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Abstract

Various ways for decision making with imprecise probabilities—admissibility, max-
imal expected utility, maximality, E-admissibility, Γ-maximax, Γ-maximin, all of
which are well-known from the literature—are discussed and compared. We gener-
alize a well-known sufficient condition for existence of optimal decisions. A simple
numerical example shows how these criteria can work in practice, and demonstrates
their differences. Finally, we suggest an efficient approach to calculate optimal de-
cisions under these decision criteria.
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1 Introduction

Often, we find ourselves in a situation where we have to make some decision d,
which we may freely choose from a set D of available decisions. Usually, we do not
choose d arbitrarily in D: indeed, we wish to make a decision that performs best
according to some criterion, i.e., an optimal decision. It is commonly assumed that
each decision d induces a real-valued gain Jd: in that case, a decision d is considered
optimal in D if it induces the highest gain among all decisions in D. This holds
for instance if each decision induces a lottery over some set of rewards, and these
lotteries form an ordered set satisfying the axioms of von Neumann Morgenstern
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[1], or more generally, the axioms of for instance Herstein and Milnor [2], if we
wish to account for unbounded gain.

So, we wish to identify the set opt (D) of all decisions that induce the highest
gain. Since, at this stage, there is no uncertainty regarding the gains Jd, d ∈ D,
the solution is simply

opt (D) = arg max
d∈D

Jd. (1)

Of course, opt (D) may be empty; however, if the set {Jd : d ∈ D} is a compact
subset of R—this holds for instance if D is finite—then opt (D) contains at least
one element. Secondly, note that even if opt (D) contains more than one decision,
all decisions d in opt (D) induce the same gain Jd; so, if, in the end, the gain is
all that matters, it suffices to identify only one decision d∗ in opt (D)—often, this
greatly simplifies the analysis.

However, in many situations, the gains Jd induced by decisions d in D are influ-
enced by variables whose values are uncertain. Assuming that these variables can
be modelled through a random variable X that takes values in some set X (the
possibility space), it is customary to consider the gain Jd as a so-called gamble on
X, that is, we view Jd as a real-valued gain that is a bounded function of X, and
that is expressed in a fixed state-independent utility scale. So, Jd is a bounded
X–R-mapping, interpreted as an uncertain gain: taking decision d, we receive an
amount of utility Jd(x) when x turns out to be the realisation of X. For the sake of
simplicity, we shall assume that the outcome x of X is independent of the decision
d we take: this is called act-state independence. What decision should we take?

Irrespective of our beliefs about X, a decision d in D is not optimal if its gain
gamble Jd is point-wise dominated by a gain gamble Je for some e in D, i.e., if
there is an e in D such that Je(x) ≥ Jd(x) for all x ∈ X and Je(x) > Jd(x) for
at least one x ∈ X : choosing e guarantees a higher gain than choosing d, possibly
strictly higher, regardless of the realisation of X. So, as a first selection, let us
remove all decisions from D whose gain gambles are point-wise dominated (see
Berger [3, Section 1.3.2, Definition 5 ff., p. 10]):

opt≥ (D) := {d ∈ D : (∀e ∈ D)(Je 6≥ Jd or Je = Jd)} (2)

where Je ≥ Jd is understood to be point-wise, and Je 6≥ Jd is understood to be
the negation of Je ≥ Jd. The decisions in opt≥ (D) are called admissible, the other
decisions in D are called inadmissible. Note that we already recover Eq. (1) if there
is no uncertainty regarding the gains Jd, i.e., if all Jd are constant functions of X.
When do admissible decisions exist? The set opt≥ (D) is non-empty if {Jd : d ∈ D}
is a non-empty and weakly compact subset of the set L(X ) of all gambles on X (see
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Theorem 3 further on). Note that this condition is sufficient, but not necessary.

In what follows, we shall try to answer the following question: given additional
information about X, how can we further reduce the set opt≥ (D) of admissi-
ble decisions? The paper is structured as follows. Section 2 discusses the classical
approach of maximising expected utility, and explains why it is not always a de-
sirable criterion for selecting optimal decisions. Those problems are addressed in
Section 3, discussing alternative approaches to deal with uncertainty and optimal-
ity, all of which attempt to overcome the issues raised in Section 2, and all of
which are known from the literature. Finally, Section 4 compares these alternative
approaches, and explains how optimal decisions can be obtained in a computation-
ally efficient way. A few technical results are deferred to the appendix, where we,
among other things, generalize a well-known technical condition on the existence
of optimal decisions.

2 Maximising Expected Utility?

In practice, beliefs about X are often modelled by a (possibly finitely additive)
probability measure µ on a field F of subsets of X , and one then arrives at a
set of optimal decisions by maximising their expected utility with respect to µ;
see for instance Raiffa and Schlaifer [4, Section 1.1.4, p. 6], Levi [5, Section 4.8,
p. 96, ll. 23–26], or Berger [3, Section 1.5.2, Paragraph I, p. 17]. Assuming that the
field F is sufficiently large such that the gains Jd are measurable with respect to
F—this means that every Jd is a uniform limit of F -simple gambles—the expected
utility of the gain gambles Jd is given by:

Eµ(Jd) :=
∫
Jddµ,

where we take for instance the Dunford integral on the right hand side; see Dun-
ford [6, p. 443, Sect. 3], and Dunford and Schwartz [7, Part I, Chapter III, Defini-
tion 2.17, p. 112]—this linear integral extends the usual textbook integral (see for
instance Kallenberg [8, Chapter 1]) to case where µ is not σ-additive. Recall that
we have assumed act-state independence: µ is independent of d.

As far as it makes sense to rank decisions according to the expected utility of their
gain gambles, we should maximise expected utility :

optEµ (D) := arg max
d∈opt≥(D)

Eµ(Jd). (3)
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When do optimal solutions exist? The set optEµ (D) is guaranteed to be non-
empty if {Jd : d ∈ D} is a non-empty and compact subset of the set L(X ) of
all gambles on X , with respect to the supremum norm. Actually, this technical
condition is sufficient for existence with regard to all of the optimality conditions
we shall discuss further on. Therefore, without further ado, we shall assume that
{Jd : d ∈ D} is non-empty and compact with respect to the supremum norm. A
slightly weaker condition is assumed in Theorem 5, in the appendix of this paper.

Unfortunately, it may happen that our beliefs about X cannot be modelled by a
probability measure, simply because we have insufficient information to identify the
probability µ(A) of every event A in F . In such a situation, maximising expected
utility usually fails to give an adequate representation of optimality.

For example, let X be the unknown outcome of the tossing of a coin; say we only
know that the outcome will be either heads or tails (so X = {H,T}), and that
the probability of heads lays between 28% and 70%. Consider the decision set
D = {1, 2, 3, 4, 5, 6} and the gain gambles

J1(H) = 4, J1(T ) = 0,

J2(H) = 0, J2(T ) = 4,

J3(H) = 3, J3(T ) = 2,

J4(H) = 1
2
, J4(T ) = 3,

J5(H) = 47
20
, J5(T ) = 47

20
,

J6(H) = 41
10
, J6(T ) = − 3

10
,

Clearly, opt≥ (D) = {1, 2, 3, 4, 5, 6}, and

optEµ (D) =



{2}, if µ(H) < 2
5
,

{2, 3}, if µ(H) = 2
5
,

{3}, if 2
5
< µ(H) < 2

3
,

{1, 3}, if µ(H) = 2
3
,

{1}, if µ(H) > 2
3
.

Concluding, if we have no additional information about X, but still insist on using
a particular (and necessarily arbitrary) µ, which is only required to satisfy 0.28 ≤
µ(H) ≤ 0.7, we find that optEµ (D) is not very robust against changes in µ. This
shows that maximising expected utility fails to give an adequate representation of
optimality in case of ignorance about the precise value of µ.
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3 Generalising to Imprecise Probabilities

Of course, if we have sufficient information such that µ can be identified, nothing
is wrong with Eq. (3). We shall therefore try to generalise Eq. (3). In doing so,
following Walley [9], we shall assume that our beliefs about X are modelled by a
real-valued mapping P defined on a—possibly only very small—set K of gambles,
that represents our assessment of the lower expected utility P(f) for each gamble f
in K; 1 note that K can be chosen empty if we are completely ignorant. Essentially,
this means that instead of a single probability measure on F , we now identify a
closed convex set M of finitely additive probability measures µ on F , described
by the linear inequalities

(∀f ∈ K)(P(f) ≤ Eµ(f)). (4)

We choose the domain F of the measures µ sufficiently large such that all gambles
of interest, in particular those in K and the gain gambles Jd, are measurable with
respect to F . Without loss of generality, we can assume F to be the power set of
X , although in practice, it may be more convenient to choose a smaller field.

For a given F -measurable gamble g, not necessarily in K, we may also derive a
lower expected utility EP(g) by minimising Eµ(g) subject to the above constraints,

and an upper expected utility EP(g) = −EP(−g) by maximising Eµ(g) over the
above constraints. In case X and K are finite, this simply amounts to solving a
linear program.

In the literature, M is called a credal set (see for instance Giron and Rios [10],
and Levi [5, Section 4.2, pp. 76–78], for more comments on this model), and P
is called a lower prevision (because they generalise the previsions, which are fair
prices, of De Finetti [11, Vol. I, Section 3.1, pp. 69–75]).

The mapping EP obtained, corresponds exactly to the so-called natural exten-
sion of P (to the set of F -measurable gambles), where P(f) is interpreted as a
supremum buying price for f (see Walley [9, Section 3.4.1, p. 136]). In this inter-
pretation, for any s < P(f), we are willing to pay any utility s < P(f) prior to
observation of X, if we are guaranteed to receive f(x) once x turns out to be the
outcome of X. The natural extension then corresponds to the highest price we can
obtain for an arbitrary gamble g, taken into account the assessed prices P(f) for

1 The upper expected utility of a gamble f is P(f) if and only if the lower expected
utility of −f is −P(f). So, for any gamble f in K, P(−f) = −P(f), and therefore,
without loss of generality, we can restrict ourselves to lower expected utility.
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f ∈ K. Specifically,

EP(g) = sup

{
α +

n∑
i=1

λiP(fi) : α +
n∑
i=1

λifi ≤ g

}
, (5)

where α varies over R, n over N, λ1, . . . , λn vary over R+, and f1, . . . , fn over K.

It may happen thatM is empty, in which case EP is undefined (the supremum in
Eq. (5) will always be +∞). This occurs exactly when P incurs a sure loss as a
lower prevision, that is, if we can find a finite collection of gambles f1, . . . , fn in K
such that

∑n
i=1 P(fi) > sup [

∑n
i=1 fi], which means that we are willing to pay more

for this collection than we can ever gain from it, which makes no sense of course.

Finally, it may happen that EP does not coincide with P on K. This points to a
form of incoherence in P : this situation occurs exactly when we can find a finite
collection of gambles f0, f1, . . . , fn and non-negative real numbers λ1, . . . , λn,
such that

α +
n∑
i=1

λifi ≤ f0, but also P(f0) < α +
n∑
i=1

λiP(fi).

This means that we can construct a price for f0, using the assessed prices P(fi) for
fi, which is strictly higher than P(f0). In this sense, EP corrects P , as is apparent
from Eq. (5).

Although the belief model described above is not the most general we may think
of, it is sufficiently general to model both expected utility and complete ignorance:
these two extremes are obtained by takingM either equal to a singleton, or equal
to the set of all finitely additive probability measures on F (i.e., K = ∅). It also
allows us to demonstrate the differences between different ways to make decisions
with imprecise probabilities on the example we presented before.

In that example, the given information can be modelled by, say, a lower prevision P
on K = {IH ,−IH}, defined by P(IH) = 0.28 and P(−IH) = −0.7, where IH is the
gamble defined by IH(H) = 1 and IH(T ) = 0. For this P , the set M corresponds
exactly to the set of all probability measures µ on F = {∅, {H}, {T}, {H,T}},
such that 0.28 ≤ µ(H) ≤ 0.7. We also easily find for any gamble f on X that

EP(f) = min{0.28f(H) + 0.72f(T ), 0.7f(H) + 0.3f(T )}.
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3.1 Γ-Maximin and Γ-Maximax

As a very simple way to generalise Eq. (3), we could take the lower expected
utility EP as a replacement for the expected utility Eµ (see for instance Gilboa
and Schmeidler [12], or Berger [3, Section 4.7.6, pp. 215–223]):

optEP
(D) := arg max

d∈opt≥(D)
EP(Jd); (6)

this criterion is called Γ-maximin, and amounts to worst-case optimisation: we take
a decision that maximises the worst expected gain. For example, if we consider the
decision as a game against nature, who is assumed to choose a distribution in M
aimed at minimizing our expected gain, then the Γ-maximin solution is the best we
can do. Applied on the example of Section 2, we find as a solution optEP

(D) = {5}.

In case K = ∅, i.e., in case of complete ignorance about X, it holds that EP(f) =
infx∈X f(x). Hence, in that case, Γ-maximin coincides with maximin (see Berger
[3, Eq. (4.96), p. 216]), ranking decisions by the minimal (or infimum, to be more
precise) value of their gain gambles.

Some authors consider best-case optimisation, taking a decision that maximises
the best expected gain (see for instance Satia and Lave [13]). In our example, the
“Γ-maximax” solution is optEP

(D) = {2}.

3.2 Maximality

Eq. (3) is essentially the result of pair-wise preferences based on expected utility:
defining the strict partial order >µ on D as d >µ e whenever Eµ(Jd) > Eµ(Je), or
equivalently, whenever Eµ(Jd − Je) > 0, we can simply write

optEµ (D) = max>µ
(
opt≥ (D)

)
,

where the operator max>µ (·) selects the >µ-maximal, i.e., the >µ-undominated
elements from a set with strict partial order >µ.

Using the supremum buying price interpretation, it is easy to derive pair-wise
preferences from P : define >P as d >P e whenever EP(Jd − Je) > 0. Indeed,
EP(Jd − Je) > 0 means that we are disposed to pay a strictly positive price in
order to take decision d instead of e, which clearly indicates strict preference of
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d over e (see Walley [9, Sections 3.9.1–3.9.3, pp. 160–162]). Since >P is a strict
partial order, we arrive at

opt>P
(D) :=max>P

(
opt≥ (D)

)
={d ∈ opt≥ (D) : (∀e ∈ opt≥ (D))(EP(Je − Jd) ≤ 0)} (7)

as another generalisation of Eq. (3), called maximality. Note that >P can also be
viewed as a robustification of >µ over µ inM. Applied on the example of Section 2,
we find opt>P

(D) = {1, 2, 3, 5} as a solution.

Note that Walley [9, Sections 3.9.2, p. 161] has a slightly different definition: instead
of working from the set of admissible decisions as in Eq. (7), Walley starts with
ranking d > e if EP(Jd − Je) > 0 or (Jd ≥ Je and Jd 6= Je), and then selects
those decisions from D that are maximal with respect to this strict partial order.
Using Theorem 3 from the appendix, it is easy to show that Walley’s definition of
maximality coincides with the one given in Eq. (7) whenever the set {Jd : d ∈ D}
is weakly compact. This is something we usually assume to ensure the existence
of admissible elements; in particular, weak compactness is assumed in Theorem 5
(see appendix). The benefit of Eq. (7) over Walley’s definition is that Eq. (7) is
easier to manage in the proofs in the appendix.

3.3 Interval Dominance

Another robustification of >µ is the strict partial ordering AP defined by d AP

e whenever EP(Jd) > EP(Je); this means that the interval [EP(Jd),EP(Jd)] is

completely on the right hand side of the interval [EP(Je),EP(Je)]. The above
ordering is therefore called interval dominance (see Zaffalon, Wesnes, and Petrini
[14, Section 2.3.3, pp. 68–69] for a brief discussion and references).

optAP
(D) :=maxAP

(
opt≥ (D)

)
={d ∈ opt≥ (D) : (∀e ∈ opt≥ (D))(EP(Je) ≤ EP(Jd))} (8)

The resulting notion is weaker than maximality: applied on the example of Sec-
tion 2, optAP

(D) = {1, 2, 3, 5, 6}, which is strictly larger than opt>P
(D).
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3.4 E-Admissibility

In the example of Section 2, we have shown that optEµ (D) may not be very robust
against changes in µ. Robustifying optEµ (D) against changes of µ inM, we arrive
at

optM (D) :=
⋃
µ∈M

optEµ (D) ; (9)

this provides another way to generalise Eq. (3). The above criterion selects those
admissible decisions in D that maximize expected utility with respect to at least
one µ in M; i.e., they select the E-admissible (see Good [15, p. 114, ll. 8–9], or
Levi [5, Section 4.8, p. 96, ll. 8–20]) decisions among the admissible ones. We find
optM (D) = {1, 2, 3} for the example.

In case µ is defined on ℘(X ) and µ({x}) > 0 for all x ∈ X , then every E-admissible
decision is also admissible, and hence, in that case, optM (D) gives us exactly the
set of E-admissible options.

4 Which Is the Right One?

Evidently, it is hard to pinpoint the right choice. Instead, let us ask ourselves:
what properties do we want our notion of optimality to satisfy? Let us summarise
a few important guidelines.

Clearly, whatever notion of optimality, it seems reasonable to exclude inadmissible
decisions. For ease of exposition, let’s assume that the inadmissible decisions have
already been removed from D, i.e., D = opt≥ (D); this implies in particular that
optM (D) gives us the set of E-admissible decisions.

Now note that, in general, the following implications hold:

Γ-maximax Γ-maximin

E-admissible maximal

interval dominance

?

HH
HHH

HHHj ??
-

HHH
HHH

HHj ?
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as is also demonstrated by our example. A proof is given in the appendix, Theo-
rem 1.

E-admissibility, maximality, and interval dominance have the nice property that
the more determinate our beliefs (i.e., the smaller M), the smaller the set of
optimal decisions. In contradistinction, Γ-maximin and Γ-maximax lack this prop-
erty, and usually only select a single decision, even in case of complete ignorance.
However, if we are only interested in the most pessimistic (or most optimistic)
solution, disregarding other reasonable solutions, then Γ-maximin (or Γ-maximax)
seems appropriate. Utkin and Augustin [16] have collected a number of nice al-
gorithms for finding Γ-maximin and Γ-maximax solutions, and even mixtures of
these two. Seidenfeld [17] has compared Γ-maximin to E-admissibility, and argued
against Γ-maximin in sequential decision problems.

If we do not settle for Γ-maximin (or Γ-maximax), should we choose E-admissibility,
maximality, or interval dominance? As already mentioned, interval dominance is
weaker than maximality, so in general we will end up with a larger (and arguably
too large) set of optimal options. Assuming the non-admissible decisions have been
weeded, a decision d is not optimal in D with respect to interval dominance if and
only if

EP(Jd) < sup
e∈D

EP(Je). (10)

Thus, if D has n elements, interval dominance requires us to calculate 2n natural
extensions, and make 2n comparisons, whereas for maximality, by Eq. (7), we must
calculate n2 − n natural extensions, and perform n2 − n comparisons—roughly
speaking, each natural extension is a linear program in m (size of X ) variables and
r (size of K) constraints, or vice versa if we solve the dual program. So, comparing
maximality and interval dominance, we face a tradeoff between computational
speed and number of optimal options.

However, this also means that interval dominance is a means to speed up the cal-
culation of maximal and E-admissible decisions: because every maximal decision
is also interval dominant, we can invoke interval dominance as a first computa-
tionally efficient step in eliminating non-optimal decisions, if we eventually opt
for maximality or E-admissibility. Indeed, eliminating those decisions d that sat-
isfy Eq. (10), we will also eliminate those decisions that are neither maximal, nor
E-admissible.

Regarding sequential decision problems, we note that dynamic programming tech-
niques cannot be used when using interval dominance (see De Cooman and Troffaes
[18]), and therefore, since dynamic programming yields an exponential speedup,
maximality and E-admissibility are certainly preferred over interval dominance
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once dynamics enter the picture.

This leaves E-admissibility and maximality. They are quite similar: they coincide
on all decision sets D that contain two decisions. In case we consider larger de-
cision sets, they coincide if the set of gain gambles is convex (for instance, if we
consider randomised decisions). As already mentioned, E-admissibility is stronger
than maximality, and also has some other advantages over maximality. For in-
stance, 1

5
J2 + 4

5
J3 >P J5, so, choosing decision 2 with probability 20% and decision

3 with probability 80% is preferred to decision 5. Therefore, we should perhaps
not consider decision 5 as optimal.

E-admissibility is not vulnerable to such argument, since no E-admissible decision
can be dominated by randomized decisions: if for some µ ∈ M it holds that
Eµ(Jd − Je) ≥ 0 for all e ∈ D, then also

Eµ

(
Jd −

n∑
i=1

λiJei

)
=

n∑
i=1

λiEµ (Jd − Jei) ≥ 0

for any convex combination
∑n
i=1 λiJei of gain gambles, and hence, it also holds

that EP (
∑n
i=1 λiJei − Jd) ≤ 0 which means that no convex combination

∑n
i=1 λiJei

can dominate Jd with respect to >P .

A powerful algorithm for calculating E-admissible options has been recently sug-
gested by Utkin and Augustin [16, pp. 356–357], and independently by Kikuti,
Cozman, and de Campos [19, Sec. 3.4]. If D has n elements, finding all (pure)
E-admissible options requires us to solve n linear programs in m variables and
r + n constraints.

As we already noted, through convexification of the decision set, maximality and
E-admissibility coincide. Utkin and Augustin’s algorithm can also cope with this
case, but now one has to consider in the worst case n! linear programs, and usually
several less: the worst case only obtains if all options are E-admissible. For instance,
if there are only ` E-admissible pure options, one has to consider only at most
`! + n− ` of those linear programs, and again, usually less.

In conclusion, the decision criterion to settle for in a particular application, depends
at least on the goals of the decision maker (what properties should optimality sat-
isfy?), and possibly also on the size and structure of the problem if computational
issues arise.
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A Proofs

This appendix is dedicated to proving the connections between the various op-
timality criteria, and existence results mentioned throughout the paper. In the
whole appendix, we assume the following:

Recall, D denotes some set of decisions, and every decision d ∈ D induces a gain
gamble Jd ∈ L(X ), where L(X ) is the set of all gambles (bounded X–R mappings).

P denotes a lower prevision, defined on a subset K of L(X ). With F we denote
a field on X such that all gain gambles Jd and gambles in K are measurable with
respect to F , i.e., are a uniform limit of F -simple gambles. F could be for instance
the power set of X .

P is assumed to avoid sure loss, and EP is its natural extension to the set of all
F -measurable gambles.M is the credal set representing P , as defined in Section 3.
We will make deliberate use of the properties of natural extension (for instance,
superadditivity: EP(f+g) ≥ EP(f)+EP(g), and hence also EP(f−g) ≤ EP(f)−
EP(g)). We refer to Walley [9, Sec. 2.6, p. 76, and Sec. 3.1.2, p. 123] for an overview
and proof of these properties.

We use the symbol µ for an arbitrary finitely additive probability measure on F ,
and Eµ denotes the Dunford integral with respect to µ. This integral is defined on
(at least) the set of all F -measurable gambles.
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A.1 Connections between Decision Criteria

Theorem 1 The following relations hold.

optEP
(D) ⊆ optM (D) ⊆ opt>P

(D) ⊆ optAP
(D)

optEP
(D) ⊆ opt>P

(D)

PROOF. Let J = {Jd : d ∈ D}.

Suppose that d is Γ-maximax in D: Jd maximises EP in max≥(J ). Since EP is the
upper envelope ofM, andM is weak-* compact (see Walley [9, Sec. 3.6]), there is
a µ in M such that EP(Jd) = Eµ(Jd). But, Eµ(Je) ≤ EP(Je) ≤ EP(Jd) = Eµ(Jd),
for every Je ∈ max≥(J ) because d is Γ-maximax. Thus, d belongs to optM (D).

Suppose that d ∈ optM (D): there is a µ in M such that Jd maximises Eµ in
max≥(J ). But then, because EP is the lower envelope of M, EP(Je − Jd) ≤
Eµ(Je − Jd) = Eµ(Je) − Eµ(Jd) ≤ 0 for all Je in max≥(J ). Hence, by Eq. (7) on
p. 8, d must be maximal.

Suppose that d is maximal. Then, again by Eq. (7), EP(Je − Jd) ≤ 0 for all Je in

max≥(J ). But, EP(Je)−EP(Jd) ≤ EP(Je − Jd), hence, also EP(Je) ≤ EP(Jd) for
all Je in max≥(J ), which means that d belongs to optAP

(D).

Finally, suppose that d is Γ-maximin: Jd maximises EP in max≥(J ). But then
EP(Je − Jd) ≤ EP(Je)− EP(Jd) ≤ 0 for all Je in max≥(J ); d must be maximal.

A.2 Existence

We first prove a technical but very useful lemma about the existence of optimal
elements with respect to preorders; it’s an abstraction of a result proved by De
Cooman and Troffaes [18]. Let’s start with a few definitions.

A preorder is simply a reflexive and transitive relation.

Let V be any set, and let Q be any preorder on V . An element v of a subset S
of V is called Q -maximal in S if, for all w in S, w Q v implies v Q w. The set of
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Q -maximal elements is denoted by

maxQ (S) :=
{
v ∈ S : (∀w ∈ S)(w Q v =⇒ v Q w)

}
. (A.1)

For any v in S, we also define the up-set of v relative to S as

↑SQv := {w ∈ S : w Q v}.

Lemma 2 Let V be a Hausdorff topological space. Let Q be any preorder on V
such that for any v in V, the set ↑VQv is closed. Then, for any non-empty compact
subset S of V, the following statements hold.

(i) For every v in S, the set ↑SQv is non-empty and compact.
(ii) The set maxQ (S) of Q -maximal elements of S is non-empty.

(iii) For every v in S, there is a Q -maximal element w of S such that w Q v.

PROOF. (i). Since Q is reflexive, it follows that v Q v, so ↑SQv is non-empty. Is
it compact? Clearly, ↑SQv = S ∩ ↑VQv, so ↑SQv is the intersection of a compact set
and a closed set, and therefore ↑SQv must be compact too.

(ii). Let S ′ be any subset of the non-empty compact set S that is linearly ordered
with respect to Q . If we can show that S ′ has an upper bound in S with respect to
Q , then we can infer from a version of Zorn’s lemma [20, (AC7), p. 144] (which also
holds for preorders) that S has a Q -maximal element. Let then {v1, v2, . . . , vn}
be an arbitrary finite subset of S ′. We can assume without loss of generality that
v1 Q v2 Q · · · Q vn, and consequently ↑SQv1 ⊆ ↑SQv2 ⊆ · · · ⊆ ↑SQvn. This implies
that the intersection

⋂n
k=1 ↑SQvk = ↑SQv1 of these up-sets is non-empty: the collection

{↑SQv : v ∈ S ′} of compact and hence closed (V is Hausdorff) subsets of S has the
finite intersection property. Consequently, since S is compact, the intersection⋂
v∈S′ ↑SQv is non-empty as well, and this is the set of upper bounds of S ′ in S with

respect to Q . So, by Zorn’s lemma, S has a Q -maximal element: maxQ (S) is
non-empty.

(iii). Combine (i) and (ii) to show that the non-empty compact set ↑SQv has a
maximal element w with respect to Q . It is then a trivial step to prove that w is
also Q -maximal in S: we must show that for any u in S, if u Q w, then w Q u.
But, if u Q w, then also u Q v since w Q v by construction. Hence, u ∈ ↑SQv, and
since w is Q -maximal in ↑SQv, it follows that w Q u.

The weak topology on L(X ) is simply the topology of point-wise convergence.
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That is, a net fα in L(X ) converges weakly to f in L(X ) if limα fα(x) = f(x) for
all x ∈ X .

Theorem 3 If J = {Jd : d ∈ D} is a non-empty and weakly compact set, then D
contains at least one admissible decision, and even more, for every decision e in
D, there is an admissible decision d in D such that Jd ≥ Je.

PROOF. It is easy to derive from Eq. (2) that

opt≥ (D) = {d ∈ D : (∀e ∈ D)(Je ≥ Jd =⇒ Jd ≥ Je)}.

Hence, a decision is admissible in D exactly when its gain gamble is ≥-maximal
in J . We must show that J has ≥-maximal elements.

By Lemma 2, it suffices to prove that, for every f ∈ L(X ), the set Gf = {g ∈
L(X ) : g ≥ f} is closed with respect to the topology of point-wise convergence.

Let gα be a net in Gf , and suppose that gα converges point-wise to g ∈ L(X ): for
every x ∈ X , limα gα(x) = g(x). But, since gα(x) ≥ f(x) for every X , it must also
hold that g(x) = limα gα(x) ≥ f(x). Hence, g ∈ Gf . We have shown that every
converging net in Gf converges to a point in Gf . Thus, Gf is closed. This establishes
the theorem.

Let’s now introduce a slightly stronger topology on L(X ). This topology has no
particular name in the literature, so let’s just call it the τ -topology. It is determined
by the following convergence.

Definition 4 Say that a net fα in L(X ) τ -converges to f in L(X ), if

(i) limα fα(x) = f(x) for all x ∈ X (point-wise convergence), and
(ii) limα EP(|fα − f |) = 0 (convergence in EP(| · |)-norm).

This convergence induces a topology τ on L(X ): it turns L(X ) into a locally convex
topological vector space, which also happens to be Hausdorff. A topological basis
at 0 consists for instance of the convex sets

{f ∈ L(X ) : EP(|f |) < ε and f(x) < δ(x)},

for ε > 0, and δ(x) > 0 for all x ∈ X . It has more open sets and more closed
sets than the weak topology, but it has less compact sets than the weak topology.
On the other hand, this topology is weaker than the supremum norm topology,
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so it has fewer open and closed sets, and more compact sets, compared to the
supremum norm topology. Note that in case X is finite, it reduces to the weak
topology, which is in that case also equivalent to the supremum norm topology.

Note that EP , EP , and Eµ for all µ ∈M, are τ -continuous, simply because

EP(|fα − f |) ≥ |EP(fα)− EP(f)|,
EP(|fα − f |) ≥ |EP(fα)− EP(f)|, and

EP(|fα − f |) ≥ |Eµ(fα)− Eµ(f)|

(see Walley [9, p. 77, Sec. 2.6.1(l)]). We will exploit this fact in the proof of the
following theorem, generalising a result due to Walley [9, p. 161, Sec. 3.9.2].

Theorem 5 If J = {Jd : d ∈ D} is non-empty and compact with respect to the
τ -topology, then the following statements hold.

(i) optEµ (D) is non-empty for all µ ∈M.
(ii) optEP

(D) is non-empty.

(iii) optEP
(D) is non-empty.

(iv) opt>P
(D) is non-empty.

(v) optAP
(D) is non-empty.

(vi) optM (D) is non-empty.

PROOF. (i). Introduce the following order on L(X ): say that f Q g whenever
Eµ(f) ≥ Eµ(g). Let’s first show that, for all f ∈ L(X ), the set Gf = {g ∈
L(X ) : g Q f} is τ -closed.

Let gα be a net in Gf , and suppose that gα τ -converges to g ∈ L(X ). Since the inte-
gral Eµ is τ -continuous, it follows that Eµ(g) = limα Eµ(gα) ≥ Eµ(f). Concluding,
g belongs to Gf . We have established that every converging net in Gf converges to
a point in Gf . Thus, Gf is τ -closed.

By Lemma 2, it follows that J has at least one Q -maximal element Je, that is,
Je maximises Eµ in J . Since any τ -compact set is also weakly compact, there is a
≥-maximal element Jd in J such that Jd ≥ Je, by Theorem 3. But then, Eµ(Jd) ≥
Eµ(Je), and hence, Jd also maximises Eµ in J . Because Jd is ≥-maximal in J , it
also maximises Eµ in max≥(J ). This establishes that d belongs to optEµ (D): this
set is non-empty.

(ii). Introduce the following order on L(X ): say that f Q g whenever EP(f) ≥
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EP(g). Continue along the lines of (i), using the fact that EP is τ -continuous.

(iii). Again along the lines of (i), with f Q g whenever EP(f) ≥ EP(g).

(iv)&(v)&(vi). Immediate, by (iii) and Theorem 1.
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