Analysis 1 Problems (Epiphany Term 2015)

Remarks:

- Some problems need some explanations. These explanations are usually given right before the questions and are highlighted in boldface.
- Questions which are particularly difficult are marked by a star "*". If they are extraordinarily difficult, we mark then by two stars "**".

8 Differentiable functions

111. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x=c$ with $f(c) \neq 0$. Show that $1 / f$ is also differentiable at c and that

$$
(1 / f)^{\prime}(c)=-\frac{f^{\prime}(c)}{f^{2}(c)}
$$

112. Let $f:(\alpha, \beta) \rightarrow(a, b)$ and $g:(a, b) \rightarrow(\alpha, \beta)$ be inverse functions of each other, i.e., $f \circ g=\operatorname{id}_{(a, b)}$.
(a) Let $c \in(a, b)$. Assume that f is differentiable at $g(c)$ and that g is differentable at c. Show that

$$
\begin{equation*}
g^{\prime}(c)=\frac{1}{f^{\prime}(g(c))} \tag{1}
\end{equation*}
$$

(b) Let $f:(0, \pi) \rightarrow(-1,1)$ be $f(x)=\cos x$. Using (a) and the derivative of $\cos x$ and assuming differentiability of f and of its inverse function $\arccos (x)$, calculate the derivative of the function $\arccos (x)$ at $x=c$.
113. Let

$$
f(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that f is differentiable at $x=0$. Check whether f^{\prime} is continuous at $x=0$.
114. Show that between any two real solutions of $e^{x} \sin x=1$ is at least one real solution of $e^{x} \cos x=-1$. [Hint: Consider the function $e^{-x}-\sin x$.]
115. Let $f_{n}(x)=\left(x^{2}-1\right)^{n}$. The Legendre polynomial of order $n \in \mathbb{N}$ is defined by

$$
p_{n}(x)=\frac{1}{2^{n} n!} f_{n}^{(n)}(x)
$$

Using Rolle's Theorem, show that p_{n} has exactly n pairwise different zeroes in $(-1,1)$.
116. Verify the classical Mean Value Theorem for $f(x)=2 x^{2}-7 x+10$ on $[a, b]=$ $[2,5]$.
117. (a) Let $0<a<b$. Prove that

$$
1-\frac{a}{b}<\log \left(\frac{b}{a}\right)<\frac{b}{a}-1 .
$$

(b) Use (a) to show that

$$
\frac{1}{6}<\log (1.2)<\frac{1}{5}
$$

118. * Let $f(x)$ be a real-valued differentiable function on (a, b).
(a) Show that if $f^{\prime}(x) \equiv 0$ then f is a constant function.
(b) Show that if $f^{\prime}(x)>0$ for $x \in(a, b)$ then f is strictly monotone increasing.
(c) Show that if f is continuous on $[a, b]$ and satisfies $t \leq f^{\prime}(x) \leq T$ on (a, b) then $t(y-x) \leq f(y)-f(x) \leq T(y-x)$ for all x, y such that $a \leq x \leq y \leq b$.
119. Let $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$ and $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$. Note that $\sinh ^{\prime}(x)=\cosh (x)$ and $\cosh ^{2}(x)=1+\sinh ^{2}(x)$ and, by the previous exercise, $\sinh : \mathbb{R} \rightarrow \mathbb{R}$ is strictly monotone increasing and, therefore, invertible. Its inverse function is denoted by Arsinh : $\mathbb{R} \rightarrow \mathbb{R}$.
(a) Calculate Ar sinh via the explicit expression of of sinh and derive $\operatorname{Ar}_{\sinh }{ }^{\prime}(y)$.
(b) Using the formula (1), calculate $\operatorname{Arsinh}^{\prime}(y)$ from the derivative of sinh.
120. In this question you may use without proof that $\arctan ^{\prime}(x)=1 /\left(1+x^{2}\right)$.
(a) Let $0<a<b$. Prove that

$$
\frac{b-a}{1+b^{2}}<\arctan (b)-\arctan (a)<\frac{b-a}{1+a^{2}}
$$

(b) Show that

$$
\frac{\pi}{4}+\frac{3}{25}<\arctan (4 / 3)<\frac{\pi}{4}+\frac{1}{6}
$$

121. * Prove L'Hopital's Rule using the Generalised Mean Value Theorem or, more precisely, the identity

$$
0=(g(b)-g(a)) f^{\prime}(c)-(f(b)-f(a)) g^{\prime}(c)
$$

for some $c \in(a, b)$. In your proof, make sure that you do not carry out a division by zero.
122. Evaluate $\lim _{x \rightarrow 1} \frac{1+\cos (\pi x)}{x^{2}-2 x+1}$.
123. Evaluate $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$.
124. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and

$$
f(x)= \begin{cases}\frac{g(x)}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

and $g(0)=g^{\prime}(0)=0$ and $\lim _{x \rightarrow 0} g^{\prime \prime}(x)=17$. Find $f^{\prime}(0)$.
125. Use Newton's method to to calculate a positive root of $5 \sin x=4 x$ to three decimal digits.

9 Infinite series

126. Determine whether or not the series $\sum_{n=1}^{\infty}(2+n) / \sqrt{4 n^{4}-1}$ converges.
127. Determine whether or not the series $\sum_{n=1}^{\infty} \sqrt{n} /\left(n^{3}+1\right)$ converges.
128. Determine whether or not the series $\sum_{n=1}^{\infty} \sin \left(2^{n}\right) / 2^{n}$ converges.
129. Determine whether or not the series $\sum_{n=1}^{\infty}(n-3)\left(2+9 n^{6}\right)^{-1 / 2}$ converges.
130. Use the comparison test to decide whether or not $\sum_{n=1}^{\infty} x_{n}$ converges in each of the following cases. (You may assume that $\sum_{n=1}^{\infty} n^{-\alpha}$ converges iff $\alpha>1$.)
(a) $x_{n}=n / \sqrt{1+n^{6}}$
$\begin{array}{ll}\text { (b) } x_{n}=1 /(n+\sqrt{n}) & \text { (c) } x_{n}=(3-n \sqrt{n}) / n^{6}\end{array}$
(d) $x_{n}=n!n^{2} /(n+3)!$
(e) $x_{n}=n^{2} \exp (-\sqrt{n})$
(f) $x_{n}=(n \cos n) /\left(n^{3}+\right.$ $\log n)$
(g) $x_{n}=n^{-1} \sin \left(n^{-1}\right)$ [Use $\sin \theta<\theta$ for $\theta>0$]
(h) $x_{n}=n^{-2}(\log n)^{4}$
(i) $x_{n}=\sqrt{1+n^{2}}-n$.
131. For which values of α do the following series converge?
(a) $\sum_{n=1}^{\infty}\left(n^{2}+1\right)^{-\alpha} \log \left(1+\frac{1}{n}\right)$
(b) $\sum_{n=1}^{\infty} n^{\alpha}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$.
132. Show that the series $\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+\left(x_{3}-x_{4}\right)+\ldots$ converges if and only if the sequence $\left\{x_{n}\right\}$ tends to a limit as $n \rightarrow \infty$.
133. If $\sum_{n=1}^{\infty} x_{n}$ converges to s, and $y_{n}=\left(x_{n}+x_{n+1}\right) / 2$ for all n, does $\sum_{n=1}^{\infty} y_{n}$ converge, and if so to what?
134. Given that $\sum_{n=1}^{\infty} x_{n}$ converges, and $\sum_{n=1}^{\infty} y_{n}$ converges absolutely, prove that $\sum_{n=1}^{\infty} x_{n} y_{n}$ converges absolutely. If we knew only that $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ converged, would it follow that $\sum_{n=1}^{\infty} x_{n} y_{n}$ converged as well?
135. Determine whether or not each of the following series converges.
(a) $\sum_{n=3}^{\infty} \tan (\pi / n) \cos (n \pi)$
(b) $\sum_{n=2}^{\infty} n^{-1}(\log n)^{-3}$
(c) $\sum_{n=1}^{\infty}(2 n)!5^{-n}(n!)^{-2}$
136. Determine whether or not each of the following series converges.
(a) $\sum_{n=1}^{\infty} \frac{1}{(-1)^{n} \sqrt{n} \tanh n}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}(2 n)!}{9^{n}(n!)^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{n-1}{\left(n^{2}+2\right)\left(n^{2}+1\right)^{1 / 4}}$.
137. Discuss whether or not $\sum_{n=1}^{\infty} x_{n}$ converges in each of the following cases.
(a) $x_{n}=(n!)^{2} /(2 n)!\quad$ (b) $x_{n}=1 /[(n+1) \log (n+1)]$
(c) $x_{n}=(\cos \pi n) /(n \log (n+1))$.
138. For what values of α does the series $\sum_{n=1}^{\infty} x_{n}$ converge, in each of the following cases? [Be careful to investigate all real values of α. In each case except (c), use the ratio test first, and then deal with the remaining values of a separately.]
(a) $x_{n}=\alpha^{n} n^{\alpha}$
(b) $x_{n}=\alpha^{n-1} /\left(n 3^{n}\right)$
(c) $x_{n}=n^{-1}(\log (n+1))^{-\alpha}$
(d)
$x_{n}=n!\alpha^{n}$
(e) $x_{n}=n \alpha^{n} /\left(2^{n}(3 n-1)\right)$. [For (c): first compare with $y_{n}=(n+1)^{-1}(\log (n+$ 1) $)^{-\alpha}$.
139. Find values of z for which the series $\sum a_{n}\left(z-z_{0}\right)^{n}$ converges in the following cases:
(a) $z_{0}=0, a_{n}=1 / n!$;
(b) $z_{0}=1, a_{n}=1 /(n-1)!, n>1$;
(c) $z_{0}=0$, $a_{n}=c^{n}$;
(d) $z_{0}=0, a_{n}=n$;
(e) $z_{0}=0, a_{n}=n!$.
140. Determine whether or not the following series converge:
(a) $\sum_{n=1}^{\infty} n^{2} 2^{-n}$
(b) $\sum_{n=1}^{\infty}[1+\exp (-n)] /\left[(n+1)^{2}-(n-1)^{2}\right]$
(c) $\sum_{n=1}^{\infty} n^{-2} \log n$
(d) $\sum_{n=1}^{\infty} n!2^{n} n^{-n}$
141. * Test the following series for convergence:

$$
\sum_{n=1}^{\infty}\left[n^{4} \sin ^{2}\left(\frac{2 n}{3 n^{3}-2 n^{2}+5}\right)\right]^{n}
$$

142. * Test the following series for convergence:

$$
\sum_{n=1}^{\infty} \frac{(3 n-1)!-4^{n+1}}{(3 n)!}
$$

143.

** Test the following series for convergence:

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n+(-1)^{n}}
$$

144. * This problem is dedicated to the proof of Raabe's Test for series $\sum a_{n}$, stating the following: Assume that we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k\left(1-\frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}\right)=L>1 \tag{2}
\end{equation*}
$$

Then the series $\sum a_{n}$ converges absolutely.
(a) Let (2) be satisfied. Show that then there exist $N \in \mathbb{N}$ and $\epsilon>0$ such that for all $k \geq N$:

$$
\left|a_{k}\right| \leq \frac{1}{\epsilon}\left((k-1)\left|a_{k}\right|-k\left|a_{k+1}\right|\right) .
$$

(b) Conclude from (a) that we have for all $M \geq N$:

$$
\sum_{k=N}^{M}\left|a_{k}\right| \leq \frac{N-1}{\epsilon}\left|a_{N}\right|
$$

(c) Conclude from (b) that $c_{M}=\sum_{k=N}^{M}\left|a_{k}\right|$ is convergent and, therefore, $\sum a_{k}$ is absolute convergent.
145. Let $\sum a_{k}$ be given by

$$
a_{k}=\left(\frac{1 \cdot 4 \cdot 7 \cdots(3 k-2)}{3 \cdot 6 \cdot 9 \cdots(3 k)}\right)^{2}
$$

(a) Check that the Ratio Test fails for this series.
(b) Apply Raabe's Test introduced in the previous problem and prove convergence of the series.
146. * Assume that $\sum_{k=1}^{\infty} a_{k}$ is conditionally convergent. Let $a_{n}^{+}=\max \left\{a_{n}, 0\right\}$ and $a_{n}^{-}=\min \left\{a_{n}, 0\right\}$ and $s_{n}^{+}=\sum_{k=1}^{n} a_{k}^{+}$and $s_{n}^{-}=\sum_{k=1}^{n} a_{k}^{-}$. Show that both $\sum a_{n}^{+}$ and $\sum a_{n}^{-}$contain infinitely many nonzero terms and that neither of them is convergent. Therefore, the sequence of partial sums s_{n}^{+}is not bounded above and s_{n}^{-}is not bounded below.
147. * Using the results from the previous problem, we now give an explanation why conditionally convergent series $\sum a_{k}$ can be rearranged to converge to any given limit $s^{*} \in \mathbb{R}$. Since s_{n}^{+}is monotone increasing and unbounde, there exists a smallest index n_{1} with $s_{n_{1}-1}^{+} \leq s^{*} \leq s_{n_{1}}^{+}$. Assuming that all the zero terms in a_{n}^{+}and a_{n}^{-}have been discarded, the first n_{1} terms in the rearrangement are then $a_{1}^{+}+a_{2}^{+}+\cdots+a_{n_{1}}^{+}$. We denote this value by

$$
U_{1}=a_{1}^{+}+a_{2}^{+}+\cdots+a_{n_{1}}^{+} \geq s^{*} .
$$

Now we add terms from a_{k}^{-}, stopping at the smallest index when the sum satisfies

$$
U_{1}+a_{1}^{-}+a_{2}^{-}+\cdots+a_{m_{1}}^{-}<s^{*},
$$

and we introduce

$$
L_{1}=a_{1}^{-}+a_{2}^{-}+\cdots+a_{m_{1}}^{-} .
$$

Find now the right arguments to define $U_{2}=a_{n_{1}+1}^{+}+\cdots+a_{n_{2}}^{+}$and U_{3}, U_{4}, \ldots and L_{2}, L_{3}, \ldots. Explain that this procedure never stops and that the sequences

$$
s_{k}^{U}=U_{1}+L_{1}+U_{2}+L_{2}+\cdots+U_{k}
$$

and

$$
s_{k}^{L}=U_{1}+L_{1}+U_{2}+L_{2}+\cdots+U_{k}+L_{k}
$$

converge from above and below to s^{*}. This provides you with the rearrangement of $\sum a_{k}$ converging to s^{*}.
148. Show that the Cauchy product is not necessarily convergent if both series $\sum a_{k}$ and $\sum b_{k}$ are only conditionally convergent by discussing the choice $a_{k}=b_{k}=\frac{(-1)^{n}}{\sqrt{n+1}}$.
149. Calculate $\lim _{n \rightarrow \infty} z_{n}$ in each of the following cases (or show that no limit exists).
(a) $z_{n}=\exp \left(i n^{2}\right) /\left(1+i n^{2}\right) \quad$ (b) $z_{n}=n^{2} \exp \left(i n^{2}-n\right)$
$\begin{array}{ll}\text { (c) } z_{n}=\exp \left(i \pi n / \sqrt{16 n^{2}+1}\right) \sqrt{2 n^{2}+1} /(n+i) & \text { (d) } z_{n}=2 n \exp (i n \pi) /(n+i)\end{array}$
150. Determine whether or not $\sum_{n=1}^{\infty} z_{n}$ converges, in each of the following cases.
(a) $z_{n}=1 /(n+i)$
(b) $z_{n}=1 /\left(n^{2}+i\right)$
(c) $z_{n}=(5+2 i)^{n} / n$!
(d) $z_{n}=(n+2 i)^{4} \exp \left(i n^{4}-n\right)$

10 Integrals

151. Let \mathcal{P}_{n} denote the partition of $[0,1]$ into n subintervals of equal length (so that $\left.\mathcal{P}_{n}=\{0,1 / n, 2 / n, \ldots, 1\}\right)$.
(a) Write down the upper and lower Riemann sums for the function $f(x)=\mathrm{e}^{-x}$ with respect to \mathcal{P}_{n}.
(b) Use these to show that e^{-x} is Riemann integrable on $[0,1]$.
(c) Evaluate $\int_{0}^{1} \mathrm{e}^{-x} d x$ directly, express $L\left(f, \mathcal{P}_{n}\right)$ as a partial sum of a geometric series, and and use the fact that $L\left(f, \mathcal{P}_{n}\right) \rightarrow \int_{0}^{1} \mathrm{e}^{-x} d x$ as $n \rightarrow \infty$ to deduce that $\lim _{n \rightarrow \infty} n\left(\mathrm{e}^{1 / n}-1\right)=1$.
152. Let \mathcal{P}_{n} denote the partition of $[1,2]$ into n subintervals of equal length. Write down the upper and lower Riemann sums of $f(x)=\log x$ with respect to \mathcal{P}_{n}, and use these to show that f is Riemann integrable on $[1,2]$. Show that $\lim _{n \rightarrow \infty} L\left(f, \mathcal{P}_{n}\right)=\int_{1}^{2} f(x) d x$, evaluate the integral directly, and deduce that

$$
\left[\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\left(1+\frac{3}{n}\right) \ldots\left(1+\frac{n-1}{n}\right)\right]^{1 / n} \rightarrow \frac{4}{\mathrm{e}} \text { as } n \rightarrow \infty .
$$

153. Let \mathcal{P}_{n} denote the partition of the interval $[1,2]$ into n subintervals of equal length. For $n=2$ and $n=4$ compute the Riemann sums $U\left(f, \mathcal{P}_{n}\right)$ and $L\left(f, \mathcal{P}_{n}\right)$ which approximate $I=\int_{1}^{2} d x / x$. Tabulate the difference between I and each of these four approximations, working to 4 decimal places.
154. Show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin \left(\frac{\pi}{2 n}\right)+\sin \left(\frac{2 \pi}{2 n}\right)+\sin \left(\frac{3 \pi}{2 n}\right)+\cdots+\sin \left(\frac{n \pi}{2 n}\right)=\frac{2}{\pi} .\right.
$$

155. Show that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}\right)=\log (2)
$$

156. Let a, b be two real numbers and $a<b$. Recall that a function $f:[a, b] \rightarrow \mathbb{R}$ is called uniformly continuous if, for every $\epsilon>0$ there exists $\delta>0$ such that for all $x, y \in[a, b]$ with $|y-x|<\delta$ we have

$$
|f(y)-f(x)|<\epsilon
$$

Show that every uniformly continuous function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable. (Since every continuous function f on a compact interval is uniformly continuous, we see that all continuous functions defined on compact intervals are Riemann integrable.)
157. * Let $f:[0,1] \rightarrow \mathbb{R}$ be defined as follows: $f(x)=0$ if $x \in[0,1]$ is irrational and $f(x)=1 / q$ if $x \in[0,1]$ is rational of the form $x=p / q$ with $p, q \in$ $\mathbb{N} \cup\{0\}$ without common factors. Show that f is Riemann integrable and that $\int_{0}^{1} f(x) d x=0$. [Hint: We always have $L(f, \mathcal{P})=0$. So you need to find partitions which make the upper Riemann sum arbitrarily small.]
158. Prove that $\lim _{k \rightarrow \infty} \int_{0}^{2 \pi} \frac{\sin (k x)}{x^{2}+k^{2}} d x=0$.
159. Prove that $\left|\int_{1}^{\sqrt{3}} \frac{e^{-x} \sin (x)}{x^{2}+1} d x\right| \leq \frac{\pi}{12 e}$.
160. * In this problem we present a clever way to calculate directly the integral $\int_{a}^{b} x^{p} d x$ for $0<a<b$ and $p \in \mathbb{N}$. We use partitions $\mathcal{P}_{n}=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=\right.$ $b\}$ for which the ratios x_{i} / x_{i-1} are constant (and not the differences $x_{i}-x_{i-1}$).
(a) Show that we have $x_{i}=a c^{i / n}$ with $c=b / a$.
(b) Using $f(x)=x^{p}$, show that

$$
\begin{aligned}
U\left(f, \mathcal{P}_{n}\right) & =a^{p+1}\left(1-c^{-1 / n}\right) \sum_{i=1}^{n}\left(c^{(p+1) / n}\right)^{i} \\
& =\left(a^{p+1}-b^{p+1}\right) c^{(p+1) / n} \frac{1-c^{-1 / n}}{1-c^{(p+1) / n}} \\
& =\left(b^{p+1}-a^{p+1}\right) \cdot c^{p / n} \cdot \frac{1}{1+c^{1 / n}+c^{2 / n}+\cdots+c^{p / n}} .
\end{aligned}
$$

Find a similar formula for $L\left(f, \mathcal{P}_{n}\right)$.
(c) Conclude that we have

$$
\int_{a}^{b} x^{p} d x=\frac{b^{p+1}-a^{p+1}}{p+1}
$$

161. Show that there exist values $\xi_{1}, \xi_{2} \in[0,1]$ such that

$$
\int_{0}^{1} \frac{\sin (\pi x)}{1+x^{2}} d x=\frac{2}{\pi\left(\xi_{1}^{2}+1\right)}=\frac{\pi}{4} \sin \left(\xi_{2} \pi\right)
$$

162. (a) Use the Mean Value Theorem for Integrals (Theorem 10.9) to derive the following fact: Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then there exists $c \in[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=(b-a) f(c)
$$

(b) Prove the following fact directly using (a): Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $F(c)=\int_{a}^{c} f(x) d x$. Then F is continuous on $[a, b]$.
163. Use the results in the previous problem to prove the Fundamental Theorem of Calculus: Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $F(c)=\int_{a}^{c} f(x) d x$. Then F is differentiable and we have $F^{\prime}(c)=f(c)$. It is sufficient if you restrict your arguments to the case $c \in(a, b)$.
164. Calculate $\lim _{c \rightarrow 0} \frac{\int_{0}^{c} \sin \left(x^{3}\right) d x}{c^{4}}$.
165. Calculate $\lim _{x \rightarrow \pi / 2} \frac{e x^{2} / \pi-e \pi / 4+\int_{x}^{\pi / 2} e^{\sin t} d t}{1+\cos (2 x)}$.
166. Let $f(x)=\int_{1}^{x^{3}+x}\left(t^{2}+t+1\right) d t$. Show that

$$
f^{\prime}(x)=3 x^{8}+7 x^{6}+3 x^{5}+5 x^{4}+4 x^{3}+4 x^{2}+x+1 .
$$

167. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous. This problem ist concerned with the proof of Schwarz's inequality:

$$
\begin{equation*}
\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq \int_{a}^{b}(f(x))^{2} d x \int_{a}^{b}(g(x))^{2} d x \tag{3}
\end{equation*}
$$

(a) Let $A=\int_{a}^{b}(f(x))^{2} d x, B=\int_{a}^{b}(g(x))^{2} d x$ and $C=\int_{a}^{b} f(x) g(x) d x$. W.l.o.g. assume that $B \neq 0$. Derive from

$$
\int_{a}^{b}(f(x)+\lambda g(x))^{2} d x \geq 0 \quad \text { for all } \lambda \in \mathbb{R}
$$

that $C^{2}-A B \leq 0$. [Hint: Here you may use the fact that the discriminant $b^{2}-4 a c$ of a non-negative quadratic polynomial $p(x)=a x^{2}+b x+c$ with $p(x) \geq 0$ for all $x \in \mathbb{R}$ must be non-positive.]
(b) Conclude Schwarz's inequality from (a).
168. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous and g be not identically zero. Use the proof of the previous problem that equality in (3) implies that there exists $\lambda \in \mathbb{R}$ with $f=\lambda g$.
169. Determine whether or not the following integrals converge.
(a) $\int_{0}^{\infty}(\cos x) /\left(x+\mathrm{e}^{x}\right) d x$
(b) $\int_{1}^{\infty}(x+\sqrt{x})^{-1} d x$
(c) $\int_{1}^{\infty} \sqrt{(6+x) /\left(1+x^{6}\right)} d x$
(d) $\int_{0}^{\infty} x^{2} \mathrm{e}^{-x} d x$ [Do in two different ways.] (e) $\int_{1}^{\infty}\left(1+x^{3}\right)^{-1 / 2} d x$
(f) $\int_{0}^{1} x^{-3 / 2} \mathrm{e}^{-x} d x$
$\begin{array}{ll}\text { (g) } \int_{0}^{1} \mathrm{e}^{-x} / \sqrt{x} d x & \text { (h) } \int_{0}^{1} x / \sqrt{1-x^{2}} d x\end{array}$
(i) $\int_{0}^{1} x^{-1 / 3} \cos x d x$
(j) $\int_{0}^{1} \sqrt{x-x^{2}} / x d x$
170. If $\int_{1}^{\infty} f(x) d x$ converges and $\lim _{x \rightarrow \infty} f(x)=L$, prove that $L=0$.
171. Let $f(x)$ be continuous for $x \geq 0$ and differentable for $x>0$. Suppose that you want to use integration by parts on $[0, R]$ to express $\int_{0}^{\infty} x f^{\prime}(x) d x$ in terms of f and $\int_{0}^{\infty} f(x) d x$. (Here f^{\prime} denotes the derivative of f.) Find conditions on f which make such a formula valid.
172. Determine whether or not $\int_{0}^{2} x\left(16-x^{4}\right)^{-1 / 2} d x$ converges, by (a) actually doing the integral [Hint: $u=x^{2}$]; and (b) comparison, without doing the integral.
173. Determine whether or not $\int_{0}^{1}(\log x)^{2} d x$ converges, by (a) actually doing the integral [Look it up if necessary]; and (b) comparison, without doing the integral [Hint: use the fact that $x^{1 / 4} \log x \rightarrow 0$ as $x \rightarrow 0$].
174. Determine whether or not $\int_{0}^{\pi / 2}(\tan x)^{3} d x$ converges. [Hint: do \int_{0}^{c} for $c<\pi / 2$: look at up, or use $\tan ^{2}=\sec ^{2}-1$. Alternatively, use comparison.]
175. For each of the following integrals, determine all the values of α for which the integral converges. (a) $\int_{0}^{1} x^{-\alpha} \cos x d x \quad$ (b) $\int_{0}^{1}(x+1 / x)^{\alpha} d x \quad$ (c) $\int_{0}^{1}(\sin x)^{-\alpha} d x$
(d) $\int_{0}^{1} x^{-\alpha} \sin x d x$
(e) $\int_{0}^{\infty} x^{\alpha-1} /(1+x) d x$.
176. Discuss the convergence of the integral $\int_{0}^{\infty} x^{-4 / 3} \sin x d x$.
[Use $\sin x \leq x$ for $0 \leq x \leq 1$.]
177. For which values of the real parameter c does $\int_{0}^{\infty} x^{c} / \sqrt{x^{2}+x} d x$ converge?
178. For which real values of p does $\int_{0}^{\infty} x^{-p} \mathrm{e}^{-x} \sin (x) d x$ converge?
[Use $2 x / \pi \leq \sin x \leq x$ for $0 \leq x \leq \pi / 2$.]
179. For which real values of p does $\int_{0}^{\infty}\left(x+x^{2}\right)^{-p} d x$ converge?
180. * Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and $\lim _{x \rightarrow \infty} f(x)=a$. Show that

$$
\lim _{c \rightarrow \infty} \frac{1}{c} \int_{0}^{c} f(x) d x=a
$$

11 Sequences of functions and uniform convergence

181. Find the pointwise limit of the functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f_{n}(x)= \begin{cases}0 & \text { if } x \leq n \\ x-n & \text { if } n<x \leq n+1 \\ 0 & \text { if } n+1<x\end{cases}
$$

and decide whether the convergence is uniform.
182. Find the pointwise limit of the functions $f_{n}:(1, \infty) \rightarrow \mathbb{R}$,

$$
f_{n}(x)=\frac{e^{x}}{x^{n}}
$$

and decide whether the convergence is uniform.
183. Find the pointwise limit of the functions $f_{n}:[-1,1] \rightarrow \mathbb{R}$,

$$
f_{n}(x)=e^{-n x^{2}}
$$

and decide whether the convergence is uniform.
184. Find the pointwise limit of the functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f_{n}(x)=1-\frac{e^{-x^{2}}}{n}
$$

and decide whether the convergence is uniform.
185. Find the pointwise limit of the functions $f_{n}:[0,1] \rightarrow \mathbb{R}$,

$$
f_{n}(x)=x^{n}-x^{2 n}
$$

and decide whether the convergence is uniform. [Hint: For each n, find the maximum of $f_{n}-f$ on $[0,1]$.]
186. Find the pointwise limit of the functions $f_{n}:[0, \infty) \rightarrow \mathbb{R}$,

$$
f_{n}(x)=\frac{n x}{1+n+x}
$$

and decide whether the convergence is uniform. [Hint: For each n, consider $\left|f_{n}(x)-f(x)\right|$ for large $\left.x.\right]$
187. Find the pointwise limit of the functions $f_{n}:[0, \infty) \rightarrow \mathbb{R}$,

$$
f_{n}(x)=\sqrt{x^{2}+\frac{1}{n^{2}}}
$$

and decide whether the convergence is uniform. [Hint: Express $\left|f_{n}(x)-f(x)\right|$ as a fraction.]
188. Give a proof of Theorem 11.5, i.e., the following fact: Let $I=[a, b]$ and $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of continuous functions. If $f_{n} \rightarrow f$ uniformly, then we have for all $c \in[a, b]$

$$
\int_{a}^{c} f_{n}(x) d x \rightarrow \int_{a}^{c} f(x) d x
$$

189. Let $a, b \in \mathbb{R}$ with $a<b$. For every $f \in C([a, b])$ we define

$$
\|f\|_{\infty}=\sup _{x \in[a, b]}|f(x)| .
$$

Show that $\|\cdot\|_{\infty}: C([a, b]) \rightarrow[0, \infty)$ satisfies the following properties (these are precisely the axioms of a norm):
(a) $\|f\|_{\infty}=0$ if and only if $f \in C([a, b])$ is identically zero.
(b) $\|\lambda f\|_{\infty}=|\lambda| \cdot\|f\|_{\infty}$ for all $\lambda \in \mathbb{R}$ and all $f \in C([a, b])$.
(c) Triangle Inequality: $\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$ for all $f, g \in C([a, b])$.
190. ${ }^{* *}$ Recall that $C([a, b])$ carries the structure of a real vector space. Moreover, $\|\cdot\|_{\infty}$ defines a norm on this vector space, which allows us to understand the expression $\|f-g\|_{\infty}$ as a kind of distance between the vectors f and g (like $\|v-w\|=\left(\sum_{i=1}^{n}\left(v_{i}-w_{i}\right)^{2}\right)^{1 / 2}$ can be understood as the distance between
the vectors v, w in the real vector space $\left.\mathbb{R}^{n}\right)$. The norm allows us to define convergence $f_{n} \rightarrow f$ in $C([a, b])$ and Cauchy sequences f_{n} in $C([a, b])$. For a sequence $f_{n} \in C\left([a, b]\right.$ and a function $f \in C([a, b])$, we say f_{n} converges to f (in short " $f_{n} \rightarrow f$ in $C([a, b])$ " if

$$
\left\|f_{n}-f\right\|_{\infty} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

A sequence $f_{n} \in C([a, b])$ is called a Cauchy sequence, if for all $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n, m \geq N$ we have

$$
\left\|f_{n}-f_{m}\right\|_{\infty}<\epsilon .
$$

Prove the following fact about the normed real vector space $C([a, b])$:
Everg Cauchy sequence in $C([a, b])$ is convergent, i.e., if $f_{n} \in C([a, b])$ is a Cauchy sequence then there exist a function $f \in C([a, b])$ such that $f_{n} \rightarrow f$ in $C([a, b])$.

Normed vector spaces with this property are called complete normed vector spaces or Banach spaces and play an important role in Analysis. We already discussed Completeness of the space \mathbb{R} of real numbers, and the Completeness Axiom can be reformulated as the fact that every Cauchy sequence in \mathbb{R} is convergent.

12 Power series and Taylor series

191. If $\Sigma a_{n} z^{n}$ has finite radius of convergence R, what is the radius of convergence of $\Sigma a_{n} z^{2 n}$? (Give a proof of your answer.)
192. Calculate the radius of convergence R of the power series $\Sigma a_{n} z^{n}$ in each of the following cases.
(a) $a_{n}=(2 n)!/(n!)^{2}$
(b) $a_{n}=(3 n+4) / 2^{n}$
(c) $a_{n}=(2 n)!/ n^{n}$
(d) $a_{n}=(3 n)!/\left[2^{n}(n!)^{3}\right]$
(e) $a_{n}=(-1)^{n} i^{n} n^{2} / 3^{n}$
(f) $a_{n}=2^{10 n} / n$!
(g) $a_{n}=2^{n} /\left(3^{n}+1\right)$
193. Calculate the radius of convergence R of the power series $\Sigma\left[(-1)^{n} / 2^{n}\right] z^{2 n}$.
194. Calculate the radius of convergence R of the power series

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n^{2}}} z^{n}
$$

195. Use the $n^{\text {th }}$ root test to find the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} z^{n} .
$$

You may use without proof the following estimate for n ! (which is called Stirling's formula):

$$
\sqrt{2 \pi n} n^{n} e^{-n}<n!<\sqrt{2 \pi n} n^{n} e^{-n} e^{1 /(12 n)}
$$

196. Use the $n^{\text {th }}$ root test to find the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} a_{n} z^{n}
$$

where

$$
a_{n}= \begin{cases}2^{k}, & \text { if } n=k!, \\ 1, & \text { otherwise }\end{cases}
$$

197. Let $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ with $\left|a_{n}\right| \leq b_{n}$. Show that the radius of convergence of $\sum b_{n} z^{n}$ must be smaller or equal to the radius of convergence of $\sum a_{n} z^{n}$.
198. Define $u_{n}(x)=x^{3}\left(1+x^{2}\right)^{-n}$ for $n=1,2, \ldots$. Show that $\sum_{n=1}^{\infty} u_{n}(x)$ converges to a rather simple function $f(x)$. [Hint: geometric series.] Compute $d f / d x=$ $d\left(\Sigma u_{n}\right) / d x$ and $\sum_{n=1}^{\infty} d u_{n} / d x$ at $x=0$: are they equal?
199. Define $u_{n}(x)=n x \exp \left[-n x^{2}\right]-(n-1) x \exp \left[-(n-1) x^{2}\right]$ for $n=1,2, \ldots$. Show that $\sum_{n=1}^{\infty} u_{n}(x)$ converges to a rather simple function $f(x)$. [Hint: write out the partial sum $S_{k}(x)$.] Compute $\int_{0}^{1} f(x) d x=\int_{0}^{1} \Sigma u_{n}(x) d x$ and $\Sigma_{n=1}^{\infty} \int_{0}^{1} u_{n} d x$: are they equal?
200. Prove that

$$
\begin{equation*}
\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots<\frac{1}{(n+1)!} \cdot \frac{n+2}{n+1} . \tag{4}
\end{equation*}
$$

Deduce that

$$
0<e-\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}\right)<\frac{1}{100}
$$

and conclude that $2.7083<e<2.7184$.
201. ** Prove the e is irrational. [Hint: Assume that $e=p / q$, where p, q are natural numbers and seek a contradiction using inequality (4).]
202. Prove that the following series converge uniformly in the given regions (a) $\sum_{n=1}^{\infty} \frac{\pi^{n}}{n^{4}} x^{2 n}, \quad|x| \leq 0.56$ (b) $\sum_{n=1}^{\infty} \frac{\sin (n|x|)}{n^{2}} \quad$ all x (c) $\sum_{n=1}^{\infty} \frac{n x^{n}}{n^{3}+|x|} \quad|x| \leq 1$
203. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{x}{n\left(1+n x^{2}\right)}
$$

converges uniformly on \mathbb{R}.
204. Prove that the series

$$
f(x)=\sum_{n=0}^{\infty} \frac{n x}{1+n^{4} x^{2}}
$$

converges uniformly on $[a, \infty)$ for $a>0$. [Hint: Find the maximum of $n x /(1+$ $\left.n^{4} x^{2}\right)$ on $\left.[0, \infty).\right]$
205. Let f be as in the previous problem, i.e.,

$$
f(x)=\sum_{n=0}^{\infty} \frac{n x}{1+n^{4} x^{2}} .
$$

Show that $f\left(1 / N^{2}\right) \geq\left(N^{2} / 2\right) \sum_{n>N} 1 / n^{3}$ and, by using an integral to estimate the sum, show that $f\left(1 / N^{2}\right) \geq 1 / 4$. Conclude from this that the series does not converge uniformly on \mathbb{R}.
206. Use the Taylor series of $\mathrm{e}^{x}, \log (1+x), 1 /(1-x), \sin x$ and $\cos x$ to derive the first three non-zero terms in the Taylor expansions about $x=0$ of the following functions.
(a) $\cos ^{2} x$
(b) $\sin \left(x^{2}\right)$
(c) $\mathrm{e}^{x} \sin x$
(d) $1 /\left(1+x^{2}\right)$
(e) $x /\left(1+x^{3}\right)$
(f) $\left(1+x^{2}\right)^{-2}$
(g) $\left[\exp \left(x^{4}\right)-1\right] / x^{3}$
(h) $(1-x)^{-3}$
(i) $\exp \left(x^{2}\right) \sin \left(x^{2}\right)$
(j) $\exp [1 /(1-2 x)]$
(k) $\exp (\exp x)$
(l) $\log \left(1+2 x^{2}\right)$
(m) $[\log (1+x)]^{2}$
207. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}e^{-1 / x^{2}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Show that, for any $x \neq 0$,

$$
f^{(k)}(x)=p_{k}(1 / x) e^{-1 / x^{2}}
$$

where p_{k} is a polynomial of degree $3 k$. Deduce that, for every $k \in \mathbb{N} \cup\{0\}$,

$$
\frac{f^{(k)}(x)}{x} \rightarrow 0 \quad \text { as } x \rightarrow 0+
$$

Hence show that f can be differentiated infinitely many times at $x=0$ and $f^{(k)}(0)=0$ for all $k \in \mathbb{N} \cup\{0\}$. For which values of $x \in \mathbb{R}$ does the Taylor series of f converge to $f(x)$?
208. Evaluate the following infinite sums via manipulations of well-known power series:
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} \pi^{2 n}}{(2 n)!}$.
(b) $\sum_{n=0}^{\infty} \frac{1}{(2 n)!}$.
(c) $\sum_{n=0}^{\infty}(2 n+1)\left(\frac{1}{2}\right)^{2 n+1}$.
209. By multiplying the Taylor series for $\sin (x)$ and $\cos (x)$, verify that

$$
2 \sin (x) \cos (x)=\sin (2 x)
$$

[Hint: You may use that $\sum_{k=0}^{n}\binom{2 n+1}{2 k+1}=2^{2 n}$ which you can prove via the Binomial formula.]
210. Let $f(x)=(\sin x) / x$ for $x \neq 0$ and $f(0)=1$. Determine $f^{(k)}(0)$ for all $k \in \mathbb{N}$. [Hint: Find a power series representing $f(x)$.]

