
Analysis 1 Solutions (Epiphany Term 2015)

8 Differentiable functions

111. We have f(x) = f(c) + (x − c)f1(x) with f1 continuous at c. Since f is
differentiable at x = c, f is also continuous at x = c, i.e.,

f(x) → f(c) 6= 0 for x → c,

and, therefore, for x near c we have f(x) 6= 0. This implies that

1

f(x)
− 1

f(c)
=

f(c)− f(x)

f(x)f(c)
=

1

f(x)f(c)
(c− x)f1(x).

Therefore, we have

1

f(x)
=

1

f(c)
+ (x− c)

(

− f1(x)

f(x)f(c)

)

=
1

f(c)
+ (x− c)f2(x)

with f2(x) = −f1(x)/(f(x)f(c)). Then f2 is continuous at x = c as expression
of continuous functions at x = c and since f(c) 6= 0, which implies that 1/f(x)
is differentiable at x = c with derivative

f2(c) = − f1(c)

f 2(c)
= − f ′(c)

f 2(c)
.

112. Problems Class, 30 January 2015

113. Since sin x is bounded, we have

f ′(0) = lim
h→0

f(h)

h
= lim

h→0
h sin(1/h) = 0.

Therefore, the derivative of f is given by

f ′(x) =

{

2x sin(1/x)− cos(1/x) if x 6= 0,

0 if x = 0.

If f ′ were continuous at x = 0, we would need to have

lim
x→0

2x sin(1/x)− cos(1/x) = 0.

While we have x sin(1/x) →) as x → 0, cos(1/x) is not convergent (choose
sequences xn → 0 having different constant values cos(1/xn)). Therefore, f

′(x)
is not continuous at x = 0.
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114. Let f(x) = e−x−sin x and a, b ∈ R with a < b be two real solutions of ex sin x =
1. This means that we have f(a) = f(b) = 0. Since f is differentiable, we
can apply Rolle’s Theorem and find c ∈ (a, b) with 0 = f ′(c) = −e−c − cos c.
Rewriting this equation yields ec cos c = −1.

115. It suffices to prove that f
(n)
n has precisely n pairwise different zeroes in (−1, 1).

Firstly, we prove that f
(k)
n has at least k pairwise different zeroes in (−1, 1)

for k ∈ {0, 1, 2, . . . , n}. In the case k = 0 there is nothing to prove. Assume

we have already shown that f
(k)
n has at least k pairwise different zeroes x1 <

x2 < · · · < xk in (−1, 1) for some 0 ≤ k ≤ n−1. Note that x2−1 divides f
(k)
n ,

so f
(k)
n has zeroes

−1 = x0 < x1 < x2 < · · · < xk < xk+1 = 1.

Applying Rolle’s Theorem to every interval [xi−1, xi] with i = 1, 2, . . . , k+1, we

obtain k+1 pairwise different zeroes x′
i ∈ (xi−1, xi) of f

(k+1)
n . This shows that

f
(n)
n has at least n pairwise different zeroes in (−1, 1). Since fn is a nonzero

polynomial of order 2n, f
(n)
n is a nonzero polynomial of order n and can have

at most n pairwise different real roots. Combining both facts proves that pn
has precisely n pairwise different zeroes in (−1, 1).

116. We have f(2) = 4, f(5) = 25 and f ′(c) = 4c − 7. Then the Mean Value
Theorem claims the existence of c ∈ (2, 5) satisfying 4c−7 = (25−4)/(5−2) =
7. The solution of 4c − 7 = 7 is c = 3.5 which lies in the interval (2, 5),
confirming the Mean Value Theorem in this case.

117. (a) Applying the classical Mean Value Theorem to f(x) = log(x), we obtain
for some c ∈ (1, b/a),

f(b/a)− f(1) = log

(

b

a

)

− 0 = log

(

b

a

)

= (b/a− 1)f ′(c) =
b− a

ac
.

Since 1 < c < b/a, we have a/b < 1/c < 1 and, therefore,

1− a

b
=

b− a

b
=

a

b

b− a

a
<

b− a

ac
= log

(

b

a

)

<
b− a

a
=

b

a
− 1.

(b) Choose a = 5 and b = 6 to obtain

1

6
= 1− 5

6
< log

(

6

5

)

= log(1.2) <
6

5
− 1 =

1

5
.

118. Let a ≤ x < y ≤ b. Then by the classical Mean Value Theorem there exists
z ∈ (x, y) such that f ′(z) = (f(y)− f(x))/(y − x).
(a) Suppose that f ′ ≡ 0 on (a, b). Then f ′(z) = 0, so f(x) = f(y): i.e. f is
constant on (a, b).
(b) Suppose that f ′ > 0 on (a, b). Then f ′(z) > 0, and so f(y) > f(x). I.e. f
is increasing.
(c) Now suppose that t ≤ f ′ ≤ T on (a, b). Then again t ≤ f ′(z) ≤ T , and the
result follows.
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119. (a) We first check that

sinh′(x) =
ex − (−1)e−x

2
=

ex + e−x

2
= cosh(x)

and

cosh2(x) =

(

ex + e−x

2

)2

=
e2x + 2 + e−2x

4
=

1 +
e2x − 2 + e−2x

4
= 1 +

(

ex − e−x

2

)2

= 1 + sinh2(x).

Since cosh(x) = (ex + e−x)/2 > 0, we know that sinh(x) is strictly mono-
tone increasing. Let y = sinh(x). This implies that 2y = ex − e−x and,
multiplying by ex:

e2x − 2yex − 1 = 0.

Let c = ex > 0. Solving c2 − 2yc− 1 = 0 leads to

c =
2y ±

√

4y2 + 4

2
= y ±

√

y2 + 1.

Since c > 0, the only solution is

ex = c = y +
√

y2 + 1,

i.e.,
x = log(y +

√

y2 + 1).

This shows that Ar sinh(y) = log(y+
√

y2 + 1). Now we differentiate and
obtain

Ar sinh′(y) =
1

y +
√

y2 + 1

(

1 +
2y

2
√

y2 + 1

)

=

1

y +
√

y2 + 1

(

1 +
y

√

y2 + 1

)

=
1

y +
√

y2 + 1

√

y2 + 1 + y
√

1 + y2
=

1
√

1 + y2
.

(b) Using (1) in Exercise 112 and cosh(x) =
√

1 + sinh2(x) yields

Ar sinh′(y) =
1

cosh(Ar sinh(y)
=

1
√

1 + sinh2(Ar sinh(y))
=

1
√

1 + y2
.

120. (a) Using the classical Mean Value Theorem, we obtain for 0 < a < b and
some c ∈ (a, b):

arctan(b)− arctan(a) =
(b− a)

1 + c2
.

Since 1 + a2 < 1 + c2 < 1 + b2, we conclude that

b− a

1 + b2
< arctan(b)− arctan(a) <

b− a

1 + a2
.
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(b) Choosing 0 < a = 1 < b = 4/3, we obtain

1/3

1 + 16/9
< arctan(4/3)− arctan(1) <

1/3

2
.

Since arctan(1) = π/4, we end up with

3

25
=

1

3 + 16/3
< arctan(4/3)− π

4
<

1

6
.

121. We assume that f, g : (a, b) → R are differentiable, c ∈ (a, b), f(c) = g(c) = 0
and that limx→c f

′(x)/g′(x) exists. Using the formula, we find some ξ ∈ (x, c)
(if x < c) or ξ ∈ (c, x) (if c < x) such that

g(x)f ′(ξ) = (g(x)− g(c))f ′(ξ) = (f(x)− f(c))g′(ξ) = f(x)g′(ξ). (1)

The assumption that limx→c f
′(x)/g′(x) exists implies that we have for all

x 6= c, sufficiently close to c, g′(x) 6= 0. Applying (1) to those x, we also have
g′(ξ) 6= 0, since ξ 6= c is even closer to c than x. Moreover, using the classical
Mean Value Theorem, we have

g(x) = g(x)− g(c) = (x− c)g′(η) 6= 0

for some η strictly between x and c, and we can therefore divide (1) by
g(x)g′(ξ) 6= 0 and obtain

f(x)

g(x)
=

f ′(ξ)

g′(ξ)
.

Now, if x → c, x 6= c, we also have ξ → c, ξ 6= c, and therefore,

lim
x→c

f(x)

g(x)
= lim

ξ→c

f ′(ξ)

g′(ξ)
,

showing that the limit limxtoc f(x)/g(x) must exist and must agree with the
well-defined limit limx→c f

′(x)/g′(x).

122. Let f(x) = 1 + cos(πx) and g(x) = x2 − 2x + 1. Then f(1) = g(1) = 0
and f ′(x) = −π sin(πx) and g′(x) = 2x − 2. Then f ′(1) = g′(1) = 0 and
f ′′(x) = −π2 cos(πx) and g′′(x) = 2. Then

lim
x→1

f ′′(x)

g′′(x)
= lim

x→1

−π2 cos(πx)

2
=

π2

2
.

Applying L’Hop̂ital twice, we obtain

lim
x→1

f(x)

g(x)
= lim

x→1

f ′(x)

g′(x)
= lim

x→1

f ′′(x)

g′′(x)
=

π2

2
.

123. Let f(x) = x − sin x and g(x) = x3. Then f(0) = 0 = g(0) = 0 and f ′(x) =
1 − cosx and g′(x) = 3x2. Then f ′(0) = g′(0) = 0 and f ′′(x) = sin x and
g′′(x) = 6x. Then f ′′(0) = g′′(x) = 0 and f (3)(x) = cosx and g(3)(x) = 6.
Then

lim
x→0

f(3)(x)

g(3)(x)
= lim

x→0

cos x

6
=

1

6
.
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Applying L’Hop̂ital three times, we obtain

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

f ′′(x)

g′′(x)
= lim

x→0

f(3)(x)

g(3)(x)
=

1

6
.

124. We have

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim

x→0

f(x)

x
= lim

x→0

g(x)

x2
.

Let h(x) = x2. Then g(0) = h(0) = 0 and h′(x) = 2x. Then g′(0) = h′(0) = 0
and h′′(x) = 2. Applying L’Hop̂ital twice, we obtain

f ′(0) = lim
x→0

g(x)

h(x)
= lim

x→0

g′(x)

h′(x)
= lim

x→0

g′′(x)

h′′(x)
=

17

2
.

125. Let f(x) = 5 sin x − 4x. Then f ′(x) = 5 cosx − 4 and Newton’s iteration is
given by

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

5 sin x− 4x

5 cosx− 4
.

We start with x1 = 1 and obtain successively

x2 = 1− 5 sin(1)− 4

5 cos(1)− 4
= 1.15969 . . . ,

x3 = 1− 5 sin(x2)− 4x2

5 cos(x2)− 4
= 1.13203 . . . ,

x4 = 1− 5 sin(x3)− 4x3

5 cos(x3)− 4
= 1.13110 . . . .

We check that

f(1.131) = 0.000192 . . . and f(1.132) = −0.001682 . . . ,

which means that there must be a zero within the interval (1.131, 1.132) by
the Intermediate Value Theorem.

9 Infinite series

126. (2 + n)/
√
4n4 − 1 > n/

√
4n4 = (2n)−1, and Σ(2n)−1 diverges; so the given

series diverges, by comparison.

127.
√
n/(n3 + 1) < n−5/2, and Σn−5/2 converges; so given series converges, by

comparison.

128. | sin(2n)/2n| ≤ 2−n and
∑∞

n=1 2
−n converges, so the given series converges

absolutely, by comparison.

129. Write xn = (n− 3)(2 + 9n6)−1/2. Note that 0 ≤ xn < n/
√
9n6 = 1/(3n2), and

∑∞
n=1 1/(3n

2) converges; so the given series converges, by comparison.
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130. (a) 0 ≤ xn ≤ 1/n2, so the series converges.
(b) xn ≥ 1

2n
, so the series diverges.

(c) For n > 2, we have |xn| ≤ n−9/2, so series converges absolutely.

(d) xn = n2

(n+1)(n+2)(n+3)
≥ 1

n

(

n
n+3

)3 ≥ 1
n

1
43
, so the series is divergent.

(e) Since x8 exp(−x) → 0 as x → ∞, the set {n4 exp(−√
n)} is bounded above,

say by K. So 0 < xn < K/n2. Thus the given series converges, by comparison
with the convergent series

∑

K/n2.
(f) |xn| ≤ n−2, so the series is absolutely convergent.
(g) sin θ < θ for θ > 0, so 0 < xn < n−2 for n ≥ 1. Since

∑

n−2 converges, so
does

∑

xn, by comparison.
(h) Since n−1/2(logn)4 → 0 as n → ∞, the set {n−1/2(logn)4} is bounded
above, say by K. So 0 < xn < K/n3/2. Thus the given series converges, by
comparison with the convergent series

∑

K/n3/2.
(i) xn = 1/(

√
1 + n2 + n) ≥ 1/(n +

√
2n2) ≥ 1/n(1 +

√
2), so the series is

divergent.

131. (a) n log(1 + 1
n
) → 1 as n → ∞, so there exists K such that

xn = (n2+1)−α log(1+ 1
n
) ≤ Kn−2α−1; hence the series is convergent for α > 0,

by comparison with
∑

n−2α−1. For α ≤ 0, we can say that for n large enough,
xn > 1

2
1

n(1+n2)α
> 1

21+2α
1

n1+2α ≥ 1
21+2α

1
n
;

so the series is divergent, by comparison with
∑

1/n.

(b) xn = nα
(

1√
n
− 1√

n+1

)

= nα(
√
n+1−√

n)√
n(n+1)

= nα√
n(n+1)(

√
n+1+

√
n)
.

Now n3/2√
n(n+1)(

√
n+1+

√
n)

→ 1
2
as n → ∞, so that, by comparison, the series

converges for α− 3
2
< −1, i.e. for α < 1

2
.

132. The series has partial sums x1−x2, x1−x3, x1−x4, . . . , and the result follows.

133. Define the partial sums Xn =
∑n

k=1 xk and Yn =
∑n

k=1 yk. Then Xn → s as
n → ∞. But Yn = 1

2
Xn +

1
2
(Xn+1 − x1), so Yn → s− x1/2.

134. Since
∑

xn converges, xn → 0 as n → ∞, and so there exists K such that
|xn| ≤ K for all n. But then |xnyn| ≤ K|yn|, so that

∑

xnyn converges
absolutely by comparison with

∑

|yn|. Conditional convergence of
∑

yn is not
enough. For example, consider xn = yn = (−1)nn−1/2. Then

∑

xn and
∑

yn
are convergent, by the alternating series test, but

∑

xnyn is the harmonic
series and is divergent.

135. (a) The tan function is increasing on [0, π/2), so {tan(π/n)} is a decreasing
sequence for n ≥ 3; its limit is tan 0 = 0. Also cos(nπ) = (−1)n — so by the
Alternating Sign Test, the series converges.
(b) Write f(x) = 1/[x(log x)3] on [2,∞). Then f is a positive decreasing

function, and
∫M

2
f(x) dx = −1

2
[(log x)−2]

M
2 = 1

2
(log 2)−2 − 1

2
(logM)−2 →

1
2
(log 2)−2

as n → ∞. Hence
∑∞

n=2 f(n) converges, by the Integral Test.
(c) Write xn = (2n)! 5−n(n!)−2. Then

∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

=
(2n + 2)(2n+ 1)

5(n+ 1)2
→ 4

5
as n → ∞.
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Since 4/5 < 1, we conclude that
∑∞

n=1 xn converges, by the Ratio Test.

136. (a) Write xn = 1/[
√
n tanh(n)]. Both

√
n and tanh(n) are increasing se-

quences, so {xn} is decreasing. Also, xn → 0 as n → ∞. So by the Alternating
Sign Test, the given series converges.
(b) Write xn = (2/9)n(2n)!/(n!)2. Then

∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

=
2(2n+ 2)(2n+ 1)

9(n+ 1)2
→ 8

9

as n → ∞. So by the Ratio Test,
∑

xn converges.
(c)

0 ≤ n− 1

(n2 + 2)(n2 + 1)1/4
<

n

n2n1/2
=

1

n3/2

and
∑

n−3/2 converges, so the given series converges by comparison.

137. (a) The ratio of successive terms is ((n+1)!)2(2n)!
(n!)2(2n+2)!

= (n+1)2

(2n+1)(2n+2)
= n+1

4n+2
→ 1

4
as

n → ∞, so convergent by Ratio Test.
(b)

∑∞
n=1 xn is the same series as

∑∞
n=2

1
n logn

Since f(x) = 1/(x log x) is de-

creasing on [2,∞), and
∫M

2
f = log logM − log log 2 is unbounded as M → ∞,

the series diverges (Integral Test).
(c) cos(πn) = (−1)n, so that we have an alternating series. Thus the Alter-
nating Sign Test tells us that for convergence it is sufficient to have |xn| → 0
monotonically as n → ∞, which certainly is the case here.

138. (a) Ratio test: |xn+1/xn| = |α|(1+1/n)α → |α| as n → ∞. So series converges
if |α| < 1 and diverges if |α| > 1. If α = 1 then xn = n clearly divergent;
while if α = −1 then xn = (−1)n/n which gives an alternating series which
converges since {1/n} is a decreasing sequence tending to zero. So we have
convergence iff −1 ≤ α < 1.

(b) The terms of the series vanish as n → ∞ (and so the series can con-
verge) only for |α| ≤ 3. When α = 3, the series is a harmonic series and
diverges. When α = −3 the series converges by the Alternating Sign Test.
When |α| < 3, the series is absolutely convergent by comparison with the con-
vergent geometric series

∑

(α/3)n.

(c) By the comparison test,
∑

xn converges if and only if
∑

(n+1)−1(log(n+
1))−α does. Since f(x) = (x + 1)−1(log(x + 1))−α is decreasing on [1,∞) for
all α, we can apply the Integral Test. The α = 1 case was covered in Problem
137(b); for α 6= 1 we have (1 − α)

∫M

1
f(x) dx = [log(M + 1)]1−α − [log 2]1−α.

This has a limit as M → ∞, and hence
∑

xn converges, if and only if α > 1.

(d) |xn+1/xn| = (n+1)|α|; if α 6= 0, then this ratio tends to infinity as n → ∞,
so the series diverges by the Ratio Test. If α = 0, then the series clearly con-
verges.
(e) We have xn = (α/2)n/(3 − 1/n) and since 2 ≤ 3 − 1/n ≤ 3, the se-
ries converges if and only if the geometric series

∑

(α/2)n converges (by the
Comparison Test), and this converges for |α| < 2.
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139. (a) The series is absolutely convergent for any z by the Ratio Test.
(b) The series is absolutely convergent for any z by the Ratio Test.
(c) The series is a geometric series and is convergent if and only if |zc| < 1.
(d) The ratio test implies that the series is absolutely convergent when |z| < 1,
and the vanishing condition implies that it is divergent otherwise.
(e) Since αn/n! → 0 as n → ∞ for any α ∈ R, the terms of this series do not
vanish for any z 6= 0, and so the series is divergent for all z 6= 0.

140. (a) Write xn = n2 2−n. Then |xn+1/xn| = (1 + 1/n)2/2 → 1/2 as n → ∞. So
the series converges, by the Ratio Test.
(b) Write xn = [1+exp(−n)]/[(n+1)2−(n−1)2]. Then xn = (1+e−n)/(4n) >
1/(4n), and Σ(4n)−1 diverges; hence the given series diverges, by comparison.
(c) Write xn = n−2 log n. Since n−1/2 log n → 0 as n → ∞, there exists a
number K such that logn ≤ K

√
n for all n. Thus 0 ≤ n−2 logn ≤ Kn−3/2,

and ΣKn−3/2 converges; so the given series converges by comparison.
(d) Write xn = n! 2n n−n. Then |xn+1/xn| = 2[n/(n + 1)]n = 2/(1 + 1/n)n →
2/e as n → ∞. Since 2/e < 1, the Ratio Test says that Σxn converges.

141. We use the nth Root Test. Let

an =

[

n4 sin2

(

2n

3n3 − 2n2 + 5

)]n

.

Then we have

|an|1/n = n4 sin2

(

2n

3n3 − 2n2 + 5

)

.

Note that (2n)/(3n3 − 2n2 + 5) → 0 as n → ∞, which implies that

lim
n→∞

sin2((2n)/(3n3 − 2n2 + 5))

(2n)2/(3n3 − 2n2 + 5)2
= 1,

using sin(x)/x → 1 as x → 0. This means we obtain

lim
n→∞

|an|1/n = lim
n→∞

n4(2n)2

(3n3 − 2n2 + 5)2
sin2((2n)/(3n3 − 2n2 + 5))

(2n)/(3n3 − 2n2 + 5)
=

4

9
< 1.

The nth root test tells us that the series converges.

142. We consider the series
∑

(3n − 1)!/(3n)! and
∑

4n+1/(3n)! separately. The
first series

∑

1/(3n) is equal to 1/3 times the harmonic series, which diverges.
We apply the Ratio Test to the second series

∑

4n+1/(3n)!:

4n+2 · (3n)!
(3n+ 3)! · 4n+1

=
4

(3n+ 1)(3n+ 2)(3n+ 3)
→ 0 as n → ∞.

This shows that the second series is convergent. If the original series were
convergent, then the series

∑

(3n−1)!/(3n)! were also convergent as the sum of
the original series and the series

∑

4n+1/(3n)!, by COLT. But
∑

(3n−1)!/(3n)!
is divergent. Therefore this series is divergent.
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143. Let sN =
∑N

n=2
(−1)n

n+(−1)n
. Note that we have

s2N+1 =
2N
∑

n=2

(−1)n

n+ (−1)n
=

N
∑

k=1

(−1)2k

2k + (−1)2k
+

(−1)2k+1

2k + 1 + (−1)2k+1
= −

N
∑

k=1

1

2k(2k + 1)
.

Therefore, the partial sums s2N+1 converge, by Comparison with the conver-
gent series

∑

k 1/(4k
2). Let s∗ = limN→∞ s2N+1. Then we also have

lim
N→∞

s2N = lim
N→∞

s2N+1 +
1

2N
= s∗,

and the sequence (sn) of all partial sums converges. This shows convergence
of the series.

144. Problems Class, 30 January 2015

145. Problems Class, 30 January 2015

146. Assume that
∑

a+n contains only finitely many nonzero elements. Then this
sum is convergent and also absolutely convergent, since it only contains non-
negative elements. Applying COLT to

∑

an −
∑

a+n would then show that
also

∑

a−n is convergent and, therefore, also absolutely convergent, since it only
contains nonpositive elements. But then also the sum

∑

an =
∑

a+n +
∑

a−n
would be absolutely convergent, in contradiction to the assumption that

∑

an
is only conditionally convergent. This shows that

∑

a+n contains infinitely
many nonzero elements and a similar reasoning shows that also the

∑

a−n
has infinitely many nonzero elements. Assume that at least one of the sums
∑

a+k ,
∑

a−k were convergent. Let
∑

a+k be convergent. Then
∑

a+k is also
absolutely convergent (only nonnegative terms) and then also

∑

a−k =
∑

ak−
∑

a+k is also convergent, by COLT. But then
∑

a−k would be also abso-
lutely convergent (only nonpositive terms) and we would, again, obtain that
∑

ak =
∑

a+k +
∑

a−k were absolute convergent, which is again a contradiction.
So both series

∑

a+k and
∑

a−k must be divergent and, therefore, the partial
sums must be unbounded.

147. The crucial point that we can establish the inequality U1 ≥ s∗ is that
∑

k≥1 a
+
k

is monotone increasing and unbounded above. The crucial point that we
can then establish the inequality U1 + L1 < s∗ is that

∑

k≥1 a
−
k is monotone

decreasing an unbounded below. Next, we can find a smallest index n2 such
that U1 + L1 +

∑n2

k=n1+1 a
+
k ≥ s∗, since

∑

k≥n1+1 a
+
k is still unbounded above.

We define
U2 = a+n1+1 + a+n1+2 + · · ·+ a+n2

.

Next, we can find a smallest indexm2 such that U1+L1+U2+
∑m2

k=m1+1 a
−
k < s∗,

since
∑

k≥m1+1 a
−
k is still unbounded below. We define

L2 = a−m1+1 + a−m1+2 + · · ·+ a−m2
.

It is clear how this method proceeds and that the process never stops, since
we have always unbounded series

∑

k≥nj+1 a
+
k and

∑

k≥mj+1 a
−
k left. Note also

that, by construction, we have

|s∗ − (U1 + L1 + · · ·+ Uk)| ≤ a+nk

9



and
|s∗ − (U1 + L1 + · · ·+ Uk + Lk)| ≤ |a−mk

|.
Since

∑

an is convergent, we have an → 0 and this implies that also a+n → 0
and a−n → 0. This final fact shows that we have convergence sUk → s∗ and
sLk → s∗.

148. We know that the series
∑ (−1)k√

k+1
is convergent by the Alternating Sign Test.

Since 1/
√
k + 1 ≥ 1/(k + 1), divergence of

∑

1√
k+1

follows from Compari-

son with the harmonic series. This shows that
∑ (−1)k√

k+1
is only conditionally

convergent. For the Cauchy product, we have to consider the terms

ck =

n
∑

k=0

(−1)k√
k + 1

(−1)n−k

√
n− k + 1

= (−1)n
n
∑

k=0

1
√

(k + 1)(n− k + 1)
.

It is easy to see that we have
√

(k + 1)(n− k + 1) ≤ n+ 1 and, therefore,

|ck| ≥
n
∑

k=0

1

n+ 1
= 1.

So
∑

ck cannot converge since then we would have ck → 0 in contrast to
|ck| ≥ 1.

149. (a) |zn| = 1/
√
n4 + 1 → 0 as n → ∞, so zn → 0.

(b) |zn| = n2 exp(−n) → 0 as n → ∞, so zn → 0.
(c) By COLT, zn → exp(iπ/4)

√
2 = 1 + i as n → ∞.

(d) zn = (−1)n xn, where xn = 2n/(n+ i) → 2 as n → ∞, so {zn} has no limit
(but is bounded).

150. (a) Re(zn) = n/(n2+1) ≥ (2n)−1, and Σ(2n)−1 diverges, so ΣRe(zn) diverges
by comparison, and hence Σzn diverges.
(b) |zn| = 1/

√
n4 + 1 < n−2, and Σn−2 converges, so Σzn converges absolutely,

by comparison.
(c) |zn+1/zn| =

√
29/(n + 1) → 0 as n → ∞, so Σzn converges absolutely, by

the Ratio Test.
(d) n2|zn| = n2(n2 + 4)2 exp(−n) → 0 as n → ∞, so there exists K such that
0 < n2|zn| < K for all n. Hence Σzn converges absolutely, by comparison with
the convergent series ΣKn−2.

10 Integrals

151. (a) Since f is decreasing on [0, 1], we have U(f,Pn) = n−1
(

1 + e−1/n + e−2/n + · · ·+ e−(n−1)/n
)

and L(f,Pn) = n−1
(

e−1/n + e−2/n + · · ·+ e−1
)

.
(b) Then U(f,Pn)− L(f,Pn) = n−1(1 − e−1), and this → 0 as n → ∞, so f
is Riemann integrable.
(c)

∫ 1

0
e−x dx = 1 − e−1. L(f,Pn) = αn−1(1 + α + · · · + αn−1), where α =

exp(−1/n), so L(f,Pn) = [α(1− αn)]/[n(1 − α)] = [α(1 − e−1)]/[n(1 − α)] =
[(1− e−1)]/[n(e1/n − 1)]. The result follows.

10



152. U(f,Pn) =
1
n

(

log
(

1 + 1
n

)

+ log
(

1 + 2
n

)

+ · · ·+ log (2)
)

, and
L(f,Pn) =

1
n

(

0 + log
(

1 + 1
n

)

+ log
(

1 + 2
n

)

+ · · ·+ log
(

1 + n−1
n

))

. Then U(f,Pn)−
L(f,Pn) =

log 2
n

→ 0 as n → ∞, so that f is Riemann integrable on [1, 2].

Now the integral is I =
∫ 2

1
f(x) dx = 2 log 2 − 1. Moreover, L(f,Pn) ≤

I ≤ U(f,Pn) = L(f,Pn) +
log 2
n

, so that I − log 2
n

≤ L(f,Pn) ≤ I, and then
limn→∞ L(f,Pn) = I by the Squeezing Theorem. The final result follows by

taking the exponential of both sides: exp(L(f,Pn)) =
((

1 + 1
n

) (

1 + 2
n

)

. . .
(

1 + n−1
n

))1/n
,

and exp(I) = 4/e.

153. We have f(x) = 1/x. U(f,P2) =
1
2
(1 + 2

3
) = 5

6
, and L(f,P2) =

1
2
(2
3
+ 1

2
) = 7

12
.

U(f,P4) =
1
4
(1 + 4

5
+ 2

3
+ 4

7
) = 319

420
, and L(f,P4) =

1
4
(4
5
+ 2

3
+ 4

7
+ 1

2
) = 533

840
.

Expressing the results to 4 decimal places, we have

I − L(f,P2) −0.1402
I − U(f,P2) 0.1098
I − L(f,P4) 0.0586
I − U(f,P4) −0.0664

154. Let Pn be the partition of [0, π/2] into n subintervals of equal length. Then
we can write

π

2n

(

sin(
π

2n
) + sin(

2π

2n
) + sin(

3π

2n
) + · · ·+ sin(

nπ

2n
)

)

= U(f,Pn)

with f(x) = sin(x). Note that

L(f,Pn) =
π

2n

(

sin(
π

2n
) + sin(

2π

2n
) + sin(

3π

2n
) + · · ·+ sin(

(n− 1)π

2n

)

= U(f,Pn)−
π

2n
sin(

nπ

2n
),

i.e.,

U(f,Pn)− L(f,Pn) =
π

2n
sin(

π

2
) =

π

2n
→ 0.

Therefore, we have

lim
n→∞

π

2n

(

sin(
π

2n
) + sin(

2π

2n
) + sin(

3π

2n
) + · · ·+ sin(

nπ

2n
)

)

= lim
n→∞

U(f,Pn) =

∫ π/2

0

sin(x)dx = [− cos x]
π/2
0 = 1,

which implies

lim
n→∞

1

n

(

sin(
π

2n
) + sin(

2π

2n
) + sin(

3π

2n
) + · · ·+ sin(

nπ

2n
)

)

=
2

π
.

155. Problems Class, 12 February 2015

156. We use the criterion given in Theorem 10.4. First of all, every uniformly
continuous function f : [a, b] → R is obviously continuous and, therefore,

11



bounded. Let ǫ > 0. Then we can find δ > 0 such that we have, for all
x, y ∈ [a, b] with |y − x| < δ,

|f(y)− f(x)| < ǫ

b− a
.

Now we choose n ∈ N large enough such that (b − a)/n < δ. Let Pn be the
partition of the interval [a, b] into n subintervals of equal length. Then we have

L(f,Pn) =
b− a

n

n
∑

i=1

mi

and

U(f,Pn) =
b− a

n

n
∑

i=1

Mi,

with

mi = inf{f(x) | a+ (i− 1)
b− a

n
≤ x ≤ a+ i

b− a

n
} = f(ξi)

and

Mi = sup{f(x) | a+ (i− 1)
b− a

n
≤ x ≤ a + i

b− a

n
} = f(ηi).

We obviously have ξi, ηi ∈ [a, b] and |ηi − ξi| ≤ (b − a)/n < δ. Therefore, we
conclude that

Mi −mi = |f(ηi)− f(ξi)| <
ǫ

b− a
,

i.e.,

U(f,Pn)− L(f,Pn) =
b− a

n

n
∑

i=1

Mi −mi <
b− a

n
· n · ǫ

b− a
= ǫ.

But this implies that f is Riemann integrable.

157. Problems Class, 12 February 2015

158. Using for a < b that |
∫ b

a
f(x)dx| ≤

∫ b

a
|f(x)|dx, we obtain

∣

∣

∣

∣

∫ 2π

0

sin(kx)

x2 + k2
dx

∣

∣

∣

∣

≤
∫ 2π

0

∣

∣

∣

∣

sin(kx)

x2 + k2

∣

∣

∣

∣

dx ≤
∫ 2π

0

1

k2
dx =

2π

k2
→ 0.

159. Using for a < b that |
∫ b

a
f(x)dx| ≤

∫ b

a
|f(x)|dx, we obtain

∣

∣

∣

∣

∣

∫

√
3

1

e−x sin(x)

x2 + 1
dx

∣

∣

∣

∣

∣

≤
∫

√
3

1

e−x

1 + x2
dx ≤ e−1

∫

√
3

1

dx

1 + x2
=

1

e
(arctan(

√
3)− arctan(1)) =

1

e
(π/3− π/4) =

1

12e
π.

160. (a) Let r = xi/xi−1. Then we have xk/x0 = rk and, therefore, rn = b/a. Let
c = rn. Then

xi = x0 ·
xi

x0
= a · ri = aci/n.
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(b) Note that we have

U(f,Pn) =

n
∑

i=1

f(xi)(xi − xi−1)

and

L(f,Pn) =

n
∑

i=1

f(xi−1)(xi − xi−1).

Moreover, we have

xi − xi−1 = aci/n − ac(i−1)/n = ac(i−1)/n(c1/n − 1).

Using f(xi) = (xi)
p = apcip/n, this implies that

U(f,Pn) =

n
∑

i=1

apcip/nac(i−1)/n(c1/n − 1) = ap+1(1− c−1/n)

n
∑

i=1

(

c(p+1)/n
)i
.

Now we use the formula for the geometric series
∑n

i=1 α
i = α 1−αn

1−α
and

obtain

U(f,Pn) = ap+1(1− c−1/n)c(p+1)/n 1− cp+1

1− c(p+1)/n
=

ap+1(1− cp+1)c(p+1)/n 1− c−1/n

1− c(p+1)/n
= (ap+1 − bp+1)c(p+1)/n 1− c−1/n

1− c(p+1)/n
=

(bp+1 − ap+1)cp/n
1− c1/n

1− c(p+1)/n
.

Using the formula for the geometric series
∑p

i=0 α
i = 1−α

1−αp+1 again yields

U(f,Pn) = (bp+1 − ap+1)cp/n
1

1 + c1/n + c2/n + · · ·+ cp/n
.

For L(f,Pn) we obtain

L(f,Pn) =

n
∑

i=1

apc(i−1)p/nac(i−1)/n(c1/n − 1) = c−p/nU(f,Pn) =

(bp+1 − ap+1)
1

1 + c1/n + c2/n + · · ·+ cp/n
.

(c) Since cj/n → 1 as n → ∞, we have

lim
n→∞

U(f,Pn) =
bp+1 − ap+1

p+ 1

and also

lim
n→∞

L(f,Pn) =
bp+1 − ap+1

p+ 1
.

This shows that f(x) = xp is Riemann integrable over [a, b] and we have

∈b
a x

pxpdx =
bp+1 − ap+1

p+ 1
.
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161. Let f(x) = sin(πx) and g(x) = 1
1+x2 . Then both functions are continuous and,

therefore, Riemann integrable over [0, 1]. Moreover, we have f, g ≥ 0 on [0, 1].
So we can apply the Mean Value Theorem for integrals in two different ways
to obtain on the one hand
∫ 1

0

f(x)g(x)dx = g(ξ1)

∫ 1

0

sin(πx)dx = g(ξ1)
cos(0)− cos(π)

π
=

2

π
g(ξ1) =

2

π(ξ21 + 1)
,

and on the other hand
∫ 1

0

f(x)g(x)dx = f(ξ2)

∫ 1

0

dx

1 + x2
= f(ξ2) arctan(1) = f(ξ2)

π

4
=

π sin(πξ2)

4
.

162. (a) We choose g(x) = 1. Then g ≥ 0 and we can apply the Mean Value
Theorem for Integrals to obtain

∫ b

a

f(x)dx =

∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx = f(c)

∫ b

a

dx = f(c)(b−a).

(b) Since f is continuous on [a, b], there exists M > 0 such that |f(x)| ≤ M
for all x ∈ [a, b].

Firstly, let c ∈ (a, b) and h > 0 such that c + h ∈ [a, b]. Then we have
with (a):

|F (c+ h)− F (c)| =
∣

∣

∣

∣

∫ c+h

c

f(x)dx

∣

∣

∣

∣

= h|f(ξ)| ≤ hM.

with some ξ ∈ (c, c+ h). This shows that

lim
h→0+

F (c+ h)− F (c) = 0.

A similar argument applies for h < 0. If we consider the case c = a and
c = b, we have to restrict to one-sided limits.

163. Let c ∈ (a, b) and h > 0 such that c + h ∈ (a, b). Then we have, using the
results of the previous problem

F (c+ h)− F (c)

h
=

1

h

∫ c+h

c

f(x)dx = f(ξ)

for some ξ ∈ [c, c+h]. If h → 0+ we have ξ → c, which implies using continuity
of f

F ′(c) = lim
h→0

F (c+ h)− F (c)

h
= lim

ξ→c
f(ξ) = f(c).

We have tacitly assumed here that h > 0, but the arguments can be modified
easily to cover also the case h < 0.

164. We have

lim
c→0

∣

∣

∣

∣

∫ c

0

sin(x3)dx

∣

∣

∣

∣

≤ lim
c→0

∫ c

0

∣

∣sin(x3)
∣

∣ dx ≤ lim
c→0

∫ c

0

dx = lim
c→0

c = 0.
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So we can try to apply L’Hop̂ital. Let f(c) =
∫ c

0
sin(x3)dx and g(c) = c4.

Then we have f(0) = g(0) = 0 and f ′(c) = sin(c3) and g′(c) = 4c3. Then we
have f ′(0) = g′(0) = 0 and f ′′(c) = 3c2 cos(c3) and g′′(c) = 12c2. Here we can
calculate the limit:

lim
c→0

f ′′(c)

g′′(c)
= lim

c→0

3c2 cos(c3)

12c2
= lim

c→0

cos(c3)

4
=

1

4
.

Applying L’Hop̂ital twice yields

lim
c→0

f(c)

g(c)
= lim

c→0

f ′(c)

g′(c)
= lim

c→0

f ′′(c)

g′′(c)
=

1

4
.

165. Let f(x) = ex2/π−2π/4+
∫ π/2

x
esin tdt and g(x) = 1+cos(2x). We easily check

that f(π/2) = g(π/2) = 0, so we can try to apply L’Hop̂ital. We have f ′(x) =
2xe/π−esin x and g′(x) = −2 sin(2x). Then we still have f ′(π/2) = g′(π/2) = 0
and we differentiate again: f ′′(x) = 2e/pi− cos xesinx and g′′(x) = −4 cos(2x).
Here we can take the limit and, using continuity of f ′′ and g′′, we obtain

lim
x→π/2

f ′′(x)

g′′(x)
=

f ′′(π/2

g′′(π/2)
=

2e/π

4
=

e

2π
.

Applying L’Hop̂ital twice yields

lim
x→π/2

f(x)

g(x)
= lim

x→π/2

f ′(x)

g′(x)
= lim

x→π/2

f ′′(x)

g′′(x)
=

e

2π
.

166. Problems Class, 27 February 2015

167. (a) Since (f(x)+λg(x))2 ≥ 0, we conclude from Monotonicity of the Integral
that, for all λ ∈ R,

∫ b

a

(f(x) + λg(x))2dx ≥ 0.

This implies that
Bλ2 + 2Cλ+ A ≥ 0.

Since B 6= 0, this is a quadratic polynomial in λ which is non-negative
for all choices of λ ∈ R. Therefore, we must have

(4C)2 − 4BA = 4(C2 − AB) ≤ 0.

(b) We proved in (a) that C2 ≤ AB. Replacing A,B,C by the expressions
they represent, we obtain

(
∫ b

a

f(x)g(x)dx

)2

≤
∫ b

a

(f(x))2dx

∫ b

a

(g(x))2dx.
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168. Since g is continuous and not identically zero, we have B 6= 0. Since equality
in (3) implies that C2 − AB = 0, the quadratic equation

Bλ2 + 2Cλ+ A = 0

has a solution λ0 ∈ R. This means that we have
∫ b

a

(f(x) + λ0g(x))
2dx = 0.

Since (f+λ0g)
2 is continuous and non-negative, this means that (f+λ0g) = 0,

i.e., f = −λ0g.

169. (a) We have | cosx/(x+ex)| ≤ e−x, and
∫∞
0

e−x dx converges. Thus
∫∞
0
(cosx)/(x+

ex) dx converges absolutely, by comparison.
(b) (x+

√
x)−1 ≥ 1/(2x), and

∫∞
1
(2x)−1 dx diverges. Thus

∫∞
1
(x+

√
x)−1 dx

diverges by comparison.
(c)
√

(6 + x)/(1 + x6) ≤
√

7x/x6 =
√
7x−5/2, and so

∫∞
1

√

(6 + x)/(1 + x6) dx

converges by comparison with
√
7
∫∞
1

x−5/2 dx.

(d)
∫ R

0
x2e−x dx = −R2e−R − 2Re−R − 2e−R + 2 → 2 as R → ∞. So the

integral converges. Alternatively, use x4e−x → 0 as x → ∞, and comparison
with

∫ R

1
x−2 dx.

(e) 0 ≤ (1+x3)−1/2 ≤ x−3/2, and so the integral converges by comparison with
∫∞
1

x−3/2 dx.

(f) On (0, 1], x−3/2e−x > x−3/2/e, and
∫ 1

0
x−3/2 dx diverges, so the given inte-

gral diverges by comparison.
(g) 0 < e−x/

√
x < 1/

√
x for x > 0, and

∫ 1

0
dx/

√
x converges, so the given

integral converges by comparison.
(h)

∫ c

0
x/

√
1− x2 dx = 1 −

√
1− c2 for 0 ≤ c < 1; and this has a finite limit

(namely 1) as c → 1. So the integral converges, by definition.
(i) Write f(x) = x−1/3 cos x. For 0 < x ≤ 1, we have 0 < f(x) < x−1/3.

Since
∫ 1

0
x−1/3 dx converges, we deduce that the given integral converges by

comparison.
(j) For 0 < x ≤ 1, we have 0 ≤

√
x− x2/x =

√
1− x/

√
x < 1/

√
x; and

∫ 1

0
x−1/2 dx converges, so the given integral converges by comparison.

170. If L > 0, we can say that there is a number R > 0 such that |L− f(x)| < L/2
(say) for all x > R. But then we can deduce that the integral

∫∞
R

f(x) dx
is divergent by comparison with the divergent integral

∫∞
R

L/2 dx, and so
∫∞
0

f(x) dx =
∫ R

0
f(x) dx +

∫∞
R

f(x) dx is divergent. If L < 0 the same ar-
gument can be applied to −f . Thus, if the integral converges, we must have
L = 0.

171. Integrating by parts on [0, R] gives
∫ R

0
xf ′(x) dx = Rf(R)−0f(0)−

∫ R

0
f(x) dx =

Rf(R)−
∫ R

0
f(x) dx. This has a limit as R → ∞ if

∫∞
0

f(x) dx converges and
if limR→∞ Rf(R) = L (finite). (Note that, by an argument similar to that of
the previous problem, L in fact has be zero.)

172. (a)
∫ 2−c

0
x(16 − x4)−1/2 dx =

∫ (2−c)2

0
(16− u2)−1/2 du/2 → π/4 as c → 0 (It’s a

sin−1.) Thus the integral converges.
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(b) 16−x4 = (4+x2)(2−x)(2+x). Then x(16−x4)−1/2 ≤ 2(8(2−x))−1/2 on
[0, 2], and so the integral converges by comparison with the convergent integral

2−1/2
∫ 2

0
(2− x)−1/2 dx.

173. (a)
∫ 1

a
(log x)2 dx = −a(log a)2 + 2a log a + 2(1 − a) → 2 as a → 0. Thus the

integral converges.
(b) Since x1/4 log x → 0 as x → 0, there is a number K such that 0 ≤ (log x)2 ≤
K/

√
x for x ∈ (0, 1]. Now

∫ 1

0
K dx/

√
x converges, therefore so does the given

integral, by comparison.

174. tan x becomes unbounded as x approaches π/2, so we consider
∫ a

0
tan3 x dx

for a < π/2. Writing tan3 x = − tan x + tan x sec2 x, we see that tan3 x =
d[log cosx + (sec2 x)/2]/dx on [0, a]. Thus

∫ a

0
tan3 x dx = log cos a + (sec2 a−

1)/2, which has no limit as a → π/2: the integral diverges.

175. Parts (a) and (c) in Problems Class, 27 February 2015 (b) (x + 1/x)α =
x−α(1 + x2)α. Thus min{1, 2α}x−α ≤ (x + 1/x)α ≤ max{1, 2α}x−α on [0, 1].

By comparison with
∫ 1

0
x−α dx, the integral is convergent for α < 1 and diver-

gent otherwise.
(d) As in part (c), there are positive numbers c and C such that cx1−α ≤
x−α sin x ≤ Cx1−α. Thus by comparison with

∫ 1

0
x1−α dx, the integral is con-

vergent for α < 2 and divergent otherwise.
(e) We split the integral into two components: A =

∫ 1

0
xα−1

1+x
dx and B =

∫∞
1

xα−1

1+x
dx. Since 1

2
≤ 1

1+x
≤ 1 on [0, 1], A converges if and only if

∫ 1

0
xα−1 dx

converges (by comparison), i.e. when α > 0.
As for B, 1

2
xα−2 ≤ xα−1

1+x
≤ xα−2 for x ≥ 1, so B converges if and only if

∫∞
1

xα−2 dx converges (again by comparison), i.e. when α < 1. The integral
converges if and only if both A and B converge, i.e. for 0 < α < 1.

176. Write f(x) = x−4/3 sin x. For x ≥ 1, we have 0 < |f(x)| < x−4/3; and
∫∞
1

x−4/3 dx converges, so
∫∞
1

f(x) dx converges absolutely, by comparison. For

0 < x < 1, we have |x−1 sin x| < 1; and
∫ 1

0
x−1/3 dx converges, so

∫ 1

0
f(x) dx

converges absolutely, by comparison. Hence
∫∞
0

f(x) dx converges.

177. Write f(x) = xc/
√
x2 + x = xc−1/2/

√
x+ 1. For x ≥ 1, we have 2−1/2xc−1 <

f(x) < xc−1, and
∫∞
1

xc−1 dx converges iff c− 1 < −1, that is iff c < 0. Next,

for 0 < x < 1, we have 2−1/2xc−1/2 < f(x) < xc−1/2, and
∫ 1

0
xc−1/2 dx converges

iff c−1/2 > −1, that is iff c > −1/2. So by comparison,
∫∞
0

f(x) dx converges
iff −1/2 < c < 0.

178. Problems Class, 27 February 2015

179. Write f(x) = (x+x2)−p. For x ≥ 1, we have 1
2x2 < 1

x+x2 < 1
x2 , and

∫∞
1

x−2p dx

converges iff 2p > 1; so
∫∞
1

f(x) dx converges iff p > 1/2, by comparison. Next,

for 0 < x ≤ 1, we have 1
2x

< 1
x+x2 < 1

x
, and

∫ 1

0
x−p dx converges iff p < 1; so

∫ 1

0
f(x) dx converges iff p < 1, by comparison. Thus

∫∞
0

f(x) dx converges iff
1/2 < p < 1.

180. Problems Class, 27 February 2015
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11 Sequences of functions and uniform conver-

gence

181. The pointwise limit is the function f : R → R, given by f(x) = 0 since, for
every x ∈ R, there exists N ∈ N with x ≤ N and we have fn(x) = 0 for all
n ≥ N . The convergence is not uniform, since we have fn(n+1)−f(n+1) = 1.
(If fn → f were uniform, we could find for ǫ = 1 an index N ∈ N with
|fn(x)− f(x)| < 1 for all n ≥ N and x ∈ R.)

182. The pointwise limit is the function f : (1,∞) → R, given by f(x) = 0 since,
for every x ∈ (1,∞), xn → ∞ as n → ∞. The convergence is not uniform
since every function fn is unbounded (recall that limx → ∞xn

ex
= 0) but the

limit function is bounded.

183. Note that limc→∞ e−c = 0. This implies that we have, for every x ∈ [−1, 1],
x 6= 0,

lim
n→∞

e−nx2

= 0.

At x = 0, we always have fn(0) = e0 = 1, so the limit function is

f(x) =

{

1 if 0 < |x| ≤ 1,

0 if x = 0.

The convergence cannot be uniform, since all the functions fn are continuous
on [−1, 1] but the pointwise limit function f is discontinuous at x = 0.

184. Note that e−x2 ≤ 1 for all x ∈ R. Therefore, we have for all x ∈ R,

1− 1

n
≤ fn(x) ≤ 1.

Here we have uniform convergence to f(x) = 1. Let ǫ > 0. Then there exists
N ∈ N with 1/N < epsilon and we have, for all n ≥ N and all x ∈ R,

|f(x)− fn(x)| ≤
1

n
< ǫ.

185. The pointwise limit of xn on [0, 1] is

f(x) =

{

0, if x ∈ [0, 1),

1, if x = 1.

Since x2n is a subsequence, its pointwise limit is the same function f , so
the difference converges pointwise to the function g(x) = 0 on [0, 1]. Let us
determine

max
x∈[0,1]

fn(x)− g(x) = max
x∈[0,1]

xn − x2n.

Obviously, we have fn(0) = fn(1) = 0 and xn ≥ x2n on [0, 1], so if fn(x0) with
x0 ∈ (0, 1) is a positive maximum, we must have f ′

n(x0) = 0. This leads to
f ′
n(x0) = nxn−1

0 −2nx2n−1
0 = 0, which yields xn

0 = 1/2, i.e., x0 = (1/2)n. There
we obtain

fn((1/2)
n) =

1

2
− 1

4
=

1

4
.

So we obtain a contradiction to uniform convergence by choosing ǫ < 1/4.
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186. We have fn(0) = 0, and for any fixed x > 0 we have

lim
n→∞

fn(x) = lim
n→∞

nx

1 + n + x
= x.

Therefore, the pointwise limit function is given by f(x) = x. Now we consider

|fn(x)− f(x)| =
∣

∣

∣

∣

nx

1 + n+ x
− x

∣

∣

∣

∣

=

∣

∣

∣

∣

nx− x− nx− x2

1 + n+ x

∣

∣

∣

∣

= x
1 + x

1 + n + x
.

Choosing x = n, we see that

|fn(x)− f(x)| = n
1 + n

1 + 2n
≥ n

1 + n

2 + 2n
=

n

2
.

This expression becomes arbitrarily large as n → ∞, so we cannot have uni-
form convergence.

187. For every x ∈ [0,∞) we have

lim
n→∞

fn(x) = lim
n→∞

√

x2 +
1

n2
=

√
x2 = x.

So the pointwise limit function is f(x) = x. Now we calculate |fn(x)− f(x)|:
∣

∣

∣

∣

∣

√

x2 +
1

n2
− x

∣

∣

∣

∣

∣

=
(x2 + 1/n2)− x2

√

x2 + 1
n2 + x

=
1

n2x+ n2
√

x2 + 1/n2
.

Since n = n2
√

1/n2 ≤ n2x+ n2
√

x2 + 1/n2, we obtain
∣

∣

∣

∣

∣

√

x2 +
1

n2
− x

∣

∣

∣

∣

∣

≤ 1

n
,

188. First of all, we know that the limit function f : [a, b] → R is again continuous
and, therefore, all functions fn, f are Riemann integrable on [a, c].

Let ǫ > 0. Then we know that there exists N ∈ N such that

f(x)− ǫ ≤ fn(x) ≤ f(x) + ǫ for all n ≥ N .

By Monotonicity of the Integral, we conclude that for all n ≥ N ,
∫ c

a

(f(x)− ǫ)dx ≤
∫ c

a

fn(x)dx ≤
∫ c

a

(f(x) + ǫ)dx.

Observe that
∫ c

a

(f(x)± ǫ)dx =

∫ c

a

f(x)dx± ǫ

∫ c

a

dx =

∫ c

a

f(x)dx± (c− a)ǫ.

This shows that we have for all n ≥ N ,
∣

∣

∣

∣

∫ c

a

f(x)dx−
∫ c

a

fn(x)dx

∣

∣

∣

∣

< (c− a)ǫ ≤ (b− a)ǫ.

Since ǫ > 0 was arbitrary, we conclude that

lim
n→∞

∫ c

a

fn(x)dx =

∫ c

a

f(x)dx.
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189. (a) If f(x) = 0 for all x ∈ [a, b], we obviously have ‖f‖∞ = 0. Now let
‖f‖∞ = 0. If we had f(x) 6= 0 for some x ∈ [a, b], we also had |f(x)| > 0,
which would imply ‖f‖∞ = sup |f(x)| > 0. This shows the converse
direction.

(b) We have

‖λf‖∞ = sup
x∈[a,b]

|λf(x)| = |λ| sup
x∈[a,b]

|f(x)| = |λ| · ‖f‖∞.

(c) Note that continuity of |f | implies that there exists x0 ∈ [a, b] with
‖f‖∞ = |f(x0)|. So we have x0, y0 ∈ [a, b] with ‖f‖∞ = |f(x0)| and
‖g‖∞ = |g(y0)|. This means that we have |f(x)| ≤ |f(x0)| and |g(x)| ≤
|g(y0)| for all x ∈ [a, b], i.e.,

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ |f(x0)|+ |g(y0)| for all x ∈ [a, b].

So |f(x0)| + |g(y0)| is an upper bound of {|f(x) + g(x)| | x ∈ [a, b]} and
we have

‖f + g‖∞ = sup
x∈[a,b]

|f(x) + g(x)| ≤ |f(x0)|+ |g(y0)| = ‖f‖∞ + ‖g‖∞.

190. Let fn ∈ C([a, b]) be a Cauchy sequence. Let us first show that the sequence
fn : [a, b] → R of continuous functions has a pointwise limit function f :
[a, b] → R. Let x ∈ [a, b] and ǫ > 0 be given. Then there exists N ∈ N such
that

|fn(x)− fm(x)| < ǫ

for all n,m ≥ N . This means that the sequence (fn(x)) of real numbers is a
Cauchy sequence and, therefore, has a limit, which we denote by f(x):

f(x) = lim
n→∞

fn(x).

So we showed that there exists f : [a, b] → R such that fn → f pointwise. This
function f is the candidate for the limit. We first show that the convergence
is not only pointwise, but uniform. Let ǫ > 0 be given. fn being a Cauchy
sequence means that we have a start index N ∈ N such that for all x ∈ [a, b]
and all n,m ≥ N

|fn(x)− fm(x)| < ǫ.

Letting m → ∞, we conclude that

|fn(x)− f(x)| ≤ ǫ (2)

for all n ≥ N and all x ∈ [a, b]. This shows that fn → f uniformly. Therefore,
the limit function f : [a, b] → R is continuous and we have f ∈ C([a, b]). But
(2) means also that for all n ≥ N ,

‖fn − f‖∞ = sup
x∈[a,b]

|fn(x)− f(x)| ≤ ǫ,

i.e., we have convergence fn → f in C([a, b]), finishing the proof.
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12 Power series and Taylor series

191. Σanz
2n = Σan(z

2)n, which converges for |z2| < R ⇔ |z| <
√
R and diverges

for |z2| > R ⇔ |z| >
√
R.

192. Parts (b) and (c) in Problems Class, 13 March 2015 (a) |an+1/an| = (2n+2)(2n+1)
(n+1)2

→
4 as n → ∞, so R = 1/4.

(d) |an+1/an| = (3n+3)(3n+2)(3n+1)
2(n+1)3

→ 27
2
as n → ∞, so R = 2/27.

(e) |an+1/an| = (n+1)2

3n2 → 1
3
as n → ∞, so R = 3.

(f) |an+1/an| = 210

n+1
→ 0 as n → ∞, so R is infinite.

(g) |an+1/an| = 2(3n+1)
3n+1+1

→ 2
3
as n → ∞, so R = 3/2.

193. |an+1/an| = 1/2, so R =
√
2 by question 191.

194. |an+1/an| = 1/22n+1 → 0 as n → ∞, so R is infinite.

195. Let an = n!/nn. We need to find lim |an|1/n. We have

|an|1/n =
(n!)1/n

n
,

and therefore

(2πn)1/2n
1

e
< |an|1/n < (2πn)1/2n

1

e
e1/(12n

2).

Note for a > 0 that

log((an)1/2n) =
log(an)

2n
→ 0,

which implies that (an)1/2n → 1. So we conclude that

lim
n→∞

|an|1/n =
1

e
,

and, therefore, R = 1/(1/e) = e.

196. Let an as in the problem. Let n = k!. Then we have

|an|1/n = (2k)1/k! = 21/(k−1)! → 1 as k → ∞.

This becomes clear from the fact that 2l → 1 for l → ∞. If n is not a factorial,
we have trivially |an|1/n = 11/n = 1, so we have

lim
n→∞

|an|1/n = 1,

and the radius of convergence is R = 1.

197. Let R be the radius of convergence of
∑

bnz
n. If R = 0 there ios nothing to

show. Assume R > 0. Then we only have to convince ourselves that
∑

anz
n

converges for all |z| < R, then the radius of convergence of
∑

anz
n must be

≥ R. Let z ∈ C with |z| < R. Then we can find r ∈ (|z|, R) and
∑

bnr
n is

convergent. By Lemma 12.2,
∑

bnz
n is absolutely convergent. But then also

∑

|anzn| is convergent, by comparison. Since
∑

anz
n is absolutely convergent,

it is also convergent, which we wanted to show.
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198. Using Σ∞
n=1t

n = t/(1 − t) for |t| < 1, we get f(x) = x for all x 6= 0.
Clearly f(0) = 0, so we have f(x) = x for all x. Hence df/dx = 1, whereas
Σ∞

n=1u
′
n(0) = Σ0 = 0: the two quantities are not equal.

199. The kth partial sum is Sk(x) = kx exp(−kx2), so f(x) = limk→∞ Sk(x) = 0

for all x. Thus
∫ 1

0
f(x) dx = 0. On the other hand, Σk

n=1

∫ 1

0
un(x) dx =

∫ 1

0
Σk

n=1un(x) dx =
∫ 1

0
Sk(x) dx = (1−e−k)/2 → 1/2 as k → ∞. So Σ∞

n=1

∫ 1

0
un(x) dx =

1/2: the two quantities are not equal.

200. Using the geometric series, we find

1

(n + 1)!
+

1

(n+ 2)!
+· · · < 1

(n+ 1)!

(

1 +
1

n+ 2
+

1

(n+ 2)2
+

1

(n + 2)3
+ · · ·

)

=

1

(n + 1)!
· 1

1− 1/(n+ 2)
=

1

(n+ 1)!
· n+ 2

n+ 1
.

This implies that

0 < e−
(

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!

)

=
1

5!
+

1

6!
+ · · · < 1

5!

6

5
=

6

5 · 120 =
1

100
.

Now we have

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
= 2+

1

2
+
1

6
+

1

24
=

48 + 12 + 4 + 1

24
=

65

24
= 2.708333 . . . ,

which yields the required result.

201. Assume that e = p/q with natural numbers p, q. Then

N = eq!−
(

1 +
1

1!
+

1

2!
+ · · ·+ 1

q!

)

q!

is a natural number and (4) implies that

N = q!

(

1

(q + 1)!
+

1

(q + 2)!
+ · · ·

)

<
q!

(q + 1)!
· q + 2

q + 1
=

q + 2

(q + 1)2
.

But q is a natural number and

q + 2

(q + 1)2
≤ 1

2

q + 2

q + 1
=

1

2

(

1 +
1

q + 1

)

≤ 1

2

(

1 +
1

2

)

=
3

4
,

which is a contradiction.

202. (a) Note that R= 1√
π
> 0.56.

(b) | sin(n|x|)| < 1, and
∑∞

1
1
n2 converges.

(c) |xn| ≤ 1; moreover, n
n3+|x| ≤ 1

n2 ; hence have convergence.

203. Problems Class, 13 March 2013

22



204. Let g(x) = nx/(1 + n4x2). Then g : [0,∞) → R is continuous, non-negative
and limx→∞ g(x) = 0 and g(0) = 0. We have

g′(x) =
n(1 + n4x2)− 2n5x2

(1 + n4x2)2
= n

1− n4x2

(1 + n4x2)2
,

and g′(x) = 0 leads to x = 1/n2. Note that g′(x) < 0 for all x ≥ 1/n2, i.e.,
g is monotone decreasing on [1/n2,∞). For given a > 0, we can find N ∈ N

with a > 1/N2. Then each term in the series

∞
∑

n=N

nx

1 + n4x2

can be estimated from above by (na)/(1 + n4a2). Since

∑ na

1 + n4a2
≤
∑ na

n4a2
=

1

a

∑ 1

n3

is convergent, the original series is uniformly convergent, by the Weierstrass
M-test.

205. Let x ≥ 0. Then we have

f(x) =
∞
∑

n=0

nx

1 + n4x2
≥

∞
∑

n=N

nx

1 + n4x2
.

We have for n ≥ N that n4/N4 ≥ 1 and choosing x = 1/N2 ≥ 0 leads to

f(1/N2) ≥
∞
∑

n=N

n/N2

1 + n4/N4
≥

∞
∑

n=N

n/N2

2n4/N4
=

N2

2

∞
∑

n=N

1

n3
.

Moreover, we have

∞
∑

n=N

1

n3
≥
∫ ∞

N

dx

x3
= [−x−2/2]x=∞

x=N = 1/(2N2).

Combining both results leads to

f(1/N2) ≥ N2

2

1

2N2
=

1

4
.

If the convergence were uniform on R, we could conclude that f : R → R is
continuous since the partial sums are continuous. This would imply that

f(0) = lim
N→∞

f(1/N2) ≥ 1

4
.

But the pointwise limit at x = 0 is f(0) = 0. Therefore, we cannot have
uniform convergence on R.
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206. (a) cos2 x = [1 + cos(2x)]/2 = 1− x2 + x4/3− . . ..
(b) sin(x2) = x2 − x6/6 + x10/120− . . ..
(c) ex sin x = (1+ x+ x2/2+ x3/6+ . . .)(x− x3/6+ . . .) = x+ x2 + x3/3+ . . .
(d) 1/(1 + x2) = 1− x2 + x4 − . . .
(e) x/(1 + x3) = x− x4 + x7 − . . .
(f) (1 + x2)−2 = 1− 2x2 + 3x4 − . . .
(g) [exp(x4)− 1]/x3 = x+ x5/2 + x9/6 + . . .
(h) (1− x)−3 = 1 + 3x+ 6x2 + . . .
(i) exp(x2) sin(x2) = x2 + x4 + x6/3 + . . . [from (c)]
(j) exp[1/(1− 2x)] = e(1 + 2x+ 6x2 + . . .)
(k) exp(exp x) = e(1 + x+ x2 + . . .)
(l) log(1 + 2x2) = 2x2 − 2x4 + 8x6/3− . . .
(m) [log(1 + x)]2 = (x− x/2 + x3/3− . . .)2 = x2 − x3 + 11x4/12 + . . .

207. We prove by Induction that, for x 6= 0,

f (k)(x) = pk(1/x)e
1/x2

,

where pk is a polynomial of degree 3k. For k = 0 there is nothing to prove.
Given this fact holds for k, then we obtain

f (k+1)(x) = p′k(1/x)(−1/x2)e−1/x2

+ pk(1/x)
2

x3
e−1/x2

=

(

p′k(1/x)(−1/x2) + pk(1/x)
2

x3

)

e−1/x2

,

which shows that we need to choose pk+1(y) = −y2p′k(y)+2y3pk(y), which has
degree 3k + 3. This completes the induction proof.

Now we consider the derivatives f (k)(0). Again we use Induction. We start
with f (0)(0) = f(0) = 0. Assuming that f (k−1)(0) exists and is equal to zero,
we obtain

f (k−1)(x)− f (k−1)(0)

x
=

1

x
pk−1(1/x)e

−1/x2

.

This implies that

lim
xto0+

f (k−1)(x)− f (k−1)(0)

x
= lim

y→∞
ypk−1(y)e

−y2 = 0.

The same argument applis for the elft hand limit. Therefore, f (k)(0) exists
and is also zero.

Since f (k)(0) = 0 for all k ∈ N∪ {0}, the Taylor polynomial of f is trivial and
converges to f(x) only if x = 0.

208. Parts (b) and (c) Problems Class, 13 March 2015

(a) We have cos(x) =
∑∞

n=0
(−1)nx2n

(2n)!
. So the sum is cos(2π) = 1.

209. We have sin x =
∑∞

k=0(−1)k x2k+1

(2k+1)!
and cos x =

∑∞
l=0(−1)l x2l

(2l)!
, which converge

absolutely for any choice of x ∈ C. So we can apply the Cauchy product and
obtain

(sin x)(cosx) =

∞
∑

n=0

cnx
n

24



with

cn =
∑

k+l=n

(−1)k+1 x2k+1

(2k + 1)!

x2l

(2l)!
= (−1)n

n
∑

k=0

x2n+1

(2k + 1)!((2n+ 1)− (2k + 1))!
=

(−1)n
n
∑

k=0

(

2n+ 1

2k + 1

)

x2n+1

(2n+ 1)!
.

Now we use
n
∑

k=0

(

2n+ 1

2k + 1

)

= 22n (3)

and conclude that

cn =
(−1)n

2
22n+1 x2n+1

(2n+ 1)!
=

(−1)n

2

(2x)2n+1

(2n+ 1)!
,

i.e.,
∞
∑

n=0

cnx
n =

1

2

∞
∑

n=0

(−1)n
(2x)2n+1

(2n+ 1)!
=

1

2
sin(2x).

Now it remains to prove (3), using (1 + c)2n+1 =
∑2n+1

k=0

(

2n+1
k

)

ck. Choosing
c = −1 and c = 1, we obtain

0 =
2n+1
∑

k=0

(

2n+ 1

k

)

(−1)k,

22n+1 =
2n+1
∑

k=0

(

2n+ 1

k

)

.

Adding the two equations kills all even k-terms and we obtain

22n+1 = 2
n
∑

l=0

(

2n+ 1

2l + 1

)

,

i.e.,
n
∑

k=0

(

2n+ 1

2k + 1

)

= 22n.
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