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Abstract. This paper deals with n-monotone functionals, which constitute a generalisation

of n-monotone set functions. Using the notion of exactness of a functional, we introduce a new

notion of lower and upper integral which subsumes as particular cases most of the approaches
to integration in the literature. As a consequence, we can characterise which types of integrals

can be used to calculate the natural extension (the lower envelope of all linear extensions) of

a positive bounded charge.

1. Introduction

Coherent lower previsions ([19]), and exact functionals ([16]) are among the most interesting
uncertainty models in what has been called the theory of imprecise probabilities; this is the
theory which extends the Bayesian theory of probability by allowing for indecision.

This paper deals with a special subclass of these functionals, namely those that are n-
monotone, for n ≥ 1. In a companion paper ([6]), we have introduced and studied in the
notion of n-monotone exact functionals, building on Choquet’s [4] original and very general def-
inition of n-monotonicity for functions defined on arbitrary lattices. We have summarised the
main results of that paper in the introductory Section 2. We use those results to introduce, in
Section 3, a new and quite flexible type of (lower) integral that subsumes many of the well-known
lower integrals in the literature, such as the lower Riemann–(Stieltjes), S-, Dunford, Lebesgue,
and Young–Stieltjes integrals. We show that our lower integral (and therefore all the others) is
an exact functional that is completely monotone, i.e., n-monotone for all n ≥ 1.

Taking the generalisation yet a step further, we are led in Section 4 to define a notion of inte-
grability with respect to exact functionals that unifies and generalises many types of integrability
known from the literature. In this way, we are able to characterise which types of (lower) inte-
gration coincide with the natural extension of a bounded positive charge, i.e., the lower envelope
of all the positive linear functionals that extend the charge from events to bounded mappings.
By conjugacy, the associated upper integral is then the upper envelope of this set of positive
linear functionals.

We conclude in Section 5 with some additional comments and remarks.

2. Coherence, exactness, and n-monotonicity

Let us first mention a few basic notions about coherent lower previsions and exact functionals.

2.1. Coherent lower previsions and linear previsions. We begin with coherent lower pre-
visions, which have been studied in depth by Walley in [19].

Consider a non-empty set Ω. A gamble f on Ω is a bounded real-valued mapping on Ω. The
set of all gambles on Ω is denoted by L. A special class of gambles only take values in {0, 1}:
let A be any subset of Ω, also called an event, then the gamble IA, defined by IA(ω) := 1 if
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ω ∈ A and IA(ω) := 0 otherwise, is called the indicator of A. This establishes a correspondence
between events and {0, 1}-valued gambles. Often, for an event A, we shall also denote IA by A.

We shall call functional any real-valued map Γ defined on a subset of L, called the domain
dom Γ of Γ. When dom Γ contains only indicators of events, we shall call Γ a set function. The
conjugate Γ of Γ is a functional defined on the set dom Γ = −dom Γ := {−f : f ∈ dom Γ} by
Γ(f) = −Γ(−f).

A functional P defined on L is called a coherent lower prevision if the following three properties
are satisfied for all f , g in domP and all non-negative real λ:
(C1) P (f) ≥ inf f (accepting sure gains);
(C2) P (λf) = λP (f) (positive homogeneity);
(C3) P (f + g) ≥ P (f) + P (g) (super-additivity).

A functional P with a general domain (not necessarily a linear space) is called a coherent lower
prevision if it can be extended to a coherent lower prevision on all gambles. This is the case
if and only if sup [

∑n
i=1 fi −mf0] ≥

∑n
i=1 P (fi) −mP (f0) for any natural numbers n ≥ 0 and

m ≥ 0, and f0, f1, . . . , fn in the domain of P . For any gamble f in domP , P (f) is then called
the lower prevision of f . If the domain of P contains only (indicators of) events A, then we also
call P a coherent lower probability, and we write P (IA) also as P (A), the lower probability of A.

The conjugate coherent upper prevision P of P is defined on domP = −domP := {−f : f ∈ domP}
by P (f) := −P (−f) for every −f in the domain of P . This conjugacy relationship shows that
we can restrict our attention to the study of coherent lower previsions only. If the domain of P
contains indicators only, then we also call P an upper probability. It generally holds for coherent
lower previsions P that P (f) ≤ P (f) for all f ∈ domP ∩ domP .

Given a coherent lower prevision P on some domain domP , there is a point-wise smallest
coherent lower prevision EP on L that coincides with P on domP . It is called the natural
extension of P , and is given by (Walley [19, Lemma 3.1.3(b)])

EP (f) = sup

{
n∑
k=1

λkP (fk) + λ : n ≥ 1, λk ∈ R+, λ ∈ R, fk ∈ domP ,

n∑
k=1

λkfk + λ ≤ f

}
for all gambles f in L, where R+ is the set of non-negative reals and R is the set of reals.

A linear prevision P on L is a non-negative, normed [P (1) = 1], real-valued, linear functional
on L. The restriction of such a linear prevision on L to (indicators of) events is a probability
charge (or finitely additive probability measure) on ℘(Ω), the class of all subsets of Ω. It can be
checked that EP is equal to the lower envelope of of those linear previsions on L that dominate
P on its domain.

2.2. Exact functionals. Maaß [16] has extended the notion of coherent lower previsions to that
of exact functionals. Let Γ be a functional with domain dom Γ. If dom Γ = L, then Γ is called
exact whenever for any gambles f and g on Ω, any non-negative real number λ, and any real
number µ, it holds that
(E1) if f ≥ g then Γ(f) ≥ Γ(g) (monotonicity);
(E2) Γ(λf) = λΓ(f) (positive homogeneity);
(E3) Γ(f + g) ≥ Γ(f) + Γ(g) (super-additivity);
(E4) Γ(f + µ) = Γ(f) + Γ(µ) (constant additivity).
A functional defined on an arbitrary subset of L is called exact if it can be extended to an exact
functional on all of L. If Γ is exact, then Γ(f) ≤ Γ(f) for all f ∈ dom Γ ∩ dom Γ.

Exact functionals are important not only because they generalise coherent lower previsions;
they can also be seen as the negatives of coherent risk measures ([1, 7]) and they are very closely
related to exact cooperative games ([18]).
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Maaß [16, Eq. (1.2), p. 4] defines also the following norm on the space of all functionals:

‖Γ‖ := inf

{
c ∈ R+ : f ≥

n∑
k=1

λkfk + λ⇒ Γ(f) ≥
n∑
k=1

λkΓ(fk) + λc

}
where the condition must hold for all natural n, non-negative reals λ1, . . . , λn, real λ, and gambles
f , f1, . . . , fn in dom Γ. Maaß also shows that a functional Γ is exact if and only if its norm is
finite: ‖Γ‖ < +∞. He also shows that if 1 ∈ dom Γ then ‖Γ‖ = Γ(1). The norm serves as a
Lipschitz constant because for any two gambles f and g in dom Γ, |Γ(f)− Γ(g)| ≤ ‖Γ‖ sup |f − g|.
Hence, exactness implies (uniform) continuity with respect to the supremum norm.

We shall call a functional Γ linear exact if it can be extended to an exact functional Ψ on
L which is at the same time also a linear functional, i.e., which also satisfies Ψ(f) + Ψ(g) =
Ψ(f + g) for any f and g in L. For a linear exact functional Γ, it holds that Γ(f) = Γ(f) for all
f ∈ dom Γ ∩ dom Γ.

An exact functional Γ has by its very definition exact extensions to all of L. Among those,
there are exact extension whose norm is equal to ‖Γ‖, and the point-wise smallest such exact
extension EΓ is called the natural extension of the exact functional Γ. It is also the lower
envelope of the set of dominating positive linear functionals that dominate Γ and have the same
norm; see Maaß [16, Theorem 1.2.5 and Corollary 1.5.8] for more details. This gives very special
importance to the notion of natural extension. In this paper, we will be especially concerned
with the natural extension of positive bounded charges.

The relationship between coherent lower previsions, exact functionals, and their respective
natural extensions is given by the following theorem.

Theorem 1. [6, Thm. 2] Let Γ be a functional defined on a subset of L.
(i) If Γ is exact, then there is a coherent lower prevision P defined on dom Γ such that Γ =
‖Γ‖P , and moreover EΓ = ‖Γ‖EP .

(ii) Γ is exact if and only if there is a coherent lower prevision P defined on dom Γ, and a
non-negative real number λ, such that Γ = λP . In that case, λEP is an exact extension of
Γ with norm λ.

2.3. n-monotonicity. We now turn to the notion of n-monotonicity for functionals, which is a
special case of the general definition of n-monotonicity that Choquet [4] has given for functions
from an Abelian semi-group to an Abelian group. Recall that a subset S of L is called a lattice
if it is closed under point-wise maximum ∨ and point-wise minimum ∧, i.e., if for all f and g in
S, both f ∨ g and f ∧ g also belong to S. We denote by N the set of all (strictly positive) natural
numbers, by N0 = N ∪ {0} the set of all non-negative integers, and by N∗ = N ∪ {+∞} the set
of extended natural numbers.

Definition 1. Let n ∈ N∗, and let Γ be a functional whose domain dom Γ is a lattice of gambles
on Ω. Then we call Γ n-monotone if for all p ∈ N, p ≤ n, and all f , f1, . . . , fp in dom Γ:∑

I⊆{1,...,p}

(−1)|I|Γ

(
f ∧

∧
i∈I

fi

)
≥ 0.

The conjugate of an n-monotone functional is called n-alternating. An ∞-monotone functional
(i.e, a functional which is n-monotone for all n ∈ N) is also called completely monotone, and its
conjugate completely alternating.

In what follows, we shall use the following consequences of n-monotonicity. Recall that two
gambles f and g on Ω are called comonotone if f(ω) > f($) implies that g(ω) ≥ g($) for all
ω and $ in Ω. A functional Γ is called comonotone additive if Γ(f + g) = Γ(f) + Γ(g) for all
comonotone f and g in dom Γ such that f + g ∈ dom Γ.
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Theorem 2. [6, Thms. 10,11,13 and 17] Consider a functional Γ defined on a lattice dom Γ of
L.

(i) If Γ is minimum preserving, then it is completely monotone.
(ii) If Γ is an exact linear functional, then it is both completely monotone and completely

alternating.
(iii) Let Γ be exact and let dom Γ be a linear lattice of gambles that contains all constant gambles.

Then Γ is comonotone additive if and only if it is 2-monotone, and in both cases we have
for all f in dom Γ that

Γ(f) = (C)
∫
f dΓ∗ = ‖Γ‖ inf f + (R)

∫ sup f

inf f

Γ∗({f ≥ x}) dx, (1)

where the first integral is a Choquet integral, the second a Riemann integral, and Γ∗ is the
inner extension of Γ, given by Γ∗(f) = sup {Γ(g) : g ∈ dom Γ, g ≤ f}.

(iv) If dom Γ is a lattice of events that contains both ∅ and Ω, and if Γ is an n-monotone set
function on dom Γ, then it is exact and its natural extension EΓ to the set of all gambles
is n-monotone as well, and it is given by Eq. (1), where now Γ∗ is the inner set function
of Γ.

The third point of this theorem essentially states that for exact functionals defined on all
gambles, 2-monotonicity and comonotone additivity are equivalent. This was shown in [6] to
follow from two more basic results: (i) Greco’s representation theorem [8], which states that under
some additional technical conditions a real functional is monotone and comonotone additive if
and only if it can be represented as a Choquet functional associated with a monotone set function;
and (ii) a representation result we proved in [6, Theorem 17 and Corollary 19] which states that a
2-monotone exact functional defined on all gambles is always the Choquet functional associated
with its restriction to events. It follows immediately that under exactness, 2-monotonicity implies
comotonone additivity. The converse result is proven by showing that the smallest monotone set
function that represents a comonotone additive exact functional is 2-monotone.

One consequence of this theorem to be remembered, then, is that an n-monotone exact func-
tional on all gambles is always the natural extension (Choquet integral) of its restriction to
all events. It also deserves to be mentioned here that both exactness and n-monotonicity are
preserved under taking point-wise limits and non-negative linear combinations.

3. A general notion of lower integral as an instance of a completely monotone
exact functional

Let us now show that many of the lower integrals in the literature are actually instances
of completely monotone exact functionals. The way such lower integrals are obtained can be
formalised nicely through the introduction of a new and very flexible type of integration. It
actually goes back to an idea suggested by Moore and Smith [17, Sect. 5, p. 114, ll. 10–13], who
provided an alternative definition of the Lebesgue integral for bounded real-valued functions (i.e.,
gambles).

3.1. The definition of (lower and upper) V-integrals. Consider a bounded positive charge
µ on a field F of subsets of Ω, i.e., a real-valued set function on F such that µ(∅) = 0, µ(A) ≥ 0,
and µ(A) + µ(B) = µ(A ∪ B) + µ(A ∩ B) for any A and B in F . Such a bounded positive
charge can be identified with a functional Γµ on the set of gambles IF := {IA : A ∈ F} by letting
Γµ(IA) := µ(A) for all A in F . Note that this functional is completely monotone.

Next, we define a refinement relation � on the collection of subsets of F , as follows: for any
two subsets V1 and V2 of F , we write V1 � V2 if V2 refines V1 in the sense that every element of
V2 is included in some element of V1.
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Now consider a collection V of finite collections of non-empty subsets of F (in other words,
every element V of V is a finite collection of non-empty subsets of F) that satisfies the following
properties:
(V1) V is directed : for any V1 and V2 in V, there is some V in V such that V1 � V and V2 � V;
(V2) covering: for any V1 and V2 in V such that V1 � V2, it holds that⋃

{V2 ∈ V2 : V2 ⊆ V1} = V1

for all V1 in V1;
(V3) additivity : for any V in V and any D ⊆ V, it holds that

µ(
⋃
D) =

∑
V ∈D

µ(V );

(V4) smallest element : {Ω} belongs to V.
As an immediate consequence of (V2)–(V4) we find that for any V in V:⋃

V ∈V
V = Ω, and

∑
V ∈V

µ(V ) = µ(Ω). (2)

Condition (V1) states that � satisfies the composition property or the Moore–Smith property.
Since � is also a reflexive and transitive relation, it follows that V is a directed set with respect
to �. Therefore, given a net α on V, i.e., a mapping α : V → R, we can take the Moore–Smith
limit of α with respect to the directed set (V,�) (see Moore and Smith [17, Sect. I, p. 103]),
which, if it exists, is defined as the unique real number a such that, for every ε > 0, there is a
Vε in V, such that |α(V) − a| < ε for all V � Vε. The Moore–Smith limit a of α is denoted by
limV∈V α(V). Note that this limit always exists if α is non-decreasing and bounded from above,
or if α is non-increasing and bounded from below; we shall use this result further on.

Let PV (f) denote the vacuous lower prevision of f relative to the non-empty subset V of Ω,
and PV (f) the vacuous upper prevision of f relative to V , which are defined for any f in L as

PV (f) := inf
ω∈V

f(ω), and PV (f) := sup
ω∈V

f(ω).

Proposition 3. Let V be a non-empty subset of Ω, then the vacuous lower prevision PV relative
to V is a completely monotone coherent lower prevision on L. PV is its conjugate upper prevision.

Proof. Immediately from the first statement of Theorem 2, and the fact that PV is easily seen
to verify the coherence conditions (C1)–(C3), and is therefore a coherent lower prevision. Also,
it is obvious that PV (−f) = supω∈V −f(ω) = − infω∈V f(ω) = −PV (f), so PV is the conjugate
upper prevision. �

Lemma 4. Consider V1 and V2 in V such that V1 � V2. Consider any W in V2 and suppose
that there are different V1 and U1 in V1 such that W ⊆ V1 and W ⊆ U1. Then µ(W ) = 0.

Proof. Consider different V1 and U1 in V1. It follows from (V2) and (V3) that

µ(V1 ∪ U1) = µ(V1) + µ(U1) =
∑

V2∈V2,V2⊆V1

µ(V2) +
∑

U2∈V2,U2⊆U1

µ(U2). (3)

Consider on the other hand the subset

D = {W2 ∈ V2 : W2 ⊆ V1 or W2 ⊆ U1}
of V2, then it follows from (V2) that

⋃
D = V1 ∪ U1 and from (V3) that

µ(V1 ∪ U1) =
∑

W2∈V2,W2⊆V1 or W2⊆U1

µ(W2) (4)
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Now if W in V2 is such that W ⊆ V1 and W ⊆ U1, then the term µ(W ) will appear twice in the
summation on the right hand side of Eq. (3), but only once the summation on the right hand
side of Eq. (4). This implies that µ(W ) must be zero. �

Lemma 5. For any V1 and V2 in V such that V1 � V2 we have that for any f ∈ L:∑
V1∈V1

PV1
(f)µ(V1) ≤

∑
V2∈V2

PV2
(f)µ(V2)

∑
V1∈V1

PV1(f)µ(V1) ≥
∑
V2∈V2

PV2(f)µ(V2).

Moreover, for any V in V we have

µ(Ω) inf f ≤
∑
V ∈V

PV (f)µ(V ) ≤
∑
V ∈V

PV (f)µ(V ) ≤ µ(Ω) sup f.

Proof. Since the inequalities trivially hold if µ(Ω) = 0, we shall assume that µ(Ω) > 0. It suffices
to prove the first of these inequalities, as the second then follows by conjugacy. Consider any V1

in V1. Since V1 6= ∅, we know from (V2) that there is at least one V2 in V2 such that V2 ⊆ V1.
Consider any such V2, then immediately PV2

(f) ≥ PV1
(f), and therefore, also using (V2) and

(V3), ∑
V2⊆V1

PV2
(f)µ(V2) ≥ PV1

(f)
∑
V2⊆V1

µ(V2) = PV1
(f)µ(V1).

By summing over all V1 in V1, we get∑
V1∈V1

∑
V2⊆V1

PV2
(f)µ(V2) ≥

∑
V1∈V1

PV1
(f)µ(V1),

and taking into account Lemma 4 and the fact that V1 � V2 we infer that the left-hand side is
equal to

∑
V2∈V2

PV2
(f)µ(V2). The rest of the proof is obvious, since by Eq. (2), the sums in

these inequalities are convex mixtures (after division by µ(Ω)). �

Using the Moore–Smith limit, we can define the following functionals on L:

(V)
∫
f dµ := lim

V∈V

∑
V ∈V

PV (f)µ(V ) (5)

is called the lower V-integral of f with respect to µ, and

(V)
∫
f dµ := lim

V∈V

∑
V ∈V

PV (f)µ(V )

the upper V-integral of f with respect to µ. Indeed, Lemma 5 tells us that both Moore–Smith
limits converge to real numbers, and that moreover

µ(Ω) inf f ≤ (V)
∫
f dµ ≤ (V)

∫
f dµ ≤ µ(Ω) sup f.

It makes sense to say that a gamble f is V-integrable with respect to µ whenever its lower and
upper V-integral with respect to µ coincide. For such gambles, we denote the common value of
(V)
∫
f dµ and (V)

∫
f dµ by

(V)
∫
f dµ

and we call it the V-integral of f with respect to µ.
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3.2. Examples of lower V-integrals. We now discuss a number of integrals in the literature
that can be considered as special instances of the general notion of a V-integral. In all examples,
a and b are (finite) real numbers such that a < b.

3.2.1. The Riemann integral. Let F be any field that contains all closed intervals in [a, b]; the
Borel σ-field B([a, b]) on [a, b] is an instance of such field. Let µ be any bounded positive charge
on [a, b] that satisfies µ([c, d]) = d−c for any a ≤ c ≤ d ≤ b; in case F is the Borel σ-field B([a, b]),
the Borel-Lebesgue measure on [a, b] is an instance of such positive bounded charge. Let V be
the collection of all finite collections of closed intervals that overlap only on their borders, and
whose union is [a, b].

It is easily verified that Conditions (V1)–(V4) are satisfied. The lower V-integral with respect
to µ is precisely the lower Riemann integral (R)

∫ b
a
· dx (see Darboux [5, Sect. II, p. 64]), and a

gamble is V-integrable with respect to µ if and only if it is Riemann integrable.

3.2.2. The Riemann–Stieltjes integral. Let F : [a, b] → R be any non-decreasing mapping. Con-
sider the smallest field F that contains all closed intervals in [a, b]; F contains exactly all finite
unions of (not only closed, but all) intervals in [a, b]. Now consider the bounded positive charge
µF on F that is uniquely characterised by µF ([c, d]) = F (d) − F (c) for any a ≤ c ≤ d ≤ b. Let
V again be the collection of all finite collections of closed intervals that overlap only on their
borders and whose union is [a, b].

Here too, Conditions (V1)–(V4) are satisfied. The lower V-integral with respect to µF is now
the Darboux version of the lower Riemann–Stieltjes integral (RS)

∫ b
a
· dF (x) with respect to F

(see Hildebrandt [11, Chap. II, pp. 27–32]), and a gamble is V-integrable with respect to µF if
and only if it is Riemann–Stieltjes integrable with respect to F .

3.2.3. The S-integral, the Dunford integral, and another Lebesgue-like way of defining an integral.
Let µ be any positive bounded charge on a field F , and let V be the collection of all finite partitions
in F . Then the lower S-integral (S)

∫
·dµ with respect to µ, as defined by Bhaskara Rao and

Bhaskara Rao [2, Sect. 4.5], is equal to the lower V-integral with respect to µ, and a gamble is
V-integrable with respect to µ if and only if it is S-integrable with respect to µ. Note that the
S-integral coincides with the Dunford integral on gambles (again see Bhaskara Rao and Bhaskara
Rao [2, Sect. 4.5, Thm. 4.5.7 and Prop. 4.5.8]), so a similar result holds for the Dunford integral.

Yet another way to obtain the lower S-integral, is fashioned after a method due to Lebesgue
[14, p. 47, l. 5], originally aimed at reconciling Cauchy’s (geometric) way of defining an integral
with Riemann’s (analytic) way: let f be any gamble on Ω, and consider the sets

A+
f := {(ω, x) : ω ∈ Ω, 0 ≤ x ≤ f(ω)}, and A−f := {(ω, x) : ω ∈ Ω, f(ω) ≤ x ≤ 0};

these two sets constitute the surface between the gamble f and the Ω-axis. A lower approximation
of the (signed) area of this surface is:

κ∗(A+
f )− κ∗(A−f ),

where κ is the product of the charge µ and the Lebesgue–Borel measure λ on R, and κ∗ and κ∗

are respectively the inner and outer set functions induced by κ; so,

κ∗(A) := sup

{
n∑
i=1

µ(Bi)λ(Ci) : n ∈ N, B1, . . . , Bn ∈ domµ, C1, . . . , Cn ∈ domλ,

B1 × C1, . . . , Bn × Cn disjoint,
n⋃
i=1

Bi × Ci ⊆ A

}
,
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and

κ∗(A) := inf

{
n∑
i=1

µ(Bi)λ(Ci) : n ∈ N, B1, . . . , Bn ∈ domµ, C1, . . . , Cn ∈ domλ,

B1 × C1, . . . , Bn × Cn disjoint,
n⋃
i=1

Bi × Ci ⊇ A

}
.

Proposition 6. For any gamble f on Ω, it holds that

(S)
∫
f dµ = κ∗(A+

f )− κ∗(A−f ).

Proof. Let f+ denote f ∨0, and let f− denote f ∧0. Let’s first prove that (S)
∫
f+ dµ = κ∗(A+

f ).
Recall that the lower S-integral with respect to µ is the lower V-integral with respect to µ where
we take for V the collection of all finite partitions in F .

Consider again the definition of κ∗:

κ∗(A+
f ) := sup

{
n∑
i=1

µ(Bi)λ(Ci) : n ∈ N, B1, . . . , Bn ∈ domµ, C1, . . . , Cn ∈ domλ,

B1 × C1, . . . , Bn × Cn disjoint,
n⋃
i=1

Bi × Ci ⊆ A+
f

}
.

(6)

Let n ∈ N, B1, . . . , Bn ∈ domµ, and C1, . . . , Cn ∈ domλ. Since each Bi belongs to domµ, there
is a finite partition V ∈ V, such that each Bi is a union of elements of V; denote by VBi the set
of elements of V that make up Bi. Consider any i ∈ {1, . . . , n}: since Bi × Ci ⊆ A+

f , we find
that for each element V of VBi , it holds that

Ci ⊆ {x : (∀ω ∈ Bi)(0 ≤ x ≤ f(ω))} = [0, PBi(f
+)] ⊆ [0, PV (f+)].

As this holds for any i ∈ {1, . . . , n}, we deduce that
n⋃
i=1

Bi × Ci =
n⋃
i=1

⋃
V ∈VBi

V × Ci ⊆
n⋃
i=1

⋃
V ∈VBi

V × [0, PV (f+)] ⊆
⋃
V ∈V

V × [0, PV (f+)] ⊆ A+
f .

This shows that, without loss of generality, we can restrict the supremum in Eq. (6) to those sets
Bi that make up a finite partition of elements of domµ, and sets Ci = [0, PBi(f

+)]:

κ∗(A+
f ) = sup

V∈V

∑
V ∈V

PV (f+)µ(V ) = lim
V∈V

∑
V ∈V

PV (f+)µ(V ) = (S)
∫
f+ dµ.

In a similar manner, we can show that −κ∗(A−f ) = (S)
∫
f− dµ. Briefly, now with

⋃n
i=1Bi ×

Ci ⊇ A−f : ⋃
i : V ∈VBi

Ci ⊇ {x : (∀ω ∈ V )(f(ω) ≤ x ≤ 0)} = [PV (f−), 0],

so
n⋃
i=1

Bi × Ci =
⋃
V ∈V

⋃
i : V ∈VBi

Bi × Ci ⊇
⋃
V ∈V

V × [PV (f−), 0],

and therefore,

−κ∗(A−f ) = − inf
V∈V

∑
V ∈V

(−PV (f−))µ(V ) = lim
V∈V

∑
V ∈V

PV (f−)µ(V ) = (S)
∫
f− dµ.
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Finally, it follows by the comonotone additivity of the lower S-integral (apply Theorem 8
further on and the third statement of Theorem 2), that

(S)
∫
f dµ = (S)

∫
f+ dµ+ (S)

∫
f− dµ = κ∗(A+

f )− κ∗(A−f ).

�

Proposition 6 provides a geometric interpretation for the lower S-integral. It is worth mentioning
already that, as a consequence of Theorem 16 below, the proposition also provides a geometric
interpretation for many other V-integrals, and of the natural extension of a probability charge.

It also shows that the lower Lebesgue integral on R, as introduced by Lebesgue [14], coincides
with the lower S-integral, if we take for µ the Borel-Lebesgue measure as well (so that κ is the
2-dimensional Borel-Lebesgue measure).

3.2.4. The Young–Stieltjes integral. Let a and b be two finite real numbers such that a < b and
a non-decreasing continuous mapping F : [a, b] → R. Take for F the Borel σ-field on [a, b], for
µF the Lebesgue-Stieltjes measure on [a, b] and for V the collection of all finite partitions in
F . Again, Conditions (V1)–(V4) are satisfied, and now the lower V-integral with respect to µF
coincides with the lower Young–Stieltjes integral on gambles on [a, b] as defined by Hildebrandt
[11, Chap. VII, Def. 3.3]; such a gamble is V-integrable with respect to µF if and only if it is
Young–Stieltjes integrable with respect to F .

3.2.5. The textbook integral. In many textbooks (see for instance [3, 9, 10, 13, 15]), “the integral”∫
·dµ of an F-measurable gamble f with respect to a positive bounded measure µ on a σ-field
F on Ω is defined as follows:∫

f dµ := (S)
∫ (

f ∨ 0
)

dµ− (S)
∫ (

(−f) ∨ 0
)

dµ;

the difference on the right hand side is always well-defined since a gamble f is a bounded random
variable. But, any F-measurable gamble is S-integrable, and hence, so must be f∨0 and (−f)∨0
(this follows from Theorem 11 below). Therefore, for F-measurable gambles, this textbook
integral coincides with the S-integral, and is thus a particular instance of a V-integral as well.

3.2.6. Kadane and O’Hagan’s uniform distribution on N0. For a completely different example
of a V-integral, define the residue sets Rrm := {km+ r : k ∈ N0} ⊆ N0, for any m in N and
r = 0, . . . ,m − 1. This means that ` ∈ Rrm if and only if ` = r mod m, or in other words, if
dividing ` by m leaves a remainder r.

Kadane and O’Hagan [12, p. 628–629, Sect. 4] suggest defining a uniform distribution on the
set of natural numbers (with zero) N0 as any probability charge that takes the value 1

m in all
the sets Rrm, m ∈ N and r = 0, . . . ,m − 1. To see that such a probability charge indeed exists,
consider for any m ∈ N the finite partition of N0 given by

Vm := {Rrm : r = 0, . . . ,m− 1} ,

and let V := {Vm : m ∈ N} be the collection of all such partitions. Note that the partition Vm
has m different elements. The following lemma tells us that the set V is directed under the
refinement relation �: any Vm and Vn have for instance Vmn as a common refinement.

Lemma 7. Let m and n ∈ N. Then Vm � Vn if and only if there is some k ∈ N such that
n = km.

Proof. “if”. We must show that Vm � Vkm, or equivalently, that for any r = 0, . . . ,m− 1, there
is an s ∈ {0, . . . , km− 1}, such that Rskm ⊆ Rrm. Simply take s = r.
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“only if”. If Vm � Vn, then there is an s ∈ {0, . . . ,m − 1} such that R0
n ⊆ Rsm. Since

0 ∈ R0
n, also 0 ∈ Rsm, whence s = 0. Consequently, {`n : ` ∈ N0} ⊆ {jm : j ∈ N0}, and therefore,

considering ` = 1, there is a k ∈ N such that n = km. �

Now let Fm be the field generated by the partition Vm, and let µm be the unique probability
charge on Fm that satisfies µm(Rrm) = 1

m for all r = 0, . . . ,m − 1. If we define F :=
⋃
m∈N Fm

then it is easy to see that F is a field as well, and that we can consistently define a unique
probability charge µ on F that coincides with the µm on Fm and therefore on Vm, as follows:
if A ∈ F then there is some m ∈ N such that A ∈ Fm and then we let µ(A) := µm(A). This
probability charge coincides with the natural density on the natural numbers that is used in
number theory.

Again, it is easy to see that V and µ satisfy the properties (V1)–(V4): we have already argued
above that (V1) is satisfied; (V2) and (V3) follow from the fact that all elements of V are finite
partitions; and for (V4), simply note that V1 = {N0}.

So, we can define the V-integral with respect to µ, and instead of using a Moore–Smith (net)
limit, it is immediate that for this integral we can simply write a (sequence) limit over N:

(V)
∫
f dµ = lim

m→+∞

1
m

m−1∑
r=0

inf
k∈N

f(km+ r) = sup
m∈N

1
m

m−1∑
r=0

inf
k∈N

f(km+ r). (7)

Note that for events, we find that

(V)
∫
IA dµ = lim

m→+∞

1
m
|{r : Rrm ⊆ A}| = sup

m∈N

1
m
|{r : Rrm ⊆ A}|. (8)

We shall see further on in Section 4.2.3 that this completely agrees with a result proven in an
entirely different manner by Kadane and O’Hagan [12, Thm. 6].

3.3. Complete monotonicity theorem. We now prove a simple theorem, which has many
interesting consequences.

Theorem 8. (V)
∫
·dµ is a completely monotone exact functional on L, and (V)

∫
·dµ is its

conjugate.

Proof. First, for any non-empty subset V of F , we have from Proposition 3 that PV is a com-
pletely monotone coherent lower prevision on L. This means that (V)

∫
·dµ is the point-wise

Moore–Smith limit of non-negative linear combinations (by Eqs. (2) and (5)) of completely mo-
notone coherent lower previsions. Since exactness and complete monotonicity are preserved under
non-negative linear combination and point-wise limits, this implies that (V)

∫
·dµ must be exact

and completely monotone as well.
Finally, for any gamble f on Ω and any V in V it holds that∑

V ∈V
PV (−f)µ(V ) = −

∑
V ∈V

PV (f)µ(V );

by taking the limit over V ∈ V on both sides of this equality, we find that (V)
∫
−f dµ =

−(V)
∫
f dµ, which completes the proof. �

By Theorem 2, it follows that (V)
∫
·dµ is comonotone additive on L, and representable by a

Choquet integral with respect to the restriction of (V)
∫
·dµ to events. If we denote this restriction

by µV, then µV is the completely monotone exact set function on ℘(Ω), given by

µV(A) = lim
V∈V

∑
V ∈V,V⊆A

µ(V ) (9)
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for any subset A of Ω, and we find that for any gamble f on Ω

(V)
∫
f dµ = (C)

∫
f dµV = µ(Ω) inf f + (R)

∫ sup f

inf f

µV({f ≥ x}) dx. (10)

Similarly, if we denote the restriction of (V)
∫
·dµ by µV, then µV is the completely alternating

conjugate exact set function on ℘(Ω), given by

µV(A) = 1− µV(Ac) = lim
V∈V

∑
V ∈V,V ∩A 6=∅

µ(V )

for any subset A of Ω, and we find that for any gamble f on Ω

(V)
∫
f dµ = (C)

∫
f dµV = µ(Ω) inf f + (R)

∫ sup f

inf f

µV({f ≥ x}) dx. (11)

Call a subset A of Ω V-integrable if its indicator IA is, or in other words if µV(A) = µV(A).
The following result gives an interesting characterisation of the V-integrability of events and
gambles.

Proposition 9. A subset A of Ω is V-integrable if and only if for all ε > 0 there is some Vε in
V such that: ∑

V ∈Vε
V ∩A 6=∅,V ∩Ac 6=∅

µ(V ) < ε.

Moreover, a gamble f on Ω is V-integrable if and only if {f ≥ x} is V-integrable for all but a
countable number of elements x of [inf f, sup f ].

Proof. To prove the first statement, observe that

(V)
∫
IA dµ− (V)

∫
IA dµ = µV(A)− µV(A) = lim

V∈V

[∑
V ∈V

PV (A)µ(V )−
∑
V ∈V

PV (A)µ(V )

]
,

and since from Lemma 5 the expression between brackets is non-increasing in V with respect to
the relation � on V, we find that A is V-integrable if and only if for all ε > 0 there is some Vε
in V such that ∑

V ∈Vε

[
PV (A)− PV (A)

]
µ(V ) < ε.

Now observe that PV (A) − PV (A) equals one if both V ∩ A 6= ∅ and V ∩ Ac 6= ∅, and is zero
otherwise.

Let’s now prove the second statement. First assume that {f ≥ x} is V-integrable, so that

µV({f ≥ x}) = µV({f ≥ x})

for all but a countable number of elements x of [inf f, sup f ]. Since two Riemann-integrable
bounded functions that differ only in a countable set of points have the same Riemann integral, we
see, using Eqs. (10) and (11), that (V)

∫
f dµ = (V)

∫
f dµ, so f is indeed V-integrable. Conversely,

assume that f is V-integrable, then it follows from Eqs. (10) and (11) that

(R)
∫ sup f

inf f

[
µV({f ≥ x})− µV({f ≥ x})

]
dx = 0.

Now the Riemann integral of a non-negative Riemann integrable function g is zero if and only if
the function g is non-zero only in its points of discontinuity (see for instance [11, p. 76]). Since
here g(x) = µV({f ≥ x}) − µV({f ≥ x}) is a difference of two non-increasing functions, it is
Riemann integrable and has at most a countable number of discontinuities. �
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4. A general notion of integrability

4.1. Integrability for exact functionals. The results of the previous sections naturally lead
us to define a notion of integrability for arbitrary exact functionals, which generalises all existing
notions of integrability mentioned before.

Let Γ be an exact functional defined on some set of gambles dom Γ ⊆ L. Let EΓ be its natural
extension. Let’s then call a gamble f on Ω Γ-integrable if EΓ(f) = EΓ(f). This means that all
the positive linear functionals on L that dominate Γ on its domain and have the same norm as
Γ, assign the same value EΓ(f) = EΓ(f) to the gamble f . We denote the set of all Γ-integrable
gambles by

LΓ =
{
f ∈ L : EΓ(f) = EΓ(f)

}
.

We denote the restriction of EΓ to LΓ by EΓ. When Γ is (essentially) a bounded positive charge
µ, then this set of integrable gambles LΓ is closely related to the Jordan field of µ, as we shall
explain in the following subsection. For now, we concentrate on the properties of the set of
integrable gambles LΓ for any exact functional Γ.

Proposition 10. LΓ is a uniformly closed linear space that contains all constant gambles, and
EΓ is a linear exact functional on LΓ whose norm is ‖Γ‖. Moreover,

LΓ =
{
f ∈ L : (∀g ∈ L)(EΓ(f + g) = EΓ(f) + EΓ(g))

}
. (12)

Proof. Consider f and g in LΓ, and non-negative real a and b. Then since EΓ is an exact
functional, we get

EΓ(af + bg) ≤ EΓ(af + bg) ≤ aEΓ(f) + bEΓ(g) = aEΓ(f) + bEΓ(g) ≤ EΓ(af + bg),

so af + bg ∈ LΓ as well. Similarly EΓ(−f) = −EΓ(f) = −EΓ(f) = EΓ(−f), so −f ∈ LΓ too.
Also for any constant gamble µ, EΓ(µ) = EΓ(µ) = µ‖Γ‖, so µ ∈ LΓ. This means that LΓ is a
linear space that contains all constant gambles, and that EΓ is a linear functional on that space.
Since EΓ is the lower envelope of all positive linear functionals on L that dominate Γ, and all
such positive linear functionals coincide with EΓ, and therefore with EΓ, on LΓ, EΓ has exact
and linear extensions to all of L, and is therefore a linear exact functional. Its norm is given by
‖EΓ‖ = EΓ(1) = EΓ(1) = ‖Γ‖.

Next, suppose that a sequence fn, n ∈ N of gambles in LΓ converges uniformly to a gamble
f . Then, because both EΓ and EΓ are continuous with respect to the supremum norm, by
exactness, we see that

EΓ(f) = lim
n→∞

EΓ(fn) = lim
n→∞

EΓ(fn) = EΓ(f),

so f ∈ LΓ as well, and LΓ is uniformly closed.
Finally, to prove that Eq. (12) holds, consider any gamble f . First assume that it belongs to

the set on the right hand side. Then for g = −f , we see that

0 = EΓ(f − f) = EΓ(f) + EΓ(−f) = EΓ(f)− EΓ(f),

so indeed f ∈ LΓ. Conversely, assume that f ∈ LΓ, and consider a arbitrary gamble g. Then
using the super-additivity of the exact functional EΓ, we get

EΓ(f+g) ≥ EΓ(f)+EΓ(g) = EΓ(f)+EΓ(f+g−f) ≥ EΓ(f)+EΓ(f+g)+EΓ(−f) = EΓ(f+g),

whence indeed EΓ(f + g) = EΓ(f) + EΓ(g). �

We have the following stronger result when EΓ is 2-monotone on a sufficiently rich domain.
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Theorem 11. If EΓ is 2-monotone on some linear lattice that includes LΓ, then LΓ is a uni-
formly closed linear lattice that contains all constant gambles.

Proof. To prove that LΓ is a uniformly closed linear lattice, it suffices to show that |f | is Γ-
integrable if f is. Let K be a linear lattice that includes LΓ. Consider f in LΓ, then both f and
|f | belong to K. Since EΓ is 2-monotone on K, we find by Lemma 12 that

0 = EΓ(f)− EΓ(f) ≥ EΓ(|f |)− EΓ(|f |) ≥ 0,

whence EΓ(|f |) = EΓ(|f |), so |f | is indeed Γ-integrable. �

Lemma 12. Let Γ be a 2-monotone exact functional defined on a linear lattice of gambles. Then
Γ(f)− Γ(f) ≥ Γ(|f |)− Γ(|f |) for all f in dom Γ.

Proof. Assume that Γ is 2-monotone on dom Γ, and let f ∈ dom Γ. Since |f | = f ∨ −f and
−|f | = f ∧ −f both belong to dom Γ, we find from the 2-monotonicity of Γ that

Γ(|f |) + Γ(−|f |) ≥ Γ(f) + Γ(−f),

and the desired inequality follows immediately. �

Corollary 13. Suppose that EΓ is 2-monotone on some linear lattice of gambles that includes
LΓ, and let f , g be two Γ-integrable gambles. Let N = {ω ∈ Ω: f(ω) 6= g(ω)}. Then

EΓ(N) = 0⇒ EΓ(|f − g|) = 0⇒ EΓ(f) = EΓ(g).

Proof. Consider two Γ-integrable gambles f and g, such that EΓ(N) = 0. Let λ = sup |f − g|,
then |f − g| ≤ INλ. Since LΓ is a linear lattice, we know that |f − g| is Γ-integrable, and
consequently

0 ≤ EΓ(|f − g|) = EΓ(|f − g|) ≤ λEΓ(N) = 0.
Since it follows from the exactness of EΓ that

0 ≤ |EΓ(f)− EΓ(g)| ≤ EΓ(|f − g|),

we find that indeed EΓ(f) = EΓ(f) = EΓ(g) = EΓ(g). �

The converses of the two implications in this corollary do not hold in general: for the first, let Γ
be a linear functional on the set of all gambles on N such that Γ(A) = 0 for any finite set A, and
let f and g be gambles such that f(n) = g(n) + 1

n for all n ∈ N; for the second consider for Γ
the infimum operator on L and let f and g be indicators of (proper and different) subsets of Ω.

4.2. Representation of natural extension by lower V-integrals.

4.2.1. V-integrability and the Jordan Extension. To complete the paper, let us consider the spe-
cial case that Γ is defined on the set L of all gambles on Ω as the completely monotone exact
functional (V)

∫
·dµ, i.e., the lower V-integral with respect to a positive bounded charge µ, defined

on a field F of subsets of Ω.
In this case, since Γ is exact on L, it coincides with its natural extension on L, and a gamble

f is Γ-integrable if and only if it is V-integrable with respect to µ:

LΓ = L(V,µ) :=
{
f ∈ L : (V)

∫
f dµ = (V)

∫
f dµ

}
.

By Theorem 11, L(V,µ) is a uniformly closed linear lattice that contains all constant gambles. Its
restriction to events is the field J(V,µ) satisfying

J(V,µ) :=
{
A ⊆ Ω: µV(A) = µV(A)

}
,
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and we deduce from Proposition 9 that f ∈ L(V,µ) if and only if {f ≥ x} ∈ J(V,µ) for all but a
countable number of x in [inf f, sup f ]. We shall sometimes use the notation µV for the restriction
of µV (or µV, it doesn’t matter which) to J(V,µ).

On the other hand, we can identify the bounded positive charge µ with a functional Γµ on
IF . Since µ is also completely monotone on F , the fourth statement of Theorem 2 tells us that
its natural extension Eµ is given by Eµ(f) = (C)

∫
f dµ∗, where µ∗ is the inner set function of

µ, given by µ∗(A) = sup {µ(B) : B ∈ F and B ⊆ A} for any A ⊆ Ω. Moreover, the conjugate
is given by Eµ(f) = (C)

∫
f dµ∗, where µ∗ is the conjugate of the inner set function µ∗, that

is, µ∗(A) = µ(Ω) − µ∗(Ac) = inf {µ(B) : B ∈ F and A ⊆ B} for any A ⊆ Ω. We also deduce
from the fourth statement of Theorem 2 that Eµ is completely monotone on all of L. The set
Lµ := LΓµ of µ-integrable (or more precisely Γµ-integrable) gambles is given by

Lµ :=
{
f ∈ L : (C)

∫
f dµ∗ = (C)

∫
f dµ∗

}
.

By Theorem 11, this is a uniformly closed linear lattice that contains all constant gambles, and
it is the largest set of gambles to which the set function µ can be uniquely extended as a linear
exact functional. Its restriction Jµ to events is the Jordan, or Carathéodory, field of µ:

Jµ = {A ⊆ Ω: µ∗(A) = µ∗(A)} ,
the largest field to which the positive bounded charge µ can be uniquely extended as a positive
bounded charge—which is usually called the Jordan extension of µ. Observe that F ⊆ Jµ. An
immediate counterpart of Proposition 9 tells us that a gamble f is µ-integrable, i.e., f ∈ Lµ,
if and only if {f ≥ x} belongs to the Jordan field Jµ for all but a countable number of x in
[inf f, sup f ].

Together with the first part of Proposition 9, we immediately infer the following interesting
characterisation of the Jordan field Jµ of a positive bounded charge µ. A similar result was
proven in a completely different way by Walley [19, Cor. 3.1.9].

Proposition 14. A subset A of Ω belongs to the Jordan field Jµ of a positive bounded charge µ
defined on a field F (or in other words, µ can be uniquely extended as a positive bounded charge
to A) if and only if for all ε > 0 there are disjoint F1 and F2 in F such that F1 ⊆ A, F2 ⊆ Ac

and µ(Ω \ (F1 ∪ F2)) < ε.

4.2.2. V-Integral Representation Theorem. We now ask ourselves what is the relationship be-
tween the sets L(V,µ) and Lµ, and between J(V,µ) and Jµ, respectively.

Proposition 15. For any A ⊆ Ω, it holds that

µV(A) ≤ µ∗(A) ≤ µ∗(A) ≤ µV(A),

and therefore also that J(V,µ) ⊆ Jµ and L(V,µ) ⊆ Lµ.

Proof. Conjugacy arguments tell us it suffices to prove that µV(A) ≤ µ∗(A). Consider any V in
V and let AV :=

⋃
{V ∈ V : V ⊆ A}. Then clearly AV ⊆ A, and since V is a finite collection of

elements of F , we have that AV ∈ F . Consequently, using (V3) and the definition of µ∗, we find
that

µ∗(A) ≥ µ(AV) =
∑

V ∈V,V⊆A

µ(V ),

and then it suffices to take the Moore–Smith limit over V ∈ V on both sides of the inequality. �

Theorem 16. The following statements are equivalent:
(i) µV coincides with µ on F ;

(ii) µV coincides with µ on F ;
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(iii) for all A in F and for any ε > 0 there is a Vε,A in V such that
∑

V ∈Vε,A,V⊆A

µ(V ) > µ(A)−ε;

(iv) for all A in F and for any ε > 0 there is a Vε,A in V such that
∑

V ∈Vε,A,V ∩A6=∅

µ(V ) < µ(A)+ε;

(v) µV coincides with µ∗ on all events;
(vi) µV coincides with µ∗ on all events;

(vii) (V)
∫
·dµ coincides with Eµ on all gambles;

(viii) (V)
∫
·dµ coincides with Eµ on all gambles;

(ix) J(V,µ) = Jµ;
(x) L(V,µ) = Lµ;

(xi) F ⊆ J(V,µ).

Proof. It is clear from conjugacy considerations that (i) and (ii) are equivalent. So are, respec-
tively, (iii) and (iv), (v) and (vi), and (vii) and (viii). Moreover, (ix) and (x) are also easily seen
to be equivalent if we look at Proposition 9 and its immediate counterpart for µ-integrability.
This nearly halves the number of things to prove. We now give of circular proof for the remaining
statements.

We first prove that (i) implies (iii). Consider any A in F , and assume that µV(A) = µ(A).
Then it follows from Eq. (9) that for every ε < 0 there is some Vε,A in V such that∑

V ∈Vε,A

PV (A)µ(V ) > µ(A)− ε.

Now observe that PV (A) equals one if V ⊆ A and is zero otherwise.
To prove that (iii) implies (v), consider A ⊆ Ω and ε > 0. It follows from the definition

of µ∗(A) that there is some Bε in F such that Bε ⊆ A and µ(Bε) > µ∗(A) − ε, and from
(iii) we deduce that there is some Vε,Bε in V such that

∑
V ∈Vε,BεV⊆Bε µ(V ) > µ(Bε) − ε and

consequently
∑
V ∈Vε,Bε ,V⊆A µ(V ) > µ∗(A)−2ε. Moreover, it follows from Lemma 5 that µV(A) ≥∑

V ∈Vε,Bε ,V⊆A µ(V ), whence µV(A) > µ∗(A) − 2ε. Since this holds for any ε > 0, we get
µV(A) ≥ µ∗(A), and the converse inequality follows from Proposition 15.

It is immediate that (v) implies (vii), because Eµ is a Choquet functional with respect to µ∗,
and (V)

∫
·dµ a Choquet functional with respect to µV.

That (vii) implies (ix) follows almost by definition of J(V,µ) and Jµ.
If (ix) holds, then (xi) follows, since always F ⊆ Jµ (because µ is monotone, so µ and µ∗ and

µ∗ coincide on F).
If (xi) holds, then µV coincides with µV on F , so it follows from Proposition 15 that it also

coincides with µ∗ and therefore also with µ on F . Therefore (i) follows. �

4.2.3. Examples of representation. If the set V is made up of all finite partitions of Ω whose
elements belong to F , as is the case for the Lebesgue, Young–Stieltjes, Dunford, and S-integral,
described in Sections 3.2.3–3.2.5, then it is easy to see that Condition (iii) is trivially satisfied,
and so, therefore, are all the others. The corresponding lower V-integrals can therefore all be
used as expressions for the natural extension Eµ of a positive bounded charge µ.

In case of Riemann integration, or more generally, Riemann–Stieltjes integration with contin-
uous F (see Sections 3.2.1 and 3.2.2), Condition (iii) is again trivially satisfied, if we take for F
the field consisting of all finite unions of intervals in [a, b] (note that this is not a σ-field), and µ
the unique charge on F that satisfies µ([x, y]) = F (y) − F (x) for every a ≤ x < y ≤ b. In the
next section, we shall prove a more general representation theorem that allows us to also treat
the case of discontinuous F .
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Let us also take a look at the consequences of Theorem 16 for Kadane and O’Hagan’s proposal
for a uniform distribution on N0, discussed in Section 3.2.6. Since the Vm defined there are
finite partitions of N0, Condition (iii) of Theorem 16 is trivially satisfied, and therefore, all the
other statements of the theorem hold as well. In particular, the lower V-integral associated
with the probability charge µ on F , given by Eq. (7), is a completely monotone coherent lower
prevision. Its restriction µV to events, given by Eq. (8), is a completely monotone coherent lower
probability, and it coincides with the inner set function µ∗ of µ. This also tells us that the
V-integral coincides everywhere with the natural extension Eµ of the probability charge µ, and
in particular, we deduce that it is the lower envelope of all linear previsions (probability charges)
that coincide with µ on F , or equivalently, that assign the value 1

m to all the residue sets Rrm
for r = 0, . . . ,m− 1 and m ∈ N. This generalises Kadane and O’Hagan’s Theorem 6 in [12].

4.2.4. A more general representation theorem. The representation result established in Theo-
rem 16 allows us to express most of the instances of lower V-integrals as the natural extension
of a finitely additive set function µ defined on a field. It cannot, however, be applied to the
Riemann-Stieljes integral associated with a discontinuous F on a compact interval [a, b]. Indeed,
the charge µ (defined on a field) induced by such F does not satisfy F ⊆ JV,µ, where, from
Section 3.2.2, V is the collection of all finite collections of closed intervals that overlap only
on their borders and whose union is [a, b]. To see that F 6⊆ J(V,µ), assume for instance that
F (x+) 6= F (x). Then µV([a, x]) = F (a)− F (x) but µV([a, x]) = F (a)− F (x+), and hence, [a, x]
belongs to F , but not to J(V,µ). As a consequence, Theorem 16 is not applicable.

In this section, we remedy this situation by proving a simple generalised version of Theorem 16,
in terms of 2-monotone set functions on lattices of events, rather than bounded positive charges
on fields. First, we establish a number of simple preliminary results.

Lemma 17. Let µ be a bounded positive charge on a field F , and let η be a 2-monotone set
function defined on all events, such that η ≤ µ. Then H := {A ∈ F : η(A) = µ(A)} is a lattice
of events.

Proof. Consider V1 and V2 in H. Then η(V1 ∩ V2) + η(V1 ∪ V2) ≤ µ(V1 ∩ V2) + µ(V1 ∪ V2) =
µ(V1)+µ(V2) = η(V1)+η(V2) ≤ η(V1∩V2)+η(V1∪V2), where the last inequality is a consequence
of the 2-monotonicity of η. Hence, η(V1 ∩ V2) = µ(V1 ∩ V2) and η(V1 ∪ V2) = µ(V1 ∩ V2), and
consequently V1∪V2 and V1∩V2 belong toH. We deduce thatH is closed under finite intersections
and unions, so it is a lattice of events. �

Now consider any V associated with the bounded positive charge µ on F , and satisfying
(V1)–(V4). Also consider the corresponding collection VV of all events V in elements V of V:

VV := {V : (∃V ∈ V)(V ∈ V)}
Since an arbitrary intersection of lattices of events is still a lattice of events, we can consider
the lattice of events LV generated by VV, i.e., the smallest lattice of events that includes VV.
Observe that VV ⊆ LV ⊆ F . The previous lemma now allows us to deduce the following
somewhat surprising result.

Corollary 18. µV and µ agree on the lattice of events LV generated by VV.

Proof. It follows from Proposition 15 that µV ≤ µ on F , and we also know that µV is in particular
2-monotone. We may therefore infer from the previous lemma that µV and µ agree on a lattice
of events. If we can show that they agree on VV, the proof is therefore complete. So consider
any V0 in V and V0 ∈ V0. Then since V is directed [(V1)], it is easy to see that

µV(V0) = lim
V∈V

∑
V ∈V,V⊆V0

µ(V ) = lim
V�V0

∑
V ∈V,V⊆V0

µ(V ).
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Now if we apply (V2) and (V3) to the set {V ∈ V : V ⊆ V0} we find that for any V � V0,∑
V ∈V,V⊆V0

µ(V ) = µ
(⋃
{V ∈ V : V ⊆ V0}

)
= µ(V0),

and consequently µV(V0) = µ(V0). �

Lemma 19. Let ν be a monotone set function defined on a lattice of events G that includes
∅ and Ω, and let µ be a bounded positive charge defined on a field F . Consider the inner set
function ν∗ of ν, defined on ℘(Ω). Then the following statements hold.
(a) ν∗ ≤ µV if and only if ν ≤ µV;
(b) ν∗ ≥ µV if and only if ν∗ dominates µV on the lattice LV generated by VV.

Proof. We begin with a proof of the first statement. The direct implication is trivial. Conversely,
assume that ν ≤ µV. Then for any subset A of Ω:

ν∗(A) = sup
B⊆A,B∈G

ν(B) ≤ sup
B⊆A,B∈G

µV(B) ≤ µV(A),

where the inequalities follow from the assumption and the monotonicity of µV.
We now turn to the proof of the second statement. Again, the direct implication is trivial.

Conversely, assume that ν∗ dominates µV on the lattice LV generated by VV. Then for any
subset A of Ω:

µV(A) = sup
V∈V

∑
V ∈V,V⊆A

µ(V ) = sup
V∈V

µ
(⋃
{V ∈ V : V ⊆ A}

)
= sup
V∈V

µV

(⋃
{V ∈ V : V ⊆ A}

)
≤ sup
V∈V

ν∗

(⋃
{V ∈ V : V ⊆ A}

)
≤ ν∗(A),

where the second equality follows from (V3), the third equality from Corollary 18, the first
inequality from the assumption, and the last inequality from the monotonicity of ν∗. �

The following theorem generalises Theorem 16. It gives necessary and sufficient conditions for
the natural extension Eν of a 2-monotone set function ν to coincide with the lower V-integral
generated by some bounded positive charge µ. Such a 2-monotone set function obviously has to
be completely monotone (this follows for instance from (iv) below), amongst other things.

Theorem 20. Let ν be a 2-monotone set function defined on a lattice of events G that contains
∅ and Ω, and let µ be a positive bounded charge defined a field F . Then the following statements
are equivalent:

(i) ν is a restriction of µV, and for all A ⊆ Ω, and all ε > 0, there is a Bε ∈ G such that
Bε ⊆ A and µV(A)− µV(Bε) < ε.

(ii) µV coincides with ν∗ on all events;
(iii) (V)

∫
·dµ coincides with Eν on all gambles;

(iv) ν is a restriction of µV and ν∗ and µ coincide on the lattice of events LV generated by VV.

Proof. (i) =⇒ (ii). From Lemma 19, we deduce that µV ≥ ν∗ on all events. Let A ⊆ Ω,
ε > 0. By assumption, there is a subset Bε ∈ G of A such that µV(A)− µV(Bε) < ε. Therefore,
µV(A) < ν(Bε) + ε ≤ ν∗(A) + ε, for all ε > 0, and consequently µV(A) ≤ ν∗(A). Hence, µV = ν∗.

(ii) =⇒ (i). If µV coincides with ν∗ on all events, then obviously ν must be a restriction of
µV. By definition of ν∗, for every A ⊆ Ω and every ε > 0, there is a subset Bε ∈ G of A such that
ν∗(A)− ν(Bε) < ε. Now, ν∗(A) = µV(A) and ν(Bε) = ν∗(Bε) = µV(Bε) by assumption, whence
µV(A)− µV(Bε) < ε.
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(ii) =⇒ (iv). Given A ∈ G, we have that ν(A) = ν∗(A) = µV(A), hence the first statement
holds. For the second statement, simply use Corollary 18.

(iv) =⇒ (ii). Immediate by Lemma 19.
The proof of the equivalence between (ii) and (iii) is similar to that in Theorem 16. �

Note that we can trivially use conjugacy considerations to establish similar equivalences in-
volving µV, ν

∗ and (V)
∫
·dµ, in the manner of Theorem 16.

One of the advantages of this theorem over Theorem 16 is its applicability to any lower V-
integral. Moreover, we can always choose ν to be finitely additive, as the following corollary
shows.

Corollary 21. Let µ be a bounded positive charge defined on a field F of subsets of Ω, and let
ν be its restriction to the lattice of events LV generated by VV. Then for µ and ν the equivalent
statements in Theorem 20 hold.

Proof. Check that Theorem 20(iv) holds. This follows immediately from Corollary 18. �

Hence, also Riemann–Stieltjes integrals associated with a discontinuous F on a compact in-
terval [a, b] can be represented by the natural extension of a finitely additive set function defined
on a lattice. Consider the finitely additive set function ν, defined on the lattice generated by all
closed intervals, and uniquely determined by ν([x, y]) = F (y) − F (x) for any a ≤ x ≤ y ≤ b.
Obviously, ν([x, y]) = µV([x, y]), and hence, the natural extension of ν does coincide with the
lower Riemann–Stieltjes integral with respect to F , regardless of the continuity properties of F .

5. Conclusions

The notions of lower and upper integral for positive bounded charges that we have introduced
in this paper subsume as particular cases most of the existing notions in the literature. As such,
we think that they are general enough to capture the ideas underlying these different notions,
while keeping at the same time interesting mathematical properties. For instance, we see from
our results that most (if not all) of the lower integrals defined in the literature are actually
instances of completely monotone exact functionals. As a consequence, they are representable
as a Choquet functional with respect to a completely monotone set function (the restriction to
events).

Moreover, the use of completely monotone set functions brings together a number of fields
that may seem apart at first sight. For instance, our results are related to game theory through
the use of exact functionals. Also, the vacuous lower previsions that we use in our definition of
the lower V-integral can be seen as the Choquet integrals with respect to a unanimity game. The
equivalence between 2-monotone and comonotone additive functionals relates our results to the
field of economics. And finally, the main results in this paper indicate that exact functionals (and
therefore also the coherent lower previsions encountered in the theory of imprecise probabilities)
have important things to say in the field of classical measure theory.

The representation theorems we have given tell us that we can use most notions of lower
integral to calculate the natural extension of bounded charges, and of some finitely additive set
functions. This natural extension is moreover the smallest exact functional which extends the
probability charge to all gambles. Finally, let us remark that the second, and more general
representation theorem has been possible because we have not required completely monotone set
functions to be defined on fields of events, but only on lattices.
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