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Some Books

a) Mathematical Analysis, a straightforward approach, K. G. Bin-
more.

b) Calculus, Michael Spivak.

c) Limits, Limits Everywhere, The Tools of Mathematical Analysis,

David Applebaum.

d) Calculus, Schaum’s Outlines, F. Ayres and E. Mendelson.

e) Advanced Calculus, Schaum’s Outlines, R. Wrede and M. Spiegel.

f) How to Think Like a Mathematician, Kevin Houston.

g) How to Read and Do Proofs, Daniel Solow.

The books a)-c) are good introductions into material of Analysis.
Don’t be fooled by the title of b), this book is a highly recommendable

Analysis book. However, c) falls short on the concepts of continuity,
differentiation and integration. d) and e) contain a lot of solved prob-

lems and is a good exercise source. Finally, the books f) and g) cover
the logic as well as proof techniques which are important in the study

of Analysis.

This lecture notes are not meant to be complete, but they
are a useful additional source of information!

The symbol � at the margin of the page informs you about pitfalls
to be avoided.

At the end of each chapter you find a box with important

points which are useful for you to check whether you un-
derstood the crucial concepts and can apply the methods

introduced in this chapter.
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8 Differentiable functions

8.1 Basics on differentiable functions

Let us start with the definition of differentiability.

Definition 8.1. Let X ⊂ R and f : X → R be a function. f is dif-

ferentiable at c ∈ X if limx→c
f(x)−f(c)

x−c exists. We denote this limit by differentiable
at cf ′(c) and call f ′(c) the derivative of f at c. f is called a differentiable
derivative
f ′(c)function if f is differentiable at all points c ∈ X.

differentiable
function

Remark. (a) The expression f(x)−f(c)
x−c has an important geometric in-

terpretation: It is the slope of the straight line passing through

the two points (c, f(c)) ∈ R2 and (x, f(x)) ∈ R2 of the graph of
f . As x → c, the second point (x, f(x)) approaches the first point
(c, f(c)), and the limit describes the slope of the tangent of the

graph of f at the point (c, f(c)) ∈ R2.

(b) Differentiability at c ∈ X can also be described in the (ǫ, δ)-
formalism. f is differentiable at c ∈ X if there exists a number

L ∈ R (the derivative f ′(c)) such that there exists for every ǫ > 0
a positive number δ > 0 such that

∣
∣
∣
∣

f(c)− f(x)

c− x
− L

∣
∣
∣
∣
< ǫ ∀x ∈ X with |x− c| < δ.

(c) Another equivalent formulation for differentiability of f at c ∈ X

is the following: There exists a function f1 : X → R such that

f(x) = f(c) + (x− c)f1(x)

and f1 is continuous at c. Namely, we choose

f1(x) =

{
f(x)−f(c)

x−c if x 6= c,

f ′(c) if x = c.

Example. Let us prove differentiability of f(x) = 1/x on (0,∞). Let
c ∈ (0,∞). Then we have

f(x)− f(c)

x− c
=

c− x

xc(x− c)
= − 1

xc
,

which implies that

lim
x→c

f(x)− f(c)

x− c
= − lim

x→c

1

xc
=

1

c2
.

This shows that f ′(c) = −1/c2.
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Differentiability is a stronger property than continuity:

Theorem 8.2. Let X ⊂ R and f : X → R. If f is differentiable at

c ∈ X then f is also continuous at c.

Proof. We have

f(x)− f(c) = (x− c) · f(x)− f(c)

x− c
→ 0 · f ′(c) = 0 as x → c.

This shows that limx→c f(x) = f(c), in other words, f is continuous
at c.

Remark. There are continuous functions which are not differentiable.

The easiest example is the function f(x) = |x|, which is continuous
on R but not differentiable at c = 0. However, the construction of

a function f : R → R which is everywhere continuous but nowhere
differentiable is a much more difficult task. Historically, there was

the longstanding belief that every continuous function should be dif-
ferentiable everywhere except for a set of isolated points. This mis-

conception was eradicated by Karl Weierstrass, who published
in 1872 an everywhere continuous and nowhere differentiable function
(see also the Wikipedia article ”Weierstrass function”).

Theorem 8.3. (a) Let f, g be two functions which are differentiable
at c. Then their sum f + g is also differentiable at c and we have

(f + g)′(c) = f ′(c) + g′(c).

Similarly, their product fg is also differentiable at c with

(fg)′(c) = f(c)g′(c) + f ′(c)g(c). (1)

(b) Let f, g be two functions such that g is differentiable at c and
f is differentiable at g(c). Then the composition f ◦ g is also

differentiable at c and we have

(f ◦ g)′(c) = f ′(g(c)) g′(c). (2)

(c) Let f be a function which is differentiable at c and we have f(c) 6=
0. Then 1/f is also differentiable at c and we have

(
1

f

)′
(c) = − f ′(c)

f 2(c)
.
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Proof. We only prove (1) and (2) of the Theorem via the equivalent
formulation given in (c) of the above remark.

(a) We have f(x) = f(c)+(x−c)f1(x) and g(x) = g(c)+(x−c)g1(x).
This implies that

(fg)(x) = (fg)(c) + (x− c)h(x).

with h(x) = f(c)g1(x) + f1(x)g(c) + (x− c)f1(x)g1(x). It is easy
to see that h is continuous at c and, therefore, fg is differentiable

at c with derivative

(fg)′(c) = lim
x→c

h(x) = f(c)g1(c)+f1(c)g(c) = f(c)g′(c)+f ′(c)g(c).

(b) We can write f(y) = f(g(c)) + (y− g(c))f1(y) and g(x) = g(c) +

(x − c)g1(x) with f1 continuous at g(c) and g1 continuous at c.
Then we have

(f ◦ g)(x) = f(g(x)) = f(g(c)) + (g(x)− g(c))f1(g(x)) =

f(g(c)) + (x− c)g1(c)f1(g(x)) = (f ◦ g)(c) + (x− c)h(x)

with h(x) = (f1 ◦ g)(x))g1(c). Since f1 is continuous at g(c) and
g is continuous at c by Theorem 8.2, the composition f1 ◦ g is

continuous at c (see Theorem 7.8(iv)). Using again the equiv-
alent formulation for differentiability, we conclude that f ◦ g is

differentiable in c and we have

(f ◦ g)′(c) = lim
x→c

h(x) = f1(g(c))g1(c) = f ′(g(c))g′(c).

Reader’s Task. Prove part (c) of Theorem 8.3.

8.2 All types of Mean Value Theorems

You have already seen the following fact and its proof in the Calculus

course:

Theorem 8.4. If f is differentiable at c and has a local maximum or
minimum at c then f ′(c) = 0.

You have also seen Rolle’s Theorem and the Mean Value Theorem and
their proofs in the Calculus course, so we just recall their statements:
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Rolle’s
TheoremTheorem 8.5 (Rolle’s Theorem). Let f : [a, b] → R be continuous

and differentiable on (a, b) and suppose that f(a) = f(b). Then there

exists c ∈ (a, b) such that f ′(c) = 0.
Mean
Value
Theorem

Theorem 8.6 (Mean Value Theorem). Let f : [a, b] → R be contin-

uous and differentiable on (a, b). Then there exists c ∈ (a, b) such
that

f ′(c) =
f(b)− f(a)

b− a
.

Rolle’s Theorem implies an even stronger mean value theorem:
Cauchy’s
Mean
Value
Theorem

Theorem 8.7 (Cauchy’s Generalised Mean Value Theorem). Let f, g :

[a, b] → R be continuous and differentiable on (a, b). Assume that
g′(x) 6= 0 for all x ∈ (a, b). Then there exists c ∈ (a, b) such that

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.

CAUTION. You may wonder why this is not a simple corollary of the
Mean Value Theorem. But applying Theorem 8.6 to both functions f �
and g would lead to

f ′(c1)

g′(c2)
=

f(b)− f(a)

g(b)− g(a)
.

The important point of Theorem 8.7 is that we can choose c1 = c2 on
the left hand side.

Proof. Consider the function

h(x) = (g(b)− g(a))f(x)− (f(b)− f(a))g(x).

Then we have

h(a) = g(b)f(a)− f(b)g(a) = h(b).

h is obviously continuous on [a, b] and differentiable on (a, b), and we

can apply Rolle’s Theorem to h. Therefore, there exists c ∈ (a, b) such
that

0 = h′(c) = (g(b)− g(a))f ′(c)− (f(b)− f(a))g′(c). (3)

Since g′(x) 6= 0 for all x ∈ (a, b), we conclude from Theorem 8.6 that
g(b)− g(a) 6= 0, and we can rewrite (3) as

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.
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L’Hôpital’s
RuleTheorem 8.8 (L’Hôpital’s Rule). Let f, g : (a, b) → R be differen-

tiable and c ∈ (a, b). Assume that f(c) = 0 and g(c) = 0. Assume

further that limx→c f
′(x)/g′(x) exists. Then also limx→c f(x)/g(x)

exists and we have

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(c)

g′(c)
.

There is a simple proof of L’Hôpital’s Rule1 in the special case that f ′

and g′ are continuous at c, which you may have seen in the Calculus
course. The proof of the general case uses (3), which holds without

the assumption g′(x) 6= 0 for all x ∈ (a, b) (see, e.g., Spivak’s Calculus
Book).

Reader’s Task. Prove Theorem 8.8.

Example. Show that lim
x→0

cos2(x)− 1

x2
exists and calculate it. Let f(x) =

cos2(x) − 1 and g(x) = x2. Then f and g are differentiable and we

have f(0) = g(0) = 0, so the first assumption of Theorem 8.8 is
satisfied. But we still do not know whether limx→0 f

′(x)/g′(x) ex-

ists, since limx→0 f
′(x) = limx→0 g

′(x) = 0. But the first assump-
tion of Theorem 8.8 is still satisfied for the differentiable functions

f ′(x) = −2 sin(x) cos(x) and g′(x) = 2x, since f ′(0) = 0 and g′(0) = 0,
and we see that

lim
x→0

f ′′(x)

g′′(x)
= lim

x→0
sin2(x)− cos2(x) = −1

exists. Arguing backwards, this shows that limx→0 f
′(x)/g′(x) exists

and also that limx→0 f(x)/g(x) exists with

lim
x→0

cos2(x)− 1

x2
= lim

x→0

− sin(x) cos(x)

x
= lim

x→0
sin2(x)− cos2(x) = −1.

CAUTION. Be careful that all conditions of L’Hôpital’s Rule are sat-
isfied, in particular the condition that f, g are differentiable and that
f(c) = g(c) = 0. Without checking these conditions, L’Hôpital’s Rule

may lead to absolutely wrong results, like the following: �

lim
x→1

x3 + x− 2

x2 − 3x+ 2
= lim

x→1

3x2 + 1

2x− 3
= lim

x→1

6x

2
= 3.

1Marquis Guillaume de l’Hôpital(1661-1704) was a French mathematician, who presented
this rule for the first time in his 1696 book on differential calculus. The discoverer of this rule is,
however, believed to be the mathematician Johann Bernoulli(1667-1748), who was a member
of a family which produced a dynasty of many famous Swiss mathematicians.
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In fact, the correct limit is −4:

lim
x→1

x3 + x− 2

x2 − 3x+ 2
= lim

x→1

(x− 1)(x2 + x+ 2)

(x− 1)(x− 2)
= lim

x→1

x2 + x+ 2

x− 2
= −4.

8.3 The Newton method revisited

We begin with the following definition.

Definition 8.9. Let −∞ < a < b < ∞ and I = (a, b) or I = [a, b].

Then C(I) stands for the set of all continuous functions f : I → R (in C((a, b))
and
C([a, b])

the case I = [a, b], we only require one-sided continuity of f at x = a
and x = b)2.

Let I = (a, b) or I = [a, b] and k ≥ 1. Then Ck(I) stands for the set Ck((a, b))
and
Ck([a, b])

of all functions f : I → R which have k continuous derivatives3, i.e.,

the k-th derivative f (k) : I → R exists and is continuous4.

We recall the following fact (Taylor’s Theorem with Lagrange remain-
der) from the Calculus course for functions f ∈ C2((a, b)) and for all

c, x ∈ (a, b)

f(c) = f(x) + f ′(x)(c− x) +
f ′′(η)

2
(c− x)2 (4)

for a suitable point η between c and x. This is crucial in the proof of
the following fact, which is a very effective and fundamental numerical

method to find the zeros of functions (already mentioned in Section
6.2).

Newton
iterationTheorem 8.10 (Newton iteration). Let f ∈ C2((a, b)) and f(c) = 0

for some c ∈ (a, b). Assume that f ′ > 0 (i.e., f is strictly monotone
increasing5) and f ′′ > 0 (i.e., f is strictly convex6). Assume further

that f(x1) > 0 for some x1 ∈ (a, b) and define the sequence (xn)n∈N
recursively by

xn+1 = xn −
f(xn)

f ′(xn)
(5)

for all n ∈ N. Then the sequence (xn) is convergent to c.

2In fact, C(I) is an abstract real vector space as introduced in Linear Algebra, since we can
multiply functions in C(I) with scalars in R and add them to obtain new functions in C(I).

3Also Ck((a, b)) carries the additional structure of an abstract real vector space.
4If the boundary points a or b belong to I, then we have to take one-sided derivatives at these

points
5This means that f(x1) < f(x2) for all a < x1 < x2 < b.
6This means that f(αx1 + βx2) < αf(x1) + βf(x2) for all α, β ≥ 0, α + β = 1 and a < x1 <

x2 < b, in other words, f() lies strictly below the straight line segment connecting f(x1) and f(x2).
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Moreover, for every ǫ > 0 there exists N ∈ N such that for all n ≥ N ,

|xn+1 − c| ≤
(
f ′′(c)

2f ′(c)
+ ǫ

)

|xn − c|2. (6)

Remark. (a) The geometric meaning of (5) is the following: Draw a
tangent to the graph of f at the point (xn, f(xn)). Since f ′ > 0,

this tangent is not horizontal and must, therefore, intersect with
the x-axis at a unique point. This unique point is xn+1. In other
words, Newton’s method is based on the approximation of the

actual function f by a linear function with the same tangent.

(b) The estimate (6) provides important information about the con-

vergence speed of the Newton iteration, namely, that this iter-
ation converges quadratically near the zero c. This means in
practical terms that the number of correct decimals eventually

doubles with every iteration step.

Proof. Since f is strictly monotone increasing on (a, b) and f(c) = 0
and f(x1) > 0, we can conclude that x1 > c. We show first that we

have
c ≤ · · · ≤ x4 ≤ x3 ≤ x2 ≤ x1, (7)

i.e., (xn) is monotone decreasing with lower bound c. Therefore we

only need to show the following fact: If c ≤ xn and f(xn) ≥ 0 then
also c ≤ xn+1 ≤ xn and f(xn+1) ≥ 0. Then (7) follows by induction.
Assume that c ≤ xn and f(xn) ≥ 0. Since f ′ > 0, we conclude that

xn+1 = xn −
f(xn)

f ′(xn)
︸ ︷︷ ︸

≥0

≤ xn.

Manipulating the recursion formula we obtain

f(xn)− f ′(xn)xn = −f ′(xn)xn+1. (8)

Employing (4) yields

f(c) = f(xn) + f ′(xn)(c− xn) +
f ′′(ηn)

2
(c− xn)

2

for a suitable point ηn ∈ [c, xn]. Plugging (8) into this Taylor formula
leads to

0 = f(c) = f ′(xn)c− f ′(xn)xn+1 +
f ′′(ηn)

2
(c− xn)

2,
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i.e.,

0 = f ′(xn)(c− xn+1) +
f ′′(ηn)

2
(c− xn)

2. (9)

Since the second summand is ≥ 0 by assumption, the first summand
must be ≤ 0 and, using f ′ > 0, we conclude that c − xn+1 ≤ 0, i.e.,

c ≤ xn+1. So we proved that c ≤ xn+1 ≤ xn. Then strict monotonicity
of f implies that f(xn+1) ≥ f(c) = 0, i.e., f(xn+1) ≥ 0, finishing the

induction proof of our first statement.
Then we conclude from (7) with Theorem 6.2 that (xn) is convergent.

Let x∗ = limn→∞ xn ≥ c be its limit. Taking the limit in the recursion
formula and using continuity of f and f ′, we conclude that

x∗ = x∗ − f(x∗)

f ′(x∗)
,

i.e., f(x∗) = 0. Strict monotonicity of f implies that f can have at

most one zero, leading to x∗ = c. This proves the convergence.
For the convergence rate (6), we revisit equation (9) above:

0 = f ′(xn)(c− xn+1) +
f ′′(ηn)

2
(c− xn)

2. (10)

Since xn → c and f ′ is continuous, we can find for every ǫ > 0 an
index N ∈ N such that

f ′′(ηn)

2f ′(xn)
≤ f ′′(ηn)

2f ′(ηn)
+ ǫ ∀n ≥ N.

Plugging this into (10), we obtain for all n ≥ N

|xn+1 − c| = f ′′(ηn)

2f ′(xn)
(c− xn)

2 ≤
(
f ′′(ηn)

2f ′(ηn)
+ ǫ

)

|xn − c|2,

finishing the proof.
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Important concepts/typical problems in this chapter that you should
try without looking anything up:

• Let f : (a, b) → R, c ∈ (a, b) and f(x) = f(c) + (x − c)f1(x).
Which property of f1 is equivalent to the differentiability of f at

c? In case of differentiability of f at c, how can we express f ′(c)
in terms of f1?

• Let f : R → R be defined by

f(x) =

{

x2 sin(1/x) if x 6= 0,

0 if x = 0.

Show that f is differentiable at x = 0.

• Evaluate lim
x→1

1 + cos(πx)

x2 − 2x+ 1
.
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9 Infinite series

9.1 Fundamental notions and properties of series

An (infinite) series is based on summing the terms of a sequence (an).
More precisely, we consider the new sequence of numbers

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an

and call (sn) a series.

Example (Geometric Series). A particularly important example is the
geometric series, where ak = qk−1 for some value q ∈ R. In an exercise, geometric

serieswe have already seen that we have the identity

sn =

n∑

k=1

qk−1 =

n−1∑

j=0

qj =
1− qn

1− q
,

which describes sn by an explicit formula. It is natural to ask for
convergence of this new sequence (sn). In the case of the geometric

series, we have convergence of (sn) if |q| < 1, since in this case

lim
n→∞

sn = lim
n→∞

1− qn

1− q
=

1

1− q

and unboundedness of (sn) if |q| > 1, since in this case |q|n → ∞. In
the case q = −1, we have

sn =

{

1, if n is odd,

0, if n is even,

so (sn) is bounded but not convergent. In the case q = 1, we have

sn =
n∑

k=1

1 = n,

so (sn) is, again, unbounded.

Here is the precise definition of this new notion.

Definition 9.1. Let (an) be a sequence of numbers. Then the new
sequence (sn), defined by

sn =

n∑

k=1

ak

12



is called an (infinite) series. The terms sn of this new sequence are (infinite)
seriescalled the partial sums of this series. If the sequence (sn) of partial
partial
sumssums is convergent, we say that the series

∑∞
k=1 ak is convergent, and

we write ∞∑

k=1

ak = lim
n→∞

sn.

Otherwise we say that the series
∑∞

k=1 ak is divergent.

A necessary condition for a series
∑∞

k=1 ak to converge is that the

summands ak converge to 0:

Lemma 9.2. If
∑∞

k=1 ak is convergent, then ak → 0.

Proof. Let sn =
∑n

k=1 ak. Since the series is convergent, we have

sn → s∗. Note that ak = sk − sk−1. Then we have

lim
k→∞

ak = lim
k→∞

sk − sk−1 = s∗ − s∗ = 0.

Example (Harmonic Series). It is important to know that the converse

of Lemma 9.2 is not true: ak → 0 does not imply that
∑∞

k=1 ak is
convergent. Here is a fundamental explicit counterexample: The har-

monic series is given by
∑∞

k=1 ak with ak = 1/k. Here we obviously harmonic
serieshave ak = 1/k → 0, but

∑∞
k=1 ak is divergent since

s1 = 1,

s2 = s1 +
1

2
,

s4 = s2 +
1

3
+

1

4
≥ s2 + 2 · 1

4
= s2 +

1

2
,

s8 = s4 +
1

5
+ · · ·+ 1

8
≥ s4 + 4 · 1

8
= s4 +

1

2
,

s16 = s8 +
1

9
+ · · ·+ 1

16
≥ s8 + 8 · 1

16
= s8 +

1

2
,

and it can be proved by induction that s2n ≥ 1 + n
2 → ∞.

We also have the following version of COLT for series. The proofs

are straightforward reductions to COLT for sequences and will not be
given here.

COLT for
seriesTheorem 9.3 (COLT). Let

∑∞
k=1 ak = a,

∑∞
k=1 bk = b and c ∈ R.

Then we have the following:
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(a)
∑∞

k=1 ak + bk is convergent with limit a+ b.

(b)
∑∞

k=1 cak is convergent with limit ca.

(c) If ak ≤ bk then a ≤ b.

9.2 Convergence tests

Here is our first convergence criterion for series.
Comparison
TestTheorem 9.4 (Comparison Test). Let 0 ≤ ak ≤ bk for all k ∈ N. If

∑∞
k=1 bk is convergent with limit b then

∑∞
k=1 ak is also convergent with

limit a ≤ b. Equivalently, if
∑∞

k=1 ak is divergent then so is
∑∞

k=1 bk.

Proof. Let sn =
∑n

k=1 ak and tn =
∑n

k=1 bk. By assumption, we have
0 ≤ sn ≤ tn ≤ b, since (tn) is monotone increasing with limit b.

But (sn) is also monotone increasing and bounded above by b, so
convergent to a number a by Theorem 6.2. Moreover, sn ≤ tn implies
that

a = lim
n→∞

sn ≤ lim
n→∞

tn = b.

The equivalent statement about divergence follows via contraposition.

Examples. We investigate
∑∞

k=1 ak in each of the following cases.

(a) ak =

√
k2 + 1

k2
. Here we have ak ≥ 1/k and

∑∞
k=1 ak diverges by

comparison with the harmonic series.

(b) ak =
1

k2
. Here we have 0 ≤ ak+1 =

1

(k + 1)2
≤ 1

k(k + 1)
=

1

k
− 1

k + 1
= bk and

n∑

k=1

bk =
n∑

k=1

1

k
− 1

k + 1
= 1− 1

n+ 1
→ 1.

Therefore,
∑∞

k=1 ak+1 converges by comparison with
∑∞

k=1 bk and,

consequently,
∑∞

k=1 ak = a1 +
∑∞

k=1 ak+1 converges as well. In
fact, the limit is very beautiful:

∑∞
k=1 1/k

2 = π2/6.

(c) ak =
(2k2 + 2k + 9)(k2 + 4k + 3)

(k3 + 6k + 1)2
. Then we have k2ak → 2 as

k → ∞ and we can find C ≥ 0 such that k2ak ≤ C for all k.
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Therefore, 0 ≤ ak ≤ C/k2, and the series
∑∞

k=1 ak converges by
comparison with

∑∞
k=1C/k

2.

(d) Claim: Let α > 0. Then
∞∑

k=1

1

kα
converges if and only if α > 1.

This statement follows in the case α ≥ 2 by comparison with
∑∞

k=1 1/k
2 and in the case α ≤ 1 by comparison with the har-

monic series. The proof in the case 1 < α < 2 follows from the

Integral Test given later in Theorem 9.8.

(e) ak =
2k + 7√
3k3 − 2

. Then ak ≥ 2√
3k
. Since (2/

√
3)
∑∞

k=1 1/
√
k di-

verges, the series
∑∞

k=1 ak diverges as well, by comparison.

(f) ak =
7k3 + 2 log(k)

ek
. Then k2ak → 0 as k → ∞ and we can find

a constant C > 0 such that 0 ≤ ak ≤ C/k2. Hence,
∑∞

k=1 ak
converges by comparison with

∑∞
k=1C/k

2.

The above Comparison Test requires both series to have non-negative

summands. In the case that a series
∑∞

k=1 ak has summands with pos-
itive and negative summands, it is often useful to consider the series
∑∞

k=1 |ak|, where all summands are the absolute values of the sum-

mands of the original series. We will see that convergence of
∑∞

k=1 |ak|
implies convergence of

∑∞
k=1 ak. To prepare this result, we first intro-

duce the notion of absolute convergence.

Definition 9.5. Let
∑∞

k=1 ak be a series. If the series
∑∞

k=1 |ak| con-
verges, we say that the series

∑∞
k=1 ak converges absolutely. In the absolute

conver-
gence

case that
∑∞

k=1 ak is convergent but not
∑∞

k=1 |ak|, we say that the
series

∑∞
k=1 ak converges conditionally. conditional

conver-
gence

Absolute
Conver-
gence
Theorem

Theorem 9.6 (Absolute Convergence Theorem). Every absolutely

convergent series
∑∞

k=1 ak is also convergent.

Proof. Let
∑∞

k=1 ak be absolutely convergent. Then
∑∞

k=1 2|ak| is con-
vergent and so is

∑∞
k=1 |ak|+ ak, by comparison, since 0 ≤ |ak|+ ak ≤

2|ak|. Since
∑∞

k=1 |ak| + ak and
∑∞

k=1 |ak| are both convergent, we

conclude with COLT that also
∞∑

k=1

ak =

( ∞∑

k=1

|ak|+ ak

)

−
∞∑

k=1

|ak|

is convergent.
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Example. The series
∞∑

k=1

(−1)k

k2 + 2k
is absolutely convergent since

∞∑

k=1

1

k(k + 2)

is convergent by comparison with
∑∞

k=1
1
k2 . Therefore

∞∑

k=1

(−1)k

k2 + 2k
is

also convergent.

An example of a series which is only conditionally convergent is given

by
∑∞

k=1(−1)k/k. This series is not absolutely convergent since the
harmonic series is divergent but it is convergent because of the follow-

ing Alternating Sign Test due to Leibniz7.
Alternating
Sign TestTheorem 9.7 (Alternating Sign Test). Let (ak) be a monotone de-

creasing sequence of positive numbers with ak → 0. Then the alternat-
ing series

∑∞
k=1(−1)k+1ak is convergent.

Proof. Let sn =
∑n

k=1(−1)k+1ak. Then we have

s2n+2 = s2n + a2n+1 − a2n+2 ≥ s2n

and

s2n+1 = s2n−1 − a2n + a2n+1 ≤ s2n−1.

This implies that the subseqence (s2n) is monotone increasing and

that the subsequence (s2n−1) is monotone decreasing. Moreover, since
s2n = s2n−1 − a2n ≤ s2n−1, we have

s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ s2n−1 ≤ · · · ≤ s5 ≤ s3 ≤ s1.

In particular, both subsequences (s2n) and (s2n−1) are monotone and
bounded and, therefore, convergent. Since a2n = s2n−1 − s2n → 0,

their limits are equal, and we denote this limit by

s∗ = lim
n→∞

s2n = lim
n→∞

s2n−1.

Since both subsequences with even and with odd indices of (sn) con-

verge to the same limit s∗, it is easy to see that the full sequence (sn)
must also be convergent to s∗, finishing the proof.

Integral
TestTheorem 9.8 (Integral Test). Let f : [1,∞) → [0,∞) be monotone

decreasing. Let ak = f(k) and Fk =
∫ k

1 f(x)dx for all k ∈ N. Then
∑∞

k=1 ak is convergent if and only if the sequence (Fk) is convergent.

7Gottfried Wilhelm Leibniz (1646-1716) was a German universal scholar with particular
important contributions in philosophy and mathematics. Along with Sir Isaac Newton, he can
be considered as one the fathers of the differential and infinitesimal calculus, and many notions
used today like the differential df/dx and the integral sign

∫
(which stems from the letter S for

sum) are his inventions. There was a priority controversy whether Leibniz had developed calculus
independently of Newton.
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Proof. Let bk =
∫ k+1

k f(x)dx. Then Fk+1 are the partial sums of the
series

∑∞
k=1 bk. Note that we have

0 ≤ ak+1 ≤ bk ≤ ak (11)

by Monotonicity of the Integral (see the Calculus Script,p.60 (iii)) and

the fact that f is monotone decreasing. Then applying the Comparison
Test with both inequalities in (11) proves the theorem.

Examples. (a) Let 1 < α < 2 and f(x) =
1

xα
for x ≥ 1. Then f is

monotone decreasing and ≥ 0. Moreover,

Fk =

∫ k

1

x−αdx =
1

1− α
(k1−α − 1)

= − 1

α− 1

(
1

kα−1
− 1

)

→ 1

α− 1
as k → ∞.

This shows that the series
∑∞

k=1 1/k
α is convergent, by the Inte-

gral Test.

(b) Let f(x) =
1

x log(x)
for x ≥ 2. Then f is monotone decreasing

and ≥ 0. Moreover,

Fk =

∫ k

2

1

x logx
dx = log(log k)− log(log 2)

is unbounded for k → ∞. Therefore, the series
∑∞

k=2 1/(k log(k))

is divergent, by the Integral Test.
Ratio
TestTheorem 9.9 (Ratio Test). Let (ak) be a sequence with ak 6= 0 for all

k ∈ N.

(a) If |ak+1|/|ak| → a < 1 for k → ∞, then
∑∞

k=1 ak converges abso-

lutely.

(b) If |ak+1|/|ak| ≥ 1 for all but finitely many k ∈ N, then
∑∞

k=1 ak is
divergent.

Proof. Ad (a): Choose q ∈ (a, 1). Then there exists K ∈ N such that

|ak+1|
|ak|

≤ q for all k ≥ K.

17



This implies for all j ∈ N,

|aK+j| ≤ q|aK+j−1| ≤ · · · ≤ qj|aK |.

Since a < q < 1, the geometric series
∑∞

j=0 q
j|aK | converges and,

therefore, also the series
∑∞

j=0 |aK+j|, by Comparison. Now we add
the terms |a1|, . . . , |aK−1| to conclude that also

∑∞
k=0 |ak| is convergent.

This shows that
∑∞

k=0 ak is absolutely convergent.
Ad (b): There exists K ∈ N such that we have |ak+1|/|ak| ≥ 1 for
all k ≥ K. In other words, we have |ak+1| ≥ |ak| > 0, but then (ak)

cannot converge to 0. Then
∑∞

k=1 ak cannot be convergent, by Lemma
9.2.

Examples. We investigate
∑∞

k=1 ak in the following cases.

(a) ak = ck/k! with a constant c ∈ R. Then

|ak+1|
|ak|

=
ck+1k!

ck(k + 1)!
=

c

k + 1
→ 0 as k → ∞.

Therefore
∑∞

k=1 ak converges absolutely, by the Ratio Test, for all
values of c ∈ R.

(b) ak = kck with a constant c ∈ R. Then

|ak+1|
|ak|

=
(k + 1)ck+1

kck
=

k + 1

k
c → c as k → ∞.

Therefore
∑∞

k=1 ak converges absolutely for |c| < 1 and diverges

for |c| > 1, by the Ratio Test.

(c) ak = k!ck with a constant c 6= 0. Then

|ak+1|
|ak|

=
(k + 1)!ck+1

k!ck
= (k+1)c which is unbounded as k → ∞.

Therefore,
∑∞

k=1 ak diverges by the Ratio Test.

(d) ak = ck/(k35k) with a constant c 6= 0. Then

|ak+1|
|ak|

=
ck+1k35k

ck(k + 1)35k+1
=

c

5

1

(1 + 1/k)3
→ c

5
as k → ∞.

Therefore,
∑∞

k=1 ak converges absolutely for |c| < 5 and diverges
for |c| > 5, by the Ratio Test.
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Finally, we present another useful test without proof. We would only
like to mention that the proof is, again, based on comparison with the
geometric series.

nth Root
TestTheorem 9.10 (nth Root Test). Let (ak) be a sequence with

|ak|1/k → a for k → ∞.

(a) If a < 1 then
∑∞

k=1 ak converges absolutely.

(b) If a > 1 then
∑∞

k=1 ak is divergent.

Reader’s Task. Give a proof of Theorem 9.10.

Example. Let c 6= 0 be a constant. We consider
∑∞

k=1(2 + (−1)k)ck,
i.e., ak = (2 + (−1)k)ck. Then

|ak|1/k = (2 + (−1)k)1/k|c|.

We know that 1 ≤ 2+(−1)k ≤ 3 and limk→∞ 31/k = 1, so we conclude

with the Squeezing Theorem or directly with its Corollary 3.10,

|ak|1/k → |c| as k → ∞.

So the nth Root Test tells us that
∑∞

k=1(2 + (−1)k)ck is absolutely
convergent for |c| < 1 and divergent for |c| > 1.

9.3 Rearrangements of series

Given a finite sum
∑n

k=1 ak, we can change the order of the summands
without changing its value, by the Law of Commutativity, i.e., if σ :
{1, 2, . . . , n} → {1, 2, . . . , n} is an arbitrary permutation, then

n∑

k=1

ak =
n∑

k=1

aσ(k).

It is natural to ask whether the same holds true for infinite sums. It
turns out that, surprisingly, this is no longer true.

Example. We know that the sum
∑∞

k=1(−1)k+1/k is (conditionally)
convergent, by the Alternating Sign Test. In fact, we have

∞∑

k=1

(−1)k+1/k = log(2) ≈ 0.693147 . . . .
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Now, we rearrange the summands in the sum that every positive term
1, 1/3, 1/5, 1/7, . . . is followed by two negative ones and obtain

1− 1

2
− 1

4
+
1

3
− 1

6
− 1

8
+
1

5
− 1

10
− 1

12
+
1

7
− 1

14
− 1

16
+
1

9
− 1

18
− 1

20
+ · · · =

(

1− 1

2

)

− 1

4
+

(
1

3
− 1

6

)

− 1

8
+

(
1

5
− 1

10

)

− 1

12

+

(
1

7
− 1

14

)

− 1

16
+

(
1

9
− 1

18

)

− 1

20
+ · · · =

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+

1

14
− 1

16
+

1

18
− 1

20
+ · · · =

1

2

(

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ . . .

)

=
1

2
log(2).

This shows that this rearrangement leads to a series which converges
to a limit which is only half the original limit.

CAUTION. The important message of the above example is that you �
have to be very careful when permuting the summands of an infinite
series

∑
ak.

The above example is in agreement with the following hugely sur-

prising fact, due to the famous 19th-century German mathematician
Bernhard Riemann8. Even though the following results are of fun-

damental importance, we do not provide proofs for them for lack of
time.

Riemann
Rear-
range-
ment
Theorem

Theorem 9.11 (Riemann Rearrangement Theorem). Let
∑∞

k=1 ak a

conditionally convergent real series and c ∈ R be an arbitrary real
number. Then there exists a rearrangement9

σ : N → N,

such that the rearranged sum
∑∞

k=1 aσ(k) converges to this number c.
Moreover, the sum can also be rearranged that

∑∞
k=1 aσ(k) is divergent.

8Bernhard Riemann(1826-1866) was a famous German mathematician who contributed to
many different mathematical areas like Real and Complex Analysis, Analytic Number Theory
and Differential Geometry. He developed a geometric foundation of Complex Analysis and the
fundamental notion of a Riemann Surface is named after him. He also introduced the basic notions
for important spaces with a very general intrinsic geometry (manifolds with a Riemannian Metric
and a Riemannian Curvature Tensor) which were also crucial in the later Theory of General
Relativity, due to Albert Einstein(1879-1955). Riemann developed the Riemann Integral in
his Habilitation thesis. The famous Riemann Conjecture about the zeroes of the Riemann Zeta
Function is undoubtedly the most important open conjecture in mathematics with many important
implications like the asymptotic distribution of the prime numbers.

9This means that σ is one-to-one (or bijective), which means that every natural number is in
the image of σ (surjectivity) and that different natural numbers have different images (injectivity).
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But there is also good news in stock: Such a rearrangement phe-
nomenon can only occur for conditionally convergent series. If you
know that a series

∑∞
k=1 ak is absolutely convergent, every rearrange-

ment of it is, again, convergent to the same limit.

Theorem 9.12. Let
∑∞

k=1 ak an absolutely convergent real series and
σ : N → N a rearrangement. Then

∑∞
k=1 aσ(k) is also absolutely con-

vergent and we have
∞∑

k=1

ak =
∞∑

k=1

aσ(k).

Another important rearrangement fact about the Cauchy product
product of two series10.

Cauchy
ProductTheorem 9.13 (Cauchy Product Theorem). Let

∑∞
k=0 ak and

∑∞
k=0 bk

be absolutely convergent series with limits a, b ∈ R, respectively. For
n ≥ 0, let

cn =

n∑

k=0

akbn−k.

Then the series
∑∞

k=0 ck is called the Cauchy Product of
∑

ak and
∑

bk. The series
∑

ck is also absolutely convergent and we have

∞∑

k=0

ck = a · b.

Remark. Note that the all terms in the product (
∑

ak) (
∑

bk) can be
listed in the following square array:

a0b0 a1b0 a2b0 a3b0 a4b0 a5b0 a6b0 . . .

a0b1 a1b1 a2b1 a3b1 a4b1 a5b1 a6b1 . . .
a0b2 a1b2 a2b2 a3b2 a4b2 a5b2 a6b2 . . .

a0b3 a1b3 a2b3 a3b3 a4b3 a5b3 a6b3 . . .
a0b4 a1b4 a2b4 a3b4 a4b4 a5b4 a6b4 . . .
a0b5 a1b5 a2b5 a3b5 a4b5 a5b5 a6b5 . . .

a0b6 a1b6 a2b6 a3b6 a4b6 a5b6 a6b6 . . .
...

...
...

...
...

...
... . . .

The terms cn =
∑n

k=0 akbn−k are then nothing but the finite sums in

this square array along the diagonals starting at a0bn and ending with

10See page 41 in the Analysis 1 (Michaelmas Term) Lecture Notes for short biographical facts
about Cauchy.
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anb0. So we see that, by summing up all cn’s, we are taking every
term akbl into account once, namely when we consider the (k + l)-th
diagonal in the above scheme.

Example. Here is an important application of the Cauchy product. Let

x, y ∈ R. We know from the Ratio Test that both series
∑∞

k=0 x
k/k!

and
∑∞

k=0 y
k/k! are absolutely convergent. The terms cn in the Cauchy

product are then

cn =
n∑

k=0

xk

k!

yn−k

(n− k)!
.

Now we need an important fact which students in Discrete Mathemat-
ics have seen, the so called Binomial Theorem: Binomial

Theorem

(x+ y)n =
n∑

k=0

(
n

k

)

xkyn−k,

with the binomial coefficients
(
n
k

)
= n!

k!(n−k)! . This implies that Binomial
Coeffi-
cient
(
n

k

)

cn =
n∑

k=0

1

k!(n− k)!
xkyn−k =

1

n!

n∑

k=0

(
n

k

)

xkyn−k =
1

n!
(x+ y)n.

So the Cauchy product leads in this example to the important identity
of absolutely convergent series

( ∞∑

k=0

xk

k!

)( ∞∑

k=0

yk

k!

)

=
∞∑

n=0

(x+ y)n

n!
.

Recalling the Taylor series of ex from Calculus (see Section 6.1 in the
Calculus Lecture Notes), this identity proves that

exey = ex+y.

9.4 Complex series

Let us briefly discuss the question whether results for real series ex-
tend to complex series. Complex series play an important role in the

2H Course Complex Analysis, so we only provide a brief sketch. We
introduced already earlier the notion of convergence of complex se-
quences and extensions of fundamental facts about real sequences like

Bolzano-Weierstrass to complex sequences. We now state the crucial
facts without proofs.
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Proposition 9.14. Let zk = xk + iyk ∈ C. Then
∑∞

k=1 zk converges
if and only if

∑∞
k=1 xk and

∑∞
k=1 yk converge. In this case, we have

∞∑

k=1

zk =
∞∑

k=1

xk + i
∞∑

k=1

yk.

The following facts are still true for complex series:

(a) Convergence of
∑∞

k=1 zk implies that zk → 0.

(b) COLT holds for complex series.

(c) The complex series
∑

zk is said to converge absolutely if the real
sequence

∑
|zk| converges. Every absolutely convergent complex

series is convergent.

(d) Ratio Test and nth Root Test hold also for complex series.

(e) Rearrangements of absolutely convergent complex series lead to

convergent series with the same limit.

(f) The Cauchy Product Theorem holds also for absolutely conver-

gent complex series.

Examples. (a) Let z = x+ iy ∈ C be arbitrary. Then we define ez as

ez =
∞∑

k=0

zk

k!
. (12)

Note that this sum is absolutely convergent since

∞∑

k=0

∣
∣
∣
∣

zk

k!

∣
∣
∣
∣
=

∞∑

k=0

|z|k
k!

=

∞∑

k=0

(√

x2 + y2
)k

k!
,

and the last sum is convergent by the Ratio Test. Therefore

ez, given in (12), is a well-defined complex number. Moreover,
the Cauchy Product Theorem for complex numbers yields for all
z1, z2 ∈ C:

ez1+z2 = ez1ez1.
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(b) Let z ∈ C. Recall from above and the Calculus Course that the
Taylor series of ez, sin z and cos z are

ez =
∞∑

k=0

zk

k!
, (13)

sin z =

∞∑

k=0

(−1)k

(2k + 1)!
z2k+1, (14)

cos z =

∞∑

k=0

(−1)k

(2k)!
z2k. (15)

Using COLT, we obtain Euler’s Identity

cos z + i sin z =
∞∑

k=0

i2k

(2k)!
z2k + i

∞∑

k=0

i2k

(2k + 1)!
z2k+1 =

∞∑

k=0

i2k

(2k)!
z2k +

∞∑

k=0

i2k+1

(2k + 1)!
z2k+1 =

∞∑

k=0

(
i2k

(2k)!
z2k +

i2k+1

(2k + 1)!
z2k+1

)

=

∞∑

n=0

in

n!
zn =

∞∑

n=0

1

n!
(iz)n = eiz.

(c) Let x, y ∈ R. Then we conclude from (a) and (b):

ex+iy = exeiy = ex(cos y + i sin y).
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Important concepts/typical problems in this chapter that you should
try without looking anything up:

• Decide whether the following series are convergent and absolutely
convergent:

∞∑

k=2

(−1)k

log(k)
,

∞∑

k=1

k7 sin(k)

k!
,

∞∑

k=1

1

1 + ik
.

• Formulate the nth Root Test and the Alternating Sign Test.

• How do you show that
∑∞

k=1 1/k
α is convergent for 1 < α < 2?

• For which values of a ∈ R is
∑∞

k=0 a
k! absolutely convergent?

• In which case can you rearrange a convergent complex series?
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10 Integrals

You know the integral
∫ b

a f(x)dx from School and the Calculus Course.
It describes the signed area between the graph of f and the x-axis on

the interval [a, b]. In fact, the integral can be defined in different ways
which all lead to the same result if f is “sufficiently nice”, e.g., if f is

continuous. The best known definitions of integrals are the Riemann
integral and the Lebesgue integral. Whilst the Lebesgue integral is the

more general concept, it needs a lot more time to be introduced prop-
erly, and we restrict ourselves here to the definition of the Riemann

integral. The definition is based on the concepts of lower and upper
Riemann sums.

10.1 The Riemann Integral and its properties

Definition 10.1. A partition P of a compact interval [a, b] is a finite partition
of
interval

set {x0, x1, . . . , xn} satisfying

a = x0 < x1 < x2 < · · · < xn = b.

Let f : [a, b] → R be a bounded function and P be a partition of [a, b].
The lower Riemann sum of f relative to P is defined as Lower/Upper

Riemann
sum

L(f,P) =

n∑

i=1

mi(xi − xi−1), where mi = inf{f(x) | xi−1 ≤ x ≤ xi},

and the upper Riemann sum of f relative to P is defined as

U(f,P) =
n∑

i=1

Mi(xi−xi−1), where Mi = sup{f(x) | xi−1 ≤ x ≤ xi}.

Examples. (a) We consider f(x) = x on [0, 1] with the partition

Pn =

{

0,
1

n
,
2

n
,
3

n
, . . . ,

n− 1

n
, 1

}

.

Then we have

L(f,Pn) =
1

n

n−1∑

i=0

i

n
=

1

n

(n− 1)n

2n
=

n− 1

2n
,

U(f,Pn) =
1

n

n∑

i=1

i

n
=

1

n

n(n+ 1)

2n
=

n+ 1

2n
.
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(b) This time, let f(x) = x2 on the same interval [0, 1] with the same
partition as in (a). Then we have

L(f,Pn) =
1

n

n−1∑

i=0

i2

n2
=

1

n

(n− 1)n(2n− 1)

6n2
=

(n− 1)(2n− 1)

6n2
,

U(f,Pn) =
1

n

n∑

i=1

i2

n2
=

1

n

n(n+ 1)(2n+ 1)

6n2
=

(n+ 1)(2n+ 1)

6n2
.

Lemma 10.2. Let f : [a, b] → R be bounded. If P1 and P2 are two

partitions of [a, b] with P1 ⊂ P2, then

L(f,P1) ≤ L(f,P2) ≤ U(f,P2) ≤ U(f,P1).

Proof. The inequality L(f,P2) ≤ U(f,P2) follows directly from

inf{f(x) | u ≤ x ≤ v} ≤ sup{f(x) | u ≤ x ≤ v}.

The inequality L(f,P1) ≤ L(f,P2) follows from

inf{f(x) | u ≤ x ≤ v}((w − u) + (v − w)) ≤
inf{f(x) | u ≤ x ≤ w}(w − u) + inf{f(x) | w ≤ x ≤ v}(v − w)

for all a ≤ u ≤ w ≤ v ≤ b. The inequality U(f,P2) ≤ U(f,P1) is

treated similarly.

Now we are in the position to introduce the Riemann integral.

Definition 10.3. Let f : [a, b] → R be bounded. Let

L(f) = sup{L(f,P) | P is a partition of [a, b]},
U(f) = inf{U(f,P) | P is a partition of [a, b]},

where both sup and inf are taken over all possible partitions. Then
f is Riemann integrable on [a, b] if L(f) = U(f) and we define the Riemann

integrableRiemann integral of f as
Riemann
integral∫ b

a

f(x)dx = L(f) = U(f).

Remark. Note that we always have

L(f) ≤ U(f). (16)
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We prove this indirectly: The assumption L(f) > U(f) would lead to
the existence of partitions PL,PU with

L(f,PL) > U(f,PU).

On the other hand, Lemma 10.2 would give for the partition P =
PL ∪ PU ,

L(f,PL) ≤ L(f,P) ≤ U(f,P) ≤ U(f,PU),

in contradiction to the previous inequality.

Example. Let f : [0, 1] → R be defined as follows

f(x) =

{

1, if x ∈ [0, 1] rational,

0, if x ∈ [0, 1] irrational.

Then we always have L(f,P) = 0 and U(f,P) = 1, and f is not
Riemann integrable. It turns out that f is Lebesgue integrable and

that the Lebesgue integral of f is 0. This is an example often used to
show that the Lebesgue integral is the stronger concept.

The following integrability criterion is very useful.

Theorem 10.4. Let f : [a, b] → R be bounded. Then f is Riemann

integrable if and only if, for every ǫ > 0, there exists a partition P of
[a, b] such that

U(f,P)− L(f,P) < ǫ. (17)

Proof. We first assume that f is Riemann integrable, i.e., L(f) =
U(f). Let ǫ > 0 be given. Then we find partitions PL,PU of [a, b]

such that
L(f,PL) ≤ L(f) < L(f,PL) +

ǫ

2
and

U(f,PU)−
ǫ

2
< U(f) ≤ U(f,PU).

Now, consider the partition P = PL ∪ PU . By Lemma 10.2, we have

L(f,PL) ≤ L(f,P) ≤ U(f,P) ≤ U(f,PU),

which implies

U(f,P)− L(f,P) ≤ U(f,PU)− L(f,PL)

< U(f) + ǫ

2
−
(

L(f)− ǫ

2

)

= ǫ,
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since U(f) = L(f). This shows that we have (17).
Conversely, assume that we can find, for every ǫ > 0, a partition P
such that we have (17). This implies that we have, for every ǫ > 0,

U(f)− L(f) ≤ U(f,P)− L(f,P) < ǫ.

Since U(f) − L(f) ≥ 0, by (16), and ǫ > 0 was arbitrary, we have
U(f) = L(f) and, therefore, f is Riemann integrable.

Example. We can now prove that f(x) = x2 is Riemann integrable on

[0, 1]. Using the notation for partitions in the earlier example, we have

U(f,Pn)− L(f,Pn) =
(n+ 1)(2n+ 1)

6n2
− (n− 1)(2n− 1)

6n2

=
2n2 + 3n+ 1− (2n2 − 3n+ 1)

6n2
=

1

n
.

Since 1/n → 0, we can find for every ǫ > 0 a partition P such that (17)
holds and f is Riemann integrable, by Theorem 10.4. The integral can

be sandwiched between

(n− 1)(2n− 1)

6n2
≤
∫ 1

0

x2dx ≤ (n+ 1)(2n+ 1)

6n2
,

for all n ∈ N. Taking the limits on both sides, we find
∫ 1

0

x2dx =
2n2

6n2
=

1

3
.

Theorem 10.5. Every monotone increasing function f : [a, b] → R

is Riemann integrable. The same holds for monotone decreasing func-

tions.

Proof. We prove the statement for monotone increasing functions. We
first introduce the equidistant partition Pn = {a = x0, x1, . . . , xn = b}
of [a, b], defined by

xj = a + j
b− a

n
.

Since f is monotone increasing, we have mi = f(xi−1) and Mi = f(xi)

and

L(f,Pn) =
b− a

n

n∑

i=1

f(xi−1),

U(f,Pn) =
b− a

n

n∑

i=1

f(xi).
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This implies that

U(f,Pn)− L(f,Pn) =
b− a

n
(f(xn)− f(x0)) =

b− a

n
(f(b)− f(a)).

For every ǫ > 0, we can therefore find n ∈ N with

U(f,Pn)− L(f,Pn) =
b− a

n
(f(b)− f(a)) < ǫ,

which implies that f is Riemann integrable, by Theorem 10.4.

The next result provides a large class of Riemann integrable functions.

Theorem 10.6. Every continuous function f : [a, b] → R is Riemann
integrable.

Reader’s Task. Theorem 10.6 can be proved with the help of the fol-
lowing fact: Every continuous function f : [a, b] → R on a compact
interval [a, b] is uniformly continuous, i.e., for every ǫ > 0 there exists uniform

continuityδ > 0 such that for all x, y ∈ [a, b] with |y − x| < δ we have

|f(y)− f(x)| < ǫ.

Note the subtle difference between continuity and uniform continuity:
In the latter case we can find, for a given ǫ > 0, a δ > 0 which works
simultaneously for every point x in the domain [a, b]. A continuous

function which is not uniformly continuous is, e.g., f(x) = 1/x over
(0, 1]. Give a proof of Theorem 10.6, using the fact that f is uniformly

continuous on [a, b].

Theorem 10.7 (Properties of the Riemann Integral). Let f, g : [a, b] →
R be Riemann integrable functions. Then we have the following:

(a) Linearity: For c, d ∈ R, cf + dg is also Riemann integrable and

∫ b

a

cf(x) + dg(x)dx = c

∫ b

a

f(x)dx+ d

∫ b

a

g(x)dx. (18)

(b) Monotonicity: If f(x) ≥ g(x) then

∫ b

a

f(x)dx ≥
∫ b

a

g(x)dx.

In particular, if f(x) ≥ 0 for all x ∈ [a, b], then also
∫ b

a f(x)dx ≥
0.
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(c) The product fg : [a, b] → R is also Riemann integrable.

(d) For any c ∈ (a, b), f is also Riemann integrable on [a, c] and [c, b]
and we have

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx. (19)

(e) We have
∣
∣
∣
∣

∫ b

a

f(x)dx

∣
∣
∣
∣
≤
∫ b

a

|f(x)|dx.

Proof. Ad (a): We only prove the case c = d = 1. Let ǫ > 0. By

Theorem 10.4, we can find two partitions P and P ′ of [a, b] such that

U(f,P)− L(f,P), U(g,P ′)− L(g,P ′) < ǫ.

Taking the refinement P ′′ = P ∪ P ′, we obtain

U(f + g,P ′′) ≤ U(f,P ′′) + U(g,P ′′) ≤ U(f,P) + U(g,P ′) (20)

and

L(f + g,P ′′) ≥ L(f,P ′′) + L(g,P ′′) ≥ L(f,P) + L(g,P ′), (21)

i.e.,

U(f + g,P ′′)− L(f + g,P ′′)

≤ (U(f,P)− L(f,P)) + (U(g,P ′)− L(g,P ′)) < 2ǫ.

This shows that f + g is Riemann integrable. For the identity (18),

note that

L(f,P) + L(g,P ′) ≤
∫ b

a

f(x)dx+

∫ b

a

g(x)dx ≤ U(f,P) + U(g,P ′)

and

L(f + g,P ′′) ≤
∫ b

a

f(x) + g(x)dx ≤ U(f + g,P ′′),

and therefore, using (20) and (21)

∣
∣
∣
∣

∫ b

a

f(x) + g(x)dx−
(∫ b

a

f(x)dx+

∫ b

a

g(x)dx

)∣
∣
∣
∣

≤ U(f,P) + U(g,P ′)− (L(f,P) + L(g,P)) < 2ǫ.
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Ad (b): The inequality follows directly from

mi(g) = inf{g(x) | xi−1 ≤ x ≤ xi} ≤ mi(f) =

∫

{f(x) | xi−1 ≤ x ≤ xi}

and, analogously, Mi(f) ≤ Mi(g).

Ad (c): We first assume that we have 0 ≤ f, g ≤ C. Let ǫ > 0 be

given. Then we can find partitions Pf and Pg such that

U(f,Pf)− L(f,Pf) < ǫ and U(g,Pg)− L(g,Pg) < ǫ.

Choosing the joint refinement P = Pf ∪ Pg, we have by Lemma 10.2
that

U(f,P)− L(f,P), U(g,P)− L(g,P) < ǫ.

Let P = {a = x0, x1, . . . , xn = b}. Using the notions mi(h) :=
infx∈[xi−1,xi] h(x) and Mi(h) := infx∈[xi−1,xi] h(x) for a bounded func-

tion h : [a, b] → R and the fact that mi(f), mi(g), mi(fg) ≥ 0, we
have

Mi(fg)−mi(fg) ≤ Mi(f)Mi(g)−mi(f)mi(g) =

Mi(f)(Mi(g)−mi(g)) +mi(g)(Mi(f)−mi(f)) ≤
C(Mi(g)−mi(g)) + C(Mi(f)−mi(f)).

This implies that

U(fg,P)− L(fg,P) =

n∑

i=1

(Mi(fg)−mi(fg))(xi − xi−1) ≤

C
n∑

i=1

(Mi(g)−mi(g))(xi−xi−1)+C
n∑

i=1

(Mi(f)−mi(f))(xi−xi−1) < 2Cǫ.

This shows that we can find partitions P of [a, b] to make the differ-
ence U(fg,P)−L(fg,P) arbitrarily small. Therefore, fg is Riemann

integrable by Theorem 10.4.
Now, we consider the general case of two arbitrary Riemann integrable

functions f, g with −C ≤ f, g ≤ C. Since f + C ≥ 0 and g + C ≥ 0,
the above considerations show that the function (f + C)(g + C) is

Riemann integrable. Since, by Linearity,
∫ b

a

f(x)g(x)dx =

∫ b

a

(f(x)+C)(g(x)+C)dx−C

∫ b

a

f(x)dx−C

∫ b

a

g(x)dx−C2(b−a),

32



we conclude that fg is also Riemann integrable.

Ad (d): For ǫ > 0, let P be a partition of [a, b] with

L(f,P) ≤
∫ b

a

f(x)dx ≤ U(f,P) and U(f,P)− L(f,P) < ǫ.

We can assume, without loss of generality, that c ∈ P (otherwise, we
add c to the partition P and use Lemma 10.2). We assume that

P = {a = x0, x1, . . . , c = xk, xk+1, . . . , b = xn}
and introduce the partitions

P1 = {x0, . . . , xk},
P2 = {xk, . . . , xn}

of [a, c] and [c, b], respectively. Then we have

L(f,P1) + L(f,P2) ≤
∫ c

a

f(x)dx+

∫ b

c

f(x)dx ≤ U(f,P1) + U(f,P2)

and

(U(f,P1)− L(f,P1))
︸ ︷︷ ︸

>0

+(U(f,P2)− L(f,P2))
︸ ︷︷ ︸

>0

= U(f,P)−L(f,P) < ǫ,

i.e., f is Riemann integrable on [a, c] and [c, b] and
∣
∣
∣
∣

∫ b

a

f(x)dx−
(∫ c

a

f(x)dx+

∫ b

c

f(x)dx

)∣
∣
∣
∣
< ǫ.

This shows the identity (19).

Ad (e): Let f+(x) = max{f(x), 0} and f−(x) = min{f(x), 0}. Then
we have f = f+ + f− and |f | = f+ − f−. Assume we have shown
that f+ is Riemann integrable. Then f− = f − f+ is also Riemann

integrable, by (a), and we conclude with the Triangle Inequality and
(a) and (b) that
∣
∣
∣
∣

∫ b

a

f(x)dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ b

a

f+(x)dx+

∫ b

a

f−(x)dx

∣
∣
∣
∣
≤

∣
∣
∣
∣

∫ b

a

f+(x)dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ b

a

f−(x)dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ b

a

f+(x)dx

∣
∣
∣
∣
+

∣
∣
∣
∣
−
∫ b

a

f−(x)dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ b

a

f+(x)dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ b

a

(−f−)(x)dx

∣
∣
∣
∣
=

∫ b

a

f+(x)dx+

∫ b

a

(−f−)(x)dx =

∫ b

a

f+(x)− f−(x)dx =

∫ b

a

|f(x)|dx.
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Now we show Riemann integrability of f+. Let ǫ > 0 be given. Then
there exists a partition P of [a, b] with

U(f,P)− L(f,P)) =

n∑

i=1

(Mi(f)−mi(f))(xi − xi−1) < ǫ.

Note that

Mi(f
+)−mi(f

+) =







Mi(f)−mi(f) if Mi(f) ≥ mi(f) ≥ 0,

Mi(f) if Mi(f) ≥ 0 > mi(f),

0 if 0 > Mi(f) ≥ mi(f).

This shows that we have always

0 ≤ Mi(f
+)−mi(f

+) ≤ Mi(f)−mi(f),

and, therefore,

U(f+,P)− L(f+,P)) =
n∑

i=1

(Mi(f
+)−mi(f

+))(xi − xi−1) ≤

n∑

i=1

(Mi(f)−mi(f))(xi − xi−1) < ǫ,

i.e., f+ is Riemann integrable.

Remark. Let f : [a, b] → R be Riemann integrable. It is sometimes
useful to also introduce the integral

∫ a

b f(x)dx. We define
∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

You have already seen the the following fact of fundamental impor-

tance and a sketch of its proof in the Calculus Course, connecting
differentiation and integration.

Fundamental
Theorem
of
Calculus

Theorem 10.8 (Fundamental Theorem of Calculus). Let f ∈ C([a, b]).
Then F (c) =

∫ c

a f(x)dx lies also in C([a, b]), is differentiable on [a, b]

(one-sided differentiable at a and b), and we have F ′(x) = f(x) for all
x ∈ [a, b].

Remark. Another formulation of the Fundamental Theorem of Calcu-

lus reads as follows: If g ∈ C([a, b]) and g = f ′ for some function
f : [a, b] → R, then

f(c) = f(a) +

∫ c

a

g(x)dx. (22)
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Concrete rules for Riemann integrals like Integration by Parts or Sub-
stitution were discussed in the Calculus Course and will be omitted
here.

Mean
Value
Theorem
for
integrals

Theorem 10.9 (Mean Value Theorem for integrals). Let f ∈ C([a, b])

and g ≥ 0 be Riemann integrable on [a, b]. Then fg is also Riemann
integrable on [a, b] and there exists c ∈ [a, b] such that

∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx. (23)

Examples. Let us briefly discuss that both conditions “g ≥ 0” and

“f continuous” in the theorem are necessary. For this we present a
counterexample for each of the cases that f is not continuous or g

changes sign.

(a) Let f, g : [0, 1] → R with g(x) = 1 for all x ∈ [0, 1] and

f(x) =

{

0 if x ∈ [0, 1/2],

1 if x ∈ (1/2, 1].

Note that g and fg are Riemann integrable, but f is not con-
tinuous. Then we have

∫ 1

0 f(x)g(x)dx = 1/2 and
∫ 1

0 g(x)dx = 1.

Observe that f takes only the values 0 and 1. On the other hand,
if the theorem were true, we could find c ∈ [0, 1] with

f(c) = f(c)

∫ 1

0

g(x)dx =

∫ 1

0

f(x)g(x)dx =
1

2
,

which is a contradiction.

(b) Let f, g : [−1, 1] → R be defined by f(x) = g(x) = x for all
x ∈ [−1, 1]. Then f and g are continuous and therefore, Rie-

mann integrable, but we do not have g ≥ 0. Moreover, note that
∫ 1

−1 g(x)dx = 0 and

∫ 1

−1

f(x)g(x)dx =

∫ 1

−1

x2dx =
2

3
.

If the theorem were true, we could find c ∈ [−1, 1] such that

2

3
=

∫ 1

−1

f(x)g(x)dx = f(c)

∫ 1

−1

g(x)dx = f(c) · 0 = 0,

which is, again, a contradiction.
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Proof. Since f ∈ C([a, b]), we know from Theorem 10.6 that f is
Riemann integrable. Riemann integrability of fg follows then from
Theorem 10.7(c).

Now we show the identity (23): By Theorem 7.12, there exist m =
minx∈[a,b] f(x) and M = maxx∈[a,b] f(x). Since g ≥ 0 and mg ≤ g ≤
Mg, we conclude from Theorem 10.7(a),(b) that

m

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ M

∫ b

a

g(x)dx.

If
∫ b

a g(x)dx = 0, this implies that also
∫ b

a f(x)g(x)dx = 0 and there is

nothing to show. Therefore, we can assume that
∫ b

a g(x)dx > 0 (the

case
∫ b

a g(x)dx < 0 is not possible since g ≥ 0). So we can divide by
∫ b

a g(x)dx and obtain

m ≤
∫ b

a f(x)g(x)dx
∫ b

a g(x)dx
≤ M.

Since f is continuous, by the Intermediate Value Theorem (Theorem
7.10), we can find c ∈ [a, b] with

f(c) =

∫ b

a f(x)g(x)dx
∫ b

a g(x)dx
,

which shows (23).

Definition 10.10. Let us briefly introduce the Riemann Integral for a
complex valued function f : [a, b] → C. Then we can write f = f1+if2 Riemann

Integral
of
complex
functions

with f1, f2 : [a, b] → R and we say that f is Riemann integrable on
[a, b] if both f1 and f2 are Riemann integrable on [a, b] and we define

its Riemann Integral as
∫ b

a

f(x)dx =

∫ b

a

f1(x)dx+ i

∫ b

a

f2(x)dx.

Then Theorems 10.6 and 10.7(a,c,d) hold also for the Riemann Integral

of a complex function. Integration of complex valued functions plays
an important role in the 2H Course Complex Analysis.

10.2 Improper Integrals

The definition of the Riemann integral of f requires that f is defined
on a compact interval and that f is bounded. A “nice” family of
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Riemann integrable functions are continuous functions. We extend
the definition of a Riemann integral of a continuous function to the
case that either the interval is unbounded (f is defined on (−∞, a] or

[a,∞)) or that the interval is bounded but f may be unbounded, as
we approach one of the finite boundary points of the interval. In this

case we speak of an improper integral of f and give a definition via a
limit procedure. Here is the precise definition.

Definition 10.11. Let I = [a, b) with a < b (bounded domain) of
b = ∞ (unbounded domain). Let f : I → R be continuous. For c ∈ I,
let

F (c) =

∫ c

a

f(x)dx.

If F (c) → L if c → b, we say that the integral
∫ b

a f(x)dx converges

to L. If F (c) has no limit, we say that
∫ b

a f(x)dx diverges. The convergence
and di-
vergence
of an
improper
integral

expression
∫ b

a f(x)dx is called an improper integral of f .
The improper integrals of a continuous function f over the bounded in-

tervals (a, b] and (a, b) with a < b and the unbounded intervals (−∞, b]
and R are defined similarly.

Remark. Let f ∈ C([a, b]). Then we have both a ordinary Riemann
integral of f on [a, b] and the improper integral on [a, b). Then we
also have F ∈ C([a, b]) (see Theorem 10.8) and the improper integral

agrees with the ordinary Riemann integral:

lim
c→b−

∫ c

a

f(x)dx =

∫ b

a

f(x)dx.

Examples. (a) Let f(x) = x−α on [1,∞). If α = 1, we have F (c) =
log(c) and the improper integral

∫∞
1 x−1dx diverges. If α ∈ (0,∞)

and α 6= 1, then F (c) = (c1−α − 1)/(1 − α) and the improper

integral
∫∞
1 x−αdx converges if and only if α ∈ (1,∞), in which

case we have ∫ ∞

1

dx

xα
=

1

α− 1
.

(b) Let f(x) = x−α on (0, 1]. If α = 1, we have F (c) = log(c) and the

improper integral
∫ 1

0 x−1dx diverges. If α ∈ (0,∞) and α 6= 1,

then F (c) = (1−c1−α)/(1−α) and the improper integral
∫ 1

0 x−αdx
converges if and only if α ∈ (0, 1), in which case we have

∫ 1

0

dx

xα
=

1

1− α
.
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(c) We conclude from (a) and (b) that the improper integral
∫∞
0 x−αdx

diverges for any choice of α ∈ (0,∞).

(d) Let f(x) = cosx on [0,∞). Then F (c) = sin x and the improper
integral

∫∞
0 cos(x)dx diverges.

(e) Let f(x) = e−αt with α ∈ R\{0} on [0,∞). Then F (c) = 1−e−αc

α

and the improper integral converges to 1/α if and only if α > 0.

(f) Let f(x) = log x on (0, 1]. Then

F (c) =

∫ 1

c

log(x)dx = [x log(x)− x]1c = c− 1− c log(c).

Since (with c = 1/t)

lim
c→0+

c log(c) = lim
t→∞

log(1/t)

t
= − lim

t→∞
log(t)

t
= 0,

we have

lim
c→0+

F (c) = −1,

and the improper integral
∫ 1

0 log(x)dx converges to −1.

(g) Let f(x) = (3− x)−α on [1, 3) with α ≥ 0. Then we have

F (c) =

∫ c

1

dx

(3− x)α
=

∫ 2

3−c

dt

tα
=

1

1− α

(
21−α − (3− c)1−α

)
,

and the improper integral
∫ 3

1
dx

(3−x)α converges if and only if 0 ≤
α < 1. In this case we have

∫ 3

1

dx

(3− x)α
= lim

c→3
F (c) =

21−α

1− α
.

For example, if α = 1/2, we have
∫ 3

1

dx√
3− x

= 2
√
2.

(h) Consider

∫ ∞

0

dx

1 + ex
. Direct calculation of the integral leads to

∫ c

0

dx

1 + ex
=
[
− log(1 + e−x)

]c

0
= log(

2

1 + e−c
) → log(2) as c → ∞.

So we have ∫ ∞

0

dx

1 + ex
= log 2.
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Linearity (see Theorem 10.7(a)) holds also for improper integrals. This
follows via a limit process directly from Theorem 10.7(a). Like in the
case of infinite series, we have a Comparison Test and an Absolute

Convergence Theorem for improper integrals.
Comparison
TestTheorem 10.12 (Comparison Test). Let 0 ≤ f ≤ g be continuous

functions on [a, b) with b > a or b = ∞. If the improper integral
∫ b

a g(x)dx converges with limit L then
∫ b

a f(x)dx is also convergent

with limit K ≤ L. Equivalently, if the improper integral
∫ b

a f(x)dx is

divergent then so is
∫ b

a g(x)dx.

The proof of this fact is straightforward and will be omitted.

Definition 10.13. Let f be a continuous function on [a, b) with b > a

or b = ∞. If the improper integral
∫ b

a |f(x)|dx converges, we say that absolute
conver-
gencethe improper integral

∫ b

a f(x)dx converges absolutely. In the case that

conditional
conver-
gence

∫ b

a f(x)dx is convergent but not
∫ b

a |f(x)|dx, we say that the improper

integral
∫ b

a f(x)dx converges conditionally.

Absolute
Conver-
gence
Theorem

Theorem 10.14 (Absolute Convergence Theorem). Let f be a con-

tinuous function on [a, b) with b > a or b = ∞. If
∫ b

a f(x)dx converges
absolutely, then it converges.

The proof follows very much the same lines as the proof of Theorem
9.6:

Proof. Let
∫ b

a f(x)dx be absolutely convergent. Then
∫ b

a 2|f(x)|dx is

convergent and so is
∫ b

a (|f(x)| + f(x))dx, by comparison, since 0 ≤
|f | + f ≤ 2|f |. Since

∫ b

a (|f(x)| + f(x))dx and
∫ b

a |f(x)|dx are both

convergent, we conclude with Linearity that also

∫ b

a

f(x)dx =

∫ b

a

(|f(x)|+ f(x))dx−
∫ b

a

|f(x)|dx

is convergent.

Examples. (a) Consider

∫ ∞

0

exp(−x2)dx. Then x2 exp(−x2) → 0

as x → ∞ and there exists a constant C > 0 such that 0 ≤
x2 exp(−x2) ≤ C for all 0 ≤ x ≤ ∞. This shows that we have
0 ≤ exp(−x2) ≤ Cx−2 on [1,∞) and, since

∫∞
1 x−2dx converges,
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the improper integral
∫∞
1 exp(−x2)dx is also convergent, by Com-

parison. Note that exp(−x2) is continuous and, therefore, Rie-

mann integrable on [0, 1]. This shows convergence of the improper
integral

∫ ∞

0

exp(−x2)dx =

∫ 1

0

exp(−x2)dx+

∫ ∞

1

exp(−x2)dx.

In fact, while F (c) =
∫ c

0 exp(−x2)dx cannot be expressed explic-
itly, one can prove that

∫ ∞

0

exp(−x2)dx = lim
c→∞

F (c) =

√
π

2
.

You may know from Statistics that the function 2
π

∫ c

0 exp(−x2)dx Gauss
error
function

is called the (Gauss) error function.

(b) Consider

∫ ∞

π

cosx

x2
dx. Since this improper integral is absolutely

convergent (
∫∞
π x−2dx converges), it must also be convergent.

(c) The improper integral

∫ ∞

π

sinx

x
dx is conditionally convergent.

We first show convergence: Integration by Parts leads to

F (c) =

∫ c

π

sin x

x
dx = −

[cosx

x

]c

π
−
∫ c

π

cosx

x2
dx.

We have
[cosx

x

]c

π
=

cos c

c
+

1

π
→ 1

π
as c → ∞,

and
∫ c

π cos(x)/x
2dx is convergent, as seen in (b). Therefore, the

improper integral is convergent.

Next we show that

∫ ∞

π

∣
∣
∣
∣

sin x

x

∣
∣
∣
∣
dx is divergent. Let

In =

∫ (n+1)π

nπ

∣
∣
∣
∣

sinx

x

∣
∣
∣
∣
dx =

∫ π

0

sin t

t+ nπ
dt ≥ 1

(n+ 1)π

∫ π

0

sin tdt =
2

(n+ 1)π
.

Since

F ((n+ 1)π) =

∫ (n+1)π

π

∣
∣
∣
∣

sinx

x

∣
∣
∣
∣
dx =

n∑

i=1

2

(i+ 1)π
,

the improper integral is not absolutely convergent since the har-
monic series

∑∞
i=1 1/(i+ 1) diverges.
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Sometimes, it is useful in the proof of convergence of an improper
integral

∫ b

a f(x)dx to split up the interval, i.e., to choose c ∈ (a, b) and

to prove separately that
∫ c

a f(x)dx and
∫ b

c f(x)dx are convergent.

Example. Consider
∫∞
0 f(x)dx with f(x) = log(x)/(1 + x3).

On (0, 1], we have 0 ≤ |f(x)| ≤ − log(x) and the integral
∫ 1

0 f(x)dx is
absolutely convergent, by Comparison with the convergent improper
integral

∫ 1

0 log(x)dx.

Next, we look at
∫∞
1 f(x)dx. Since log(x)/x → 0 as x → ∞, we

can find C > 0 such that 0 ≤ log x/x ≤ C for all x ∈ [1,∞), i.e.,

0 ≤ log x ≤ Cx. This implies that

|f(x)| ≤ Cx

1 + x3
≤ C

x2

for all x ∈ [1,∞). Then the integral
∫∞
1 f(x)dx is also absolutely

convergent, by Comparison with the convergent improper integral
∫∞
1 dx/x2.

Combining both facts shows that the improper integral

∫ ∞

0

log(x)

1 + x3
dx

is convergent.

Important concepts/typical problems in this chapter that you should

try:

• Let f(x) = x if x ∈ [0, 1] ∩ Q and f(x) = 0 for x ∈ [0, 1]\Q.
Compute L(f,P) for all partitions P of [0, 1] and U(f).

• Let f ∈ C([a, b]) and g : [α, β] → [a, b] be differentiable on (α, β).

For γ ∈ (α, β), let F (γ) =
∫ g(γ)

a f(x)dx. Calculate F ′(γ). Show

that the integral
∫ T

0
dx

1+x2 +
∫ 1/T

0
dx

1+x2 is independent of T > 0.

• Formulate the Mean Value Theorem for integrals.

• Show that the improper integral
∫∞
0 dx/(x1/3+x2) is convergent.
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11 Sequences of functions and uniform conver-

gence

In this chapter, we consider sequences (fn) of functions and will discuss
different notions of convergence for these sequences.

11.1 Pointwise convergence of functions

Let I ⊂ R be an interval and (fn) be a sequence in C(I). If, for every
x ∈ I, the sequence of real numbers fn(x) ∈ R converges, it is natural

to define the ”limit function” f : I → R of such a sequence fn as

f(x) = lim
n→∞

fn(x).

Example. Let fn : [0, 1] → R be defined as fn(x) = xn. Then fn ∈
C([0, 1]). For x ∈ [0, 1), we have

lim
n→∞

fn(x) = lim
n→∞

xn = 0.

Figure 1: The functions f1, f2, f5 and f10 defined by fn(x) = xn.

Moreover,
lim
n→∞

fn(1) = lim
n→∞

1 = 1.

This behaviour is illustrated in Figure 1. So the pointwise limit of (fn)

is the function f : [0, 1] → R,

f(x) =

{

0, if x ∈ [0, 1),

1, if x = 1.

Note that the limit function f : [a, b] → R is discontinuous at x = 1,
so f 6∈ C([0, 1]).
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Let us formalise the notion of a pointwise limit.

Definition 11.1. Let (fn) be a sequence of functions in C(I). We say
that this sequence has a pointwise limit if, for all x ∈ I, limn→∞ fn(x) pointwise

limitexists, and the limit function f : I → R is then defined as
limit
functionf(x) = lim

n→∞
fn(x).

11.2 Uniform convergence of functions

There is a stronger notion of convergence of continuous functions fn,
the so called uniform convergence. We say that fn converges uniformly

to f in I ⊂ R if, for every ǫ > 0, there exists N ∈ N such that the
graph of fn stays within the graphs of f − ǫ and f + ǫ, for all n ≥ N

or, in other words, |f − fn| < ǫ. In Figure 2, the graphs of f − ǫ and
f + ǫ are blue and while f7 stays within both graphs, the function f2
clearly does not.

f

a b

f−

f+ε

ε
f2 f 7

Figure 2: The function f7 satisfies |f − f7| < ǫ while the function f2 does not.

Definition 11.2. Let (fn) be a sequence of functions in C(I). We say

that fn converges uniformly to f : I → R if, for every ǫ > 0 we can uniform
conver-
gence

find N ∈ N such that for all n ≥ N and all x ∈ I, we have

|f(x)− fn(x)| < ǫ.

If fn converges uniformly to f , we write “fn → f uniformly”.

Example. Let fn(x) = x2 + sinx
n on I = [−π, π]. Then fn → f with

f(x) = x2 uniformly since, for every ǫ > 0 there exists N ∈ N with

1/N < ǫ and we have for all n ≥ N and x ∈ I:

|fn(x)− f(x)| = | sin x|
n

≤ 1

N
< ǫ.
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Uniform convergence is a stronger property than pointwise conver-
gence:

Proposition 11.3. Let fn ∈ C(I) be converging uniformly to f : I →
R. Then fn converges also pointwise to f .

Proof. For every fixed x ∈ I, uniform convergence implies directly

that limn→∞ fn(x) = f(x).

In contrast to pointwise convergence, uniform convergence has the
important property that it preserves continuity, which is formulated

in the following theorem.

Theorem 11.4. Let fn ∈ C(I). If fn → f uniformly, then the limit

function f is also continuous, i.e., f ∈ C(I).

Proof. We show that f is continuous, using the (ǫ, δ)-formalism. Let

c ∈ I and ǫ > 0 be given. Since fn → f uniformly, we can find N ∈ N

such that for all n ≥ N :

|f(x)− fn(x)| <
ǫ

3
∀x ∈ I. (24)

Now we use continuity of the function fN : Since fN is continuous at
c ∈ I, we find δ > 0 such that for all x ∈ I with |x− c| < δ:

|fN(x)− fN(c)| <
ǫ

3
. (25)

Combining (24) and (25) via the triangle inequality implies that we

have for all x ∈ I with |x− c| < δ:

|f(x)− f(c)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(c)|+ |fN(c)− f(c)| <
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ,

which shows that f is continuous at c. Since c ∈ I was arbitrary, f is
continuous.

Remark. Theorem 11.4 implies that the pointwise convergence fn → f
in the example in Section 11.1 cannot be a uniform convergence, since
the limit function is discontinuous at x = 1.

Finally, we mention further important properties of uniform conver-

gence.

44



Theorem 11.5. Let I = [a, b] and (fn) be a sequence in C(I). If
fn → f uniformly, then we have for all c ∈ [a, b]

∫ c

a

fn(x)dx →
∫ c

a

f(x)dx.

Reader’s Task. Give a proof of Theorem 11.5.

Theorem 11.6. Let I = [a, b] and (fn) be a sequence in C1(I). As-

sume that

• the sequence fn converges pointwise to a limit function f .

• the sequence f ′
n converges uniformly in I.

Then f ∈ C1(I), i.e., the limit function f has also a continuous deriva-
tive, and we have at every c ∈ I:

f ′(c) = lim
n→∞

f ′
n(c).

Proof. Let fn ∈ C1(I) be as in the theorem. Let f ′
n → g uniformly.

Then we have g ∈ C(I), by Theorem 11.4. Since f ′
n ∈ C(I), (22) tells

us that

fn(c) = fn(a) +

∫ c

a

f ′
n(x)dx. (26)

We know from Theorem 11.5 that
∫ c

a f
′
n(x)dx →

∫ c

a g(x)dx, and taking
limits in (26), as n → ∞, leads to

f(c) = f(a) +

∫ c

a

g(x)dx.

Differentiating both sides w.r.t. c and using the Fundamental Theorem
of Calculus yields

f ′(c) = g(c) = lim
n→∞

f ′
n(c).

Note that f ∈ C1(I), since f ′ = g ∈ C(I).

Example. Let fn ∈ C([0, 2]) be defined by (see Figure 3)

fn(x) =







4n−2x, if 0 ≤ x ≤ 1/2n−1,

2n−3 − 4n−2(x− 1/2n−1), if 1/2n−1 < x ≤ 1/2n−2,

0, if 1/2n−2 < x ≤ 2.

Then we have ∫ 2

0

fn(x)dx = 1/4
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for all n ∈ N, but fn converges pointwise to the zero function f ∈
C([0, 2]), f(x) = 0, since for x ∈ (0, 2] we can find N ∈ N such that
1/2N−2 < x and therefore fn(x) = 0 for all n ≥ N and for x = 0 we

have fn(0) = 0 for all n ∈ N. The convergence fn → f cannot be
uniform, since in this case Theorem 11.5 would imply that

∫ 2

0

f(x)dx = lim
n→∞

∫ 2

0

fn(x)dx = 1/4,

which is a contradiction to
∫ 2

0 f(x)dx = 0.

0 210.5

f3

f2

f1

0.5

1

Figure 3: The functions f1, f2, f3, . . . converging pointwise to zero.

Remark. The Definitions 11.1 and 11.2 of pointwise and uniform con-
vergence extend canonically to complex-valued functions fn : I → C.
Then Proposition 11.3 and Theorems 11.4 and 11.5 hold also without

change for complex-valued functions.

46



Important concepts/typical problems in this chapter that you should
try:

• Let fn : R → R be defined by fn(x) = sin(nx)/n. Show that fn
converges uniformly to the zero function but that f ′

n is not even

pointwise convergent.

• Calculate the pointwise limit of the sequence fn(x) =
ex

xn on the

interval (1,∞) and decide whether the convergence is uniform.

• Let fn, f : [a, b] → R. Pointwise convergence fn → f can be

expressed as follows with the help of quantifiers and the (ǫ, δ)-
formalism:

∀ x ∈ [a, b] ∀ ǫ > 0 ∃ N ∈ N∀ n ≥ N : |fn(x)−f(x)| < ǫ. (27)

Give a corresponding formulation for “fn → f uniformly”.
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12 Power series and Taylor series

A very useful method to describe functions is via power series. A
power series is an expression of the form

∑∞
k=0 akx

k. The coefficients

ak can be real or complex and, choosing an explicit real or complex
value for x, we obtain an infinite series in the sense of Chapter 9

which might converge or not. To understand the convergence domain
of a power series it is better to consider it as a complex power series
∑∞

k=0 akz
k with z ∈ C. It turns out that there is a special number

R ∈ [0,∞], the so called radius of convergence of the power series,
such that the power series converges for all complex values z ∈ C with

|z| < R and diverges for all complex values |z| > R. Note that the set
{z ∈ C | |z| < R} describes the interior of a circle of radius R around

the origin (see Figure 4). This is the reason for the name radius of
convergence.

R

this disk
convergence within 

divergence out here

Figure 4: Radius of convergence of a complex power series
∑

∞

k=0
akz

k.

Here are some examples.

Examples. (a) Every polynomial
∑n

k=0 akz
k is a power series with

ak = 0 for k ≥ n + 1. In this case the radius of convergence
is R = ∞, since the sum is a finite value for every choice of

z ∈ C.

(b) Recall that the geometric series is
∑∞

k=0 z
k. Here we have ak = 1

for all k ∈ N ∪ {0}. Note that we have for |z| < 1 the identity
∞∑

k=0

zk =
1

1− z
,
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and divergence for |z| > 1. So the radius of convergence here is
R = 1. The power series represents the function f(z) = 1/(1− z)
on {z ∈ C | |z| < 1}, but note that, while the power series

diverges for |z| > 1, the function f is well defined on the whole
complex plane except for z = 1.

(c) Recall from the Calculus Course that the exponential function

can be represented via the power series (Taylor series)

ez =
∞∑

k=0

1

k!
zk.

In this case we have ak = 1/k! and the power series converges for
all z ∈ C, so the radius of convergence is here, again, R = ∞.

(d) Consider the power series
∑∞

k=0 k
k+1zk. In this case we have

ak = kk+1, and it turns out that the power series diverges for any

complex number z 6= 0. So the radius of convergence is R = 0 in
this case.

Remark. In many cases we have R ∈ (0,∞) and the domain {z ∈
C | |z| < R} is called the disk of convergence. While we know what
happens for complex numbers z ∈ C with |z| < R (convergence) and

with |z| > R (divergence), convergence/divergence behaviour of the
power series for points on the circle |z| = R is a subtle question.

12.1 Radius of convergence and absolute convergence

Definition 12.1. A complex power series is an expression of the form power
series∑∞

k=0 akz
k with ak ∈ C. Given such a power series and a number

R ≥ 0 or R = ∞ such that the series converges for |z| < R and

diverges for |z| > R, then R is called the radius of convergence of the radius of
conver-
gence

power series.

The Ratio Test and the nth Root Test provide tools to calculate the

radius of convergence for particular power series
∑∞

k=0 akz
k. For z 6= 0,

we have |ak+1/ak| → L as k → ∞ if and only if
∣
∣
∣
∣

ak+1z
k+1

akzk

∣
∣
∣
∣
→ L|z|,

and the Ratio Test tells us that we have convergence for |z| < 1/L and
divergence for |z| > 1/L. Similarly, for z 6= 0, we have |ak|1/k → L as
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k → ∞ if and only if
∣
∣akz

k
∣
∣
1/k → L|z|,

and the nth Root Test tells us that we have convergence for |z| < 1/L
and divergence for |z| > 1/L. In both cases, the radius of convergence

is, therefore R = 1/L.

Examples. We calculate the radius of convergence for the following
power series

∑∞
k=0 akz

k.

(a) ak = 2k/k. Then we have
∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
=

2k

k + 1
→ 2,

so the radius of convergence is R = 1/2.

(b) a0 = 1 and ak = kk/k! for k ≥ 1. Then we have for k ≥ 1:

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
=

(k + 1)k+1

(k + 1)kk
=

(
k + 1

k

)k

=

(

1 +
1

k

)k

→ e,

so the radius of convergence is R = 1/e.

Lemma 12.2. Let
∑∞

k=0 akc
k be convergent for some c ∈ C\{0}. Then

∑∞
k=0 akz

k converges absolutely for all |z| < |c|.

Proof. Since
∑∞

k=0 akc
k converges, we have akc

k → 0 as k → ∞.
Therefore, there exists M > 0 such that |akck| ≤ M . This implies
that

|akzk| = |akck| · (|z|/|c|)k ≤ M |z/c|k.
Since |z/c| < 1, The geometric series

∑∞
k=0M |z/c|k is convergent and,

therefore,
∑∞

k=0Aakz
k| is also convergent, by Comparison.

A similar proof yields the following fact for the term by term derivative
of a power series.

Lemma 12.3. Let
∑∞

k=0 akc
k be convergent for some c ∈ C\{0}. Then

∑∞
k=0(k + 1)ak+1z

k converges absolutely for all |z| < |c|.

Reader’s Task. Modify the proof of Lemma 12.2 in such a way that
you obtain a proof of Lemma 12.3.

Theorem 12.4. Consider
∑∞

k=0 akz
k. Then we must have one of the

following cases:
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(a)
∑

akz
k converges only for z = 0, i.e., the radius of convergence

is R = 0.

(b) There exists a number R ∈ (0,∞) (radius of convergence) such
that

∑
akz

k converges absolutely for |z| < R and diverges for

|z| > R.

(c)
∑

akz
k converges absolutely for all z ∈ C, i.e., the radius of

convergence is R = ∞.

Proof. Let

X = {r ∈ [0,∞) |
∑

akz
k converges for some z ∈ C with |z| = r}.

Note that 0 ∈ X, so X is not empty. Then X is either unbounded
from above or it has a supremum, by the Completeness Axiom of R.

In the first case, we must have case (c), by Lemma 12.2. In the case
X = {0}, we must have case (a). It remains to consider the case that

X is bounded and R = sup(X) ∈ (0,∞). Then Lemma 12.2 tells us
that

∑
akz

k converges absolutely for all |z| < R, since then we can

find c ∈ X with |z| < c. Now let |z| > R. If
∑

akz
k were convergent,

then R < |z| ∈ X and we would have a contradiction to the fact

R = sup(X). So we must be in case (b).

Of course, real power series
∑

akx
k with ak ∈ R can be considered

as restrictions of complex power series
∑

akz
k. In this case, if R > 0

is the radius of convergence, then
∑

akx
k is absolutely convergent for

all x ∈ (−R,R) and divergent for all real x with |x| > R. In the next

section, we return to real power series and consider another type of
convergence, namely, uniform convergence.

12.2 Uniform convergence and the Weierstrass M-Test

After considerations about absolute convergence we will focus in this
section on uniform convergence. The precise facts about the differ-

ent types of convergence (conditional/absolute convergence and point-
wise/uniform convergence) might be a bit confusing when seeing them

for the first time, but they are important and will play, again, an im-
portant role in the 2H Course Complex Analysis. To make things a
bit easier, we restrict ourselves to uniform convergence of real power

series, even though the concepts can be also extended naturally to the
complex case.
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Note that the partial sums of a real power series
∑∞

k=0 akx
k are the

polynomials fn(x) =
∑n

k=0 akx
k and that the polynomials fn(x) can

be written as the finite sums fn(x) =
∑n

k=0 gk(x) with monomials
gk(x) = akx

k. In this way, we can consider the power series as a limit

of the functions fn in the sense of Chapter 11 and we may ask whether
the sequence (fn) converges uniformly in a suitable domain D ⊂ R. In

this case we can apply results like Proposition 11.3 or Theorems 11.4,
11.6 and 11.5 to make statements about the functions represented by
power series, since they can then be viewed as the uniform limits of

the partial sums of these power series. A useful tool to prove uniform
convergence in a domain D ⊂ R is the so-called Weierstrass M-Test:

Weierstrass
M -TestTheorem 12.5 (Weierstrass M -Test). Let D ⊂ R and (gk) be a se-

quence of functions gk : D → R satisfying

|gk(x)| ≤ Mk for all x ∈ D.

Let fn : D → R be defined as fn =
∑n

k=0 gk. Assume that
∑∞

k=0Mk is

convergent. Then there exists a function f : D → R such that “fn → f
uniformly in D”.

Proof. For each x ∈ D, the series
∑

gk(x) converges absolutely, by
Comparison with the series

∑
Mk. Therefore

∑
gk(x) is also conver-

gent and we define f(x) =
∑

gk(x) ∈ R. Now we need to show uniform
convergence fn → f on D. Let ǫ > 0. Since

∑
Mk is convergent, i.e.,

n∑

k=0

Mk → L as n → ∞,

we can find N ∈ N such that

∞∑

k=N+1

Mk = |L−
N∑

k=0

Mk| < ǫ.

But this implies for all x ∈ D and all n ≥ N that

|f(x)− fn(x)| = |
∞∑

k=n+1

gk(x)| ≤
∞∑

k=n+1

|gk(x)| ≤
∞∑

k=N+1

Mk < ǫ.

This shows that fn converges uniformly to f in D.

Using the Weierstrass M -Test, we can now prove the following impor-
tant fact.
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Theorem 12.6. Let
∑

akx
k be a real power series and R ∈ (0,∞]

be its radius of convergence. Let 0 < r < R. Then the partial sums

converge uniformly to
∑

akx
k in [−r, r].

Proof. Let gk(x) = akx
k, Mk = |akrk| and D = [−r, r]. Since 0 <

r < R, we know from Theorem 12.4 that
∑

akr
k converges absolutely.

Therefore,
∑

Mk is convergent. Moreover, we have for all x ∈ D (i.e.,

−r ≤ x ≤ r) that

|gk(x)| = |akxk| = |ak| · |x|k ≤ |ak| · rk = |akrk| = Mk.

This shows that the requirements of the Weierstrass M -Test are sat-
isfied and we have uniform convergence of

fn(x) =
n∑

k=0

gk(x) =
n∑

k=0

akx
k

to f(x) =
∑

akx
k in D.

The next result shows that we can differentiate real power series term
by term.

Corollary 12.7. Let f(x) =
∑∞

k=0 akx
k be a real power series and

R ∈ (0,∞] be its radius of convergence. Then f is differentiable at all

points x ∈ (−R,R) and we have

f ′(x) =
∞∑

k=0

(k + 1)ak+1x
k.

Proof. Let fn(x) =
∑n

k=0 akx
k be a sequence of real functions de-

fined on the interval (−R,R). Then their derivatives are given by

gn(x) =
∑n−1

k=0(k+1)ak+1x
k and the radius of convergence of the power

series g(x) =
∑∞

k=0(k + 1)ak+1x
k is at least R, by Lemma 12.3. Let

x ∈ (−R,R) and r = |x|. Then both sequences fn and gn converge
uniformly in [−r, r] to f and g, respectively, by Theorem 12.6. Note

that fn ∈ C1([−r, r]). Then we can apply Theorem 11.6 and find that
f is differentiable at x and we have

f ′(x) = lim
n→∞

f ′
n(x) = lim

n→∞
gn(x) = lim

n→∞

n−1∑

k=0

(k+1)ak+1x
k =

∞∑

k=0

(k+1)ak+1x
k.
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Repeated application of the above corollary shows that a power series
is an infinitely many times differentiable function within its radius of
convergence.

Corollary 12.8. Let f(x) =
∑∞

k=0 akx
k be a real power series and

R ∈ (0,∞] be its radius of convergence. Then f is infinitely many

times differentiable at x at all points x ∈ (−R,R) and we have for all
n ∈ N ∪ {0}:

f (n)(0) = n! · an. (28)

Proof. Applying Corollary 12.7 repeatedly, we see that f is infinitely

many times differentiable at all points x ∈ (−R,R) and that we have

f (n)(x) =
∞∑

k=0

(k + 1)(k + 2) · · · (k + n)ak+nx
k.

Evaluation at x = 0 yields

f (n)(0) = n! · an.

(28) can be used to show that power series representing a function
within its radius of convergence are unique.

Identity
Theorem
for Power
Series

Theorem 12.9 (Identity Theorem for Power Series). Let
∑∞

k=0 akx
k

and
∑∞

k=0 bkx
k be two real power series with positive radii of conver-

gence Ra, Rb > 0, respectively. If both series agree as functions on an
interval (−r, r) with 0 < r < min{Ra, Rb}, then we have ak = bk for

all k ∈ N ∪ {0}.

Proof. Let f(x) =
∑∞

k=0 akx
k and g(x) =

∑∞
k=0 bkx

k. Since f = g on

(−r, r), we have

n! · an = f (n)(0) = g(n)(0) = n! · bn,

i.e., an = bn after division by n! ∈ N.

Remark. In fact, an even stronger identity result holds for complex
power series f(z) =

∑
akz

k with positive radius of convergence. If

there exists a sequence zn ∈ C within the circl of convergence with
zn → 0 and f(zn) = 0 for all n, then we have ak = 0 for all k ∈ N∪{0},
i.e., the power series is trivial.
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12.3 Taylor Series

Recall from the Calculus Course that, for a given function f : R → R

with arbitrarily high derivatives at x = 0, we can define its Taylor
series11 as Taylor

series
∞∑

k=0

f (k)(0)

k!
xk.

Given such a Taylor series, we can use the Ratio Test or the nth Root

Test to calculate its radius of convergence R. But even though we
know for |x| < R that the power series is convergent, its value may
not agree with the original function f . Here is such an example.

Example. Let f : R → R be defined as

f(x) =

{

e−1/x2

if x 6= 0,

0 if x = 0.

In this case, it can be checked that f is infinitely many times differ-

entiable and that there are polynomials pk such that

f (k)(x) =

{

pk(1/x)e
−1/x2

if x 6= 0,

0 if x = 0.

Since f (k)(0) = 0 for all k ≥ 0, the Taylor series of f is
∑∞

k=0 0 ·xk, i.e.,
the zero function and, therefore, has radius of convergence R = ∞.

But the Taylor series of f agrees with f only at the origin x = 0.

In order to check whether the Taylor series represents the function f
at a point x, we need to consider the remainder term, given in the

Calculus Course, and need to show that this remainder term, at a
given point x ∈ R, converges to 0.

We will not delve further into this subtle topic. In many cases, we have
agreement of a function and its Taylor series, and we can manipulate
these power series in a straightforward manner. Here are examples.

Example. (a) A polynomial f(x) = anx
n + . . . a1x + a0 is its own

Taylor series since f (k)(0) = k! · ak for all k.

11This kind of series was formally introduced by the English mathematician Brook Taylor

(1685-1731) in 1715. Taylor studied at Cambridge University and became a fellow of the Royal
Society in 1712. He was also a member of the committee dealing the priority dispute between Sir

Isaac Newton (1685-1731) and Gottfried Leibniz (1646-1716) on the invention of calculus.
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(b) Let f(x) = sin x. Then we have f (4l)(x) = sin x, f (4l+1)(x) =
cosx, f (4l+2)(x) = − sinx and f (4l+3)(x) = − cosx, which leads
to

f (4l)(0) = f (4l+2)(0) = 0

and
f (4l+1)(0) = −f (4l+3)(0) = 1.

This shows that only the higher derivatives of f of odd orders at

x = 0 are non-vanishing and the Taylor series of sinx is
∞∑

k=0

f k(0)

k!
xk =

∞∑

k=0

(−1)k

(2k + 1)!
x2k+1.

Here, the radius of convergence is R = ∞ and the Taylor series
agrees with sin x on all of R.

(c) Similarly as in (b), we could also calculate the Taylor series of
cosx directly. Another way to obtain a power series to represent

cosx is to use Corollary 12.7 and to differentiate the power series
of (b) term by term. Doing so leads to

cosx =
∞∑

k=0

(−1)k

(2k + 1)!
(2k + 1)x2k =

∞∑

k=0

(−1)k

(2k)!
x2k.

By Lemma 12.3 and the Identity Theorem 12.9 we conclude that
this power series represents cosx on all of R and agrees with the

Taylor series of cosx.

(d) Two other important functions are sinh(x) = ex−e−x

2 and cosh(x) =
ex+e−x

2
, represented by their Taylor series on all of R:

sinh(x) =

∞∑

k=0

1

(2k + 1)!
x2k+1 and cosh(x) =

∞∑

k=0

1

(2k)!
x2k.

(e) The Taylor series of log(1 + x) is given by
∞∑

k=1

(−1)k+1

k
xk.

Its radius of convergence is R = 1 and the power series represents

log(1 + x) on −1 < x ≤ 1. Choosing, in particular, x = 1, leads
to the identity

∞∑

k=1

(−1)k+1

k
= log(2).
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Finally, let us mention the general Binomial Expansion, derived via
the Taylor series.

Binomial
Expan-
sion

Example (Binomial Expansion). For |x| < 1 and c ∈ R, we have

(1 + x)c = 1 +

∞∑

k=1

(
c

k

)

xk,

where (
c

k

)

=
c(c− 1)(c− 2) · · · (c− k + 1)

k!
.

Here are some special cases:

(a) If c ∈ N, then
(
c
k

)
= 0 for k > c and the power series is the

polynomial

(1 + x)c = 1 +
∞∑

k=1

(
c

k

)

xk.

(b) Since
(−1

k

)
= (−1)k, we recover the geometric series

1

1 + x
=

∞∑

k=0

(−x)k.

(c) We have for c = 1/2

√
1 + x = 1 +

1

2
x− 1

8
x2 +

3

16
x3 − · · · for |x| < 1.

Important concepts/typical problems in this chapter that you should

try without looking anything up:

• Calculate the radius of convergence of
∑∞

k=1 x
k/(k3k).

• Using the Weierstrass M -Test, show that
∑∞

k=1 1/(k
2 + x2) con-

verges uniformly in the whole real line R.

• Let
∑

akx
k be the Taylor series of a function f . How are ak and

derivatives of f related? Let the radius of convergence of the

Taylor series be R = ∞. Does this imply that the Taylor series
represents the function on the whole real line?

• Calculate the Taylor series of f(x) = ex. Derive from it a power

series representing the function g(x) = e−x2

.
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