
Analysis 1 Problems (Epiphany Term 2015)

Remarks:

• Some problems need some explanations. These explanations are usually given
right before the questions and are highlighted in boldface.

• Questions which are particularly difficult are marked by a star ”*”. If they
are extraordinarily difficult, we mark then by two stars ”**”.

8 Differentiable functions

111. Let f : R → R be differentiable at x = c with f(c) 6= 0. Show that 1/f is also
differentiable at c and that

(1/f)′(c) = − f ′(c)

f 2(c)
.

112. Let f : (α, β) → (a, b) and g : (a, b) → (α, β) be inverse functions of each
other, i.e., f ◦ g = id(a,b).

(a) Let c ∈ (a, b). Assume that f is differentiable at g(c) and that g is
differentable at c. Show that

g′(c) =
1

f ′(g(c))
. (1)

(b) Let f : (0, π) → (−1, 1) be f(x) = cosx. Using (a) and the derivative
of cosx and assuming differentiability of f and of its inverse function
arccos(x), calculate the derivative of the function arccos(x) at x = c.

113. Let

f(x) =

{

x2 sin(1/x) if x 6= 0,

0 if x = 0.

Show that f is differentiable at x = 0. Check whether f ′ is continuous at
x = 0.

114. Show that between any two real solutions of ex sin x = 1 is at least one real
solution of ex cos x = −1. [Hint: Consider the function e−x − sin x.]
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115. Let fn(x) = (x2 − 1)n. The Legendre polynomial of order n ∈ N is defined by

pn(x) =
1

2nn!
f (n)
n (x).

Using Rolle’s Theorem, show that pn has exactly n pairwise different zeroes
in (−1, 1).

116. Verify the classical Mean Value Theorem for f(x) = 2x2 − 7x+ 10 on [a, b] =
[2, 5].

117. (a) Let 0 < a < b. Prove that

1− a

b
< log

(

b

a

)

<
b

a
− 1.

(b) Use (a) to show that
1

6
< log(1.2) <

1

5
.

118. * Let f(x) be a real-valued differentiable function on (a, b).
(a) Show that if f ′(x) ≡ 0 then f is a constant function.
(b) Show that if f ′(x) > 0 for x ∈ (a, b) then f is strictly monotone increasing.
(c) Show that if f is continuous on [a, b] and satisfies t ≤ f ′(x) ≤ T on (a, b)
then t(y − x) ≤ f(y)− f(x) ≤ T (y − x) for all x, y such that a ≤ x ≤ y ≤ b.

119. Let sinh(x) = ex−e−x

2
and cosh(x) = ex+e−x

2
. Note that sinh′(x) = cosh(x) and

cosh2(x) = 1+ sinh2(x) and, by the previous exercise, sinh : R → R is strictly
monotone increasing and, therefore, invertible. Its inverse function is denoted
by Ar sinh : R → R.

(a) Calculate Ar sinh via the explicit expression of of sinh and derive Ar sinh′(y).

(b) Using the formula (1), calculate Ar sinh′(y) from the derivative of sinh.

120. In this question you may use without proof that arctan′(x) = 1/(1 + x2).

(a) Let 0 < a < b. Prove that

b− a

1 + b2
< arctan(b)− arctan(a) <

b− a

1 + a2
.

(b) Show that
π

4
+

3

25
< arctan(4/3) <

π

4
+

1

6
.

121. * Prove L’Hop̂ital’s Rule using the Generalised Mean Value Theorem or, more
precisely, the identity

0 = (g(b)− g(a))f ′(c)− (f(b)− f(a))g′(c)

for some c ∈ (a, b). In your proof, make sure that you do not carry out a
division by zero.

122. Evaluate limx→1
1+cos(πx)
x2−2x+1

.
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123. Evaluate limx→0
x−sinx

x3 .

124. Let g : R → R be differentiable and

f(x) =

{

g(x)
x

if x 6= 0,

0 if x = 0,

and g(0) = g′(0) = 0 and limx→0 g
′′(x) = 17. Find f ′(0).

125. Use Newton’s method to to calculate a positive root of 5 sinx = 4x to three
decimal digits.

9 Infinite series

126. Determine whether or not the series Σ∞
n=1(2 + n)/

√
4n4 − 1 converges.

127. Determine whether or not the series Σ∞
n=1

√
n/(n3 + 1) converges.

128. Determine whether or not the series
∑∞

n=1 sin(2
n)/2n converges.

129. Determine whether or not the series
∑∞

n=1(n− 3)(2 + 9n6)−1/2 converges.

130. Use the comparison test to decide whether or not
∑∞

n=1 xn converges in each
of the following cases. (You may assume that

∑∞
n=1 n

−α converges iff α > 1.)
(a) xn = n/

√
1 + n6 (b) xn = 1/(n+

√
n) (c) xn = (3− n

√
n)/n6

(d) xn = n!n2/(n + 3)! (e) xn = n2 exp(−√
n) (f) xn = (n cosn)/(n3 +

log n)
(g) xn = n−1 sin(n−1) [Use sin θ < θ for θ > 0] (h) xn = n−2(logn)4

(i) xn =
√
1 + n2 − n.

131. For which values of α do the following series converge?

(a)
∑∞

n=1(n
2 + 1)−α log(1 + 1

n
) (b)

∑∞
n=1 n

α
(

1√
n
− 1√

n+1

)

.

132. Show that the series (x1 − x2) + (x2 − x3) + (x3 − x4) + . . . converges if and
only if the sequence {xn} tends to a limit as n → ∞.

133. If
∑∞

n=1 xn converges to s, and yn = (xn + xn+1)/2 for all n, does
∑∞

n=1 yn
converge, and if so to what?

134. Given that
∑∞

n=1 xn converges, and
∑∞

n=1 yn converges absolutely, prove that
∑∞

n=1 xnyn converges absolutely. If we knew only that
∑∞

n=1 xn and
∑∞

n=1 yn
converged, would it follow that

∑∞
n=1 xnyn converged as well?

135. Determine whether or not each of the following series converges.
(a)

∑∞
n=3 tan(π/n) cos(nπ) (b)

∑∞
n=2 n

−1(log n)−3 (c)
∑∞

n=1(2n)! 5
−n(n!)−2

136. Determine whether or not each of the following series converges.

(a)

∞
∑

n=1

1

(−1)n
√
n tanhn

(b)

∞
∑

n=1

2n(2n)!

9n(n!)2
(c)

∞
∑

n=1

n− 1

(n2 + 2)(n2 + 1)1/4
.
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137. Discuss whether or not
∑∞

n=1 xn converges in each of the following cases.
(a) xn = (n!)2/(2n)! (b) xn = 1/[(n+ 1) log(n+ 1)]
(c) xn = (cosπn)/(n log(n+ 1)).

138. For what values of α does the series
∑∞

n=1 xn converge, in each of the following
cases? [Be careful to investigate all real values of α. In each case except (c),
use the ratio test first, and then deal with the remaining values of α separately.]
(a) xn = αnnα (b) xn = αn−1/(n3n) (c) xn = n−1(log(n + 1))−α (d)
xn = n!αn

(e) xn = nαn/(2n(3n−1)). [For (c): first compare with yn = (n+1)−1(log(n+
1))−α].

139. Find values of z for which the series
∑

an(z − z0)
n converges in the following

cases:
(a) z0 = 0, an = 1/n!; (b) z0 = 1, an = 1/(n − 1)!, n > 1; (c) z0 = 0,
an = cn; (d) z0 = 0, an = n; (e) z0 = 0, an = n!.

140. Determine whether or not the following series converge:
(a) Σ∞

n=1n
2 2−n (b) Σ∞

n=1[1 + exp(−n)]/[(n + 1)2 − (n− 1)2]
(c) Σ∞

n=1n
−2 log n (d) Σ∞

n=1n! 2
n n−n

141. * Test the following series for convergence:

∞
∑

n=1

[

n4 sin2

(

2n

3n3 − 2n2 + 5

)]n

.

142. * Test the following series for convergence:

∞
∑

n=1

(3n− 1)!− 4n+1

(3n)!
.

143. ** Test the following series for convergence:

∞
∑

n=2

(−1)n

n + (−1)n
.

144. * This problem is dedicated to the proof of Raabe’s Test for series
∑

an,
stating the following: Assume that we have

lim
k→∞

k

(

1− |ak+1|
|ak|

)

= L > 1. (2)

Then the series
∑

an converges absolutely.

(a) Let (2) be satisfied. Show that then there exist N ∈ N and ǫ > 0 such
that for all k ≥ N :

|ak| ≤
1

ǫ
((k − 1)|ak| − k|ak+1|) .
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(b) Conclude from (a) that we have for all M ≥ N :

M
∑

k=N

|ak| ≤
N − 1

ǫ
|aN |.

(c) Conclude from (b) that cM =
∑M

k=N |ak| is convergent and, therefore,
∑

ak is absolute convergent.

145. Let
∑

ak be given by

ak =

(

1 · 4 · 7 · · · (3k − 2)

3 · 6 · 9 · · · (3k)

)2

.

(a) Check that the Ratio Test fails for this series.

(b) Apply Raabe’s Test introduced in the previous problem and prove con-
vergence of the series.

146. * Assume that
∑∞

k=1 ak is conditionally convergent. Let a+n = max{an, 0} and
a−n = min{an, 0} and s+n =

∑n
k=1 a

+
k and s−n =

∑n
k=1 a

−
k . Show that both

∑

a+n
and

∑

a−n contain infinitely many nonzero terms and that neither of them is
convergent. Therefore, the sequence of partial sums s+n is not bounded above
and s−n is not bounded below.

147. * Using the results from the previous problem, we now give an explanation
why conditionally convergent series

∑

ak can be rearranged to converge to any
given limit s∗ ∈ R. Since s+n is monotone increasing and unbounde, there exists
a smallest index n1 with s+n1−1 ≤ s∗ ≤ s+n1

. Assuming that all the zero terms
in a+n and a−n have been discarded, the first n1 terms in the rearrangement are
then a+1 + a+2 + · · ·+ a+n1

. We denote this value by

U1 = a+1 + a+2 + · · ·+ a+n1
≥ s∗.

Now we add terms from a−k , stopping at the smallest index when the sum
satisfies

U1 + a−1 + a−2 + · · ·+ a−m1
< s∗,

and we introduce
L1 = a−1 + a−2 + · · ·+ a−m1

.

Find now the right arguments to define U2 = a+n1+1 + · · ·+ a+n2
and U3, U4, . . .

and L2, L3, . . . . Explain that this procedure never stops and that the sequences

sUk = U1 + L1 + U2 + L2 + · · ·+ Uk

and
sLk = U1 + L1 + U2 + L2 + · · ·+ Uk + Lk

converge from above and below to s∗. This provides you with the rearrange-
ment of

∑

ak converging to s∗.

148. Show that the Cauchy product is not necessarily convergent if both series
∑

ak and
∑

bk are only conditionally convergent by discussing the choice

ak = bk =
(−1)n√
n+1

.
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149. Calculate limn→∞ zn in each of the following cases (or show that no limit
exists).
(a) zn = exp(in2)/(1 + in2) (b) zn = n2 exp(in2 − n)
(c) zn = exp(iπn/

√
16n2 + 1)

√
2n2 + 1/(n+ i) (d) zn = 2n exp(inπ)/(n+ i)

150. Determine whether or not Σ∞
n=1zn converges, in each of the following cases.

(a) zn = 1/(n+ i) (b) zn = 1/(n2 + i)
(c) zn = (5 + 2i)n/n! (d) zn = (n+ 2i)4 exp(in4 − n)

10 Integrals

151. Let Pn denote the partition of [0, 1] into n subintervals of equal length (so that
Pn = {0, 1/n, 2/n, . . . , 1}).
(a) Write down the upper and lower Riemann sums for the function f(x) = e−x

with respect to Pn.
(b) Use these to show that e−x is Riemann integrable on [0, 1].

(c) Evaluate
∫ 1

0
e−x dx directly, express L(f,Pn) as a partial sum of a geometric

series, and and use the fact that L(f,Pn) →
∫ 1

0
e−x dx as n → ∞ to deduce

that limn→∞ n(e1/n − 1) = 1.

152. Let Pn denote the partition of [1, 2] into n subintervals of equal length. Write
down the upper and lower Riemann sums of f(x) = log x with respect to
Pn, and use these to show that f is Riemann integrable on [1, 2]. Show that

limn→∞ L(f,Pn) =
∫ 2

1
f(x) dx, evaluate the integral directly, and deduce that

[(

1 +
1

n

)(

1 +
2

n

)(

1 +
3

n

)

. . .

(

1 +
n− 1

n

)]1/n

→ 4

e
as n → ∞.

153. Let Pn denote the partition of the interval [1, 2] into n subintervals of equal
length. For n = 2 and n = 4 compute the Riemann sums U(f,Pn) and

L(f,Pn) which approximate I =
∫ 2

1
dx/x. Tabulate the difference between I

and each of these four approximations, working to 4 decimal places.

154. Show that

lim
n→∞

1

n

(

sin(
π

2n
) + sin(

2π

2n
) + sin(

3π

2n
) + · · ·+ sin(

nπ

2n

)

=
2

π
.

155. Show that

lim
n→∞

(

1

n + 1
+

1

n+ 2
+

1

n+ 3
+ · · ·+ 1

2n

)

= log(2).

156. Let a, b be two real numbers and a < b. Recall that a function f : [a, b] → R

is called uniformly continuous if, for every ǫ > 0 there exists δ > 0 such that
for all x, y ∈ [a, b] with |y − x| < δ we have

|f(y)− f(x)| < ǫ.
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Show that every uniformly continuous function f : [a, b] → R is Riemann inte-
grable. (Since every continuous function f on a compact interval is uniformly
continuous, we see that all continuous functions defined on compact intervals
are Riemann integrable.)

157. * Let f : [0, 1] → R be defined as follows: f(x) = 0 if x ∈ [0, 1] is irrational
and f(x) = 1/q if x ∈ [0, 1] is rational of the form x = p/q with p, q ∈
N ∪ {0} without common factors. Show that f is Riemann integrable and

that
∫ 1

0
f(x)dx = 0. [Hint: We always have L(f,P) = 0. So you need to find

partitions which make the upper Riemann sum arbitrarily small.]

158. Prove that lim
k→∞

∫ 2π

0

sin(kx)

x2 + k2
dx = 0.

159. Prove that

∣

∣

∣

∣

∣

∫

√
3

1

e−x sin(x)

x2 + 1
dx

∣

∣

∣

∣

∣

≤ π

12e
.

160. * In this problem we present a clever way to calculate directly the integral
∫ b

a
xpdx for 0 < a < b and p ∈ N. We use partitions Pn = {a = x0, x1, . . . , xn =

b} for which the ratios xi/xi−1 are constant (and not the differences xi−xi−1).

(a) Show that we have xi = aci/n with c = b/a.

(b) Using f(x) = xp, show that

U(f,Pn) = ap+1(1− c−1/n)

n
∑

i=1

(

c(p+1)/n
)i

= (ap+1 − bp+1)c(p+1)/n 1− c−1/n

1− c(p+1)/n

= (bp+1 − ap+1) · cp/n · 1

1 + c1/n + c2/n + · · ·+ cp/n
.

Find a similar formula for L(f,Pn).

(c) Conclude that we have

∫ b

a

xpdx =
bp+1 − ap+1

p+ 1
.

161. Show that there exist values ξ1, ξ2 ∈ [0, 1] such that

∫ 1

0

sin(πx)

1 + x2
dx =

2

π(ξ21 + 1)
=

π

4
sin(ξ2π).

162. (a) Use the Mean Value Theorem for Integrals (Theorem 10.9) to derive the
following fact: Let f : [a, b] → R be continuous. Then there exists
c ∈ [a, b] such that

∫ b

a

f(x)dx = (b− a)f(c).

(b) Prove the following fact directly using (a): Let f : [a, b] → R be continu-
ous and F (c) =

∫ c

a
f(x)dx. Then F is continuous on [a, b].
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163. Use the results in the previous problem to prove the Fundamental Theorem
of Calculus: Let f : [a, b] → R be continuous and F (c) =

∫ c

a
f(x)dx. Then F

is differentiable and we have F ′(c) = f(c). It is sufficient if you restrict your
arguments to the case c ∈ (a, b).

164. Calculate lim
c→0

∫ c

0
sin(x3)dx

c4
.

165. Calculate lim
x→π/2

ex2/π − eπ/4 +
∫ π/2

x
esin tdt

1 + cos(2x)
.

166. Let f(x) =

∫ x3+x

1

(t2 + t+ 1)dt. Show that

f ′(x) = 3x8 + 7x6 + 3x5 + 5x4 + 4x3 + 4x2 + x+ 1.

167. Let f, g : [a, b] → R be continuous. This problem ist concerned with the proof
of Schwarz’s inequality:

(
∫ b

a

f(x)g(x)dx

)2

≤
∫ b

a

(f(x))2dx

∫ b

a

(g(x))2dx. (3)

(a) Let A =
∫ b

a
(f(x))2dx, B =

∫ b

a
(g(x))2dx and C =

∫ b

a
f(x)g(x)dx. W.l.o.g.

assume that B 6= 0. Derive from

∫ b

a

(f(x) + λg(x))2dx ≥ 0 for all λ ∈ R

that C2−AB ≤ 0. [Hint: Here you may use the fact that the discriminant
b2 − 4ac of a non-negative quadratic polynomial p(x) = ax2 + bx+ c with
p(x) ≥ 0 for all x ∈ R must be non-positive.]

(b) Conclude Schwarz’s inequality from (a).

168. Let f, g : [a, b] → R be continuous and g be not identically zero. Use the proof
of the previous problem that equality in (3) implies that there exists λ ∈ R

with f = λg.

169. Determine whether or not the following integrals converge.
(a)

∫∞
0
(cosx)/(x+ex) dx (b)

∫∞
1
(x+

√
x)−1 dx (c)

∫∞
1

√

(6 + x)/(1 + x6) dx

(d)
∫∞
0

x2e−x dx [Do in two different ways.] (e)
∫∞
1
(1+x3)−1/2 dx (f)

∫ 1

0
x−3/2e−x dx

(g)
∫ 1

0
e−x/

√
x dx (h)

∫ 1

0
x/

√
1− x2 dx (i)

∫ 1

0
x−1/3 cosx dx (j)

∫ 1

0

√
x− x2/x dx

170. If
∫∞
1

f(x) dx converges and limx→∞ f(x) = L, prove that L = 0.

171. Let f(x) be continuous for x ≥ 0 and differentable for x > 0. Suppose that
you want to use integration by parts on [0, R] to express

∫∞
0

xf ′(x) dx in terms
of f and

∫∞
0

f(x) dx. (Here f ′ denotes the derivative of f .) Find conditions
on f which make such a formula valid.

172. Determine whether or not
∫ 2

0
x(16−x4)−1/2 dx converges, by (a) actually doing

the integral [Hint: u = x2]; and (b) comparison, without doing the integral.
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173. Determine whether or not
∫ 1

0
(log x)2 dx converges, by (a) actually doing the in-

tegral [Look it up if necessary]; and (b) comparison, without doing the integral
[Hint: use the fact that x1/4 log x → 0 as x → 0].

174. Determine whether or not
∫ π/2

0
(tan x)3 dx converges. [Hint: do

∫ c

0
for c < π/2:

look at up, or use tan2 = sec2−1. Alternatively, use comparison.]

175. For each of the following integrals, determine all the values of α for which the
integral converges. (a)

∫ 1

0
x−α cosx dx (b)

∫ 1

0
(x+1/x)α dx (c)

∫ 1

0
(sin x)−α dx

(d)
∫ 1

0
x−α sin x dx (e)

∫∞
0

xα−1/(1 + x) dx.

176. Discuss the convergence of the integral
∫∞
0

x−4/3 sin x dx.
[Use sin x ≤ x for 0 ≤ x ≤ 1.]

177. For which values of the real parameter c does
∫∞
0

xc/
√
x2 + x dx converge?

178. For which real values of p does
∫∞
0

x−pe−x sin(x) dx converge?
[Use 2x/π ≤ sin x ≤ x for 0 ≤ x ≤ π/2.]

179. For which real values of p does
∫∞
0
(x+ x2)−p dx converge?

180. * Assume that f : [0,∞) → R is continuous and limx→∞ f(x) = a. Show that

lim
c→∞

1

c

∫ c

0

f(x)dx = a.

11 Sequences of functions and uniform conver-

gence

181. Find the pointwise limit of the functions fn : R → R,

fn(x) =











0 if x ≤ n,

x− n if n < x ≤ n + 1,

0 if n + 1 < x,

and decide whether the convergence is uniform.

182. Find the pointwise limit of the functions fn : (1,∞) → R,

fn(x) =
ex

xn

and decide whether the convergence is uniform.

183. Find the pointwise limit of the functions fn : [−1, 1] → R,

fn(x) = e−nx2

and decide whether the convergence is uniform.
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184. Find the pointwise limit of the functions fn : R → R,

fn(x) = 1− e−x2

n

and decide whether the convergence is uniform.

185. Find the pointwise limit of the functions fn : [0, 1] → R,

fn(x) = xn − x2n

and decide whether the convergence is uniform. [Hint: For each n, find the
maximum of fn − f on [0, 1].]

186. Find the pointwise limit of the functions fn : [0,∞) → R,

fn(x) =
nx

1 + n+ x

and decide whether the convergence is uniform. [Hint: For each n, consider
|fn(x)− f(x)| for large x.]

187. Find the pointwise limit of the functions fn : [0,∞) → R,

fn(x) =

√

x2 +
1

n2

and decide whether the convergence is uniform. [Hint: Express |fn(x)− f(x)|
as a fraction.]

188. Give a proof of Theorem 11.5, i.e., the following fact: Let I = [a, b] and
fn : [a, b] → R be a sequence of continuous functions. If fn → f uniformly,
then we have for all c ∈ [a, b]

∫ c

a

fn(x)dx →
∫ c

a

f(x)dx.

189. Let a, b ∈ R with a < b. For every f ∈ C([a, b]) we define

‖f‖∞ = sup
x∈[a,b]

|f(x)|.

Show that ‖ · ‖∞ : C([a, b]) → [0,∞) satisfies the following properties (these
are precisely the axioms of a norm):

(a) ‖f‖∞ = 0 if and only if f ∈ C([a, b]) is identically zero.

(b) ‖λf‖∞ = |λ| · ‖f‖∞ for all λ ∈ R and all f ∈ C([a, b]).

(c) Triangle Inequality: ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ for all f, g ∈ C([a, b]).

190. ** Recall that C([a, b]) carries the structure of a real vector space. Moreover,
‖ · ‖∞ defines a norm on this vector space, which allows us to understand the
expression ‖f − g‖∞ as a kind of distance between the vectors f and g (like

‖v − w‖ = (
∑n

i=1(vi − wi)
2)

1/2
can be understood as the distance between
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the vectors v, w in the real vector space R
n). The norm allows us to define

convergence fn → f in C([a, b]) and Cauchy sequences fn in C([a, b]). For a
sequence fn ∈ C([a, b] and a function f ∈ C([a, b]), we say fn converges to f
(in short “fn → f in C([a, b])” if

‖fn − f‖∞ → 0 as n → ∞.

A sequence fn ∈ C([a, b]) is called a Cauchy sequence, if for all ǫ > 0 there
exists N ∈ N such that for all n,m ≥ N we have

‖fn − fm‖∞ < ǫ.

Prove the following fact about the normed real vector space C([a, b]):

Everg Cauchy sequence in C([a, b]) is convergent, i.e., if fn ∈ C([a, b]) is a
Cauchy sequence then there exist a function f ∈ C([a, b]) such that fn → f in
C([a, b]).

Normed vector spaces with this property are called complete normed vector
spaces or Banach spaces and play an important role in Analysis. We already
discussed Completeness of the space R of real numbers, and the Completeness
Axiom can be reformulated as the fact that every Cauchy sequence in R is
convergent.

12 Power series and Taylor series

191. If Σanz
n has finite radius of convergence R, what is the radius of convergence

of Σanz
2n? (Give a proof of your answer.)

192. Calculate the radius of convergence R of the power series Σanz
n in each of the

following cases.
(a) an = (2n)!/(n!)2 (b) an = (3n + 4)/2n (c) an = (2n)!/nn

(d) an = (3n)!/[2n(n!)3] (e) an = (−1)ninn2/3n (f) an = 210n/n!
(g) an = 2n/(3n + 1)

193. Calculate the radius of convergence R of the power series Σ[(−1)n/2n]z2n.

194. Calculate the radius of convergence R of the power series

∞
∑

n=1

1

2n2
zn.

195. Use the nth root test to find the radius of convergence of the power series

∞
∑

n=1

n!

nn
zn.

You may use without proof the following estimate for n! (which is called Stir-
ling’s formula):

√
2πnnne−n < n! <

√
2πnnne−ne1/(12n).

11



196. Use the nth root test to find the radius of convergence of the power series

∞
∑

n=1

anz
n

where

an =

{

2k, if n = k!,

1, otherwise.

197. Let
∑

anz
n and

∑

bnz
n with |an| ≤ bn. Show that the radius of convergence

of
∑

bnz
n must be smaller or equal to the radius of convergence of

∑

anz
n.

198. Define un(x) = x3(1 + x2)−n for n = 1, 2, . . .. Show that Σ∞
n=1un(x) converges

to a rather simple function f(x). [Hint: geometric series.] Compute df/dx =
d(Σun)/dx and Σ∞

n=1dun/dx at x = 0: are they equal?

199. Define un(x) = nx exp[−nx2]− (n−1)x exp[−(n−1)x2] for n = 1, 2, . . .. Show
that Σ∞

n=1un(x) converges to a rather simple function f(x). [Hint: write out the

partial sum Sk(x).] Compute
∫ 1

0
f(x) dx =

∫ 1

0
Σun(x) dx and Σ∞

n=1

∫ 1

0
un dx:

are they equal?

200. Prove that
1

(n+ 1)!
+

1

(n + 2)!
+ · · · < 1

(n+ 1)!
· n+ 2

n+ 1
. (4)

Deduce that

0 < e−
(

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!

)

<
1

100

and conclude that 2.7083 < e < 2.7184.

201. ** Prove the e is irrational. [Hint: Assume that e = p/q, where p, q are natural
numbers and seek a contradiction using inequality (4).]

202. Prove that the following series converge uniformly in the given regions (a)
∑∞

n=1
πn

n4 x
2n, |x| ≤ 0.56 (b)

∑∞
n=1

sin(n|x|)
n2 all x

(c)
∑∞

n=1
nxn

n3+|x| |x| ≤ 1

203. Prove that the series ∞
∑

n=1

x

n(1 + nx2)

converges uniformly on R.

204. Prove that the series

f(x) =
∞
∑

n=0

nx

1 + n4x2

converges uniformly on [a,∞) for a > 0. [Hint: Find the maximum of nx/(1+
n4x2) on [0,∞).]
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205. Let f be as in the previous problem, i.e.,

f(x) =

∞
∑

n=0

nx

1 + n4x2
.

Show that f(1/N2) ≥ (N2/2)
∑

n≥N 1/n3 and, by using an integral to estimate
the sum, show that f(1/N2) ≥ 1/4. Conclude from this that the series does
not converge uniformly on R.

206. Use the Taylor series of ex, log(1 + x), 1/(1 − x), sin x and cos x to derive
the first three non-zero terms in the Taylor expansions about x = 0 of the
following functions.
(a) cos2 x (b) sin(x2) (c) ex sin x (d) 1/(1 + x2)
(e) x/(1 + x3) (f) (1 + x2)−2 (g) [exp(x4)− 1]/x3

(h) (1− x)−3 (i) exp(x2) sin(x2) (j) exp[1/(1− 2x)] (k) exp(exp x)
(l) log(1 + 2x2) (m) [log(1 + x)]2

207. Let f : R → R be defined by

f(x) =

{

e−1/x2

, if x 6= 0,

0, if x = 0.
.

Show that, for any x 6= 0,

f (k)(x) = pk(1/x)e
−1/x2

,

where pk is a polynomial of degree 3k. Deduce that, for every k ∈ N ∪ {0},
f (k)(x)

x
→ 0 as x → 0+.

Hence show that f can be differentiated infinitely many times at x = 0 and
f (k)(0) = 0 for all k ∈ N ∪ {0}. For which values of x ∈ R does the Taylor
series of f converge to f(x)?

208. Evaluate the following infinite sums via manipulations of well-known power
series:

(a)

∞
∑

n=0

(−1)n22nπ2n

(2n)!
.

(b)

∞
∑

n=0

1

(2n)!
.

(c)
∞
∑

n=0

(2n+ 1)

(

1

2

)2n+1

.

209. By multiplying the Taylor series for sin(x) and cos(x), verify that

2 sin(x) cos(x) = sin(2x).

[Hint: You may use that
∑n

k=0

(

2n+1
2k+1

)

= 22n which you can prove via the
Binomial formula.]

210. Let f(x) = (sin x)/x for x 6= 0 and f(0) = 1. Determine f (k)(0) for all k ∈ N.
[Hint: Find a power series representing f(x).]

13


