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Abstract. In multi-agent expert systems, the conjunction rule is commonly
used to combine expert information represented by imprecise probabilities. How-
ever, it is well-known that this rule cannot be applied in case of expert conflict.
In this paper, we propose to resolve expert conflict by means of a second-order
imprecise probability model. The essential idea underlying the model is a no-
tion of behavioural trust. We construct a simple linear programming algorithm
for calculating the aggregate. This algorithm explains the proposed aggregation
method as a generalised conjunction rule. It also provides an elegant operational
interpretation of the imprecise second-order assessments, and thus overcomes
the problems of interpretation that are so common in hierarchical uncertainty
models.

1. Introduction

When modelling a system, one must often rely on expert information. From the
modeller’s perspective, one usually wants to aggregate all expert opinions into a
single representative model—a “summary” of all the expert information—which
will then serve as a basis for various kinds of inferences about the system, such as
decision making, estimation, hypothesis testing, etc. The fundamental idea behind
this approach is that aggregating more expert opinions eventually leads to a more
reliable, and hopefully, also to a more informative representative model. There
is however no agreement on how expert opinions should be aggregated. Actually,
there is not even a clear agreement on how expert opinions themselves should be
represented.

Recently, the use of imprecise probabilities in representing, manipulating and
aggregating expert information has received an increasing amount of attention in
the literature (see for instance [16, 17, 20, 18, 11, 3, 12, 5, 15, 4] and many refer-
ences therein). One of the main reasons for the increasing popularity of imprecise
probabilities in modelling and aggregating expert information is that they allow
for a more reliable representation of expert information. Indeed, in practice we
often have only limited information about probability distributions. Imprecise
probabilities reliably model limited information, and do not force us to pinpoint a
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single probability measure in order to represent our knowledge. Secondly, impre-
cise probabilities also provide a natural setting for modelling conflicting opinions,
using imprecision as a means of expressing disagreement amongst different opin-
ions.

The conjunction rule is widely used as an aggregation rule for non-conflicting
expert opinions. Conjunction gains as much information as possible from each of
the experts. However, it cannot be applied in case of conflicting expert opinions,
and it is not entirely clear how the rule should be generalised in order to deal with
conflict.

This paper aims at providing a new systematic and computationally simple way
for reconciling conflicting expert opinions, in order to generalise the conjunction
rule. Throughout we shall use behavioural arguments only, in particular, avoid-
ing sure loss, coherence and natural extension—these are fundamental concepts
in the behavioural theory of imprecise probabilities [19]. We define our aggregate
by means of a very general imprecise second-order hierarchical model, and for a
number of important special cases we derive a simple linear programming algo-
rithm for calculating the aggregate, whose dual also provides us with an elegant
operational interpretation of the second-order assessments. For some imprecise
second-order models, the proposed algorithm does not work anymore—more com-
plex techniques are needed—and hence, a general operational interpretation of
imprecise second-order models remains an open problem.

Imprecise hierarchical models have been studied quite extensively in the lit-
erature, although these models have not always aimed at reconciling conflict in
multi-agent expert systems. Our model generalises so-called lower desirability
functions introduced by de Cooman [3]. Therefore, our algorithm can also be used
to calculate the first order aggregate induced by such lower desirability functions
(this aggregate is also called the first-order i-natural extension). Another very
interesting and mathematically closely related aggregation algorithm was stud-
ied by Utkin [15]. The algorithm described by Utkin is more complex and more
powerful—it works in all cases—but at a price: one needs to make stronger as-
sumptions about the second-order level, and one can only use imprecise first-order
expert assessments of a very specific form.

The paper is organised as follows. Section 2 introduces the basic concepts of the
behavioural theory of imprecise probabilities under the form of lower previsions,
and their relation to other well-known uncertainty models. In Section 3 we explain
the problem of aggregating expert opinions, and we touch on the controversy
surrounding it. Section 4 explains the conjunction rule. A second-order imprecise
probability model is proposed and discussed in Section 5. In Section 6 the main
results are presented. Section 7 gives a numerical example, and we end with a
discussion in Section 8.
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2. Lower previsions

In this paper, lower previsions are taken as the fundamental imprecise proba-
bility model. Their behavioural interpretation turns out to be very convenient in
describing the second-order model later on. We only introduce the most important
aspects of the theory of lower previsions that are relevant to the problem at hand.
More details can be found in [19].

Let us consider a subject (which can be an expert, or a modeller) who is uncer-
tain about something, say, the outcome of some experiment. If the set of possible
outcomes is Ω, then a gamble X is a bounded real-valued mapping on Ω, and it is
interpreted as an uncertain reward: if ω turns out to be the true outcome of the
experiment then the subject receives the amount X(ω), expressed in units of some
linear utility. The set of all gambles on Ω is denoted by L(Ω).

The information the subject has about the outcome of the experiment will lead
him to accept or reject transactions whose reward depends on this outcome, and
we can formulate a model for his uncertainty by looking at a specific type of
transaction: the buying of gambles. The subject’s lower prevision (or supremum
acceptable buying price) P(X ) for a gamble X is the highest price s such that he
is disposed to buy the gamble X for any price strictly lower than s. If the subject
assesses a supremum acceptable buying price for every gamble X in a subset K of
L(Ω), the resulting mapping P : K → R is called a lower prevision.

Examples of lower previsions are:

(i) If “ω belongs to the set A ⊆ Ω” then PA(X ) = infω∈A X (ω): the lowest
possible reward given that ω ∈ A. We call PA the vacuous lower prevision
relative to A.

(ii) If “ω has probability density φ” we should pay P(X ) =
∫

Ω
X (ω)φ(ω)dω, the

expectation w.r.t. φ [6, 7]. This is called the linear prevision induced by the
density φ.

(iii) If “ω has a probability density that belongs to the set Φ” we pay at most
P(X ) = infφ∈Φ

∫
Ω

X (ω)φ(ω)dω.

These examples indicate that lower previsions are uncertainty representations that
are expressive enough to capture propositional logic (example (i)), Bayesian prob-
ability theory [13] (example (ii)), and credal sets [10] (example (iii)) (credal sets
are closed convex sets of probability measures). Actually, they also generalise be-
lief functions [8, 14], possibility and necessity measures [21], Choquet capacities
[2], risk measures [1], and many other uncertainty models.

P will denote the conjugate upper prevision of P . It is defined by P(X ) =
−P(−X ) for every X ∈ −K. P(X ) represents the subject’s infimum acceptable
selling price for the gamble X . The difference P(X )− P(X ) is a measure for the
amount of imprecision in the subject’s behavioural dispositions towards X .
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We now introduce a method of inference, associated with lower previsions, that
also generalises the inference methods of, for instance, classical propositional logic
and Bayesian probability theory.

2.1. Inference. Through a procedure called natural extension, we are able to
derive from the assessments embodied in P , a supremum buying price E (X ) for
each gamble X in L(Ω); we want to find the point-wise smallest (and therefore
most conservative) lower prevision E that satisfies for any gambles X and Y

• E (X ) ≥ inf[X] (accepting sure gain)
• E (λX ) = λE (X ) whenever λ > 0 (scale independence)
• E (X + Y ) ≥ E (X ) + E (Y ) (super-additivity)
• E (X ) ≥ P(X ) (compatibility)

If such E exists, P is said to avoid sure loss. It can be easily shown that a lower
prevision avoids sure loss if and only if no “Dutch book” argument can be made
against P , that is, if and only if there is no combination of transactions—buying
gambles for acceptable buying prices—that leads to a sure loss. Mathematically,
this means that supω∈Ω [

∑m
i=1 [Xi(ω)− P(Xi)]] ≥ 0 must hold for any m ∈ N and

any X1, . . . , Xm ∈ K.
In case P avoids sure loss, E exists and is called the natural extension of P . For

any gamble X , the natural extension E (X ) can be easily calculated: assuming K
to be finite, it is equal to the supremum α∗ achieved by the free variable α subject
to

(1) X (ω)− α ≥
∑
Y∈K

λY
(
Y (ω)− P(Y )

)
for each ω ∈ Ω, with variables λY ≥ 0 for each Y ∈ K—if also Ω is finite, which
happens quite often in practice, then this is a linear program. The fact that P
avoids sure loss guarantees that the problem has a solution α∗ ∈ R.

Of course, we may not know whether P avoids sure loss or not. For arbitrary
P , if the supremum α∗ happens to be +∞ for some gamble X , then it will be +∞
for any gamble X and the natural extension does not exist. Hence, in such a case
P incurs sure loss; this identifies a conflict in the assessments. Thus, the linear
program used to calculate natural extension can also be used to detect a “Dutch
book” simply by solving it for an arbitrary gamble X .

If E and P coincide on K, then P is called coherent. It is easy to see that
natural extension is always coherent, and in fact, by its definition it is the point-
wise smallest coherent lower prevision on L(Ω) that is compatible with P .

3. Aggregation: a short review

We now shortly review some different ways to tackle the problem of aggregating
expert opinions. Basically, there are two ways to approach the problem: axiomatic
(also called normative), and ad hoc. No rule is ever purely axiomatic, or purely ad
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hoc. Many rules can be given an axiomatic as well as an ad hoc explanation (such
as the conjunction rule and the unanimity rule described below).

Axiomatic approaches aim at deriving a preferably unique rule of aggregation
from axioms or properties that this rule should satisfy. Typical axioms are re-
quirements of commutativity of the rule with respect to some other action, such as
updating (external Bayesianity), marginalisation, permutation of experts (symme-
try) etc. They can also refer to some other property of the rule, such as unanimity-
preservation (if all experts agree, then the aggregate should also agree with all ex-
perts), invariance with respect to non-informative expert opinions, independence
preservation, etc.

Especially among Bayesians (see for instance [9] for an overview, and references
therein), where expert opinions and the aggregate are to be represented by prob-
ability measures, there still is a lot of controversy about these axioms. Indeed,
imposing even only a few axioms easily leads to contradictions or undesirable ag-
gregation rules such as so-called dictatorship rules. What counts is how the rule
will eventually be used. From this perspective, it is not always clear what axioms
should be imposed.

In imprecise probability theory, the axiomatic approach is somewhat less prob-
lematic (see [16] for a discussion). Yet, it is still not clear how to define a unique
aggregation rule under this uncertainty model. The conjunction rule is defined
as the smallest (and therefore most conservative) coherent lower prevision that
dominates each of the experts’ lower previsions. Conjunction aims at gaining as
much information as possible from each of the experts: the aggregate is at least
as informative as each of the experts’ lower previsions, and it can only become
more informative as more experts enter the scene. The conjunction however does
not always exists, in particular when different experts make conflicting statements.
On the other hand, the unanimity rule, defined as the lower envelope of the ex-
perts’ lower previsions, is guaranteed to exist. It aims at reconciling the experts’
assessments. As a result however, it may lead to extremely imprecise results: the
aggregate will be at least as imprecise as the most imprecise expert, and its im-
precision can only increase as more experts enter the scene. Unanimity certainly
leads to a very reliable aggregate. However, it fails completely to produce also a
more informative aggregate as more expert assessments become available.

One imprecise probability aggregation rule could consist of using the conjunction
rule if the conjunction exists, and the unanimity rule if the conjunction does not
exist. The problem of this rule is that it is far from stable: a small variation
of an expert’s lower prevision may yield huge differences in the aggregate lower
prevision.

Ad hoc approaches are not as much concerned with axioms: one simply pro-
poses or derives a mathematical formula, together with some form of justification.
(Afterwards of course, it is usually investigated which of the axioms it satisfies.
This usually provides the ad hoc rule with an additional source for motivation or
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criticism.) They generally divide into three sub-categories: hierarchical models,
weighting schemes, and consensus methods. Consensus methods are based on ex-
pert interaction: before an aggregate is constructed, the experts are allowed to
interact with each other (see [12] for an excellent discussion of a consensus method
using imprecise probabilities). Weighting rules, the linear opinion pool in Bayesian
aggregation being maybe the most prevailing example, try to take each expert’s
expertise into account (a feature lacking most of the purely axiomatic approaches).
The same holds for hierarchical models, and in fact, hierarchical models may be
seen as one attempt to motivate, and generalise, some of the existing weighting
schemes (many weighting rules are however not instances of hierarchical models).

Using probability measures, the most reasonable approach seems to be linear
pooling; taking a convex combination of expert probability measures. It is very
easy to implement, and gives quite good results in practice. Subject of debate is of
course how one should assign the weights. However, it still seems a bit ridiculous
to be precise about the weights, if one is not even sure about the first order level.
An imprecise pooling method can resolve this, but it is not clear at first sight
how this can be done. We note that the method proposed in this paper could
be somehow interpreted as an imprecise pooling method—in Section 6.1 we shall
derive precise weights on the set of all expert conjunctions from imprecise weights
on the original expert models only. It is surprising that we can do this by natural
extension only.

Concluding, besides theoretical and practical problems associated with each of
these methods separately, any method using single probability distributions for
both the experts and the aggregate fails to model conflict among experts, and
forces experts to pinpoint a single probability, even for those events of which he
does not have much expertise. Imprecise probabilities address both these problems,
because they allow for experts to assess their expertise using a closed convex set of
probability measures (also called credal sets), a lower prevision, a set of desirable
gambles, an ordering on gambles, a possibility measure, etc.—rather than forcing
them to choose a single probability measure. Consequently, it is also easier to
avoid conflict when combining imprecise probabilities because, roughly speaking,
experts are not forced to give precise probabilities on events of which they have
only little knowledge—they can simply say they don’t know. And should there
be conflict anyway, imprecision can be used to reflect it (for instance, using the
unanimity rule). These characteristics are the main motivation for introducing the
second-order imprecise probability model in Section 5.

4. The conjunction rule

Suppose there are n (male) subjects, called experts. The set of all experts is
denoted by N = {1, . . . , n}. Assume that the parameter ω of interest assumes
values in a finite set of possible values Ω. Each expert k ∈ N expresses his beliefs
about ω through a lower prevision Pk on some finite subset Kk of L(Ω). We assume
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that each Pk has a natural extension (i.e., avoids sure loss). The natural extension
of Pk will be denoted by E k. Throughout, we shall assume all E k to be different,
i.e., for any k, ` ∈ N , k 6= `, we assume there is at least one gamble X such that
E k(X ) 6= E `(X ). This simplifies the analysis and notation used further on, does
not essentially change any of the results, and is satisfied in most cases of interest.
Now, how can the lower previsions P1, . . . , Pn be combined into an aggregate—a
single coherent lower prevision defined on the set of all gambles L(Ω)?

Consider therefore a new (female) subject, called the modeller. She wishes to
aggregate the expert assessments to a single coherent lower prevision defined on
L(Ω). Let us first introduce a notion of behavioural trust.

Definition 1. Let α and β be two subjects. Assume that each of the subjects models
his/her knowledge about ω ∈ Ω through a coherent lower prevision Pα resp. Pβ

on Kα resp. Kβ. Let Eα resp. E β denote their natural extension. The following
conditions are equivalent; if any (hence all) of them are satisfied, we say that α
trusts β.

(A) α is willing to accept every decision β makes concerning buying gambles on Ω,
that is, for each gamble X ∈ L(Ω), α is willing to accept β’s price s < E β(X)
for buying X as his/her price for buying X.

(B) Eα point-wise dominates E β on L(Ω), that is, Eα(X ) ≥ E β(X ) for any gam-
ble X ∈ L(Ω).

The point of the first part of the definition is that any behavioural theory of
uncertainty inherently has a notion of trust in a multi-agent environment and
hence, as we show now, also notions of conjunction and consistency, which can be
derived from behavioural trust in a straightforward way.

Definition 2. If there is a point-wise smallest, and hence most conservative, co-
herent lower prevision on L(Ω) the modeller can have such that she still trusts each
of the experts of P1, . . . , Pn, then this lower prevision is called the conjunction of
P1, . . . , Pn. If this conjunction exists, then the experts are said to be consistent,
otherwise they are said to be conflicting.

By Definition 1(B), the conjunction is simply the (point-wise) smallest coherent
lower prevision that dominates all the experts’ natural extensions E k. The con-
junction of P1, . . . , Pn is denoted by uk∈NPk; the conjunction of two consistent
coherent lower previsions P1 and P2 is also denoted by P1uP2. It is easy to show
that u is an associative and commutative operator on coherent lower previsions,
but the result is only defined in case of consistency (see [4] for many more proper-
ties). Conjunction can be calculated through linear programming in a similar way
as natural extension.
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Proposition 1. Consider the maximum α∗ achieved by the free variable α subject
to the linear constraints

X (ω)− α ≥
∑
k∈N

∑
Y∈Kk

λk,Y
(
Y (ω)− Pk(Y )

)
for each ω ∈ Ω, with variables λk,Y ≥ 0 for each k ∈ N and Y ∈ Kk. If α∗ is finite
then the expert assessments P1, . . . , Pn are consistent and uk∈NPk(X ) = α∗. If
α∗ = +∞, then the conjunction does not exist: in such a case the assessments are
conflicting.

Again, note that if α∗ is +∞ for some gamble X then it will be +∞ for any
gamble X , as in Section 2.1. If the assessments are conflicting—if no conjunction
exists—then there is no coherent way to accept every decision of every expert,
since the modeller incurs a sure loss if she would do so. It is easily established
that in case of inconsistency there are gambles Xk ∈ L(Ω) such that

(2) sup
ω∈Ω

[∑
k∈N

[Xk(ω)− E k(Xk)]

]
< 0,

i.e., the combination of the transactions in which the gambles Xk are bought for a
price E k(Xk) leads to a loss, whatever the actual value of the parameter ω. Blindly
accepting decisions of all experts is clearly unacceptable in case of inconsistency.
The modeller is therefore certain that some of the experts’ assessments cannot be
trusted. But she does not necessarily know which ones.

One solution in case of conflict is to use the unanimity rule. This consists
in choosing the modeller’s lower prevision, the aggregate, such that each of the
experts trust the modeller. This means that each of the experts agrees with the
modeller’s behavioural dispositions (hence the name of the rule). But as we have
already noted before, the resulting aggregate may be too imprecise to be useful.

It may however happen that the modeller may have actual information about
which of the experts are to be trusted more than others. In the next section
we propose a second-order hierarchical imprecise probability model that aims at
modelling such knowledge. Its interpretation is based on the notion of behavioural
trust.

5. A general second-order imprecise probability model

The modeller wishes to recover information regarding ω using the information
revealed by the experts, taking into account that some experts are more trust-
worthy than others. We describe how behavioural trust can be used to aggregate
information revealed by experts.

The modeller first assumes the existence of a so-called true coherent lower pre-
vision PT on L(Ω), but she is not sure about what it is. PT could refer to the
behaviour of a hypothetical “representative” expert, an operational procedure de-
signed to measure uncertainty such as an imprecise Dirichlet (or other) model

8



updated through a contingency table, or even a real system that behaves just like
an expert. The modeller is interested in what the hypothetical expert knows about
ω, or what the result of the operational procedure will be about ω, or how the
system behaves with respect to ω, but, she is only able to infer information about
ω through P1, . . . , Pn. She cannot talk to the hypothetical representative expert,
cannot perform the operational procedure, has no access to the system of interest:
it may be too expensive, or she might not have the necessary means. Her uncer-
tainty thus regards the random variable PT which we assume to take all values in
the set P(Ω) of coherent lower previsions on L(Ω). Her possibility space P(Ω) is
also called the second-order possibility space.1

Often, even with imprecise hierarchical models, the second-order possibility
space is restricted to the set of all linear previsions (see for instance [15]). It
is well-known that restricting the second-order possibility space to linear previ-
sions may lead to different results: the so-called precision-imprecision equivalence
does not always hold (see [3] for a discussion and an example where the equiva-
lence fails). Our main motivation for not restricting to linear previsions is that we
should not expect experts to be able to pinpoint a single probability measure. We
want experts to be honest about their information, so if there really is uncertainty,
we sure want them to be able to tell us. This should hold as well for the “real”
experts as for the hypothetical representative expert.

5.1. Trust and Dual Trust. In terms of events on the modeller’s second-order
possibility space, we may consider the event that the true behavioural dispositions
implied by PT include at least expert k’s behavioural dispositions implied by E k

(remember that E k is the natural extension of Pk). This event obtains when PT

belongs to the set

M(E k) = {P ∈ P(Ω) : (∀X ∈ L(Ω))(E k(X ) ≤ P(X ))}.
The modeller is unsure about PT , but we assume she can assess a supremum buying
price tk for the gamble IM(Ek) that returns a unit gain if the event PT ∈ M(E k)
obtains and nothing otherwise.2 Likewise, she assesses a supremum buying price
1−tk for the gamble I{M(Ek) = 1−IM(Ek) that returns a unit gain if the event PT ∈
M(E k) does not obtain and nothing if it does obtain. If she is completely ignorant
about PT ∈M(E k) or about its complement, she should choose supremum buying
price zero.

The interval [tk, tk] can be interpreted as a probability interval for the event
PT ∈ M(E k). Consider the case in which the modeller believes with certainty
that PT ∈ M(E k), i.e., tk = tk = 1. In that case, the modeller is sure that any

1The first-order possibility space is Ω, and P1, . . . , Pn and PT are called first-order models.
2The gamble IM(Ek) is nothing but the indicator function of the set M(Ek): IM(Ek)(P) = 1

if P ∈ M(Ek), and IM(Ek)(P) = 0 otherwise. Lower previsions on gambles that are indi-
cator functions are a common (but not the most general) method for representing imprecise
probabilities.
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buying price of expert k for a gamble X is also a buying price of the representative
expert for X , and hence, she should fully accept expert k’s decisions (regarding the
buying of gambles) as hers (remember that ideally, she wants to behave as PT ).
According to Definition 1 she “trusts” expert k whenever tk = tk = 1. Therefore,
we shall call tk and tk the modeller’s lower and upper trust assigned to expert k.

Dually, it may happen that the behavioural dispositions implied by the expert k
include at least the true behavioural dispositions: the expert’s assessments may to
be too precise (for instance, he might be a Bayesian restricting to linear previsions
as in Example (ii) of Section 2), but not necessarily contradicting PT . This obtains
when PT belongs to the set

N (E k) = {P ∈ P(Ω) : (∀X ∈ L(Ω))(P(X ) ≤ E k(X ))}.

(note thatN (E k) 6= {M(E k)). Again, the modeller can assess a supremum buying

price t′k for the gamble IN (Ek), and likewise, a supremum buying price 1 − t
′
k for

the gamble 1− IN (Ek).

The interval [t′k, t
′
k] can be interpreted as a probability interval for the event

PT ∈ N (E k). In case t′k = t
′
k = 1, the modeller is sure about PT ∈ N (E k), and

this means that any price for a gamble X that is not acceptable as a buying price
for expert k will also not be an acceptable as a buying price for the representative
expert PT . She should fully reject any behaviour that is not included in the
behaviour of expert k (regarding the buying of gambles). Therefore, we shall call

t′k and t
′
k the modeller’s lower and upper dual trust assigned to expert k.

An important issue in these definitions of lower and upper trust, and lower and
upper dual trust, is that the events PT ∈ M(E k) and PT ∈ N (E k) (and their
complements) are not observable in general. Indeed, the behaviour described by
PT refers to a hypothetical representative expert, and in practice it is far from clear
how to set up an objective method for measuring this “representative” behaviour
PT . Stated as such, the model described here belongs to the realm of fantasy.
However, being stubborn and investigating this at first sight useless model a little
further, we shall see in Section 6.1 that, most surprisingly, it is possible to give lower
trust, upper trust, and lower dual trust an operational interpretation whenever all
upper dual trust is one (i.e., vacuous).

Remark that if an expert has different expertise in different domains we may wish
to assign higher (and perhaps also more precise) trust intervals to those domains
in which he’s more experienced. A natural solution to this is to consider such
an expert as a set of “sub-experts”, each member corresponding to a particular
domain of expertise, and then to assign different (dual) trust intervals to each
sub-expert. We then treat the sub-experts simply as regular experts and proceed
with the aggregation as usual. In this way we can improve the overall precision of
the result.

We defined tk, tk, t′k and t
′
k as specifications of buying prices on particular

gambles on the second order possibility space P(Ω). In terms of a lower prevision
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Q on the second order possibility space, we have for k ∈ N :

Q(IM(Ek)) = tk, Q(1− IM(Ek)) = 1− tk,

Q(IN (Ek)) = t′k, Q(1− IN (Ek)) = 1− t
′
k.

Since we assumed all E k to be distinct, all gambles IM(Ek), 1− IM(Ek), IN (Ek) and
1− IN (Ek) are also distinct, so Q is well-defined.3 With the following notation for
coherent lower previsions P1 and P2 on L(Ω):

IP1≥P2
=

{
1, if for each X ∈ L(Ω) : P1(X ) ≥ P2(X ),

0, otherwise,

we can write IM(Ek)(P) as IP≥Ek
and IN (Ek)(P) as IEk≥P .

5.2. A first-order aggregate through natural extension. If Q avoids sure
loss, that is, if

sup
P∈P(Ω)

{∑
k∈N

κk

(
IP≥Ek

− tk

)
+ λk

(
tk − IP≥Ek

)
+µk

(
IEk≥P − t′k

)
+ νk

(
t
′
k − IEk≥P

)}
≥ 0,

for every κk ≥ 0, λk ≥ 0, µk ≥ 0 and νk ≥ 0, then, as explained in Section 2.1,
the natural extension E of Q exists and is a coherent lower prevision on L(P(Ω)).
In such a case we say that there is second-order consistency. If Q does not avoid
sure loss, then we say that there is second-order conflict, and Q has no natural
extension. In such a case, the modeller should revise her (dual) trust assignments.
Typically, she can do this by decreasing the lower (dual) trust and increasing the
upper (dual) trust assigned to some of the experts, until Q avoids sure loss.

The natural extension, if it exists, is given by

(3) E (Z ) = sup

{
α ∈ R : (∃κk ≥ 0, λk ≥ 0, µk ≥ 0, νk ≥ 0)(∀P ∈ P(Ω))

Z (P)− α ≥
∑
k∈N

κk

(
IP≥Ek

− tk

)
+ λk

(
tk − IP≥Ek

)
+µk

(
IEk≥P − t′k

)
+ νk

(
t
′
k − IEk≥P

)}
for any (second-order) gamble Z ∈ L(P(Ω)). The lower prevision E represents the
modeller’s knowledge about the representative expert’s knowledge as inferred from

3The general case in which (some of) the Ek are allowed to be equal does not pose any
conceptual difficulties, it only requires the introduction of a more complicated notation which
we would like to avoid for the clarity of exposition.
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the experts’ judgements (P1, . . . , Pn) and the modeller’s second-order judgements

(t1, t1, t′1, t
′
1, . . . , tn, tn, t′n, t

′
n).

From the natural extension E , we can, theoretically, deduce lower and upper
trust, and lower and upper dual trust of any coherent lower prevision P on L(Ω):

t(P) = E (IM(P)), t(P) = 1− E (1− IM(P)) = E (IM(P)),

t′(P) = E (IN (P)), t
′
(P) = 1− E (1− IN (P)) = E (IN (P)).

Note that these natural extensions will agree with the original second-order judge-
ments, that is, t(E k) = tk, t(E k) = tk, t′(E k) = t′k and t

′
(E k) = t

′
k, exactly when

Q is coherent.
It is perhaps of more interest that we can also infer supremum buying prices and

infimum selling prices for the supremum buying price and infimum selling price of
a gamble X with respect to the representative expert:

E ∗(X ) = E (X∗), E ∗(X ) = E (X ∗),

E ∗(X ) = E (X∗), E
∗
(X ) = E (X ∗),

where X∗ is the lower and X ∗ is the upper evaluation map corresponding to X ,
defined by

X∗ : P(Ω)→ R; P 7→ P(X ), X ∗ : P(Ω)→ R; P 7→ P(X ).

We can interpret [E ∗(X ),E ∗(X )] as an interval estimate for the “true” lower pre-

vision PT (X ), and [E ∗(X ),E
∗
(X )] as an interval estimate for the “true” upper

prevision PT (X ). The next proposition shows that it makes sense to take the most

conservative point-estimates E ∗(X ) and E
∗
(X ) as a first order aggregate.

Proposition 2. E ∗ is a coherent lower prevision and E ∗ is a coherent upper

prevision. Moreover, for every gamble X it holds that E ∗(X ) = −E
∗
(−X ), that

is, E
∗

is the conjugate of E ∗.

An alternative and theoretically perhaps more appealing interpretation of E ∗
can be obtained as follows. We can interpret X∗ as a coherent conditional lower
prevision on L(Ω),

F (X|P) = X∗(P).

By the marginal extension theorem [19], E ∗ is then exactly the natural extension
of F (·|·) and E (·):

E ∗(X) = E (F (X|P)).

This line of reasoning also proves the coherence of E ∗.
12



6. Main result

A problem with Eq. (3) to calculate E , and hence, also to calculate E ∗, t, t, t′

and t
′
, is that it involves a linear inequality for each lower prevision P ∈ P(Ω).

Hence, to calculate E we need to solve a linear program with an infinite number
of inequalities. The following theorem establishes that in case of upper dual trust
equal to one, it takes a linear program with only a finite number of inequalities to
calculate E ∗(X ) for every gamble X , and t(P) and t

′
(P) for every coherent lower

prevision P (by calculating E (Z ) and taking for Z either X∗, IM(P) or 1− IN (P)).
Indeed, for those cases the collection of all constraints in Eq. (3) are implied by
only a finite subset of them.

The reason why the second-order gambles X∗, IM(P) and 1−IN (P) are so special
is that they are monotonically increasing. Note that a second-order gamble Z is
said to be monotonically increasing if for any two coherent lower previsions P1,
P2 ∈ P(Ω) it holds that

P1(X) ≥ P2(X) for all gambles X ∈ L(Ω) =⇒ Z(P1) ≥ Z(P2).

It is convenient to introduce the following notation. We denote the conjunction
of a subset J ⊆ N of agents by

E J(X) = (uk∈JPk)(X).

Of course, in case the assessments Pk for k ∈ J are conflicting, E J does not exist.
We also define E ∅(X) = infω∈Ω X(ω), the vacuous lower prevision on Ω. We have
the following result.

Theorem 1. Suppose that Z ∈ L(P(Ω)) is monotonically increasing and t
′
k = 1

for every k ∈ N . Then

E (Z ) = sup

{
α ∈ R : (∃κk ≥ 0, λk ≥ 0, µk ≥ 0)(∀J ⊆ N)

E J exists =⇒ Z (E J)− α ≥
∑
k∈N

κk

(
IEJ≥Ek

− tk

)
+ λk

(
tk − IEJ≥Ek

)
+ µk

(
IEk≥EJ

− t′k

)}

Proof. If t
′
k = 1 for all k then the supremum in Eq. (3) will be achieved for νk = 0,

and hence, we may omit these terms.
Next, we show that for any P ∈ P(Ω) we can find a J ⊆ N such that E J exists

and

Z (E J) ≤ Z (P), IEJ≥Ek
= IP≥Ek

, and IEk≥EJ
≥ IEk≥P ,

13



for all k ∈ N . In such a case the inequality for P in Eq. (3) is implied by the
inequality for E J in Eq. (3), and hence, we may ‘replace’ P by E J in Eq. (3),
establishing the proof.

Choose J = {k : E k ≤ P}. Observe that E J = uk∈JPk always exists—if J = ∅
then E J is the vacuous lower prevision.

Also observe that E J ≤ P , and hence, it immediately follows that Z (E J) ≤
Z (P) since Z is monotone, and IEJ≥Ek

≤ IP≥Ek
and IEk≥EJ

≥ IEk≥P for every
k ∈ N , since

E J ≥ E k =⇒ P ≥ E k,

E k ≥ P =⇒ E k ≥ E J .

We are left to show that

P ≥ E k =⇒ E J ≥ E k,

which would establish IEJ≥Ek
= IP≥Ek

. Indeed, suppose that P ≥ E k. This means
that k ∈ J . Since E J ≥ E j for all j ∈ J by definition of E J , we indeed find that
E J ≥ E k. �

We must require that t
′
k is 1 for all k ∈ N because in general it is impossible to

establish that for every P there is a E J such that

Z (E J) ≤ Z (P), IEJ≥Ek
= IP≥Ek

, IEk≥EJ
= IEk≥P ,

for all k ∈ N . For example, take n = 1 and any P 6≤ P1. For every choice of J ,
that is, E J = P1 or E J = infω∈Ω, it cannot hold that

P1 ≥ E J =⇒ P1 ≥ P .

There does not seem to exist an efficient method for calculating neither the upper
trust t(P) nor the lower dual trust t′(P) associated with a general first-order model
P—since the second-order gambles involved are not monotonically increasing The-
orem 1 does not apply. Perhaps a different choice of constraints might solve the
problem (e.g., see [15] for a solution in case of a precise second-order possibility
space).

6.1. A generalised conjunction rule and an operational interpretation.
Theorem 1 shows that in some cases the natural extension can be calculated by
solving a finite linear program (an infinite number of linear inequalities reduces to
a finite number of linear inequalities). In its dual form, this linear program has
a very nice form and provides us with an operational interpretation of lower and
upper trust, and lower dual trust. It is given in the next theorem.

14



Theorem 2 (Dual form). Suppose that Z ∈ L(P(Ω)) is monotonically increasing

and t
′
k = 1 for every k ∈ N . Define for any J ⊆ N such that E J exists a non-

negative variable αJ . Then

(4) E (Z) = min
∑
J⊆N

EJ exists

αJZ(E J),

where the variables αJ are subject to∑
J⊆N

EJ exists

αJ = 1,
∑
J⊆N

EJ exists
Ek≥EJ

αJ ≥ t′k,

tk ≤
∑
J⊆N

EJ exists
EJ≥Ek

αJ ≤ tk,

for all k ∈ N . (Notice that the constraints do not depend on the gamble Z ). There
is second-order consistency if and only if the above system of constraints has a
feasible solution.

For calculating for instance E ∗(X ) for some gamble X , we should minimise

(5)
∑
J⊆N

EJ exists

αJE J(X)

subject to the above constraints, and for E
∗
(X ) we should maximise

(6)
∑
J⊆N

EJ exists

αJE J(X),

subject to the same constraints. But, these equations tell us that the first-order
aggregate is a convex combination of all possible conjunctions E J , and the coeffi-
cients αJ of this convex combination—which may depend on the first-order gamble
X—can be interpreted as frequencies at which we are willing to choose the con-
junction E J among all possible conjunctions. If we are willing to buy X for a
price E J(X)—whenever it exists—at rate αJ , then we should be willing to buy X
for a price given by Eq. (5). Hence, the coefficients αJ have a simple operational
interpretation.

This leads naturally to an operational interpretation of lower and upper trust,
and lower dual trust. Looking at the constraints in Theorem 2 we see that the lower
trust tk is a lower bound for the sum of frequencies αJ for which E J dominates E k,
that is, for which any decision of expert k is also a decision of at least one expert
in J . Thus, through the frequencies αJ , we have an operational interpretation for
lower trust. A similar argument shows that also upper trust and lower dual trust
can be given an operational meaning.
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Finally, the interpretations given here show that for instance lower trust assigned
to an expert is not a numerical property of this expert only. Rather, it is a property
of the expert within a given group of experts.

6.2. Special case: lower trust only. Restricting to lower trust only, it is easy
to obtain the following results (the lower trust assignments are assumed to be
non-negative):

(i) If lower trust is equal to one for all experts, then the first order aggregate is
equal to the conjunction of all the experts, and second-order consistency is
equivalent with consistency. We thus obtain the conjunction rule as a special
case.

(ii) If a lower trust model is second-order consistent, then it will remain so for
any lower assignment of lower trust.

(iii) A lower trust assignment such that
∑

k∈N tk ≤ 1 is always second-order con-
sistent: in that case, a first order aggregate always exists.

(iv) If all experts are pair-wise conflicting, that is, if there are no conjunctions ex-
cept for the trivial ones, then any lower trust assignment such that

∑
k∈N tk >

1 is second-order conflicting. If
∑

k∈N tk ≤ 1, then there is second-order con-
sistency, and the aggregate is given by

E ∗(X) =
∑
k∈N

tkE k(X) +
(

1−
∑
k∈N

tk

)
inf
ω∈Ω

X(ω).

Thus in case of total conflict (which is quite common if all experts use a
single probability measure to represent their knowledge), the model produces
a linear opinion pool mixed with a vacuous lower prevision.

These results show that the highest possible assignments for lower trust measure
the amount of conflict between the expert assessments. If they can be chosen
maximal, all equal to one, then no conflict is present. If they cannot even be
chosen such that their sum is larger than one, then there is total conflict.

7. A numerical example

Let’s now illustrate our ideas with a simple example. Suppose we have a system
that can switch between 20 possible states ω. We could think for instance of the
twenty lowest quantum states of a hydrogen atom (we assume that higher states
do not occur):

Ω = {1, 2, 3, . . . , 20}
The natural number ω is called the principle quantum number. If the hydrogen
atom has principle quantum number ω, its energy level is given by X(ω) = −13.6 eV

ω2 :
the energy level X of the hydrogen atom is a gamble on Ω (expressed in units of
eV). Assume we have three experts, 1, 2 and 3, judging over the quantum state
of the hydrogen atom. They make the following, very weak assessments:

1. The probability that ω ≤ 8 is at least 0.4.
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2. The probability that ω ≥ 4 is at most 0.7.
3. The mean energy is at least −0.24 eV.

Many probability measures are compatible with each one of these statements sep-
arately. But, intuitively it is clear that no probability measure is compatible with
all of them. In particular expert 2 and expert 3 appear to be conflicting. Indeed,
principle quantum numbers strictly less than 4, to which a probability mass of at
least 0.3 is assigned by the second expert, correspond to energy levels less than
−1.5 eV; this is considerably lower than the value −0.24 eV assessed by the third
expert. Nevertheless, from these assessments, we would like to find lower and up-
per bounds on the mean value and the standard deviation of the energy level X
and the principle quantum number ω (we could also calculate bounds for other
moments). Before performing any calculation, we should perhaps note that we do
not expect the aggregate to have very tight bounds, because of the weakness of
each of the assessments (the aggregate may quite precise of course, but we can’t
know this a priori). In more realistic examples, where each expert provides for
instance bounds on a larger set of events or a larger set of gambles, we may expect
tighter bounds. In terms of lower previsions, we have:

P1(I{ω≤8}) = 0.4

P2(−I{ω≥4}) = −0.7

P3(X) = −0.24

Note that all of these lower previsions are coherent.
We now prove that the second and the third expert are conflicting. Perhaps

the easiest way to see the conflict is by solving the linear program described in
Section 2.1 with P = P2 in Eq. (1). We find that the second expert is willing to sell
X for any price strictly larger than E 2(X) ≈ −0.48, for instance, for s = −0.47.
But since P3(X) = E 3(X) = −0.24, this selling price s is lower than for instance
the buying price b = −0.25 of the third expert for X. Combining these two experts
we can create a money pump (or a “Dutch book”) by repeatedly buying X for
b = −0.25 and selling it again for a lower price s = −0.47 yielding a net sure loss of
b− s = 0.22 in each transaction. This points to a conflict between the second and
the third expert. Mathematically, the conflict follows from Eq. (2) for N = {2, 3},
X2 = −X and X3 = X. Obviously, this also implies conflict for N = {1, 2, 3}.

These are the only conflicts. Indeed, solving the linear program described in
Proposition 1 for N = {1, 2} and N = {1, 3} with for instance X equal to the
zero gamble, it is easily shown that the first expert is consistent both with the
second and the third expert: in all cases the maximum α∗ is finite (and equal to
zero)—there are no money pumps.
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After further inspection, assume we assign lower and upper trust as follows:

[t1, t1] = [0.3, 0.5]

[t2, t2] = [0.4, 0.6]

[t3, t3] = [0.5, 1.0]

We know nothing about dual trust: t′k = 0 and t
′
k = 1 for all k ∈ {1, 2, 3}. This

imprecise second-order hierarchical model has the following solution for the lower
bound of the mean energy level (Theorem 2):

E ∗(X) = min
(
α∅ inf

ω∈Ω
X(ω) + α{1}E 1(X) + α{2}E 2(X) + α{3}E 3(X)

+ α{1,2}(E 1 u E 2)(X) + α{1,3}(E 1 u E 3)(X)
)
,

where the non-negative variables αJ are subject to the constraints

α∅ + α{1} + α{2} + α{3} + α{1,2} + α{1,3} = 1,

0.3 ≤ α{1} + α{1,2} + α{1,3} ≤ 0.5,

0.4 ≤ α{2} + α{1,2} ≤ 0.6,

0.5 ≤ α{3} + α{1,3} ≤ 1.0.

Obviously, infω∈Ω X(ω) = −13.6. Through Proposition 1, we find

E 1(X) = E 2(X) = −13.6,

E 3(X) = −0.24,

(E 1 u E 2)(X) = −13.6,

(E 1 u E 3)(X) = −0.24.

The linear program has a solution, so there is second-order consistency. The
solution is E ∗(X) = −6.92. For the upper bound, we solve a similar linear pro-
gram, but now maximising and using the upper previsions. Obviously, E ∅(X) =
supω∈Ω X(ω) = −0.034, and

E 1(X) = −E 1(−X) ≈ −0.11,

E 2(X) = −E 2(−X) ≈ −0.48,

E 3(X) = −E 3(−X) ≈ −0.034,

(E 1 u E 2)(X) = −(E 1 u E 2)(−X) ≈ −0.49,

(E 1 u E 3)(X) = −(E 1 u E 3)(−X) ≈ −0.11.

The solution is E
∗
(X) ≈ −0.22.

To have an idea of what the assessments tell us about the statistical variance of
the energy level ω, we calculate the so-called lower and upper variances σ2 and σ2

18



of X under E ∗ [19, Appendix G]:

σ2(X) = min
µ∈R

E ∗((X − µ)2), σ2(X) = min
µ∈R

E
∗
((X − µ)2)

The lower variance σ2(X) is the supremum buying price that we are willing to pay
for all gambles (X−µ)2, and the upper variance σ2(X) is the infimum selling price
we are willing to sell some gamble (X − µ)2 for. In fact, these bounds coincide
with the minimal and maximal variance σ2 of X under all probability measures
that are compatible with the aggregate E ∗. After some calculations similar to the
ones above, we find for the lower variance σ2(X) ≈ 0.16 and the upper variance
σ2(X) ≈ 46.0.

In conclusion, from the expert information and the trust assignments it fol-
lows that the mean energy level of the hydrogen atom is approximately between
−6.92 eV and −0.22 eV, with standard deviation approximately between 0.39 eV
and 6.8 eV. Similar calculations can be done for the principle quantum number
ω, but let’s simply give the result: the expected value of the principle quantum
number is approximately between 4.3 and 17.6, with standard deviation approxi-
mately between 1.5 and 9.5. Note that all these bounds are rather imprecise, but
this was to be expected due the weakness of the expert judgements P1, P2 and
P3. In general, the method cannot reduce imprecision that is present in all of the
expert judgements (and arguably, this is how we should prefer it).

8. Discussion and conclusion

A second-order imprecise probability model was proposed based on a behavioural
notion of trust. As most second-order hierarchical models, the interpretation of
this model relies on the existence of a hypothetical “representative” expert. Un-
luckily, at first sight this leads to philosophical as well as to practical problems.
The second-order gambles that were used to derive the aggregate are defined on a
possibility space that cannot always be sampled in a meaningful way. How should
one deduce the second-order lower and upper trust and dual trust values? One
could argue that the model should only be used in applications where the repre-
sentative expert can be identified (for instance, one choice could be identifying the
representative expert with the modeller itself).

One important conclusion of this paper is that, by expressing the aggregation
algorithm in its dual form (Theorem 2), the proposed aggregation method can be
explained as a generalised conjunction rule. Moreover, in doing this, we do find
an elegant operational interpretation of the imprecise second-order assessments,
and thus overcome the above-mentioned problems of interpretation that are so
common in many hierarchical uncertainty models.

The method is both mathematically simple, quite general, and practically ap-
pealing, especially if only a limited number of expert opinions need to be aggre-
gated. In the general case however, it cannot be excluded that the size of the
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linear program to be solved will grow exponentially in the number of experts, lim-
iting the applicability of the model. However, this will only occur if the number
of subsets J ⊆ N for which E J exists grows exponentially too. In the extreme
case where there is always total conflict, the size of the linear program grows only
linearily in the number of experts. Secondly, we note that the linear inequalities
in Theorem 2 contain mostly zeros and ones, so perhaps there is an efficient way
to deal with linear programs of this type (we have not investigated this further).
Finally, extending the aggregation algorithm to upper dual trust less than one and
calculating t(P) and t′(P) remain the subject of further research.
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