

(iv) “a ≥ b + c whenever a and b + c are well defined” is equivalent to “a − b ≥ c
whenever a − b and c are well defined”. Hence, also “a + b ≥ c whenever a + b
and c are well defined” is equivalent to “a ≥ c − b whenever a and c − b are
well defined”.

(v) If “c ≥ d whenever c and d are well defined”, then “a ≥ b + c whenever a and
b + c are well defined” implies that “a ≥ b + d whenever a and b + d are well
defined”.

(vi) “a = b + c whenever a and b + c are well defined” is equivalent to “a − b = c
whenever a − b and c are well defined”.

(vii) supA = sup(A \ {−∞}) and infA = inf(A \ {+∞}).

(viii) sup(A + B) = supA + supB whenever the right hand side is well defined.

Proof. (i)&(ii). Immediate from the definition of well defined.

(iii). If a+ b− a is well defined then by (i) a and b are well defined. Also, a
must be a real number since a + b − awould reduce to +∞−∞ otherwise. In
all three cases b = ±∞, or b real, the equality follows. The other implication
is proven in a similar way.

(iv). If a, b or c is not well defined then the equivalence is trivial by (i).

Therefore we can assume without loss of generality that a, b and c are well

defined.

Assume that a − b is well defined. We show that under the assumption
“b + cwell defined implies a ≥ b + c”, a − b ≥ c holds.
If b + c is not well defined, then we have to consider the following cases.

(Ia) b = −c = −∞. In this case, a− b = +∞, and c = +∞ too, so a− b ≥ c holds.

(Ib) b = −c = +∞. In this case, a− b = −∞, and c = −∞ too, so a− b ≥ c holds.

If, on the other hand, b + c is well defined, then we know that a ≥ b + c.
We have to consider the following cases.

(IIa) (b+ c)− b not well defined, b+ c = b = +∞. We have that a ≥ b+ c = +∞,
which implies that also a = +∞, so a− b is not well defined; we reached
a contradiction, which means that this case cannot occur.
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(IIb) (b + c) − b not well defined, b + c = b = −∞. Since a − b is well defined
by assumption, a > −∞, and therefore a − b = +∞ and a − b ≥ c holds.

(IIc) (b + c) − b well defined. Then b ∈ R. If c = −∞ then the inequality
a − b ≥ c is obvious. If c = +∞ then a ≥ b + c = +∞ and the inequality
a − b ≥ c holds. If c ∈ R and a = −∞ then we have a contradiction
since a ≥ b + c, so this case cannot occur. If c ∈ R and a ∈ R then the
inequality a− b ≥ c follows from the usual real calculus. Finally, if c ∈ R
and a = +∞ then the inequality a − b ≥ c is obvious.

Conversely, assume that b + c is well defined. We show that under the

assumption “a − b well defined implies a − b ≥ c”, a ≥ b + c holds.
If a − b is not well defined, then we have to consider the following cases.

(Ia) a = b = +∞. In this case, b + c = +∞, and a = +∞ too, so a ≥ b + c holds.

(Ib) a = b = −∞. In this case, b + c = −∞, and a = −∞ too, so a ≥ b + c holds.

If, on the other hand, a − b is well defined, then we know that a − b ≥ c.
We have to consider the following cases.

(IIa) (a−b)+b notwell defined, a−b = −b = −∞. We have that−∞ = a−b ≥ c,
which implies that also c = −∞, so b+ c is not well defined; we reached
a contradiction, which means that this case cannot occur.

(IIb) (a − b) + b not well defined, a − b = −b = +∞. Since b + c is well defined
by assumption, c < +∞, and therefore b + c = −∞ and a ≥ b + c holds.

(IIc) (a − b) + b well defined. Then b ∈ R. If a = +∞ then the inequality
a ≥ b + c is obvious. If a = −∞ then −∞ = a − b ≥ c, so c = −∞, hence
b+ c = −∞, and the inequality a ≥ b+ c holds. If a ∈ R and c = +∞ then
we have a contradiction since a− b ≥ c so this cannot occur. If a ∈ R and
c ∈ R then the inequality a ≥ b + c follows from the usual real calculus.
Finally, if a ∈ R and c = −∞ then the inequality a ≥ b + c is obvious.

The second equivalence follows simply by replacing b by −b in the first
equivalence and using commutativity of the addition on R∗.

(v). Assume c and d are well defined. If a or b is not well defined then

the equivalence is trivial by (i). Therefore we can assume without loss of

generality that a and b are well defined.
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If b = −∞ or c = −∞, then b = −∞ or d = −∞, and the statement trivially
holds. Without loss of generality, wemay thus assume that b and c are strictly

larger than −∞. In particular, we only need to consider cases in which b + c
is well defined.

If b = +∞ or c = +∞, then a = +∞ (whenever b + c is well defined, which
is the case) and the statement trivially holds. If both b and c are real, again

the statement trivially holds, even though dmay be −∞.
(vi). If a, b or c is not well defined then the equivalence is trivial by (i).

Therefore we can assume without loss of generality that a, b and c are well

defined.

The equivalence follows from (iv). Indeed,

(b + c w.d. =⇒ a = b + c)

⇐⇒ (b + c w.d. =⇒ (a ≥ b + c and b + c ≥ a))
⇐⇒ (b + c w.d. =⇒ a ≥ b + c) and (b + c w.d. =⇒ b + c ≥ a)
⇐⇒ (a − b w.d. =⇒ a − b ≥ c) and (a − b w.d. =⇒ c ≥ a − b)
⇐⇒ (a − b w.d. =⇒ (a − b ≥ c and c ≥ a − b))
⇐⇒ (a − b w.d. =⇒ a − b = c)

(vii). This is follows from the fact that sup ∅ = −∞ and inf ∅ = +∞.
(viii). If supA = −∞ then (a) A = ∅, in which case A + B = ∅, or (b)

A = {−∞}, in which case A + B = ∅ or A + B = {−∞}. So the proposition
holds if supA = −∞ or supB = −∞ (by commutativity of the addition and
symmetry).

If supA = +∞ then Bmust contain extended real numbers strictly larger
than −∞ (otherwise supA + supBwould not be well defined). For any such
number b ∈ B, b > −∞, we have that supA + b = +∞, whence sup{a + b; a ∈
A, b ∈ B, a, b > −∞} = +∞, and consequently, sup{a + b; a ∈ A, b ∈ B, a +
b well defined} = sup(A + B) = +∞. So the proposition holds if supA = +∞
or supB = +∞ (by commutativity of the addition and symmetry).
If supA and supB are real numbers, then the property follows from the

continuity of the addition. �
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