Analysis 1 Solutions (Epiphany Term 2015)

8 Differentiable functions

111. We have $f(x)=f(c)+(x-c) f_{1}(x)$ with f_{1} continuous at c. Since f is differentiable at $x=c, f$ is also continuous at $x=c$, i.e.,

$$
f(x) \rightarrow f(c) \neq 0 \quad \text { for } x \rightarrow c,
$$

and, therefore, for x near c we have $f(x) \neq 0$. This implies that

$$
\frac{1}{f(x)}-\frac{1}{f(c)}=\frac{f(c)-f(x)}{f(x) f(c)}=\frac{1}{f(x) f(c)}(c-x) f_{1}(x) .
$$

Therefore, we have

$$
\frac{1}{f(x)}=\frac{1}{f(c)}+(x-c)\left(-\frac{f_{1}(x)}{f(x) f(c)}\right)=\frac{1}{f(c)}+(x-c) f_{2}(x)
$$

with $f_{2}(x)=-f_{1}(x) /(f(x) f(c))$. Then f_{2} is continuous at $x=c$ as expression of continuous functions at $x=c$ and since $f(c) \neq 0$, which implies that $1 / f(x)$ is differentiable at $x=c$ with derivative

$$
f_{2}(c)=-\frac{f_{1}(c)}{f^{2}(c)}=-\frac{f^{\prime}(c)}{f^{2}(c)}
$$

112. Problems Class, 30 January 2015
113. Since $\sin x$ is bounded, we have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} h \sin (1 / h)=0 .
$$

Therefore, the derivative of f is given by

$$
f^{\prime}(x)= \begin{cases}2 x \sin (1 / x)-\cos (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

If f^{\prime} were continuous at $x=0$, we would need to have

$$
\lim _{x \rightarrow 0} 2 x \sin (1 / x)-\cos (1 / x)=0
$$

While we have $x \sin (1 / x) \rightarrow$) as $x \rightarrow 0, \cos (1 / x)$ is not convergent (choose sequences $x_{n} \rightarrow 0$ having different constant values $\left.\cos \left(1 / x_{n}\right)\right)$. Therefore, $f^{\prime}(x)$ is not continuous at $x=0$.
114. Let $f(x)=e^{-x}-\sin x$ and $a, b \in \mathbb{R}$ with $a<b$ be two real solutions of $e^{x} \sin x=$ 1. This means that we have $f(a)=f(b)=0$. Since f is differentiable, we can apply Rolle's Theorem and find $c \in(a, b)$ with $0=f^{\prime}(c)=-e^{-c}-\cos c$. Rewriting this equation yields $e^{c} \cos c=-1$.
115. It suffices to prove that $f_{n}^{(n)}$ has precisely n pairwise different zeroes in $(-1,1)$. Firstly, we prove that $f_{n}^{(k)}$ has at least k pairwise different zeroes in $(-1,1)$ for $k \in\{0,1,2, \ldots, n\}$. In the case $k=0$ there is nothing to prove. Assume we have already shown that $f_{n}^{(k)}$ has at least k pairwise different zeroes $x_{1}<$ $x_{2}<\cdots<x_{k}$ in $(-1,1)$ for some $0 \leq k \leq n-1$. Note that $x^{2}-1$ divides $f_{n}^{(k)}$, so $f_{n}^{(k)}$ has zeroes

$$
-1=x_{0}<x_{1}<x_{2}<\cdots<x_{k}<x_{k+1}=1 .
$$

Applying Rolle's Theorem to every interval $\left[x_{i-1}, x_{i}\right]$ with $i=1,2, \ldots, k+1$, we obtain $k+1$ pairwise different zeroes $x_{i}^{\prime} \in\left(x_{i-1}, x_{i}\right)$ of $f_{n}^{(k+1)}$. This shows that $f_{n}^{(n)}$ has at least n pairwise different zeroes in $(-1,1)$. Since f_{n} is a nonzero polynomial of order $2 n, f_{n}^{(n)}$ is a nonzero polynomial of order n and can have at most n pairwise different real roots. Combining both facts proves that p_{n} has precisely n pairwise different zeroes in $(-1,1)$.
116. We have $f(2)=4, f(5)=25$ and $f^{\prime}(c)=4 c-7$. Then the Mean Value Theorem claims the existence of $c \in(2,5)$ satisfying $4 c-7=(25-4) /(5-2)=$ 7. The solution of $4 c-7=7$ is $c=3.5$ which lies in the interval $(2,5)$, confirming the Mean Value Theorem in this case.
117. (a) Applying the classical Mean Value Theorem to $f(x)=\log (x)$, we obtain for some $c \in(1, b / a)$,

$$
f(b / a)-f(1)=\log \left(\frac{b}{a}\right)-0=\log \left(\frac{b}{a}\right)=(b / a-1) f^{\prime}(c)=\frac{b-a}{a c} .
$$

Since $1<c<b / a$, we have $a / b<1 / c<1$ and, therefore,

$$
1-\frac{a}{b}=\frac{b-a}{b}=\frac{a}{b} \frac{b-a}{a}<\frac{b-a}{a c}=\log \left(\frac{b}{a}\right)<\frac{b-a}{a}=\frac{b}{a}-1 .
$$

(b) Choose $a=5$ and $b=6$ to obtain

$$
\frac{1}{6}=1-\frac{5}{6}<\log \left(\frac{6}{5}\right)=\log (1.2)<\frac{6}{5}-1=\frac{1}{5} .
$$

118. Let $a \leq x<y \leq b$. Then by the classical Mean Value Theorem there exists $z \in(x, y)$ such that $f^{\prime}(z)=(f(y)-f(x)) /(y-x)$.
(a) Suppose that $f^{\prime} \equiv 0$ on (a, b). Then $f^{\prime}(z)=0$, so $f(x)=f(y)$: i.e. f is constant on (a, b).
(b) Suppose that $f^{\prime}>0$ on (a, b). Then $f^{\prime}(z)>0$, and so $f(y)>f(x)$. I.e. f is increasing.
(c) Now suppose that $t \leq f^{\prime} \leq T$ on (a, b). Then again $t \leq f^{\prime}(z) \leq T$, and the result follows.
119. (a) We first check that

$$
\sinh ^{\prime}(x)=\frac{e^{x}-(-1) e^{-x}}{2}=\frac{e^{x}+e^{-x}}{2}=\cosh (x)
$$

and

$$
\begin{aligned}
\cosh ^{2}(x)= & \left(\frac{e^{x}+e^{-x}}{2}\right)^{2}=\frac{e^{2 x}+2+e^{-2 x}}{4}= \\
& 1+\frac{e^{2 x}-2+e^{-2 x}}{4}=1+\left(\frac{e^{x}-e^{-x}}{2}\right)^{2}=1+\sinh ^{2}(x) .
\end{aligned}
$$

Since $\cosh (x)=\left(e^{x}+e^{-x}\right) / 2>0$, we know that $\sinh (x)$ is strictly monotone increasing. Let $y=\sinh (x)$. This implies that $2 y=e^{x}-e^{-x}$ and, multiplying by e^{x} :

$$
e^{2 x}-2 y e^{x}-1=0 .
$$

Let $c=e^{x}>0$. Solving $c^{2}-2 y c-1=0$ leads to

$$
c=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2}=y \pm \sqrt{y^{2}+1} .
$$

Since $c>0$, the only solution is

$$
e^{x}=c=y+\sqrt{y^{2}+1},
$$

i.e.,

$$
x=\log \left(y+\sqrt{y^{2}+1}\right) .
$$

This shows that $\operatorname{Ar} \sinh (y)=\log \left(y+\sqrt{y^{2}+1}\right)$. Now we differentiate and obtain

$$
\begin{aligned}
& \operatorname{Arsinh}^{\prime}(y)=\frac{1}{y+\sqrt{y^{2}+1}}\left(1+\frac{2 y}{2 \sqrt{y^{2}+1}}\right)= \\
& \frac{1}{y+\sqrt{y^{2}+1}}\left(1+\frac{y}{\sqrt{y^{2}+1}}\right)=\frac{1}{y+\sqrt{y^{2}+1}} \frac{\sqrt{y^{2}+1}+y}{\sqrt{1+y^{2}}}=\frac{1}{\sqrt{1+y^{2}}} .
\end{aligned}
$$

(b) Using (1) in Exercise 112 and $\cosh (x)=\sqrt{1+\sinh ^{2}(x)}$ yields

$$
\operatorname{Arsinh}^{\prime}(y)=\frac{1}{\cosh (\operatorname{Arsinh}(y)}=\frac{1}{\sqrt{1+\sinh ^{2}(\operatorname{Arsinh}(y))}}=\frac{1}{\sqrt{1+y^{2}}}
$$

120. (a) Using the classical Mean Value Theorem, we obtain for $0<a<b$ and some $c \in(a, b)$:

$$
\arctan (b)-\arctan (a)=\frac{(b-a)}{1+c^{2}} .
$$

Since $1+a^{2}<1+c^{2}<1+b^{2}$, we conclude that

$$
\frac{b-a}{1+b^{2}}<\arctan (b)-\arctan (a)<\frac{b-a}{1+a^{2}} .
$$

(b) Choosing $0<a=1<b=4 / 3$, we obtain

$$
\frac{1 / 3}{1+16 / 9}<\arctan (4 / 3)-\arctan (1)<\frac{1 / 3}{2} .
$$

Since $\arctan (1)=\pi / 4$, we end up with

$$
\frac{3}{25}=\frac{1}{3+16 / 3}<\arctan (4 / 3)-\frac{\pi}{4}<\frac{1}{6} .
$$

121. We assume that $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable, $c \in(a, b), f(c)=g(c)=0$ and that $\lim _{x \rightarrow c} f^{\prime}(x) / g^{\prime}(x)$ exists. Using the formula, we find some $\xi \in(x, c)$ (if $x<c$) or $\xi \in(c, x)$ (if $c<x$) such that

$$
\begin{equation*}
g(x) f^{\prime}(\xi)=(g(x)-g(c)) f^{\prime}(\xi)=(f(x)-f(c)) g^{\prime}(\xi)=f(x) g^{\prime}(\xi) \tag{1}
\end{equation*}
$$

The assumption that $\lim _{x \rightarrow c} f^{\prime}(x) / g^{\prime}(x)$ exists implies that we have for all $x \neq c$, sufficiently close to $c, g^{\prime}(x) \neq 0$. Applying (1) to those x, we also have $g^{\prime}(\xi) \neq 0$, since $\xi \neq c$ is even closer to c than x. Moreover, using the classical Mean Value Theorem, we have

$$
g(x)=g(x)-g(c)=(x-c) g^{\prime}(\eta) \neq 0
$$

for some η strictly between x and c, and we can therefore divide (1) by $g(x) g^{\prime}(\xi) \neq 0$ and obtain

$$
\frac{f(x)}{g(x)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}
$$

Now, if $x \rightarrow c, x \neq c$, we also have $\xi \rightarrow c, \xi \neq c$, and therefore,

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{\xi \rightarrow c} \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}
$$

showing that the $\operatorname{limit}^{\lim } \log _{x t o c} f(x) / g(x)$ must exist and must agree with the well-defined limit $\lim _{x \rightarrow c} f^{\prime}(x) / g^{\prime}(x)$.
122. Let $f(x)=1+\cos (\pi x)$ and $g(x)=x^{2}-2 x+1$. Then $f(1)=g(1)=0$ and $f^{\prime}(x)=-\pi \sin (\pi x)$ and $g^{\prime}(x)=2 x-2$. Then $f^{\prime}(1)=g^{\prime}(1)=0$ and $f^{\prime \prime}(x)=-\pi^{2} \cos (\pi x)$ and $g^{\prime \prime}(x)=2$. Then

$$
\lim _{x \rightarrow 1} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\lim _{x \rightarrow 1} \frac{-\pi^{2} \cos (\pi x)}{2}=\frac{\pi^{2}}{2}
$$

Applying L'Hopital twice, we obtain

$$
\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 1} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 1} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\frac{\pi^{2}}{2} .
$$

123. Let $f(x)=x-\sin x$ and $g(x)=x^{3}$. Then $f(0)=0=g(0)=0$ and $f^{\prime}(x)=$ $1-\cos x$ and $g^{\prime}(x)=3 x^{2}$. Then $f^{\prime}(0)=g^{\prime}(0)=0$ and $f^{\prime \prime}(x)=\sin x$ and $g^{\prime \prime}(x)=6 x$. Then $f^{\prime \prime}(0)=g^{\prime \prime}(x)=0$ and $f^{(3)}(x)=\cos x$ and $g^{(3)}(x)=6$. Then

$$
\lim _{x \rightarrow 0} \frac{f(3)(x)}{g^{(3)}(x)}=\lim _{x \rightarrow 0} \frac{\cos x}{6}=\frac{1}{6} .
$$

Applying L'Hopital three times, we obtain

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\lim _{x \rightarrow 0} \frac{f(3)(x)}{g^{(3)}(x)}=\frac{1}{6} .
$$

124. We have

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}} .
$$

Let $h(x)=x^{2}$. Then $g(0)=h(0)=0$ and $h^{\prime}(x)=2 x$. Then $g^{\prime}(0)=h^{\prime}(0)=0$ and $h^{\prime \prime}(x)=2$. Applying L'Hopital twice, we obtain

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{g(x)}{h(x)}=\lim _{x \rightarrow 0} \frac{g^{\prime}(x)}{h^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{g^{\prime \prime}(x)}{h^{\prime \prime}(x)}=\frac{17}{2} .
$$

125. Let $f(x)=5 \sin x-4 x$. Then $f^{\prime}(x)=5 \cos x-4$ and Newton's iteration is given by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{5 \sin x-4 x}{5 \cos x-4} .
$$

We start with $x_{1}=1$ and obtain successively

$$
\begin{aligned}
& x_{2}=1-\frac{5 \sin (1)-4}{5 \cos (1)-4}=1.15969 \ldots, \\
& x_{3}=1-\frac{5 \sin \left(x_{2}\right)-4 x_{2}}{5 \cos \left(x_{2}\right)-4}=1.13203 \ldots, \\
& x_{4}=1-\frac{5 \sin \left(x_{3}\right)-4 x_{3}}{5 \cos \left(x_{3}\right)-4}=1.13110 \ldots .
\end{aligned}
$$

We check that

$$
f(1.131)=0.000192 \ldots \quad \text { and } f(1.132)=-0.001682 \ldots,
$$

which means that there must be a zero within the interval $(1.131,1.132)$ by the Intermediate Value Theorem.

9 Infinite series

126. $(2+n) / \sqrt{4 n^{4}-1}>n / \sqrt{4 n^{4}}=(2 n)^{-1}$, and $\Sigma(2 n)^{-1}$ diverges; so the given series diverges, by comparison.
127. $\sqrt{n} /\left(n^{3}+1\right)<n^{-5 / 2}$, and $\Sigma n^{-5 / 2}$ converges; so given series converges, by comparison.
128. $\left|\sin \left(2^{n}\right) / 2^{n}\right| \leq 2^{-n}$ and $\sum_{n=1}^{\infty} 2^{-n}$ converges, so the given series converges absolutely, by comparison.
129. Write $x_{n}=(n-3)\left(2+9 n^{6}\right)^{-1 / 2}$. Note that $0 \leq x_{n}<n / \sqrt{9 n^{6}}=1 /\left(3 n^{2}\right)$, and $\sum_{n=1}^{\infty} 1 /\left(3 n^{2}\right)$ converges; so the given series converges, by comparison.
130. (a) $0 \leq x_{n} \leq 1 / n^{2}$, so the series converges.
(b) $x_{n} \geq \frac{1}{2 n}$, so the series diverges.
(c) For $n>2$, we have $\left|x_{n}\right| \leq n^{-9 / 2}$, so series converges absolutely.
(d) $x_{n}=\frac{n^{2}}{(n+1)(n+2)(n+3)} \geq \frac{1}{n}\left(\frac{n}{n+3}\right)^{3} \geq \frac{1}{n} \frac{1}{4^{3}}$, so the series is divergent.
(e) Since $x^{8} \exp (-x) \rightarrow 0$ as $x \rightarrow \infty$, the set $\left\{n^{4} \exp (-\sqrt{n})\right\}$ is bounded above, say by K. So $0<x_{n}<K / n^{2}$. Thus the given series converges, by comparison with the convergent series $\sum K / n^{2}$.
(f) $\left|x_{n}\right| \leq n^{-2}$, so the series is absolutely convergent.
(g) $\sin \theta<\theta$ for $\theta>0$, so $0<x_{n}<n^{-2}$ for $n \geq 1$. Since $\sum n^{-2}$ converges, so does $\sum x_{n}$, by comparison.
(h) Since $n^{-1 / 2}(\log n)^{4} \rightarrow 0$ as $n \rightarrow \infty$, the set $\left\{n^{-1 / 2}(\log n)^{4}\right\}$ is bounded above, say by K. So $0<x_{n}<K / n^{3 / 2}$. Thus the given series converges, by comparison with the convergent series $\sum K / n^{3 / 2}$.
(i) $x_{n}=1 /\left(\sqrt{1+n^{2}}+n\right) \geq 1 /\left(n+\sqrt{2 n^{2}}\right) \geq 1 / n(1+\sqrt{2})$, so the series is divergent.
131. (a) $n \log \left(1+\frac{1}{n}\right) \rightarrow 1$ as $n \rightarrow \infty$, so there exists K such that
$x_{n}=\left(n^{2}+1\right)^{-\alpha} \log \left(1+\frac{1}{n}\right) \leq K n^{-2 \alpha-1}$; hence the series is convergent for $\alpha>0$, by comparison with $\sum^{n} n^{-2 \alpha-1}$. For $\alpha \leq 0$, we can say that for n large enough, $x_{n}>\frac{1}{2} \frac{1}{n\left(1+n^{2}\right)^{\alpha}}>\frac{1}{2^{1+2 \alpha}} \frac{1}{n^{1+2 \alpha}} \geq \frac{1}{2^{1+2 \alpha}} \frac{1}{n} ;$
so the series is divergent, by comparison with $\sum 1 / n$.
(b) $x_{n}=n^{\alpha}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{n^{\alpha}(\sqrt{n+1}-\sqrt{n})}{\sqrt{n(n+1)}}=\frac{n^{\alpha}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})}$.

Now $\frac{n^{3 / 2}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})} \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$, so that, by comparison, the series converges for $\alpha-\frac{3}{2}<-1$, i.e. for $\alpha<\frac{1}{2}$.
132. The series has partial sums $x_{1}-x_{2}, x_{1}-x_{3}, x_{1}-x_{4}, \ldots$, and the result follows.
133. Define the partial sums $X_{n}=\sum_{k=1}^{n} x_{k}$ and $Y_{n}=\sum_{k=1}^{n} y_{k}$. Then $X_{n} \rightarrow s$ as $n \rightarrow \infty$. But $Y_{n}=\frac{1}{2} X_{n}+\frac{1}{2}\left(X_{n+1}-x_{1}\right)$, so $Y_{n} \rightarrow s-x_{1} / 2$.
134. Since $\sum x_{n}$ converges, $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, and so there exists K such that $\left|x_{n}\right| \leq K$ for all n. But then $\left|x_{n} y_{n}\right| \leq K\left|y_{n}\right|$, so that $\sum x_{n} y_{n}$ converges absolutely by comparison with $\sum\left|y_{n}\right|$. Conditional convergence of $\sum y_{n}$ is not enough. For example, consider $x_{n}=y_{n}=(-1)^{n} n^{-1 / 2}$. Then $\sum x_{n}$ and $\sum y_{n}$ are convergent, by the alternating series test, but $\sum x_{n} y_{n}$ is the harmonic series and is divergent.
135. (a) The \tan function is increasing on $[0, \pi / 2)$, so $\{\tan (\pi / n)\}$ is a decreasing sequence for $n \geq 3$; its limit is $\tan 0=0$. Also $\cos (n \pi)=(-1)^{n}-$ so by the Alternating Sign Test, the series converges.
(b) Write $f(x)=1 /\left[x(\log x)^{3}\right]$ on $[2, \infty)$. Then f is a positive decreasing function, and $\int_{2}^{M} f(x) d x=-\frac{1}{2}\left[(\log x)^{-2}\right]_{2}^{M}=\frac{1}{2}(\log 2)^{-2}-\frac{1}{2}(\log M)^{-2} \rightarrow$ $\frac{1}{2}(\log 2)^{-2}$
as $n \rightarrow \infty$. Hence $\sum_{n=2}^{\infty} f(n)$ converges, by the Integral Test.
(c) Write $x_{n}=(2 n)!5^{-n}(n!)^{-2}$. Then

$$
\left|\frac{x_{n+1}}{x_{n}}\right|=\frac{(2 n+2)(2 n+1)}{5(n+1)^{2}} \rightarrow \frac{4}{5} \quad \text { as } \quad n \rightarrow \infty .
$$

Since $4 / 5<1$, we conclude that $\sum_{n=1}^{\infty} x_{n}$ converges, by the Ratio Test.
136. (a) Write $x_{n}=1 /[\sqrt{n} \tanh (n)]$. Both \sqrt{n} and $\tanh (n)$ are increasing sequences, so $\left\{x_{n}\right\}$ is decreasing. Also, $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. So by the Alternating Sign Test, the given series converges.
(b) Write $x_{n}=(2 / 9)^{n}(2 n)!/(n!)^{2}$. Then

$$
\left|\frac{x_{n+1}}{x_{n}}\right|=\frac{2(2 n+2)(2 n+1)}{9(n+1)^{2}} \rightarrow \frac{8}{9}
$$

as $n \rightarrow \infty$. So by the Ratio Test, $\sum x_{n}$ converges.

$$
\begin{equation*}
0 \leq \frac{n-1}{\left(n^{2}+2\right)\left(n^{2}+1\right)^{1 / 4}}<\frac{n}{n^{2} n^{1 / 2}}=\frac{1}{n^{3 / 2}} \tag{c}
\end{equation*}
$$

and $\sum n^{-3 / 2}$ converges, so the given series converges by comparison.
137. (a) The ratio of successive terms is $\frac{((n+1)!)^{2}(2 n)!}{(n!)^{2}(2 n+2)!}=\frac{(n+1)^{2}}{(2 n+1)(2 n+2)}=\frac{n+1}{4 n+2} \rightarrow \frac{1}{4}$ as $n \rightarrow \infty$, so convergent by Ratio Test.
(b) $\sum_{n=1}^{\infty} x_{n}$ is the same series as $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ Since $f(x)=1 /(x \log x)$ is decreasing on $[2, \infty)$, and $\int_{2}^{M} f=\log \log M-\log \log 2$ is unbounded as $M \rightarrow \infty$, the series diverges (Integral Test).
(c) $\cos (\pi n)=(-1)^{n}$, so that we have an alternating series. Thus the Alternating Sign Test tells us that for convergence it is sufficient to have $\left|x_{n}\right| \rightarrow 0$ monotonically as $n \rightarrow \infty$, which certainly is the case here.
138. (a) Ratio test: $\left|x_{n+1} / x_{n}\right|=|\alpha|(1+1 / n)^{\alpha} \rightarrow|\alpha|$ as $n \rightarrow \infty$. So series converges if $|\alpha|<1$ and diverges if $|\alpha|>1$. If $\alpha=1$ then $x_{n}=n$ clearly divergent; while if $\alpha=-1$ then $x_{n}=(-1)^{n} / n$ which gives an alternating series which converges since $\{1 / n\}$ is a decreasing sequence tending to zero. So we have convergence iff $-1 \leq \alpha<1$.
(b) The terms of the series vanish as $n \rightarrow \infty$ (and so the series can converge) only for $|\alpha| \leq 3$. When $\alpha=3$, the series is a harmonic series and diverges. When $\alpha=-3$ the series converges by the Alternating Sign Test. When $|\alpha|<3$, the series is absolutely convergent by comparison with the convergent geometric series $\sum(\alpha / 3)^{n}$.
(c) By the comparison test, $\sum x_{n}$ converges if and only if $\sum(n+1)^{-1}(\log (n+$ $1))^{-\alpha}$ does. Since $f(x)=(x+1)^{-1}(\log (x+1))^{-\alpha}$ is decreasing on $[1, \infty)$ for all α, we can apply the Integral Test. The $\alpha=1$ case was covered in Problem $137(\mathrm{~b})$; for $\alpha \neq 1$ we have $(1-\alpha) \int_{1}^{M} f(x) d x=[\log (M+1)]^{1-\alpha}-[\log 2]^{1-\alpha}$. This has a limit as $M \rightarrow \infty$, and hence $\sum x_{n}$ converges, if and only if $\alpha>1$.
(d) $\left|x_{n+1} / x_{n}\right|=(n+1)|\alpha|$; if $\alpha \neq 0$, then this ratio tends to infinity as $n \rightarrow \infty$, so the series diverges by the Ratio Test. If $\alpha=0$, then the series clearly converges.
(e) We have $x_{n}=(\alpha / 2)^{n} /(3-1 / n)$ and since $2 \leq 3-1 / n \leq 3$, the series converges if and only if the geometric series $\sum(\alpha / 2)^{n}$ converges (by the Comparison Test), and this converges for $|\alpha|<2$.
139. (a) The series is absolutely convergent for any z by the Ratio Test.
(b) The series is absolutely convergent for any z by the Ratio Test.
(c) The series is a geometric series and is convergent if and only if $|z c|<1$.
(d) The ratio test implies that the series is absolutely convergent when $|z|<1$, and the vanishing condition implies that it is divergent otherwise.
(e) Since α^{n} / n ! $\rightarrow 0$ as $n \rightarrow \infty$ for any $\alpha \in \mathbb{R}$, the terms of this series do not vanish for any $z \neq 0$, and so the series is divergent for all $z \neq 0$.
140. (a) Write $x_{n}=n^{2} 2^{-n}$. Then $\left|x_{n+1} / x_{n}\right|=(1+1 / n)^{2} / 2 \rightarrow 1 / 2$ as $n \rightarrow \infty$. So the series converges, by the Ratio Test.
(b) Write $x_{n}=[1+\exp (-n)] /\left[(n+1)^{2}-(n-1)^{2}\right]$. Then $x_{n}=\left(1+\mathrm{e}^{-n}\right) /(4 n)>$ $1 /(4 n)$, and $\Sigma(4 n)^{-1}$ diverges; hence the given series diverges, by comparison.
(c) Write $x_{n}=n^{-2} \log n$. Since $n^{-1 / 2} \log n \rightarrow 0$ as $n \rightarrow \infty$, there exists a number K such that $\log n \leq K \sqrt{n}$ for all n. Thus $0 \leq n^{-2} \log n \leq K n^{-3 / 2}$, and $\Sigma K n^{-3 / 2}$ converges; so the given series converges by comparison.
(d) Write $x_{n}=n!2^{n} n^{-n}$. Then $\left|x_{n+1} / x_{n}\right|=2[n /(n+1)]^{n}=2 /(1+1 / n)^{n} \rightarrow$ $2 / \mathrm{e}$ as $n \rightarrow \infty$. Since $2 / \mathrm{e}<1$, the Ratio Test says that Σx_{n} converges.
141. We use the $n^{\text {th }}$ Root Test. Let

$$
a_{n}=\left[n^{4} \sin ^{2}\left(\frac{2 n}{3 n^{3}-2 n^{2}+5}\right)\right]^{n} .
$$

Then we have

$$
\left|a_{n}\right|^{1 / n}=n^{4} \sin ^{2}\left(\frac{2 n}{3 n^{3}-2 n^{2}+5}\right) .
$$

Note that $(2 n) /\left(3 n^{3}-2 n^{2}+5\right) \rightarrow 0$ as $n \rightarrow \infty$, which implies that

$$
\lim _{n \rightarrow \infty} \frac{\sin ^{2}\left((2 n) /\left(3 n^{3}-2 n^{2}+5\right)\right)}{(2 n)^{2} /\left(3 n^{3}-2 n^{2}+5\right)^{2}}=1
$$

using $\sin (x) / x \rightarrow 1$ as $x \rightarrow 0$. This means we obtain

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{n^{4}(2 n)^{2}}{\left(3 n^{3}-2 n^{2}+5\right)^{2}} \frac{\sin ^{2}\left((2 n) /\left(3 n^{3}-2 n^{2}+5\right)\right)}{(2 n) /\left(3 n^{3}-2 n^{2}+5\right)}=\frac{4}{9}<1 .
$$

The $n^{\text {th }}$ root test tells us that the series converges.
142. We consider the series $\sum(3 n-1)!/(3 n)$! and $\sum 4^{n+1} /(3 n)$! separately. The first series $\sum 1 /(3 n)$ is equal to $1 / 3$ times the harmonic series, which diverges. We apply the Ratio Test to the second series $\sum 4^{n+1} /(3 n)!$:

$$
\frac{4^{n+2} \cdot(3 n)!}{(3 n+3)!\cdot 4^{n+1}}=\frac{4}{(3 n+1)(3 n+2)(3 n+3)} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

This shows that the second series is convergent. If the original series were convergent, then the series $\sum(3 n-1)!/(3 n)$! were also convergent as the sum of the original series and the series $\sum 4^{n+1} /(3 n)!$, by COLT. But $\sum(3 n-1)!/(3 n)$! is divergent. Therefore this series is divergent.
143. Let $s_{N}=\sum_{n=2}^{N} \frac{(-1)^{n}}{n+(-1)^{n}}$. Note that we have
$s_{2 N+1}=\sum_{n=2}^{2 N} \frac{(-1)^{n}}{n+(-1)^{n}}=\sum_{k=1}^{N} \frac{(-1)^{2 k}}{2 k+(-1)^{2 k}}+\frac{(-1)^{2 k+1}}{2 k+1+(-1)^{2 k+1}}=-\sum_{k=1}^{N} \frac{1}{2 k(2 k+1)}$.
Therefore, the partial sums $s_{2 N+1}$ converge, by Comparison with the convergent series $\sum_{k} 1 /\left(4 k^{2}\right)$. Let $s^{*}=\lim _{N \rightarrow \infty} s_{2 N+1}$. Then we also have

$$
\lim _{N \rightarrow \infty} s_{2 N}=\lim _{N \rightarrow \infty} s_{2 N+1}+\frac{1}{2 N}=s^{*}
$$

and the sequence $\left(s_{n}\right)$ of all partial sums converges. This shows convergence of the series.
144. Problems Class, 30 January 2015
145. Problems Class, 30 January 2015
146. Assume that $\sum a_{n}^{+}$contains only finitely many nonzero elements. Then this sum is convergent and also absolutely convergent, since it only contains nonnegative elements. Applying COLT to $\sum a_{n}-\sum a_{n}^{+}$would then show that also $\sum a_{n}^{-}$is convergent and, therefore, also absolutely convergent, since it only contains nonpositive elements. But then also the sum $\sum a_{n}=\sum a_{n}^{+}+\sum a_{n}^{-}$ would be absolutely convergent, in contradiction to the assumption that $\sum a_{n}$ is only conditionally convergent. This shows that $\sum a_{n}^{+}$contains infinitely many nonzero elements and a similar reasoning shows that also the $\sum a_{n}^{-}$ has infinitely many nonzero elements. Assume that at least one of the sums $\sum a_{k}^{+}, \sum a_{k}^{-}$were convergent. Let $\sum a_{k}^{+}$be convergent. Then $\sum a_{k}^{+}$is also absolutely convergent (only nonnegative terms) and then also $\sum a_{k}^{-}=\sum a_{k}-$ $\sum a_{k}^{+}$is also convergent, by COLT. But then $\sum a_{k}^{-}$would be also absolutely convergent (only nonpositive terms) and we would, again, obtain that $\sum a_{k}=\sum a_{k}^{+}+\sum a_{k}^{-}$were absolute convergent, which is again a contradiction. So both series $\sum a_{k}^{+}$and $\sum a_{k}^{-}$must be divergent and, therefore, the partial sums must be unbounded.
147. The crucial point that we can establish the inequality $U_{1} \geq s^{*}$ is that $\sum_{k \geq 1} a_{k}^{+}$ is monotone increasing and unbounded above. The crucial point that we can then establish the inequality $U_{1}+L_{1}<s^{*}$ is that $\sum_{k>1} a_{k}^{-}$is monotone decreasing an unbounded below. Next, we can find a smallest index n_{2} such that $U_{1}+L_{1}+\sum_{k=n_{1}+1}^{n_{2}} a_{k}^{+} \geq s^{*}$, since $\sum_{k \geq n_{1}+1} a_{k}^{+}$is still unbounded above. We define

$$
U_{2}=a_{n_{1}+1}^{+}+a_{n_{1}+2}^{+}+\cdots+a_{n_{2}}^{+} .
$$

Next, we can find a smallest index m_{2} such that $U_{1}+L_{1}+U_{2}+\sum_{k=m_{1}+1}^{m_{2}} a_{k}^{-}<s^{*}$, since $\sum_{k \geq m_{1}+1} a_{k}^{-}$is still unbounded below. We define

$$
L_{2}=a_{m_{1}+1}^{-}+a_{m_{1}+2}^{-}+\cdots+a_{m_{2}}^{-} .
$$

It is clear how this method proceeds and that the process never stops, since we have always unbounded series $\sum_{k \geq n_{j}+1} a_{k}^{+}$and $\sum_{k \geq m_{j}+1} a_{k}^{-}$left. Note also that, by construction, we have

$$
\left|s^{*}-\left(U_{1}+L_{1}+\cdots+U_{k}\right)\right| \leq a_{n_{k}}^{+}
$$

and

$$
\left|s^{*}-\left(U_{1}+L_{1}+\cdots+U_{k}+L_{k}\right)\right| \leq\left|a_{m_{k}}^{-}\right| .
$$

Since $\sum a_{n}$ is convergent, we have $a_{n} \rightarrow 0$ and this implies that also $a_{n}^{+} \rightarrow 0$ and $a_{n}^{-} \rightarrow 0$. This final fact shows that we have convergence $s_{k}^{U} \rightarrow s^{*}$ and $s_{k}^{L} \rightarrow s^{*}$.
148. We know that the series $\sum \frac{(-1)^{k}}{\sqrt{k+1}}$ is convergent by the Alternating Sign Test. Since $1 / \sqrt{k+1} \geq 1 /(k+1)$, divergence of $\sum \frac{1}{\sqrt{k+1}}$ follows from Comparison with the harmonic series. This shows that $\sum \frac{(-1)^{k}}{\sqrt{k+1}}$ is only conditionally convergent. For the Cauchy product, we have to consider the terms

$$
c_{k}=\sum_{k=0}^{n} \frac{(-1)^{k}}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}}=(-1)^{n} \sum_{k=0}^{n} \frac{1}{\sqrt{(k+1)(n-k+1)}} .
$$

It is easy to see that we have $\sqrt{(k+1)(n-k+1)} \leq n+1$ and, therefore,

$$
\left|c_{k}\right| \geq \sum_{k=0}^{n} \frac{1}{n+1}=1
$$

So $\sum c_{k}$ cannot converge since then we would have $c_{k} \rightarrow 0$ in contrast to $\left|c_{k}\right| \geq 1$.
149. (a) $\left|z_{n}\right|=1 / \sqrt{n^{4}+1} \rightarrow 0$ as $n \rightarrow \infty$, so $z_{n} \rightarrow 0$.
(b) $\left|z_{n}\right|=n^{2} \exp (-n) \rightarrow 0$ as $n \rightarrow \infty$, so $z_{n} \rightarrow 0$.
(c) By COLT, $z_{n} \rightarrow \exp (i \pi / 4) \sqrt{2}=1+i$ as $n \rightarrow \infty$.
(d) $z_{n}=(-1)^{n} x_{n}$, where $x_{n}=2 n /(n+i) \rightarrow 2$ as $n \rightarrow \infty$, so $\left\{z_{n}\right\}$ has no limit (but is bounded).
150. (a) $\operatorname{Re}\left(z_{n}\right)=n /\left(n^{2}+1\right) \geq(2 n)^{-1}$, and $\Sigma(2 n)^{-1}$ diverges, so $\Sigma \operatorname{Re}\left(z_{n}\right)$ diverges by comparison, and hence Σz_{n} diverges.
(b) $\left|z_{n}\right|=1 / \sqrt{n^{4}+1}<n^{-2}$, and Σn^{-2} converges, so Σz_{n} converges absolutely, by comparison.
(c) $\left|z_{n+1} / z_{n}\right|=\sqrt{29} /(n+1) \rightarrow 0$ as $n \rightarrow \infty$, so Σz_{n} converges absolutely, by the Ratio Test.
(d) $n^{2}\left|z_{n}\right|=n^{2}\left(n^{2}+4\right)^{2} \exp (-n) \rightarrow 0$ as $n \rightarrow \infty$, so there exists K such that $0<n^{2}\left|z_{n}\right|<K$ for all n. Hence Σz_{n} converges absolutely, by comparison with the convergent series $\Sigma K n^{-2}$.

10 Integrals

151. (a) Since f is decreasing on $[0,1]$, we have $U\left(f, \mathcal{P}_{n}\right)=n^{-1}\left(1+\mathrm{e}^{-1 / n}+\mathrm{e}^{-2 / n}+\cdots+\mathrm{e}^{-(n-1) / n}\right)$ and $L\left(f, \mathcal{P}_{n}\right)=n^{-1}\left(\mathrm{e}^{-1 / n}+\mathrm{e}^{-2 / n}+\cdots+\mathrm{e}^{-1}\right)$.
(b) Then $U\left(f, \mathcal{P}_{n}\right)-L\left(f, \mathcal{P}_{n}\right)=n^{-1}\left(1-\mathrm{e}^{-1}\right)$, and this $\rightarrow 0$ as $n \rightarrow \infty$, so f is Riemann integrable.
(c) $\int_{0}^{1} \mathrm{e}^{-x} d x=1-\mathrm{e}^{-1} . L\left(f, \mathcal{P}_{n}\right)=\alpha n^{-1}\left(1+\alpha+\cdots+\alpha^{n-1}\right)$, where $\alpha=$ $\exp (-1 / n)$, so $L\left(f, \mathcal{P}_{n}\right)=\left[\alpha\left(1-\alpha^{n}\right)\right] /[n(1-\alpha)]=\left[\alpha\left(1-\mathrm{e}^{-1}\right)\right] /[n(1-\alpha)]=$ $\left[\left(1-\mathrm{e}^{-1}\right)\right] /\left[n\left(\mathrm{e}^{1 / n}-1\right)\right]$. The result follows.
152. $U\left(f, \mathcal{P}_{n}\right)=\frac{1}{n}\left(\log \left(1+\frac{1}{n}\right)+\log \left(1+\frac{2}{n}\right)+\cdots+\log (2)\right)$, and
$L\left(f, \mathcal{P}_{n}\right)=\frac{1}{n}\left(0+\log \left(1+\frac{1}{n}\right)+\log \left(1+\frac{2}{n}\right)+\cdots+\log \left(1+\frac{n-1}{n}\right)\right)$. Then $U\left(f, \mathcal{P}_{n}\right)-$ $L\left(f, \mathcal{P}_{n}\right)=\frac{\log 2}{n} \rightarrow 0$ as $n \rightarrow \infty$, so that f is Riemann integrable on [1, 2].
Now the integral is $I=\int_{1}^{2} f(x) d x=2 \log 2-1$. Moreover, $L\left(f, \mathcal{P}_{n}\right) \leq$ $I \leq U\left(f, \mathcal{P}_{n}\right)=L\left(f, \mathcal{P}_{n}\right)+\frac{\log 2}{n}$, so that $I-\frac{\log 2}{n} \leq L\left(f, \mathcal{P}_{n}\right) \leq I$, and then $\lim _{n \rightarrow \infty} L\left(f, \mathcal{P}_{n}\right)=I$ by the Squeezing Theorem. The final result follows by taking the exponential of both sides: $\exp \left(L\left(f, \mathcal{P}_{n}\right)\right)=\left(\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \ldots\left(1+\frac{n-1}{n}\right)\right)^{1 / n}$, and $\exp (I)=4 / \mathrm{e}$.
153. We have $f(x)=1 / x . U\left(f, \mathcal{P}_{2}\right)=\frac{1}{2}\left(1+\frac{2}{3}\right)=\frac{5}{6}$, and $L\left(f, \mathcal{P}_{2}\right)=\frac{1}{2}\left(\frac{2}{3}+\frac{1}{2}\right)=\frac{7}{12}$. $U\left(f, \mathcal{P}_{4}\right)=\frac{1}{4}\left(1+\frac{4}{5}+\frac{2}{3}+\frac{4}{7}\right)=\frac{319}{420}$, and $L\left(f, \mathcal{P}_{4}\right)=\frac{1}{4}\left(\frac{4}{5}+\frac{2}{3}+\frac{4}{7}+\frac{1}{2}\right)=\frac{533}{840}$. Expressing the results to 4 decimal places, we have

$I-L\left(f, \mathcal{P}_{2}\right)$	-0.1402
$I-U\left(f, \mathcal{P}_{2}\right)$	0.1098
$I-L\left(f, \mathcal{P}_{4}\right)$	0.0586
$I-U\left(f, \mathcal{P}_{4}\right)$	-0.0664

154. Let \mathcal{P}_{n} be the partition of $[0, \pi / 2]$ into n subintervals of equal length. Then we can write

$$
\frac{\pi}{2 n}\left(\sin \left(\frac{\pi}{2 n}\right)+\sin \left(\frac{2 \pi}{2 n}\right)+\sin \left(\frac{3 \pi}{2 n}\right)+\cdots+\sin \left(\frac{n \pi}{2 n}\right)\right)=U\left(f, \mathcal{P}_{n}\right)
$$

with $f(x)=\sin (x)$. Note that
$L\left(f, \mathcal{P}_{n}\right)=\frac{\pi}{2 n}\left(\sin \left(\frac{\pi}{2 n}\right)+\sin \left(\frac{2 \pi}{2 n}\right)+\sin \left(\frac{3 \pi}{2 n}\right)+\cdots+\sin \left(\frac{(n-1) \pi}{2 n}\right)=U\left(f, \mathcal{P}_{n}\right)-\frac{\pi}{2 n} \sin \left(\frac{n \pi}{2 n}\right)\right.$, i.e.,

$$
U\left(f, \mathcal{P}_{n}\right)-L\left(f, \mathcal{P}_{n}\right)=\frac{\pi}{2 n} \sin \left(\frac{\pi}{2}\right)=\frac{\pi}{2 n} \rightarrow 0
$$

Therefore, we have

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{\pi}{2 n}\left(\sin \left(\frac{\pi}{2 n}\right)+\sin \left(\frac{2 \pi}{2 n}\right)+\sin \left(\frac{3 \pi}{2 n}\right)+\cdots+\sin \left(\frac{n \pi}{2 n}\right)\right)=\lim _{n \rightarrow \infty} U\left(f, \mathcal{P}_{n}\right)= \\
\int_{0}^{\pi / 2} \sin (x) d x=[-\cos x]_{0}^{\pi / 2}=1
\end{array}
$$

which implies

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin \left(\frac{\pi}{2 n}\right)+\sin \left(\frac{2 \pi}{2 n}\right)+\sin \left(\frac{3 \pi}{2 n}\right)+\cdots+\sin \left(\frac{n \pi}{2 n}\right)\right)=\frac{2}{\pi} .
$$

155. Problems Class, 12 February 2015
156. We use the criterion given in Theorem 10.4. First of all, every uniformly continuous function $f:[a, b] \rightarrow \mathbb{R}$ is obviously continuous and, therefore,
bounded. Let $\epsilon>0$. Then we can find $\delta>0$ such that we have, for all $x, y \in[a, b]$ with $|y-x|<\delta$,

$$
|f(y)-f(x)|<\frac{\epsilon}{b-a}
$$

Now we choose $n \in \mathbb{N}$ large enough such that $(b-a) / n<\delta$. Let \mathcal{P}_{n} be the partition of the interval $[a, b]$ into n subintervals of equal length. Then we have

$$
L\left(f, \mathcal{P}_{n}\right)=\frac{b-a}{n} \sum_{i=1}^{n} m_{i}
$$

and

$$
U\left(f, \mathcal{P}_{n}\right)=\frac{b-a}{n} \sum_{i=1}^{n} M_{i}
$$

with

$$
m_{i}=\inf \left\{f(x) \left\lvert\, a+(i-1) \frac{b-a}{n} \leq x \leq a+i \frac{b-a}{n}\right.\right\}=f\left(\xi_{i}\right)
$$

and

$$
M_{i}=\sup \left\{f(x) \left\lvert\, a+(i-1) \frac{b-a}{n} \leq x \leq a+i \frac{b-a}{n}\right.\right\}=f\left(\eta_{i}\right) .
$$

We obviously have $\xi_{i}, \eta_{i} \in[a, b]$ and $\left|\eta_{i}-\xi_{i}\right| \leq(b-a) / n<\delta$. Therefore, we conclude that

$$
M_{i}-m_{i}=\left|f\left(\eta_{i}\right)-f\left(\xi_{i}\right)\right|<\frac{\epsilon}{b-a},
$$

i.e.,

$$
U\left(f, \mathcal{P}_{n}\right)-L\left(f, \mathcal{P}_{n}\right)=\frac{b-a}{n} \sum_{i=1}^{n} M_{i}-m_{i}<\frac{b-a}{n} \cdot n \cdot \frac{\epsilon}{b-a}=\epsilon
$$

But this implies that f is Riemann integrable.
157. Problems Class, 12 February 2015
158. Using for $a<b$ that $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$, we obtain

$$
\left|\int_{0}^{2 \pi} \frac{\sin (k x)}{x^{2}+k^{2}} d x\right| \leq \int_{0}^{2 \pi}\left|\frac{\sin (k x)}{x^{2}+k^{2}}\right| d x \leq \int_{0}^{2 \pi} \frac{1}{k^{2}} d x=\frac{2 \pi}{k^{2}} \rightarrow 0 .
$$

159. Using for $a<b$ that $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$, we obtain

$$
\begin{aligned}
\left|\int_{1}^{\sqrt{3}} \frac{e^{-x} \sin (x)}{x^{2}+1} d x\right| \leq & \int_{1}^{\sqrt{3}} \frac{e^{-x}}{1+x^{2}} d x \leq e^{-1} \int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}}= \\
& \frac{1}{e}(\arctan (\sqrt{3})-\arctan (1))=\frac{1}{e}(\pi / 3-\pi / 4)=\frac{1}{12 e} \pi .
\end{aligned}
$$

160. (a) Let $r=x_{i} / x_{i-1}$. Then we have $x_{k} / x_{0}=r^{k}$ and, therefore, $r^{n}=b / a$. Let $c=r^{n}$. Then

$$
x_{i}=x_{0} \cdot \frac{x_{i}}{x_{0}}=a \cdot r^{i}=a c^{i / n} .
$$

(b) Note that we have

$$
U\left(f, \mathcal{P}_{n}\right)=\sum_{i=1}^{n} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

and

$$
L\left(f, \mathcal{P}_{n}\right)=\sum_{i=1}^{n} f\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)
$$

Moreover, we have

$$
x_{i}-x_{i-1}=a c^{i / n}-a c^{(i-1) / n}=a c^{(i-1) / n}\left(c^{1 / n}-1\right) .
$$

Using $f\left(x_{i}\right)=\left(x_{i}\right)^{p}=a^{p} c^{i p / n}$, this implies that
$U\left(f, \mathcal{P}_{n}\right)=\sum_{i=1}^{n} a^{p} c^{i p / n} a c^{(i-1) / n}\left(c^{1 / n}-1\right)=a^{p+1}\left(1-c^{-1 / n}\right) \sum_{i=1}^{n}\left(c^{(p+1) / n}\right)^{i}$.
Now we use the formula for the geometric series $\sum_{i=1}^{n} \alpha^{i}=\alpha \frac{1-\alpha^{n}}{1-\alpha}$ and obtain

$$
\begin{aligned}
& U\left(f, \mathcal{P}_{n}\right)=a^{p+1}\left(1-c^{-1 / n}\right) c^{(p+1) / n} \frac{1-c^{p+1}}{1-c^{(p+1) / n}}= \\
& a^{p+1}\left(1-c^{p+1}\right) c^{(p+1) / n} \frac{1-c^{-1 / n}}{1-c^{(p+1) / n}}=\left(a^{p+1}-b^{p+1}\right) c^{(p+1) / n} \frac{1-c^{-1 / n}}{1-c^{(p+1) / n}}= \\
& \quad\left(b^{p+1}-a^{p+1}\right) c^{p / n} \frac{1-c^{1 / n}}{1-c^{(p+1) / n}} .
\end{aligned}
$$

Using the formula for the geometric series $\sum_{i=0}^{p} \alpha^{i}=\frac{1-\alpha}{1-\alpha^{p+1}}$ again yields

$$
U\left(f, \mathcal{P}_{n}\right)=\left(b^{p+1}-a^{p+1}\right) c^{p / n} \frac{1}{1+c^{1 / n}+c^{2 / n}+\cdots+c^{p / n}} .
$$

For $L\left(f, \mathcal{P}_{n}\right)$ we obtain

$$
\begin{aligned}
L\left(f, \mathcal{P}_{n}\right)=\sum_{i=1}^{n} a^{p} c^{(i-1) p / n} a c^{(i-1) / n}\left(c^{1 / n}-1\right)=c^{-p / n} U\left(f, \mathcal{P}_{n}\right)= \\
\left(b^{p+1}-a^{p+1}\right) \frac{1}{1+c^{1 / n}+c^{2 / n}+\cdots+c^{p / n}} .
\end{aligned}
$$

(c) Since $c^{j / n} \rightarrow 1$ as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} U\left(f, \mathcal{P}_{n}\right)=\frac{b^{p+1}-a^{p+1}}{p+1}
$$

and also

$$
\lim _{n \rightarrow \infty} L\left(f, \mathcal{P}_{n}\right)=\frac{b^{p+1}-a^{p+1}}{p+1} .
$$

This shows that $f(x)=x^{p}$ is Riemann integrable over $[a, b]$ and we have

$$
\epsilon_{a}^{b} x^{p} x^{p} d x=\frac{b^{p+1}-a^{p+1}}{p+1}
$$

161. Let $f(x)=\sin (\pi x)$ and $g(x)=\frac{1}{1+x^{2}}$. Then both functions are continuous and, therefore, Riemann integrable over $[0,1]$. Moreover, we have $f, g \geq 0$ on $[0,1]$. So we can apply the Mean Value Theorem for integrals in two different ways to obtain on the one hand
$\int_{0}^{1} f(x) g(x) d x=g\left(\xi_{1}\right) \int_{0}^{1} \sin (\pi x) d x=g\left(\xi_{1}\right) \frac{\cos (0)-\cos (\pi)}{\pi}=\frac{2}{\pi} g\left(\xi_{1}\right)=\frac{2}{\pi\left(\xi_{1}^{2}+1\right)}$,
and on the other hand

$$
\int_{0}^{1} f(x) g(x) d x=f\left(\xi_{2}\right) \int_{0}^{1} \frac{d x}{1+x^{2}}=f\left(\xi_{2}\right) \arctan (1)=f\left(\xi_{2}\right) \frac{\pi}{4}=\frac{\pi \sin \left(\pi \xi_{2}\right)}{4}
$$

162. (a) We choose $g(x)=1$. Then $g \geq 0$ and we can apply the Mean Value Theorem for Integrals to obtain

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x=f(c) \int_{a}^{b} d x=f(c)(b-a) .
$$

(b) Since f is continuous on $[a, b]$, there exists $M>0$ such that $|f(x)| \leq M$ for all $x \in[a, b]$.
Firstly, let $c \in(a, b)$ and $h>0$ such that $c+h \in[a, b]$. Then we have with (a):

$$
|F(c+h)-F(c)|=\left|\int_{c}^{c+h} f(x) d x\right|=h|f(\xi)| \leq h M
$$

with some $\xi \in(c, c+h)$. This shows that

$$
\lim _{h \rightarrow 0+} F(c+h)-F(c)=0
$$

A similar argument applies for $h<0$. If we consider the case $c=a$ and $c=b$, we have to restrict to one-sided limits.
163. Let $c \in(a, b)$ and $h>0$ such that $c+h \in(a, b)$. Then we have, using the results of the previous problem

$$
\frac{F(c+h)-F(c)}{h}=\frac{1}{h} \int_{c}^{c+h} f(x) d x=f(\xi)
$$

for some $\xi \in[c, c+h]$. If $h \rightarrow 0+$ we have $\xi \rightarrow c$, which implies using continuity of f

$$
F^{\prime}(c)=\lim _{h \rightarrow 0} \frac{F(c+h)-F(c)}{h}=\lim _{\xi \rightarrow c} f(\xi)=f(c) .
$$

We have tacitly assumed here that $h>0$, but the arguments can be modified easily to cover also the case $h<0$.
164. We have

$$
\lim _{c \rightarrow 0}\left|\int_{0}^{c} \sin \left(x^{3}\right) d x\right| \leq \lim _{c \rightarrow 0} \int_{0}^{c}\left|\sin \left(x^{3}\right)\right| d x \leq \lim _{c \rightarrow 0} \int_{0}^{c} d x=\lim _{c \rightarrow 0} c=0 .
$$

So we can try to apply L'Hopital. Let $f(c)=\int_{0}^{c} \sin \left(x^{3}\right) d x$ and $g(c)=c^{4}$. Then we have $f(0)=g(0)=0$ and $f^{\prime}(c)=\sin \left(c^{3}\right)$ and $g^{\prime}(c)=4 c^{3}$. Then we have $f^{\prime}(0)=g^{\prime}(0)=0$ and $f^{\prime \prime}(c)=3 c^{2} \cos \left(c^{3}\right)$ and $g^{\prime \prime}(c)=12 c^{2}$. Here we can calculate the limit:

$$
\lim _{c \rightarrow 0} \frac{f^{\prime \prime}(c)}{g^{\prime \prime}(c)}=\lim _{c \rightarrow 0} \frac{3 c^{2} \cos \left(c^{3}\right)}{12 c^{2}}=\lim _{c \rightarrow 0} \frac{\cos \left(c^{3}\right)}{4}=\frac{1}{4}
$$

Applying L'Hopital twice yields

$$
\lim _{c \rightarrow 0} \frac{f(c)}{g(c)}=\lim _{c \rightarrow 0} \frac{f^{\prime}(c)}{g^{\prime}(c)}=\lim _{c \rightarrow 0} \frac{f^{\prime \prime}(c)}{g^{\prime \prime}(c)}=\frac{1}{4} .
$$

165. Let $f(x)=e x^{2} / \pi-2 \pi / 4+\int_{x}^{\pi / 2} e^{\sin t} d t$ and $g(x)=1+\cos (2 x)$. We easily check that $f(\pi / 2)=g(\pi / 2)=0$, so we can try to apply L'Hopital. We have $f^{\prime}(x)=$ $2 x e / \pi-e^{\sin x}$ and $g^{\prime}(x)=-2 \sin (2 x)$. Then we still have $f^{\prime}(\pi / 2)=g^{\prime}(\pi / 2)=0$ and we differentiate again: $f^{\prime \prime}(x)=2 e / p i-\cos x e^{\sin x}$ and $g^{\prime \prime}(x)=-4 \cos (2 x)$. Here we can take the limit and, using continuity of $f^{\prime \prime}$ and $g^{\prime \prime}$, we obtain

$$
\lim _{x \rightarrow \pi / 2} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\frac{f^{\prime \prime}(\pi / 2}{g^{\prime \prime}(\pi / 2)}=\frac{2 e / \pi}{4}=\frac{e}{2 \pi} .
$$

Applying L'Hopital twice yields

$$
\lim _{x \rightarrow \pi / 2} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \pi / 2} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \pi / 2} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\frac{e}{2 \pi}
$$

166. Problems Class, 27 February 2015
167. (a) Since $(f(x)+\lambda g(x))^{2} \geq 0$, we conclude from Monotonicity of the Integral that, for all $\lambda \in \mathbb{R}$,

$$
\int_{a}^{b}(f(x)+\lambda g(x))^{2} d x \geq 0
$$

This implies that

$$
B \lambda^{2}+2 C \lambda+A \geq 0
$$

Since $B \neq 0$, this is a quadratic polynomial in λ which is non-negative for all choices of $\lambda \in \mathbb{R}$. Therefore, we must have

$$
(4 C)^{2}-4 B A=4\left(C^{2}-A B\right) \leq 0
$$

(b) We proved in (a) that $C^{2} \leq A B$. Replacing A, B, C by the expressions they represent, we obtain

$$
\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq \int_{a}^{b}(f(x))^{2} d x \int_{a}^{b}(g(x))^{2} d x
$$

168. Since g is continuous and not identically zero, we have $B \neq 0$. Since equality in (3) implies that $C^{2}-A B=0$, the quadratic equation

$$
B \lambda^{2}+2 C \lambda+A=0
$$

has a solution $\lambda_{0} \in \mathbb{R}$. This means that we have

$$
\int_{a}^{b}\left(f(x)+\lambda_{0} g(x)\right)^{2} d x=0 .
$$

Since $\left(f+\lambda_{0} g\right)^{2}$ is continuous and non-negative, this means that $\left(f+\lambda_{0} g\right)=0$, i.e., $f=-\lambda_{0} g$.
169. (a) We have $\left|\cos x /\left(x+\mathrm{e}^{x}\right)\right| \leq \mathrm{e}^{-x}$, and $\int_{0}^{\infty} \mathrm{e}^{-x} d x$ converges. Thus $\int_{0}^{\infty}(\cos x) /(x+$ $\left.\mathrm{e}^{x}\right) d x$ converges absolutely, by comparison.
(b) $(x+\sqrt{x})^{-1} \geq 1 /(2 x)$, and $\int_{1}^{\infty}(2 x)^{-1} d x$ diverges. Thus $\int_{1}^{\infty}(x+\sqrt{x})^{-1} d x$ diverges by comparison.
(c) $\sqrt{(6+x) /\left(1+x^{6}\right)} \leq \sqrt{7 x / x^{6}}=\sqrt{7} x^{-5 / 2}$, and so $\int_{1}^{\infty} \sqrt{(6+x) /\left(1+x^{6}\right)} d x$ converges by comparison with $\sqrt{7} \int_{1}^{\infty} x^{-5 / 2} d x$.
(d) $\int_{0}^{R} x^{2} \mathrm{e}^{-x} d x=-R^{2} \mathrm{e}^{-R}-2 R \mathrm{e}^{-R}-2 \mathrm{e}^{-R}+2 \rightarrow 2$ as $R \rightarrow \infty$. So the integral converges. Alternatively, use $x^{4} \mathrm{e}^{-x} \rightarrow 0$ as $x \rightarrow \infty$, and comparison with $\int_{1}^{R} x^{-2} d x$.
(e) $0 \leq\left(1+x^{3}\right)^{-1 / 2} \leq x^{-3 / 2}$, and so the integral converges by comparison with $\int_{1}^{\infty} x^{-3 / 2} d x$.
(f) On (0,1$], x^{-3 / 2} \mathrm{e}^{-x}>x^{-3 / 2} / \mathrm{e}$, and $\int_{0}^{1} x^{-3 / 2} d x$ diverges, so the given integral diverges by comparison.
(g) $0<\mathrm{e}^{-x} / \sqrt{x}<1 / \sqrt{x}$ for $x>0$, and $\int_{0}^{1} d x / \sqrt{x}$ converges, so the given integral converges by comparison.
(h) $\int_{0}^{c} x / \sqrt{1-x^{2}} d x=1-\sqrt{1-c^{2}}$ for $0 \leq c<1$; and this has a finite limit (namely 1) as $c \rightarrow 1$. So the integral converges, by definition.
(i) Write $f(x)=x^{-1 / 3} \cos x$. For $0<x \leq 1$, we have $0<f(x)<x^{-1 / 3}$. Since $\int_{0}^{1} x^{-1 / 3} d x$ converges, we deduce that the given integral converges by comparison.
(j) For $0<x \leq 1$, we have $0 \leq \sqrt{x-x^{2}} / x=\sqrt{1-x} / \sqrt{x}<1 / \sqrt{x}$; and $\int_{0}^{1} x^{-1 / 2} d x$ converges, so the given integral converges by comparison.
170. If $L>0$, we can say that there is a number $R>0$ such that $|L-f(x)|<L / 2$ (say) for all $x>R$. But then we can deduce that the integral $\int_{R}^{\infty} f(x) d x$ is divergent by comparison with the divergent integral $\int_{R}^{\infty} L / 2 d x$, and so $\int_{0}^{\infty} f(x) d x=\int_{0}^{R} f(x) d x+\int_{R}^{\infty} f(x) d x$ is divergent. If $L<0$ the same argument can be applied to $-f$. Thus, if the integral converges, we must have $L=0$.
171. Integrating by parts on $[0, R]$ gives $\int_{0}^{R} x f^{\prime}(x) d x=R f(R)-0 f(0)-\int_{0}^{R} f(x) d x=$ $R f(R)-\int_{0}^{R} f(x) d x$. This has a limit as $R \rightarrow \infty$ if $\int_{0}^{\infty} f(x) d x$ converges and if $\lim _{R \rightarrow \infty} R f(R)=L$ (finite). (Note that, by an argument similar to that of the previous problem, L in fact has be zero.)
172. (a) $\int_{0}^{2-c} x\left(16-x^{4}\right)^{-1 / 2} d x=\int_{0}^{(2-c)^{2}}\left(16-u^{2}\right)^{-1 / 2} d u / 2 \rightarrow \pi / 4$ as $c \rightarrow 0$ (It's a $\sin ^{-1}$.) Thus the integral converges.
(b) $16-x^{4}=\left(4+x^{2}\right)(2-x)(2+x)$. Then $x\left(16-x^{4}\right)^{-1 / 2} \leq 2(8(2-x))^{-1 / 2}$ on [0,2], and so the integral converges by comparison with the convergent integral $2^{-1 / 2} \int_{0}^{2}(2-x)^{-1 / 2} d x$.
173. (a) $\int_{a}^{1}(\log x)^{2} d x=-a(\log a)^{2}+2 a \log a+2(1-a) \rightarrow 2$ as $a \rightarrow 0$. Thus the integral converges.
(b) Since $x^{1 / 4} \log x \rightarrow 0$ as $x \rightarrow 0$, there is a number K such that $0 \leq(\log x)^{2} \leq$ K / \sqrt{x} for $x \in(0,1]$. Now $\int_{0}^{1} K d x / \sqrt{x}$ converges, therefore so does the given integral, by comparison.
174. $\tan x$ becomes unbounded as x approaches $\pi / 2$, so we consider $\int_{0}^{a} \tan ^{3} x d x$ for $a<\pi / 2$. Writing $\tan ^{3} x=-\tan x+\tan x \sec ^{2} x$, we see that $\tan ^{3} x=$ $d\left[\log \cos x+\left(\sec ^{2} x\right) / 2\right] / d x$ on $[0, a]$. Thus $\int_{0}^{a} \tan ^{3} x d x=\log \cos a+\left(\sec ^{2} a-\right.$ $1) / 2$, which has no limit as $a \rightarrow \pi / 2$: the integral diverges.
175. Parts (a) and (c) in Problems Class, 27 February 2015 (b) $(x+1 / x)^{\alpha}=$ $x^{-\alpha}\left(1+x^{2}\right)^{\alpha}$. Thus min $\left\{1,2^{\alpha}\right\} x^{-\alpha} \leq(x+1 / x)^{\alpha} \leq \max \left\{1,2^{\alpha}\right\} x^{-\alpha}$ on $[0,1]$. By comparison with $\int_{0}^{1} x^{-\alpha} d x$, the integral is convergent for $\alpha<1$ and divergent otherwise.
(d) As in part (c), there are positive numbers c and C such that $c x^{1-\alpha} \leq$ $x^{-\alpha} \sin x \leq C x^{1-\alpha}$. Thus by comparison with $\int_{0}^{1} x^{1-\alpha} d x$, the integral is convergent for $\alpha<2$ and divergent otherwise.
(e) We split the integral into two components: $A=\int_{0}^{1} \frac{x^{\alpha-1}}{1+x} d x$ and $B=$ $\int_{1}^{\infty} \frac{x^{\alpha-1}}{1+x} d x$. Since $\frac{1}{2} \leq \frac{1}{1+x} \leq 1$ on $[0,1], A$ converges if and only if $\int_{0}^{1} x^{\alpha-1} d x$ converges (by comparison), i.e. when $\alpha>0$.
As for $B, \frac{1}{2} x^{\alpha-2} \leq \frac{x^{\alpha-1}}{1+x} \leq x^{\alpha-2}$ for $x \geq 1$, so B converges if and only if $\int_{1}^{\infty} x^{\alpha-2} d x$ converges (again by comparison), i.e. when $\alpha<1$. The integral converges if and only if both A and B converge, i.e. for $0<\alpha<1$.
176. Write $f(x)=x^{-4 / 3} \sin x$. For $x \geq 1$, we have $0<|f(x)|<x^{-4 / 3}$; and $\int_{1}^{\infty} x^{-4 / 3} d x$ converges, so $\int_{1}^{\infty} f(x) d x$ converges absolutely, by comparison. For $0<x<1$, we have $\left|x^{-1} \sin x\right|<1$; and $\int_{0}^{1} x^{-1 / 3} d x$ converges, so $\int_{0}^{1} f(x) d x$ converges absolutely, by comparison. Hence $\int_{0}^{\infty} f(x) d x$ converges.
177. Write $f(x)=x^{c} / \sqrt{x^{2}+x}=x^{c-1 / 2} / \sqrt{x+1}$. For $x \geq 1$, we have $2^{-1 / 2} x^{c-1}<$ $f(x)<x^{c-1}$, and $\int_{1}^{\infty} x^{c-1} d x$ converges iff $c-1<-1$, that is iff $c<0$. Next, for $0<x<1$, we have $2^{-1 / 2} x^{c-1 / 2}<f(x)<x^{c-1 / 2}$, and $\int_{0}^{1} x^{c-1 / 2} d x$ converges iff $c-1 / 2>-1$, that is iff $c>-1 / 2$. So by comparison, $\int_{0}^{\infty} f(x) d x$ converges iff $-1 / 2<c<0$.
178. Problems Class, 27 February 2015
179. Write $f(x)=\left(x+x^{2}\right)^{-p}$. For $x \geq 1$, we have $\frac{1}{2 x^{2}}<\frac{1}{x+x^{2}}<\frac{1}{x^{2}}$, and $\int_{1}^{\infty} x^{-2 p} d x$ converges iff $2 p>1$; so $\int_{1}^{\infty} f(x) d x$ converges iff $p>1 / 2$, by comparison. Next, for $0<x \leq 1$, we have $\frac{1}{2 x}<\frac{1}{x+x^{2}}<\frac{1}{x}$, and $\int_{0}^{1} x^{-p} d x$ converges iff $p<1$; so $\int_{0}^{1} f(x) d x$ converges iff $p<1$, by comparison. Thus $\int_{0}^{\infty} f(x) d x$ converges iff $1 / 2<p<1$.
180. Problems Class, 27 February 2015

11 Sequences of functions and uniform convergence

181. The pointwise limit is the function $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=0$ since, for every $x \in \mathbb{R}$, there exists $N \in \mathbb{N}$ with $x \leq N$ and we have $f_{n}(x)=0$ for all $n \geq N$. The convergence is not uniform, since we have $f_{n}(n+1)-f(n+1)=1$. (If $f_{n} \rightarrow f$ were uniform, we could find for $\epsilon=1$ an index $N \in \mathbb{N}$ with $\left|f_{n}(x)-f(x)\right|<1$ for all $n \geq N$ and $x \in \mathbb{R}$.)
182. The pointwise limit is the function $f:(1, \infty) \rightarrow \mathbb{R}$, given by $f(x)=0$ since, for every $x \in(1, \infty), x^{n} \rightarrow \infty$ as $n \rightarrow \infty$. The convergence is not uniform since every function f_{n} is unbounded (recall that $\lim _{x} \rightarrow \infty \frac{x^{n}}{e^{x}}=0$) but the limit function is bounded.
183. Note that $\lim _{c \rightarrow \infty} e^{-c}=0$. This implies that we have, for every $x \in[-1,1]$, $x \neq 0$,

$$
\lim _{n \rightarrow \infty} e^{-n x^{2}}=0
$$

At $x=0$, we always have $f_{n}(0)=e^{0}=1$, so the limit function is

$$
f(x)= \begin{cases}1 & \text { if } 0<|x| \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

The convergence cannot be uniform, since all the functions f_{n} are continuous on $[-1,1]$ but the pointwise limit function f is discontinuous at $x=0$.
184. Note that $e^{-x^{2}} \leq 1$ for all $x \in \mathbb{R}$. Therefore, we have for all $x \in \mathbb{R}$,

$$
1-\frac{1}{n} \leq f_{n}(x) \leq 1 .
$$

Here we have uniform convergence to $f(x)=1$. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ with $1 / N<$ epsilon and we have, for all $n \geq N$ and all $x \in \mathbb{R}$,

$$
\left|f(x)-f_{n}(x)\right| \leq \frac{1}{n}<\epsilon
$$

185. The pointwise limit of x^{n} on $[0,1]$ is

$$
f(x)= \begin{cases}0, & \text { if } x \in[0,1) \\ 1, & \text { if } x=1\end{cases}
$$

Since $x^{2 n}$ is a subsequence, its pointwise limit is the same function f, so the difference converges pointwise to the function $g(x)=0$ on $[0,1]$. Let us determine

$$
\max _{x \in[0,1]} f_{n}(x)-g(x)=\max _{x \in[0,1]} x^{n}-x^{2 n}
$$

Obviously, we have $f_{n}(0)=f_{n}(1)=0$ and $x^{n} \geq x^{2 n}$ on $[0,1]$, so if $f_{n}\left(x_{0}\right)$ with $x_{0} \in(0,1)$ is a positive maximum, we must have $f_{n}^{\prime}\left(x_{0}\right)=0$. This leads to $f_{n}^{\prime}\left(x_{0}\right)=n x_{0}^{n-1}-2 n x_{0}^{2 n-1}=0$, which yields $x_{0}^{n}=1 / 2$, i.e., $x_{0}=(1 / 2)^{n}$. There we obtain

$$
f_{n}\left((1 / 2)^{n}\right)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4} .
$$

So we obtain a contradiction to uniform convergence by choosing $\epsilon<1 / 4$.
186. We have $f_{n}(0)=0$, and for any fixed $x>0$ we have

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{n x}{1+n+x}=x .
$$

Therefore, the pointwise limit function is given by $f(x)=x$. Now we consider

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{n x}{1+n+x}-x\right|=\left|\frac{n x-x-n x-x^{2}}{1+n+x}\right|=x \frac{1+x}{1+n+x}
$$

Choosing $x=n$, we see that

$$
\left|f_{n}(x)-f(x)\right|=n \frac{1+n}{1+2 n} \geq n \frac{1+n}{2+2 n}=\frac{n}{2} .
$$

This expression becomes arbitrarily large as $n \rightarrow \infty$, so we cannot have uniform convergence.
187. For every $x \in[0, \infty)$ we have

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \sqrt{x^{2}+\frac{1}{n^{2}}}=\sqrt{x^{2}}=x .
$$

So the pointwise limit function is $f(x)=x$. Now we calculate $\left|f_{n}(x)-f(x)\right|$:

$$
\left|\sqrt{x^{2}+\frac{1}{n^{2}}}-x\right|=\frac{\left(x^{2}+1 / n^{2}\right)-x^{2}}{\sqrt{x^{2}+\frac{1}{n^{2}}}+x}=\frac{1}{n^{2} x+n^{2} \sqrt{x^{2}+1 / n^{2}}} .
$$

Since $n=n^{2} \sqrt{1 / n^{2}} \leq n^{2} x+n^{2} \sqrt{x^{2}+1 / n^{2}}$, we obtain

$$
\left|\sqrt{x^{2}+\frac{1}{n^{2}}}-x\right| \leq \frac{1}{n},
$$

188. First of all, we know that the limit function $f:[a, b] \rightarrow \mathbb{R}$ is again continuous and, therefore, all functions f_{n}, f are Riemann integrable on $[a, c]$.

Let $\epsilon>0$. Then we know that there exists $N \in \mathbb{N}$ such that

$$
f(x)-\epsilon \leq f_{n}(x) \leq f(x)+\epsilon \quad \text { for all } n \geq N .
$$

By Monotonicity of the Integral, we conclude that for all $n \geq N$,

$$
\int_{a}^{c}(f(x)-\epsilon) d x \leq \int_{a}^{c} f_{n}(x) d x \leq \int_{a}^{c}(f(x)+\epsilon) d x .
$$

Observe that

$$
\int_{a}^{c}(f(x) \pm \epsilon) d x=\int_{a}^{c} f(x) d x \pm \epsilon \int_{a}^{c} d x=\int_{a}^{c} f(x) d x \pm(c-a) \epsilon .
$$

This shows that we have for all $n \geq N$,

$$
\left|\int_{a}^{c} f(x) d x-\int_{a}^{c} f_{n}(x) d x\right|<(c-a) \epsilon \leq(b-a) \epsilon
$$

Since $\epsilon>0$ was arbitrary, we conclude that

$$
\lim _{n \rightarrow \infty} \int_{a}^{c} f_{n}(x) d x=\int_{a}^{c} f(x) d x
$$

189. (a) If $f(x)=0$ for all $x \in[a, b]$, we obviously have $\|f\|_{\infty}=0$. Now let $\|f\|_{\infty}=0$. If we had $f(x) \neq 0$ for some $x \in[a, b]$, we also had $|f(x)|>0$, which would imply $\|f\|_{\infty}=\sup |f(x)|>0$. This shows the converse direction.
(b) We have

$$
\|\lambda f\|_{\infty}=\sup _{x \in[a, b]}|\lambda f(x)|=|\lambda| \sup _{x \in[a, b]}|f(x)|=|\lambda| \cdot\|f\|_{\infty} .
$$

(c) Note that continuity of $|f|$ implies that there exists $x_{0} \in[a, b]$ with $\|f\|_{\infty}=\left|f\left(x_{0}\right)\right|$. So we have $x_{0}, y_{0} \in[a, b]$ with $\|f\|_{\infty}=\left|f\left(x_{0}\right)\right|$ and $\|g\|_{\infty}=\left|g\left(y_{0}\right)\right|$. This means that we have $|f(x)| \leq\left|f\left(x_{0}\right)\right|$ and $|g(x)| \leq$ $\left|g\left(y_{0}\right)\right|$ for all $x \in[a, b]$, i.e.,

$$
|f(x)+g(x)| \leq|f(x)|+|g(x)| \leq\left|f\left(x_{0}\right)\right|+\left|g\left(y_{0}\right)\right| \quad \text { for all } x \in[a, b] .
$$

So $\left|f\left(x_{0}\right)\right|+\left|g\left(y_{0}\right)\right|$ is an upper bound of $\{|f(x)+g(x)| \mid x \in[a, b]\}$ and we have

$$
\|f+g\|_{\infty}=\sup _{x \in[a, b]}|f(x)+g(x)| \leq\left|f\left(x_{0}\right)\right|+\left|g\left(y_{0}\right)\right|=\|f\|_{\infty}+\|g\|_{\infty} .
$$

190. Let $f_{n} \in C([a, b])$ be a Cauchy sequence. Let us first show that the sequence $f_{n}:[a, b] \rightarrow \mathbb{R}$ of continuous functions has a pointwise limit function $f:$ $[a, b] \rightarrow \mathbb{R}$. Let $x \in[a, b]$ and $\epsilon>0$ be given. Then there exists $N \in \mathbb{N}$ such that

$$
\left|f_{n}(x)-f_{m}(x)\right|<\epsilon
$$

for all $n, m \geq N$. This means that the sequence $\left(f_{n}(x)\right)$ of real numbers is a Cauchy sequence and, therefore, has a limit, which we denote by $f(x)$:

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

So we showed that there exists $f:[a, b] \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ pointwise. This function f is the candidate for the limit. We first show that the convergence is not only pointwise, but uniform. Let $\epsilon>0$ be given. f_{n} being a Cauchy sequence means that we have a start index $N \in \mathbb{N}$ such that for all $x \in[a, b]$ and all $n, m \geq N$

$$
\left|f_{n}(x)-f_{m}(x)\right|<\epsilon
$$

Letting $m \rightarrow \infty$, we conclude that

$$
\begin{equation*}
\left|f_{n}(x)-f(x)\right| \leq \epsilon \tag{2}
\end{equation*}
$$

for all $n \geq N$ and all $x \in[a, b]$. This shows that $f_{n} \rightarrow f$ uniformly. Therefore, the limit function $f:[a, b] \rightarrow \mathbb{R}$ is continuous and we have $f \in C([a, b])$. But (2) means also that for all $n \geq N$,

$$
\left\|f_{n}-f\right\|_{\infty}=\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right| \leq \epsilon,
$$

i.e., we have convergence $f_{n} \rightarrow f$ in $C([a, b])$, finishing the proof.

12 Power series and Taylor series

191. $\Sigma a_{n} z^{2 n}=\Sigma a_{n}\left(z^{2}\right)^{n}$, which converges for $\left|z^{2}\right|<R \Leftrightarrow|z|<\sqrt{R}$ and diverges for $\left|z^{2}\right|>R \Leftrightarrow|z|>\sqrt{R}$.
192. Parts (b) and (c) in Problems Class, 13 March 2015 (a) $\left|a_{n+1} / a_{n}\right|=\frac{(2 n+2)(2 n+1)}{(n+1)^{2}} \rightarrow$ 4 as $n \rightarrow \infty$, so $R=1 / 4$.
(d) $\left|a_{n+1} / a_{n}\right|=\frac{(3 n+3)(3 n+2)(3 n+1)}{2(n+1)^{3}} \rightarrow \frac{27}{2}$ as $n \rightarrow \infty$, so $R=2 / 27$.
(e) $\left|a_{n+1} / a_{n}\right|=\frac{(n+1)^{2}}{3 n^{2}} \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$, so $R=3$.
(f) $\left|a_{n+1} / a_{n}\right|=\frac{2^{\frac{30}{10}}}{n+1} \rightarrow 0$ as $n \rightarrow \infty$, so R is infinite.
(g) $\left|a_{n+1} / a_{n}\right|=\frac{2\left(3^{n}+1\right)}{3^{n+1}+1} \rightarrow \frac{2}{3}$ as $n \rightarrow \infty$, so $R=3 / 2$.
193. $\left|a_{n+1} / a_{n}\right|=1 / 2$, so $R=\sqrt{2}$ by question 191 .
194. $\left|a_{n+1} / a_{n}\right|=1 / 2^{2 n+1} \rightarrow 0$ as $n \rightarrow \infty$, so R is infinite.
195. Let $a_{n}=n!/ n^{n}$. We need to find $\lim \left|a_{n}\right|^{1 / n}$. We have

$$
\left|a_{n}\right|^{1 / n}=\frac{(n!)^{1 / n}}{n}
$$

and therefore

$$
(2 \pi n)^{1 / 2 n} \frac{1}{e}<\left|a_{n}\right|^{1 / n}<(2 \pi n)^{1 / 2 n} \frac{1}{e} e^{1 /\left(12 n^{2}\right)} .
$$

Note for $a>0$ that

$$
\log \left((a n)^{1 / 2 n}\right)=\frac{\log (a n)}{2 n} \rightarrow 0
$$

which implies that $(a n)^{1 / 2 n} \rightarrow 1$. So we conclude that

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\frac{1}{e}
$$

and, therefore, $R=1 /(1 / e)=e$.
196. Let a_{n} as in the problem. Let $n=k!$. Then we have

$$
\left|a_{n}\right|^{1 / n}=\left(2^{k}\right)^{1 / k!}=2^{1 /(k-1)!} \rightarrow 1 \quad \text { as } k \rightarrow \infty .
$$

This becomes clear from the fact that $2^{l} \rightarrow 1$ for $l \rightarrow \infty$. If n is not a factorial, we have trivially $\left|a_{n}\right|^{1 / n}=1^{1 / n}=1$, so we have

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=1
$$

and the radius of convergence is $R=1$.
197. Let R be the radius of convergence of $\sum b_{n} z^{n}$. If $R=0$ there ios nothing to show. Assume $R>0$. Then we only have to convince ourselves that $\sum a_{n} z^{n}$ converges for all $|z|<R$, then the radius of convergence of $\sum a_{n} z^{n}$ must be $\geq R$. Let $z \in \mathbb{C}$ with $|z|<R$. Then we can find $r \in(|z|, R)$ and $\sum b_{n} r^{n}$ is convergent. By Lemma $12.2, \sum b_{n} z^{n}$ is absolutely convergent. But then also $\sum\left|a_{n} z^{n}\right|$ is convergent, by comparison. Since $\sum a_{n} z^{n}$ is absolutely convergent, it is also convergent, which we wanted to show.
198. Using $\sum_{n=1}^{\infty} t^{n}=t /(1-t)$ for $|t|<1$, we get $f(x)=x$ for all $x \neq 0$. Clearly $f(0)=0$, so we have $f(x)=x$ for all x. Hence $d f / d x=1$, whereas $\sum_{n=1}^{\infty} u_{n}^{\prime}(0)=\Sigma 0=0$: the two quantities are not equal.
199. The k th partial sum is $S_{k}(x)=k x \exp \left(-k x^{2}\right)$, so $f(x)=\lim _{k \rightarrow \infty} S_{k}(x)=0$ for all x. Thus $\int_{0}^{1} f(x) d x=0$. On the other hand, $\sum_{n=1}^{k} \int_{0}^{1} u_{n}(x) d x=$ $\int_{0}^{1} \Sigma_{n=1}^{k} u_{n}(x) d x=\int_{0}^{1} S_{k}(x) d x=\left(1-\mathrm{e}^{-k}\right) / 2 \rightarrow 1 / 2$ as $k \rightarrow \infty$. So $\Sigma_{n=1}^{\infty} \int_{0}^{1} u_{n}(x) d x=$ $1 / 2$: the two quantities are not equal.
200. Using the geometric series, we find

$$
\begin{gathered}
\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots<\frac{1}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+2)^{2}}+\frac{1}{(n+2)^{3}}+\cdots\right)= \\
\frac{1}{(n+1)!} \cdot \frac{1}{1-1 /(n+2)}=\frac{1}{(n+1)!} \cdot \frac{n+2}{n+1}
\end{gathered}
$$

This implies that

$$
0<e-\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}\right)=\frac{1}{5!}+\frac{1}{6!}+\cdots<\frac{1}{5!} \frac{6}{5}=\frac{6}{5 \cdot 120}=\frac{1}{100} .
$$

Now we have
$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}=2+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}=\frac{48+12+4+1}{24}=\frac{65}{24}=2.708333 \ldots$,
which yields the required result.
201. Assume that $e=p / q$ with natural numbers p, q. Then

$$
N=e q!-\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{q!}\right) q!
$$

is a natural number and (4) implies that

$$
N=q!\left(\frac{1}{(q+1)!}+\frac{1}{(q+2)!}+\cdots\right)<\frac{q!}{(q+1)!} \cdot \frac{q+2}{q+1}=\frac{q+2}{(q+1)^{2}} .
$$

But q is a natural number and

$$
\frac{q+2}{(q+1)^{2}} \leq \frac{1}{2} \frac{q+2}{q+1}=\frac{1}{2}\left(1+\frac{1}{q+1}\right) \leq \frac{1}{2}\left(1+\frac{1}{2}\right)=\frac{3}{4},
$$

which is a contradiction.
202. (a) Note that $R=\frac{1}{\sqrt{\pi}}>0.56$.
(b) $|\sin (n|x|)|<1$, and $\sum_{1}^{\infty} \frac{1}{n^{2}}$ converges.
(c) $\left|x^{n}\right| \leq 1$; moreover, $\frac{n}{n^{3}+|x|} \leq \frac{1}{n^{2}}$; hence have convergence.
203. Problems Class, 13 March 2013
204. Let $g(x)=n x /\left(1+n^{4} x^{2}\right)$. Then $g:[0, \infty) \rightarrow \mathbb{R}$ is continuous, non-negative and $\lim _{x \rightarrow \infty} g(x)=0$ and $g(0)=0$. We have

$$
g^{\prime}(x)=\frac{n\left(1+n^{4} x^{2}\right)-2 n^{5} x^{2}}{\left(1+n^{4} x^{2}\right)^{2}}=n \frac{1-n^{4} x^{2}}{\left(1+n^{4} x^{2}\right)^{2}}
$$

and $g^{\prime}(x)=0$ leads to $x=1 / n^{2}$. Note that $g^{\prime}(x)<0$ for all $x \geq 1 / n^{2}$, i.e., g is monotone decreasing on $\left[1 / n^{2}, \infty\right)$. For given $a>0$, we can find $N \in \mathbb{N}$ with $a>1 / N^{2}$. Then each term in the series

$$
\sum_{n=N}^{\infty} \frac{n x}{1+n^{4} x^{2}}
$$

can be estimated from above by $(n a) /\left(1+n^{4} a^{2}\right)$. Since

$$
\sum \frac{n a}{1+n^{4} a^{2}} \leq \sum \frac{n a}{n^{4} a^{2}}=\frac{1}{a} \sum \frac{1}{n^{3}}
$$

is convergent, the original series is uniformly convergent, by the Weierstrass M-test.

205 . Let $x \geq 0$. Then we have

$$
f(x)=\sum_{n=0}^{\infty} \frac{n x}{1+n^{4} x^{2}} \geq \sum_{n=N}^{\infty} \frac{n x}{1+n^{4} x^{2}}
$$

We have for $n \geq N$ that $n^{4} / N^{4} \geq 1$ and choosing $x=1 / N^{2} \geq 0$ leads to

$$
f\left(1 / N^{2}\right) \geq \sum_{n=N}^{\infty} \frac{n / N^{2}}{1+n^{4} / N^{4}} \geq \sum_{n=N}^{\infty} \frac{n / N^{2}}{2 n^{4} / N^{4}}=\frac{N^{2}}{2} \sum_{n=N}^{\infty} \frac{1}{n^{3}} .
$$

Moreover, we have

$$
\sum_{n=N}^{\infty} \frac{1}{n^{3}} \geq \int_{N}^{\infty} \frac{d x}{x^{3}}=\left[-x^{-2} / 2\right]_{x=N}^{x=\infty}=1 /\left(2 N^{2}\right)
$$

Combining both results leads to

$$
f\left(1 / N^{2}\right) \geq \frac{N^{2}}{2} \frac{1}{2 N^{2}}=\frac{1}{4}
$$

If the convergence were uniform on \mathbb{R}, we could conclude that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous since the partial sums are continuous. This would imply that

$$
f(0)=\lim _{N \rightarrow \infty} f\left(1 / N^{2}\right) \geq \frac{1}{4} .
$$

But the pointwise limit at $x=0$ is $f(0)=0$. Therefore, we cannot have uniform convergence on \mathbb{R}.
206. (a) $\cos ^{2} x=[1+\cos (2 x)] / 2=1-x^{2}+x^{4} / 3-\ldots$.
(b) $\sin \left(x^{2}\right)=x^{2}-x^{6} / 6+x^{10} / 120-\ldots$.
(c) $\mathrm{e}^{x} \sin x=\left(1+x+x^{2} / 2+x^{3} / 6+\ldots\right)\left(x-x^{3} / 6+\ldots\right)=x+x^{2}+x^{3} / 3+\ldots$
(d) $1 /\left(1+x^{2}\right)=1-x^{2}+x^{4}-\ldots$
(e) $x /\left(1+x^{3}\right)=x-x^{4}+x^{7}-\ldots$
(f) $\left(1+x^{2}\right)^{-2}=1-2 x^{2}+3 x^{4}-\ldots$
(g) $\left[\exp \left(x^{4}\right)-1\right] / x^{3}=x+x^{5} / 2+x^{9} / 6+\ldots$
(h) $(1-x)^{-3}=1+3 x+6 x^{2}+\ldots$
(i) $\exp \left(x^{2}\right) \sin \left(x^{2}\right)=x^{2}+x^{4}+x^{6} / 3+\ldots[$ from (c) $]$
(j) $\exp [1 /(1-2 x)]=\mathrm{e}\left(1+2 x+6 x^{2}+\ldots\right)$
(k) $\exp (\exp x)=\mathrm{e}\left(1+x+x^{2}+\ldots\right)$
(l) $\log \left(1+2 x^{2}\right)=2 x^{2}-2 x^{4}+8 x^{6} / 3-\ldots$
(m) $[\log (1+x)]^{2}=\left(x-x / 2+x^{3} / 3-\ldots\right)^{2}=x^{2}-x^{3}+11 x^{4} / 12+\ldots$
207. We prove by Induction that, for $x \neq 0$,

$$
f^{(k)}(x)=p_{k}(1 / x) e^{1 / x^{2}}
$$

where p_{k} is a polynomial of degree $3 k$. For $k=0$ there is nothing to prove. Given this fact holds for k, then we obtain

$$
\begin{aligned}
f^{(k+1)}(x) & =p_{k}^{\prime}(1 / x)\left(-1 / x^{2}\right) e^{-1 / x^{2}}+p_{k}(1 / x) \frac{2}{x^{3}} e^{-1 / x^{2}} \\
& =\left(p_{k}^{\prime}(1 / x)\left(-1 / x^{2}\right)+p_{k}(1 / x) \frac{2}{x^{3}}\right) e^{-1 / x^{2}},
\end{aligned}
$$

which shows that we need to choose $p_{k+1}(y)=-y^{2} p_{k}^{\prime}(y)+2 y^{3} p_{k}(y)$, which has degree $3 k+3$. This completes the induction proof.
Now we consider the derivatives $f^{(k)}(0)$. Again we use Induction. We start with $f^{(0)}(0)=f(0)=0$. Assuming that $f^{(k-1)}(0)$ exists and is equal to zero, we obtain

$$
\frac{f^{(k-1)}(x)-f^{(k-1)}(0)}{x}=\frac{1}{x} p_{k-1}(1 / x) e^{-1 / x^{2}} .
$$

This implies that

$$
\lim _{x t o 0+} \frac{f^{(k-1)}(x)-f^{(k-1)}(0)}{x}=\lim _{y \rightarrow \infty} y p_{k-1}(y) e^{-y^{2}}=0
$$

The same argument applis for the elft hand limit. Therefore, $f^{(k)}(0)$ exists and is also zero.
Since $f^{(k)}(0)=0$ for all $k \in \mathbb{N} \cup\{0\}$, the Taylor polynomial of f is trivial and converges to $f(x)$ only if $x=0$.
208. Parts (b) and (c) Problems Class, 13 March 2015
(a) We have $\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$. So the sum is $\cos (2 \pi)=1$.
209. We have $\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$ and $\cos x=\sum_{l=0}^{\infty}(-1)^{l} \frac{x^{2 l}}{(2 l)!}$, which converge absolutely for any choice of $x \in \mathbb{C}$. So we can apply the Cauchy product and obtain

$$
(\sin x)(\cos x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

with

$$
\begin{aligned}
c_{n}=\sum_{k+l=n}(-1)^{k+1} \frac{x^{2 k+1}}{(2 k+1)!} \frac{x^{2 l}}{(2 l)!}=(-1)^{n} \sum_{k=0}^{n} & \frac{x^{2 n+1}}{(2 k+1)!((2 n+1)-(2 k+1))!}= \\
& (-1)^{n} \sum_{k=0}^{n}\binom{2 n+1}{2 k+1} \frac{x^{2 n+1}}{(2 n+1)!} .
\end{aligned}
$$

Now we use

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{2 n+1}{2 k+1}=2^{2 n} \tag{3}
\end{equation*}
$$

and conclude that

$$
c_{n}=\frac{(-1)^{n}}{2} 2^{2 n+1} \frac{x^{2 n+1}}{(2 n+1)!}=\frac{(-1)^{n}}{2} \frac{(2 x)^{2 n+1}}{(2 n+1)!},
$$

i.e.,

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n+1}}{(2 n+1)!}=\frac{1}{2} \sin (2 x) .
$$

Now it remains to prove (3), using $(1+c)^{2 n+1}=\sum_{k=0}^{2 n+1}\binom{2 n+1}{k} c^{k}$. Choosing $c=-1$ and $c=1$, we obtain

$$
\begin{aligned}
0 & =\sum_{k=0}^{2 n+1}\binom{2 n+1}{k}(-1)^{k}, \\
2^{2 n+1} & =\sum_{k=0}^{2 n+1}\binom{2 n+1}{k} .
\end{aligned}
$$

Adding the two equations kills all even k-terms and we obtain

$$
2^{2 n+1}=2 \sum_{l=0}^{n}\binom{2 n+1}{2 l+1}
$$

i.e.,

$$
\sum_{k=0}^{n}\binom{2 n+1}{2 k+1}=2^{2 n}
$$

210. Problems Class, 13 March 2015
