
Analysis 1 Problems and Solutions
in Revision Lectures (Easter Term 2015)

Logic, sets

Problem 1 Calculate
⋂

x∈[0,1](x− 1, x+ 1) and
⋃

x∈[0,1](x− 1, x+ 1).

Solution: Thinking of the sets (x− 1, x+ 1) as moving over the real line axis
with x running through [0, 1] leads to the guess that the intersection should
be (0, 1) and the union should be (−1, 2).

Now we proof our guesses in full detail: For simplicity, let Ix = (x− 1, x+ 1).
⋂

x∈[0,1] Ix = (0, 1): Let z ∈ (0, 1). We show that z lies in each of the sets Ix.

If x ∈ [0, 1], we have

x− 1 ≤ 1− 1 = 0 < z < 1 = 0 + 1 ≤ x+ 1,

i.e., z ∈ Ix = (x− 1, x+ 1). This shows that

(0, 1) ⊂
⋃

x∈[0,1]

Ix.

Finally, for any z ≤ 0 we have z 6∈ I1 = (0, 2) and for any z ≥ 1 we have
z 6∈ I0 = (−1, 1). This finishes the first proof.
⋃

x∈[0,1] Ix = (−1, 1): We first have

(−1, 2) = I0 ∪ I1/2 ∪ I1 = (−1, 1) ∪ (−1/2, 1/2) ∪ (0, 2) ⊂
⋃

x∈[0,1]

Ix,

so it only remains to show that no other real number is in the union. Let
z ≤ −1. Then we have for all x ∈ [0, 1]: z ≤ 0 − 1 ≤ x − 1, i.e., z 6∈ Ix. Let
z ≥ 2. Then we have for all x ∈ [0, 1]: z ≥ 1 + 1 ≥ x + 1, i.e. z 6∈ Ix. This
finishes the second proof.

Problem 2 Show: If Y ∩Xi = ∅ for all i ∈ I, then Y ∩
(⋃

i∈I Xi

)
= ∅.

Solution: We give an indirect proof: We assume that Y ∩
(⋃

i∈I Xi

)
6= ∅. Then

there exists x ∈ Y ∩
(⋃

i∈I Xi

)
. This means that x ∈ Y and x ∈ ⋃i∈I Xi. Since

x ∈ ⋃i∈I Xi, there exists i0 ∈ I such that x ∈ Xi0 . But then also x ∈ Y ∩Xi0

(since x lies in both sets), contradicting to the assumption that Y ∩ Xi = ∅
for all i ∈ I.
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Problem 3 Formulate De Morgan’s laws for infinite sets.

Solution: Let Xi for i ∈ I be sets, all contained in a bigger set X . Then we
have

X\
(
⋃

i∈I

Xi

)

=
⋂

i∈I

(X\Xi)

and

X\
(
⋂

i∈I

Xi

)

=
⋃

i∈I

(X\Xi).

Numbers, inequalities

Problem 4* We write x > y iff x− y > 0. Deduce from

(i) ∀x ∈ R: either x > 0 or x = 0 or x < 0,

(ii) ∀x, y > 0: x+ y > 0 and xy > 0

the law of transitivity: If y > x and z > y then z > x.

Solution: y > x means a = y − x > 0. z > y means b = z − y > 0. Since
a, b > 0, we conclude with (ii) that a + b > 0. Note that

a+ b = (y − x) + (z − y) = z − x.

So we have z − x > 0, which means that z > x.

Problem 5 Calculate explicitly {z ∈ C | |z + 1| = |z − 1|}.
Solution: Geometrically, |z −w| is the distance between the two points z and
w. So the condition |z + 1| = |z − 1|, which agrees with |z − (−1)| = |z − 1|,
describes the set of all points in the Argand plane which have the same distance
from the two points −1 ∈ C and 1 ∈ C, i.e., the set under consideration is
the perpendicular bisector of these two points, i.e., the vertical imaginary axis
{z = iy | y ∈ R}.
Now we prove this fact algebraically: Let z = x+iy ∈ {z ∈ C | |z+1| = |z−1|}:
This means that

(x+ 1)2 + y2 = (x− 1)2 + y2.

This simplifies to 2x = −2x, i.e., x = 0. So we see that

{z ∈ C | |z + 1| = |z − 1|} = {z = x+ iy ∈ C | x = 0} = {iy | y ∈ R}.

Problem 6 Find all real solutions of
∣
∣ x
x−1

∣
∣ ≤ 2.

Solution: If we exclude x = 1, the inequality is equivalent to |x| ≤ 2|x − 1|.
Since all expressions involved are non-negative (we are dealing with absolute
values), we can square both sides, leading to the equivalent formulation (Note:
For the equivalence we need the fact that all expressions are positive!!)

x2 ≤ 4(x2 − 2x+ 1).
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So we end up with the quadratic inequality

0 ≤ 3x2 − 8x+ 4 = 3(x− 2)(x− 2/3).

Consequently, all real solutions x satisfy (x− 2 ≥ 0 and x− 2/3 ≥ 0) (which
simplifies to x ≥ 2) OR the satisfy (x − 2 ≤ 0 and x − 2/3 ≤ 0) (which
simplifies to x ≤ 2/3). The excluded value x = 1 does not fall into the union
S = (−∞, 2/3] ∪ [2,∞), so S is the set of all real solutions.

Problem 7 Formulate with quantifiers:

(a) (xn) does not converge to x.

(b) (xn) is divergent.

Solution: See Lecture.

Problem 8 (a) Let a, b > 0. Show: a
b
+ b

a
≥ 2.

(b) Pove by Induction, using (a): Let a1, . . . , an > 0. Then

(
n∑

k=1

ak

)(
n∑

k=1

1

ak

)

≥ n2.

Solution: Ad (a): Since a, b > 0, the inequality if equivalent to

a2 + b2 ≥ 2ab,

which, in turn, is equivalent to (a− b)2 = a2−2ab+ b2 ≥ 0, which is obviously
true.

Ad (b):

Start of Induction (n = 1): We have a1 · 1
a1

= 1 ≥ 1, so the statement is true
for n = 1.

Induction Step (n → n + 1): Assume the statement is true for some n ∈ N.
Let a1, . . . , an+1 > 0. Then we have, using the induction hypothesis and (a),

(
n+1∑

k=1

ak

)(
n∑

k=1

1

ak

)

=

(

an+1 +

n∑

k=1

ak

)(

1

an+1
+

n∑

k=1

1

ak

)

≥ 1 + n2 + an+1

(
n∑

k=1

1

ak

)

+
1

an+1

(
n∑

k=1

ak

)

= 1 + n2 +

n∑

k=1

(
an+1

ak
+

ak
an+1

)

≥ 1 + n2 +

n∑

k=1

2 = 1 + 2n+ n2 = (n + 1)2,

showing that then the statement is also true for n+ 1.
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Sequences/Completeness Axiom for R

Problem 9 Show that if xn → x and yn → y, then xnyn → xy.

Solution: Assume that xn → x and yn → y. We have to estimate |xnyn − xy|,
and first carry out the following calculation:

|xnyn − xy| = |xnyn − xny + xny − xy| ≤ |xn| · |yn − y|+ |xn − x| · |y|.

We see that we can control the terms |yn − y| and |xn − x| because of con-
vergence, and we only need to control the factors |xn|. But since (xn) is
convergent, (xn) is bounded and we can find C > 0 such that |xn| ≤ C for all
n ∈ N. So, introducing ǫ > 0, the estimates |xn − x|, |yn − y| < ǫ would lead
to

|xnyn − xy| ≤ Cǫ+ ǫ|y| = ǫ(C + |y|).
If we want to have a clean expression ǫ at the end, we can assume, e.g., that
we have the estimates |xn−x| < ǫ/(2(|y|+1)) and |yn− y| < ǫ/(2C) and then
conclude

|xnyn − xy| ≤ ǫ

2

( |y|
|y|+ 1

+
C

C

)

≤ ǫ.

Now we have all ingredients. The arguments go now as follows: Since xn → x,
we can find N ∈ N with |xn − x| ≤ ǫ/(2(|y|+1)) for all n ≥ N . Since yn → y,
we can find M ∈ N with |yn−y| ≤ ǫ/(2C) for all n ≥ M . Then both estimates
hold for all n ≥ max(N,M), and therefore we obtain for all such indices n that

|xnyn−xy| = |xnyn−xny+xny−xy| ≤ |xn|·|yn−y|+|xn−x|·|y| ≤ ǫ

2

( |y|
|y|+ 1

+
C

C

)

≤ ǫ.

But this means that xnyn → xy, finishing the proof.

Problem 10 (a) Check whether an =
√
n+ 1−√

n is convergent.

(b) Prove of disprove: If an+1 − an → 0 then (an) is convergent.

(c) Show that if |an+1 − an| ≤ 1/2n then (an) is convergent.

Solution: Ad (a): We have

an =
√
n+ 1−√

n =
(n+ 1)− n√
n + 1 +

√
n
=

1√
n+ 1 +

√
n
.

This implies that

0 ≤ an ≤ 1

2
√
n
,

and since 1/
√
n → 0, we also have an → 0, by the Squeezing Theorem.

Ad (b): The statement is false. A counterexample is an =
∑n

k=1
1
k
, the har-

monic series. We know that an is divergent but we have an+1−an = 1/(n+1) →
0.

Ad (c): See Lecture.
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Problem 11 Prove that every Cauchy sequence in R is convergent, using Bolzano-Weierstrass.

Solution: Let (xn) be a Cauchy sequence. We know that this implies that (xn)
is bounded. Now, using Bolzano-Weierstrass, we can conclude that there is
a subsequence (xnj

), which is convergent, i.e., there exists x ∈ R such that
xnj

→ x as j → ∞. The task now is to prove that x is not only the limit of
the subsequence (xnj

, but of the whole sequence (xn), using the ”closeness” of
elements with large indices in a Cauchy sequence. Let ǫ > 0 be given. Since
xnj

→ x, we can find J ∈ N such that |xnj
−x| < ǫ for all j ≥ J . On the other

hand, since (xn) is a Cauchy sequence, we can find N ∈ N such that for all
n,m ≥ N : |xn − xm| < ǫ. Now choose j0 ≥ J large enough such that nj0 > N
(this is possible since nj → ∞ as j → ∞). Then, comparing elements xn with
xj0 , we obtain, using the triangle inequality, for all n ≥ N

|xn − x| = |xn − xj0 + xj0 − x| ≤ |xn − xj0 |+ |xj0 − x|.

Since j0, n ≥ N , we have |xn − xj0 | < ǫ. Since j0 ≥ J , we have xj0 − x| < ǫ.
Combining both facts, we conclude that

|xn − x| ≤ |xn − xj0|+ |xj0 − x| < ǫ+ ǫ = 2ǫ,

for all n ≥ N . This is sufficient to conclude that xn → x, what we wanted
to prove. (If you prefer to end up with a clean ǫ, then your earlier estimates
should be made with ǫ/2.)

Problem 12* Let (xn) be a real sequence and σn = 1
n

∑n
j=1 xj (the so called Cesaro mean of

the sequence (xn)).

(a) If xn → x then also σn → x.

(b) Find an example such that (xn) is divergent but (σn) is convergent.

Solution: Ad (a): We assume that xn → x. So we know that |xn − x| is
arbitrarily small for large enough indices n. Let us consider |σn−x|. We write

|σn − x| =
∣
∣
∣
∣
∣

(

1

n

n∑

j=1

xj

)

− x

∣
∣
∣
∣
∣
≤ 1

n

n∑

j=1

|xj − x|.

Let ǫ > 0 be given. Since xn → x, we can find N ∈ N such that |xn − x| ≤ ǫ
for all n ≥ N . Now we split the above sum

∑n
j=1 into

∑N
j=1 and

∑n
j=N+1 and

obtain for all n ≥ N :

|σn − x| ≤ 1

n

(
N∑

j=1

|xj − x|
)

+
1

n





n∑

j=N+1

|xj − x|
︸ ︷︷ ︸

≤ǫ



 ≤ 1

n

(
N∑

j=1

|xj − x|
)

+ ǫ.

Note that N is now a fixed natural number and
∑N

j=1 |xj − x| a fixed value.
Therefore,

1

n

(
N∑

j=1

|xj − x|
)

→ 0 as n → ∞.
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So we can find N∗ ∈ N such that

1

n

(
N∑

j=1

|xj − x|
)

< ǫ for all n ≥ N∗.

This implies that we have for all n ≥ max(N,N∗):

|σn − x| ≤ 1

n

(
N∑

j=1

|xj − x|
)

+ ǫ < 2ǫ.

This shows that σn → x, as well.

Ad (b): Choose xn = (−1)n. Then (xn) is not convergent and

σn =
1

n

n∑

j=1

(−1)n.

Since −1 ≤ ‘sumn
j=1(−1)n ≤ 0, we see that |σn| ≤ 1/n → 0. So (σn) is a

convergent sequence with limit 0.

Problem 13 Let (xn) be a bounded real sequence. xinR is an accumulation point of (xn) if
there exists a subsequence (xnj

) with xnj
→ x.

(a) Explain why there is always at least one accumulation point.

(b) Give an example with 2 accumulation points (3 accumulation points).

(c)* Give an example where the set of all accumulation points is [0, 1].

Solution: Ad (a): This follows from Bolzano-Weierstrass: Every bounded real
sequence (xn) has a convergent subsequence. The limit of this subsequence is
then necessarily an accumulation point.

Ad (b): The sequence xn = (−1)n has precisely two accumulation points,
namely −1 and 1. (The subsequence x2n converges to 1 and the subse-
quence x2n+1 converges to −1. Moreover, no other real value x is a limit
of a subsequence, since there exists ǫ > 0 such that (x − ǫ, x + ǫ) does
not contain −1 or 1, and therefore none of the elements of the sequence
fall within this interval.) The sequence xn = cos(nπ/2) has precisely three
accumulation points (−1, 0 and 1), since the sequence assumes the values
0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, . . . .

Ad (c): We choose the sequence xn with subsequent values

0, 1, 0,
1

2
, 1, 0,

1

3
,
2

3
, 1, 0,

1

4
,
1

2
,
3

4
, 1, . . . ,

i.e., we concatenate the finite sequences Sn = (1, 1/n, 2/n, . . . , (n−1)/n, 1) for
n = 1, n = 2, n = 3, etc. Since every real number x ∈ [0, 1] lies within 1/(2n)
distance of a suitable element of Sn, we can construct a subsequence of (xn)
converging to x. For every real number x > 1 or x < 0, we find ǫ > 0 such
that (x− ǫ, x+ ǫ) ∩ [0, 1] = ∅, so x cannot be an accumulation point.
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Problem 14* Show: If a bounded sequence (xn) has precisely one accumulation point x,
then xn → x.

Solution: See Lecture.

Definition. Let (xn) be a bounded sequence and A ⊂ R be its set of accumulation
points (A is then also bounded). The limit inferior of (xn) is defined as

lim inf
n→∞

xn = inf A

and the limit superior of (xn) is defined as

lim sup
n→∞

xn = supA.

Problem 15** Show that
lim sup
n→∞

xn = lim
n→∞

(sup{xk | k ≥ n})
︸ ︷︷ ︸

=x̄

via the following steps:

(a) Show that the limit on the RHS (=right hand side) exists.

(b) Let x > x̄. Show that there are only finitely many xn with xn > x.

(c) Let x < x̄. Show that there are infinitely many xn with xn > x.

(d) Prove the identity.

Solution: Ad (a): Since (xn) is a bounded sequence, the set Xn = {xk |
k ≥ n} is non-empty and bounded and has, by the Completeness Axiom for
R, a supremum sn = supXn. Since Xn+1 ⊂ Xn, we have sn+1 ≤ sn, i.e.,
the sequence (sn) is monotone decreasing and bounded below, since (xn) is
bounded. Therefore, (sn) is convergent, so

lim
n→∞

sn = lim
n→∞

(sup{xk | k ≥ n})

exists. So the RHS of the identity exists and will henceforth be denoted by x̄.

Ad (b): Let x > x̄. If there were infinitely many elements of (xn) larger
than x, we could combine them to a subsequence and conclude that there is a
subsequence (xnj

) of xn with xnj
≥ x for all j ∈ N. This would imply that

snj
= sup{xk | k ≥ nj} ≥ xnj

> x,

and therefore x̄ = limn→∞ sn = limj→∞ snj
≥ x. But this contradicts to x > x̄.

Ad (c): Let x < x̄. If there were only finitely many elements of (xn) larger
than x, then we could find an index N ∈ N such that xn ≤ x for all n ≥ N .
But then we had for all n ≥ N

sn = sup{xk | k ≥ n} ≤ x,

and therefore also x̄ = lim sn ≤ x. But this contradicts to x < x̄.

Ad (d): Recall that lim sup xn is the supremum of the set of all accumulation
points of (xn). To prove the identity, we first show that every accumulation
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point of (xn) is smaller than or equal to x̄. Let x ∈ R be an accumulation
point of (xn), i.e., xnj

→ x for some subsequence. If we had x > x̄, we could
choose ǫ > 0 such that x − ǫ > x̄, and there were only finitely many xn

satisfying xn > x − ǫ, by (b). On the other hand, since xnj
→ x, there exists

J ∈ N such that xnj
∈ (x − ǫ, x + ǫ) for all j ≥ J , which contradicts to the

previous statement. So we cannot have x > x̄, i.e., all accumulation points
of (xn) are ≤ x̄. It only remains to show that x̄ is an accumulation point to
conclude that the supremum of all accumulation points of (xn) agrees with x̄,
which we wanted to prove. Recall that we have sn → x̄ for n → ∞. Let us
now construct a subsequence (xnj

) with snj
→ x̄ inductively: Assume we have

already constructed the sequence xn1 , . . . , xnj
and we need to construct xnj+1

.
To do so, we choose an index n > nj such that |sn − x̄| < 1/(2n) (we can find
such an index n since sn → x̄). Since sn = sup{xk | k ≥ n}, we can find k ≥ n
such that |sn − xk| < 1/(2n). This index k ≥ n > nj becomes now nj+1. We
then have nj+1 > nj and

|x̄− xnj+1
| ≤ |x̄− sn|+ |sn − xnj+1

| < 1

2n
+

1

2n
=

1

n
.

This estimate shows that xnj
→ x̄, and we found a subsequence of (xn) con-

verging to x̄. Therefore, x̄ is an accumulation point of (xn), finishing the
proof.

Problem 16 Find lim inf and lim sup of xn =

{
n

n+1
n odd

1
n+1

n even
.

Solution: The subsequence n
n+1

converges to 1 and the subsequence 1
n+1

con-
verges to 0, so 0 and 1 are accumulation points. Note also that 0 ≤ xn ≤ 1,
so no convergent subsequence of (xn) can have limits x with x < 0 or x > 1.
Therefore, 0 must be smallest accumulation point and 1 must be the largest
accumulation point and we have

lim inf
n→∞

xn = 0 and lim sup
n→∞

xn = 1.

Problem 17 Let

X = set of all bounded real sequences,

Y = set of all convergent real sequences,

Z = set of all bounded and monotone real sequences.

Draw a Venn-Diagram illustrating the relations between the three sets and
give examples of sequences in the larger but not in the smaller of the sets (to
show that inclusions of sets are ”proper”).

Solution: Since every convergent real sequence is bounded, we have Y ⊂ X .
Since every bounded and monotone real sequence is convergent, we have Z ⊂
Y . So the Venn-Diagram looks as follows:
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X

Y
Z

An example of a sequence in X and not in Y is xn = (−1)n, since (xn) is
bounded (−1 ≤ xn ≤ 1) but not convergent. An example of a sequence in Y
and not in Z is xn = (−1)n/n, since xn → 0 but xn is not monotone.

Injectivity/Surjectivity/Bijectivity/Preimages

Problem 18 Let f : X → Y be injective (surjective) and g : Y → Z be injective (surjective).
Show that g ◦ f : X → Z is injective (surjective).

Solution: Let f and g be both injective. For x1, x2 ∈ X let g◦f(x1) = g◦f(x2).
This means that g(f(x1)) = g(f(x2)). Since g is injective, this implies that
f(x1) = f(x2). Since f is injective, this implies that x1 = x2. So we showed
that g ◦ f(x1) = g ◦ f(x2) implies x1 = x2, which means that g ◦ f is injective.

Let f and g be both surjective. Let z ∈ Z. Since g is surjective, there exists
y ∈ Y such that g(y) = z. Since f is surjective, there exists x ∈ X such that
f(x) = y. Combining both facts leads to

g ◦ f(x) = g(f(x)) = g(y) = z,

showing that g ◦ f is surjective.

Problem 19* Let f : X → Y . Show equivalence of the following two statements:

(a) f is surjective.

(b) f(f−1(Y0)) = Y0 for all subsets Y0 ⊂ Y .

Solution: Let us first show that (b) implies (a). So we need to show that f ,
satisfying property (b), is surjective. Let y ∈ Y . Then we have f(f−1({y})) =
{y}, i.e., there is an element in f−1({y}) ⊂ X whose image under f is y. Let
us call this element x ∈ X . Then we have f(x) = y and we showed surjectivity.

Now let us show that (a) implies (b). Assume that f is surjective. Let Y0 ⊂ Y .
We first show that f(f−1(Y0)) ⊃ Y0. Let y ∈ Y0. Then there exists x ∈ X such
that f(x) = y and, therefore, x ∈ f−1(Y0). But then also f(x) ∈ f(f−1(Y0))
and, since f(x) = y, y ∈ f(f−1(Y0)). This shows that f(f−1(Y0)) ⊃ Y0. Now
assume we had y ∈ f(f−1(Y0))\Y0. Then we had x ∈ f−1(Y0) such that y =
f(x). But, by the definition of the preimage, this would mean that f(x) ∈ Y0.
Since y = f(x) we would end up with y ∈ Y0, which is a contradiction to
our assumption y ∈ f(f−1(Y0))\Y0. So we must have f(f−1(Y0)) ⊂ Y0. Both
results together show that f(f−1(Y0)) = Y0.
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Problem 20 Preimages behave well under set operations.

(a) Show that f−1(
⋂

α∈I Aα) =
⋂

α∈I f
−1(Aα).

(b) Find an example that f(X1 ∩X2) 6= f(X1) ∩ f(X2).

Solution: Ad (a): Assume that f : X → Y and that Aα ⊂ Y for all α ∈ I.
Then we have

x ∈ f−1(
⋂

α∈I

Aα) ⇔ f(x) ∈
⋂

α∈I

Aα

⇔ ∀α ∈ I : f(x) ∈ Aα

⇔ ∀α ∈ I : x ∈ f−1(Aα)

⇔ x ∈
⋂

α∈I

f−1(Aα),

showing that we have, indeed, the identity f−1(
⋂

α∈I Aα) =
⋂

α∈I f
−1(Aα).

Ad (b): The strategy here is to choose a particularly simple, non-injective,
map, say f : {a, b} → {c} with f(a) = f(b) = c. Choosing then X1 = {a} and
X2 = {b}, we have X1 ∩X2 = ∅ and, therefore, f(X1 ∩X2) = f(∅) = ∅. On
the other hand, we have f(X1) = f(X2) = {c} and, therefore,

∅ = f(X1 ∩X2) 6= f(X1) ∩ f(X2) = {c}.

Limits of functions, Continuity

Problem 21 Using the ǫ/δ-formalism, formulate with quantifiers that f : R → R is not
continuous at x0 ∈ R.

Solution: f is continuous at x0 iff

∀ ǫ > 0 ∃ δ > 0 such that |f(x)− f(x0)| < ǫ for all x ∈ R with |x− x0| < δ.

The negation then reads as

∃ ǫ > 0 such that ∀ δ > 0 there exists x ∈ R with |x− x0| < δ such that |f(x)− f(x0)| ≥ ǫ.

In plain words, there exists ǫ > 0, such that we can find an infinite sequence
of points xn converging to x0 such that |f(xn)− f(x0)| ≥ ǫ.

Problem 22 Using the ǫ/δ-definition of continuity, show: If f : R → R is continuous at x0

and g : R → R is continuous at f(x0), then g ◦ f : R → R is continuous at x0.

Solution: Let f and g be as described. Let ǫ > 0 be given. We need to find
δ > 0 such that for all x ∈ R with |x− x0| < δ:

|g ◦ f(x)− g ◦ f(x0)| < ǫ.

Note that |g ◦ f(x)− g ◦ f(x0)| = |g(f(x))− g(f(x0))|. Since g is continuous
at f(x0), there exists α > 0 such that for all y ∈ R with |y − f(x0)| < α:

|g(y)− g(f(x0))| < ǫ. (1)

10



Since f : R → R is continuous at x0, there exists δ > 0 such that for all x ∈ R

with |x− x0| < δ:
|f(x) = f(x0)| < α. (2)

Combining (1) and (2), we have for all x ∈ R with |x−x0| < δ: |f(x)−f(x0)| <
α, and therefore, by (??):

|g(f(x))− g(f(x0))| < ǫ.

Here it is important to start your arguments with g and not with f to end up
with the desired result.

Problem 23 Using the method of proof of the Intermediate Value Theorem, find the solution
x > 0 of cos x = ex − 0.1 within accuracy of 1/1000 (you are allowed to use a
pocket calculator to evaluate cos and ex).

Solution: Let f(x) = cosx + 0.1 − ex. Then we have f(0) = 0.1 and f(1) =
−2.0779795 . . . Since f is continuous, there is a zero of f in the interval [0, 1],
by the Intermediate Value Theorem. We carry out consecutive bisections to
get better and better approximations of a zero. We have

f(0.5) = −0.6711387 . . .

Therefore, we must have a zero of f in [0, 0.5]. We have

f(0.25) = −0.21511 . . .

Therefore, we must have a zero of f in [0, 0.25]. We have

f(0.125) = −0.04095 . . .

Therefore, we must have a zero of f in [0, 0, 125]. We have

f(0.0625) = 0.033553 . . .

Therefore, we must have a zero of f in [0.0625, 0.125]. We have

f(0.09375) = −0.002676 . . .

Therefore, we must have a zero of f in [0.0625, 0.09375]. We have

f(0.078125) = 0.01569 . . .

Therefore, we must have a zero of f in [0.078125, 0.09375]. We have

f(0.0859375) = 0.00657 . . .

Therefore, we must have a zero of f in [0.0859375, 0.09375]. We have

f(0.08984375) = 0.00196 . . .

Therefore, we must have a zero of f in [0.08984375, 0.09375]. We have

f(0.091796875) = −0.00035 . . .
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Therefore, we must have a zero of f in [0.08984375, 0.091796875]. We have

f(0.0908203125) = 0.0008 . . .

Therefore, we must have a zero of f in [0.0908203125, 0.091796875]. Since

0.091796875− 0.0908203125 = 0.0009765625 <
1

1000
,

we calculated a zero x.0 of f within an error range of 1/1000.

Problem 24 Let X ⊂ X and f : X → R be a function. Explain the difference between
continuity of f on X and uniform continuity with the help of quantifiers.
Which property is stronger?

Solution: See Lecture.

Problem 25* Let f : [a, b] → R be a continuous function on the compact interval [a, b].
Show that f is uniformly continuous via the following steps:

(a) Assume there exists xn, x
′
n ∈ [a, b] with

|xn − x′
n| <

1

n
and |f(xn)− f(x′

n)| > ǫ.

Apply Bolzano-Weierstrass to the sequence (xn) and conclude that there
exists a subsequence (xnj

) with

|f(xnj
)− f(x′

nj
)| → 0 as j → ∞.

(b) Use your result from (a) to construct an Indirect Proof for uniform con-
tinuity.

Solution: Ad (a): We assume that there exists xn, x
′
n ∈ [a, b] with

|xn − x′
n| <

1

n
and |f(xn)− f(x′

n)| > ǫ.

Since (xn) is bounded (its elements lie in the bounded interval [a, b]), there
exists a convergent subsequence (xnj

) of (xn), by Bolzano-Weierstrass. Let x∗

be the limit of (xnj
), i.e., xnj

→ x∗ ∈ [a, b]. By COLT, we conclude that

lim
j→∞

xnj
± 1

nj
= lim

j→∞
xnj

± lim
j→∞

1

nj
= x∗.

Since xnj
− 1/nj ≤ x′

nj
≤ xnj

+ 1/nj, we conclude that

limj→∞x′
nj

= x∗,

by the Squeezing Theorem. By continuity of f , we conclude that

lim
j→∞

f(xnj
) = f(x∗) = lim

j→∞
f(x′

nj
).

12



Using continuity of the absolute value and COLT, we obtain

lim
j→∞

|f(xnj
)− f(x′

nj
)| = | lim

j→∞
f(xnj

)− f(x′
nj
)| = |f(x∗)− f(x∗)| = 0.

This finishes the proof of (a).

Ad (b): We start our Indirect Proof by assuming that f : [a, b] → R is
continuous but not uniformly continuous. Then there exists ǫ > 0 such that
for every δ > 0, in particular for δ = 1/n > 0, we can find two points, denoted
by xn, x

′
n ∈ [a, b] with |xn − x′

n| < δ = 1/n and

|f(xn)− f(x′
n)| > ǫ. (3)

Following the arguments in (a), we can then find subsequences (xnj
) and (x′

nj
)

|f(xnj
)− f(x′

nj
)| → 0.

This means that for some j ∈ N, we must have

|f(xnj
)− f(x′

nj
)| < ǫ.

On the other hand we know from (3) that

|f(xnj
)− f(xnj

)| > ǫ

for all j ∈ N. Both inequalities contradict each other, which finishes our
Indirect Proof.

Differentiable functions

Problem 26 Give an example of a function f : R → R which is continuous at x = 1 but
not differentiable.

Solution: The function f(x) = |x| is continuous at x = 0 but not differentiable
since

lim
h→0−

f(h)− f(0)

h
= lim

h→0−

−h

h
= −1

and

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

h

h
= 1.

To construct a function continuous but not differentiable at x = 1, we shift
this function and consider f(x) = f(x− 1) = |x− 1|.

Problem 27 Use the equivalent definition of differentiability to prove the following fact: If
f, g : R → R are differentiable at c ∈ R, then so is fg. Give the formula for
(fg)′(c).

Solution: Differentiabity of f at c means that we have

f(x) = f(c) + (x− c)f1(x)

with f1 continuous at c and f1(c) = f ′(c). Differentiabity of g at c means that
we have

g(x) = g(c) + (x− c)g1(x)

13



with g1 continuous at c and g1(c) = g′(c). We have to show: There exists a
function h : R → R, continuous at c, such that

f(x)g(x) = f(c)g(c) + (x− c)h(x).

We have (following the goal to bring f1.g1 into the game)

f(x)g(x)− f(c)g(c) = f(x)g(x)−f(c)g(x) + f(c)g(x)
︸ ︷︷ ︸

=0

−f(c)g(c) =

= (f(x)−f(c))g(x)+f(c)(g(x)−g(c)) = (x−c)f1(x)g(x)+f(c)(x−c)g1(x) =

= (x− c)(f1(x)g(x) + f(c)g1(x)).

Now, h(x) = f1(x)g(x)+f(c)g1(x) is continuous at c, since f1, g1 are and since
g is differentiable at c and, therefore, also continuous at c. So we know that
fg is differentiable at c and we find an expression of the derivative via

(fg)′(c) = h(c) = f1(c)g(c) + f(c)g1(c) = f ′(c)g(c) + f(c)g′(c).

Problem 28 Calculate limx→0
ex

ex−1
− 1

x
and limx→0

(∫ 2x

−x
cos(t2)dt

)

/
(∫ x

0
sin(t2)dt

)
.

Solution: We first consider limx→0
ex

ex−1
− 1

x
. We have

ex

ex − 1
− 1

x
=

xex − (ex − 1)

x(ex − 1)
=

xex − ex + 1

xex − x
.

Let f(x) = xex − ex + 1 and g(x) = xex − x. Then limx→0 f(x) = 0 =
limx→0 g(x) and we can consider limx→0 f

′(x)/g′(x) instead. We have f ′(x) =
xex and g′(x) = xex + ex − 1. We have again limx→0 f

′(x) = 0 = limx→0 g
′(x)

and we can consider limx→0 f
′′(x)/g′′(x) instead. We have f ′′(x) = xex + ex

and g′′(x) = xex + 2ex which leads to, using L’Hop̂ital twice,

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0

f ′′(x)

g′′(x)
= lim

x→0

xex + ex

xex + 2ex
=

1

2
.

Next, let f(x) =
∫ 2x

−x
cos(t2)dt and g(x) =

∫ x

0
sin(t2)dt. We have limx→0 f(x) =

limx→0 g(x) = 0, so we can consider the derivatives of f and g which are, by
the Fundamental Theorem of Calculus,

f ′(x) = cos(4x2)− cos(x2) and g′(x) = sin(x2).

We have again limx→0 f
′(x) = 1 − 1 = 0 and limx→0 g

′(x) = 0, so we can
consider

f ′′(x) = −8x sin(4x2) + 2x sin(x2) = 2x
(
sin(x2)− 4 sin(4x2)

)

and
g′′(x) = 2x cos(x2).

We have again limx→0 f
′′(x) = limx→0 g

′′(x) = 0, so we can consider

f (3)(x) = 2
(
sin(x2)− 4 sin(4x2)

)
+ 4x2

(
cos(x2)− 16 cos(4x2)

)
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and
g(3)(x) = 2 cos(x2)− 4x2 sin(x2).

Now we have limx→0 f
(3)(x) = 0 and limx→0 g

(3)(x) = 2 − 0 = 2, so we obtain
by applying L’Hop̂ital three times,

lim
x→0

f(x)

g(x)
= lim

x→0

f (3)(x)

g(3)(x)
=

0

2
= 0.

Problem 29 Recall Newton iteration: Let f ∈ C2(R), i.e., f is twice differentiable on R

with continuous second derivative f ′′. Let f(c) = 0. To find the zero c of f ,
Newton iteration is given via

xn+1 = xn −
f(xn)

f ′(xn)
.

To avoid any problems in Newton iteration of the kind ”division by zero”, we
assume f ′(x) 6= 0 for all x ∈ R. Use from Calculus the identity

f(c) = f(x) + f ′(x)(c− x) +
f ′′(η)

2
(c− x)2

for some η between x and c, to show

|c− xn+1| =
∣
∣
∣
∣

f ′′(η)

2f ′(xn)

∣
∣
∣
∣
· |c− xn|2 ,

for some η between xn and c. If |f ′′| and |1/f ′| can be estimated from above
near c, this provides ”quadratic” convergence xn → c for the start value x1

close enough to c.

Solution: Plugging in x = xn, we obtain

0 = f(c) = f(xn) + f ′(xn)(c− xn) +
f ′′(η)

2
(c− xn)

2

for some η between xn and c. On the other hand, the recursion formula yields

−f ′(xn)xn+1 = −xnf
′(xn) + f(xn).

Combining both formulas leads to

0 = −f ′(xn)xn+1+f ′(xn)c+
f ′′(η)

2
(c−xn)

2 = f ′(xn)(c−xn+1)+
f ′′(η)

2
(c−xn)

2.

Dividing both sides by f ′(xn) 6= 0, we end up with

c− xn+1 = − f ′′(η)

2f ′(xn)
(c− xn)

2,

and we obtain the required formula by taking absolute values.
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Infinite series

Problem 30 Give an elementary proof that
∑

1/k is divergent.

Solution: We bracket the sum as follows:

∞∑

k=1

1

k
= 1 +

1

2
+

∞∑

j=1

(
1

2j + 1
+

1

2j + 2
+ · · ·+ 1

2j+1

)

.

We can estimate each bracket as follows:

1

2j + 1
+

1

2j + 2
+ · · ·+ 1

2j+1
≥ 2j · 1

2j+1
=

1

2
.

This shows that
∞∑

k=1

1

k
≥ 1 +

1

2
+

∞∑

j=1

1

2
= ∞.

Problem 31 (a) Formulate the Alternating Sign Test,

(b) Give an example of a series which is conditionally convergent.

Solution: Ad (a): The Alternating Sign Test states the following: Let (an)
be a monotone decreasing sequence of non-negative numbers with an → 0 as
n → ∞. Then the series

∑
(−1)nan is convergent.

Ad (b): The series
∑

(−1)k1/k is convergent by the Alternating Sign Test.
This series is not absolutely convergent, since

∑∣
∣(−1)k1/k

∣
∣ is the harmonic

series, which is divergent (see Problem 30). So
∑

(−1)k1/k is conditionally
convergent.

Problem 32 Investigate convergence and divergence of
∑∞

k=1 1/k
α.

Solution: Obviously,
∑∞

k=1 1/k
α is not convergent for α ≤ 0, since then 1/kα ≥

1 and we do not have 1/kα → 0, which is necessary for
∑∞

k=1 1/k
α to converge.

For α > 0, we use the Integral Test for series. Let f(x) = 1/xα. Then
f : [1,∞) → [0,∞) is monotone decreasing and ak = f(k) = 1/kα. We know
that

∫∞
1

1/xαdx is convergent iff α > 1. Then the Integral Test implies that
∑∞

k=1 1/k
α is convergent iff α > 1.

Problem 33 (a) Formulate the n-th root test.

(b) Use the n-th root test and check convergence/divergence of the series
∑∞

n=1

(
2n

2n+1

)3n−2n2 (
1
4

)n
.

Solution: Ad (a): Assume that |an|1/n → L as n → ∞. Then
∑∞

n=1 an is
absolutely convergent if L < 1 and divergent if L > 1.

Ad (b): Let an =
(

2n
2n+1

)3n−2n2 (
1
4

)n
. Then we have

|an|1/n =

(
2n

2n+ 1

)3−2n

·1
4
=

(
1

1 + 1/(2n)

)3

·
(

1 +
1

2n

)2n

·1
4
→ 13·e·1

4
=

e

4
< 1.

This shows that the series converges absolutely.
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Problem 34 (a) Formulate the result about the Cauchy Product.

(b) Use (a) to prove: ex+y = exey.

Solution: Ad (a): Let
∑∞

k=0 ak and
∑∞

k=0 bk be two absolutely convergent
series. Then the following series

∞∑

k=0

(
k∑

l=0

albk−l

)

is called the Cauchy Product of these two series and it is also absolutely
convergent and we have

∞∑

k=0

(
k∑

l=0

albk−l

)

=

(
∞∑

k=0

ak

)(
∞∑

k=0

bk

)

.

Ad (b): We know that ex =
∑∞

k=0
xk

k!
is absolutely convergent for all x ∈ C.

Using the formula for the Cauchy Product, we then obtain

exey =

(
∞∑

k=0

xk

k!

)(
∞∑

k=0

yk

k!

)

=

∞∑

k=0

(
k∑

l=0

xl

l!

yk−l

(k − l)!

)

=

=
∞∑

k=0

1

k!

(
k∑

l=0

k!

l!(k − l)!
xlyk−l

)

=
∞∑

k=0

1

k!

(
k∑

l=0

(
k

l

)

xlyk−l

)

Finally, we apply the Binomial Formula and end up with

exey =

∞∑

k=0

1

k!

(
k∑

l=0

(
k

l

)

xlyk−l

)

=

∞∑

k=0

1

k!
(x+ y)k = ex+y.

Problem 35 Decide about convergence or divergence of
∑∞

n=1(2n− i)−2ei(n
2+1).

Solution: It is really important that you know that, for real x ∈ R, the
complex number eix ∈ C lies on the unit circle, where x describes the angle
(modulo 2π) which the vector representing this complex number makes with
the positive real axis. (This follows from Euler’s identity eix = cos(x)+i sin(x)
and from cos2(x) + sin2(x) = 1.) Therefore, the complex numbers ei(n

2+1) lie
on the unit circle and have modulus 1. We use the fact, which holds also for
complex series, that absolute convergence implies ordinary convergence. Let
an = (2n− i)−2ei(n

2+1). Then

|an| =
1

|2n− i|2
∣
∣
∣ei(n

2+1)
∣
∣
∣ =

1

4n2 + 1
≤ 1

4n2
.

The series is then absolute convergent, by comparison with the convergent
series

∑
1/(4n2) and, therefore, also convergent.
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Integrals

Problem 36 Let f : [a, b] → R be monotone increasing. Show that f is Riemann integrable.

Solution: Let P = {a = x0, x1, . . . , xn = b} with x0 < x1 < · · · < xn be a
partition of [a, b]. Since f is monotone increasing, we conclude that

mj(f) = inf
x∈[xj−1,xj]

f(x) = f(xj−1),

Mj(f) = sup
x∈[xj−1,xj]

f(x) = f(xj).

Therefore, we have

U(f,P)−L(f,P) =
n∑

j=1

(Mj(f)−mj(f))(xj−xj−1) =
n∑

j=1

(f(xj)− f(xj−1))
︸ ︷︷ ︸

≥0

· (xj − xj−1
︸ ︷︷ ︸

≥0

≤

≤
(

max
j=1,2,...,n

(xj − xj−1)

)

·
n∑

j=1

(f(xj)− f(xj−1)).

Note that
∑n

j=1(f(xj)−f(xj−1)) is a telescope sum, i.e., the intermediate terms
cancel each other out, and we have

∑n
j=1(f(xj)− f(xj−1)) = f(b)− f(a). So

we end up with the inequality

0 ≤ U(f,P)− L(f,P) ≤
(

max
j=1,2,...,n

(xj − xj−1)

)

(f(b)− f(a)).

If we choose an equidistant partition, i.e., xj − xj−1 =
b−a
n
, we have

0 ≤ U(f,P)− L(f,P) ≤ b− a

n
(f(b)− f(a)).

As n → ∞, we see that the difference U(f,P) − L(f,P) goes to zero which
implies that L(f) = U(f) and f : [a, b] → R is Riemann integrable.

Problem 37 (a) State the Mean Value Theorem for Integrals.

(b) Show that all conditions in the theorem are necessary by providing coun-
terexamples when individual conditions in the Theorem are removed.

Solution: Ad (a): Let f, g : [a, b] → R be two functions with f being continuous
and g ≥ 0 being Riemann integrable. Then fg is also Riemann integrable and
there exists c ∈ [a, b] such that

∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.

ad (b): Assume first that f is continuous and g is Riemann integrable, but
we no longer have g ≥ 0. Then we could choose f = g and would have the
identity

∫ b

a

f 2(x)dx = f(c)

∫ b

a

f(x)dx
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for some c ∈ [a, b]. Note that the left hand side is always non-negative and
strictly positive if f 6= 0. So we could choose a function f : [a, b] → R with

integral
∫ b

a
f(x)dx equal to zero. Then the right hand side would always be

zero, no matter how we choose c ∈ [a, b]. So a counterexample is, for example,
[a, b] = [−π, π] and f(x) = g(x) = sin(x). Then we have

0 <

∫ π

−π

sin2(x)dx 6= f(c)

∫ π

−π

sin(x)dx = 0

for any choice of c ∈ [−π, π].

Assume next that g ≥ 0 is Riemann integrable but f is no longer continuous.
We could choose, for simplicity g ≡ 1 and would have the identity

∫ b

a

f(x)dx = f(c)

∫ b

a

dx = (b− a)f(c).

If we assume that f takes only the values 0 and 1 on [a, b], then the right hand
side could only assume two values, namely 0 or b − a. So we can construct
a counterexample by choosing, for example, [a, b] = [0, 1] and f(x) = 0 on
[0, 3/4] and f(x) = 1 on (3/4, 1]. Then we end up with

3

4
=

∫ 1

0

f(x)dx 6= f(c) ∈ {0, 1}

for any choice of c ∈ [0, 1].

This shows that the assumptions of the theorem are all essential anc cannot
be removed.

Problem 38 Calculate
∫ √

π

0
xeix

2
dx by decomposing it into real and imaginary part.

Solution: We have eix
2
= cos(x2) + i sin(x2), so we obtain

∫ √
π

0

xeix
2

dx =

∫ √
π

0

x cos(x2)dx+ i

∫ √
π

0

x sin(x2)dx.

Now, a primitive of x cos(x2) is sin(x2)/2, and a primitive of x sin(x2) is
− cos(x2)/2. So we obtain

∫ √
π

0

xeix
2

dx =

[
sin(x2)

2

]√π

0

+ i

[− cos(x2)

2

]√π

0

=

=
sin(π)

2
− sin(0)

2
+ i

(

−cos(π)

2
+

cos(0)

2

)

= −i

(−1

2
+

1

2

)

= i.
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Improper Integrals

Problem 39 Show: If f : [x0,∞) → R is continuous and limx→∞ f(x) = 0, then f is
bounded, i.e., there exists C > 0 such that |f(x)| ≤ C for all x ∈ [x0,∞).

Solution: See Lecture.

Problem 40 Prove the following ”Limit Comparison Test”: Let a > 0 and f : (0, a] → R

be continuous and f(x)
xα → c 6= 0 as x → 0. Then the improper integral

∫ a

0

f(x)dx

is convergent iff the improper integral
∫ a

0
xαdx is convergent (which we know

to be equivalent with α > −1).

Solution: Without loss of generality, we can assume that c > 0. (If c < 0,
simply replace f by −f .) We first show that there exists 0 < b < a such that
c
2
xα ≤ f(x) ≤ 2cxα for all x ∈ (0, b]. f(x)

xα → c > 0 as x → 0+ implies that

| f(x)
xα − c| < c

2
for x close to 0, i.e., there exists b with 0 < b < a such that

|f(x)
xα

− c| < c

2
for all x ∈ (0, b].

But this is equivalent to

c

2
= c− c

2
<

f(x)

xα
< c+

c

2
≤ 2c

for all x ∈ [0, b). Multiplying with xα leads to

c

2
xα ≤ f(x) ≤ 2cxα for all x ∈ (0, b].

Now we split the integral into

∫ a

0

f(x)dx =

∫ b

0

f(x)dx+

∫ a

b

f(x)dx

and observe that the integral
∫ a

b
f(x)dx causes no problem since f : [b, a] → R

is continuous and, therefore, it is a perfectly well defined expression. As for
the improper integral

∫ b

0
f(x)dx, we now have the ordinary integral comparison

test, since 0 ≤ cxα/2 ≤ f(x) ≤ 2cxα for all x ∈ (0, b].

Problem 41 Find all β ∈ R such that

∫ ∞

0

xβ

√

x4 + x cos(x) + 3
dx

is convergent.

Solution: We split the integral into two parts

∫ ∞

0

xβ

√

x4 + x cos(x) + 3
dx =

∫ C

0

xβ

√

x4 + x cos(x) + 3
dx+

∫ ∞

C

xβ

√

x4 + x cos(x) + 3
.
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A good separating point here is C = 2, since then we have for x ∈ [C,∞)

x4 + x cosx+ 3 ≥ x4 − x ≥ x4 − x4

2
,

because then x/2 ≥ 1 and x ≤ x3 ≤ x3 · x/2 = x4/2. So we can estimate for
all x ∈ [2,∞):

x4

2
≤ x4 + x cos x+ 3 ≤ x4 + x4 + 3x4 = 5x4.

Similarly, we can estimate for all x ∈ (0, 2]:

1 ≤ 3− x ≤ x4 + x cos(x) + 3 ≤ 16 + 2 + 3 = 19.

So we can use for x ∈ (0, 2] the comparison

xβ ≤ xβ

√

x4 + x cos(x) + 3
≤ 19xβ

and conclude that the integral
∫ 2

0
xβ√

x4+x cos(x)+3
dx converges iff β > −1. For

x ∈ [2,∞) we can use the comparison

1√
5
xβ−2 ≤ xβ

√

x4 + x cos(x) + 3
≤

√
2xβ−2

and conclude that the integral
∫∞
2

xβ√
x4+x cos(x)+3

dx converges iff β − 2 < −1.

So we have convergence of the whole integral iff −1 < β < 1.

Uniform Convergence

Problem 42 Let X ⊂ R and fn ∈ C(X) and fn → f uniformly on X . Show that also
f ∈ C(X), i.e., uniform convergence preserves continuity.

Solution: To prove continuity of f , the idea is to first choose a function fn
uniformly close to f and then to employ the continuity of the function fn. So
we start with a poijt x ∈ X and a given ǫ > 0. We need to find δ > 0 such
that, for all y ∈ X with |y − x| < δ:

|f(y)− f(x)| < ǫ.

We first find a function fn which is uniformly close to f with error smaller
than ǫ/3: The uniform convergence fn → f implies that we can find N ∈ N

such that for all n ≥ N , we have

|f(y)− fn(y)| <
ǫ

3

for all y ∈ X . In particular, we have

|f(y)− fN(y)| <
ǫ

3
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for all y ∈ X . Now, we employ continuity of the function fN at x ∈ X : There
exists δ > 0 such that for all y ∈ X with |y − x| < δ:

|fN(y)− fN (x)| <
ǫ

3
.

Combining all these results leads to the following fact: For all y ∈ X with
|y − x| < δ we have

|f(y)− f(x)| = |f(y)− fN(y) + fN (y)− fN (x) + fN(x)− f(x)| ≤
≤ |f(y)− fN (y)|+ |fN(y)− fN (x)|+ |fN(x)− f(x)| < ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

This proves continuity of f at x ∈ X .

Problem 43 Consider fn : (0, 1) → R with fn(x) =
nx

nx2+1
. Does (fn) have a pointwise and

a uniform limit?

Solution: Let us first check whether fn converges pointwise. Let x ∈ (0, 1).
Then we have

fn(x) =
nx

nx2 + 1
=

x

x2 + 1/n
→ x

x2
=

1

x
as n → ∞.

This shows that fn(x) → f(x) = 1/x on (0, 1) pointwise. Now we need to
check whether this convergence is uniform. If fn → f is uniform, there must
be, for every ǫ > 0, a start index N ∈ N such that for all n ≥ N and all
x ∈ (0, 1), we have

|f(x)− fn(x)| < ǫ.

Let us look at the difference f(x)− fn(x):

f(x)− fn(x) =
1

x
− nx

nx2 + 1
=

nx2 + 1− nx2

x(nx2 + 1)
=

1

x(nx2 + 1)
.

For very small x > 0, nx2 + 1 goes to infinity as n → ∞, but we could choose
x changing with n to compensate for that. So we try x = 1/n ∈ (0, 1), and
we have nx2 + 1 = 1 + 1/n, so 1

nx2+1
would not go to zero, as n → ∞. The

extra factor x in the denominator makes things even worse and, for x = 1/n
we obtain

|f(1/n)−fn(1/n)| =
n

1 + 1/n
=

n2

n + 1
=

(n+ 1)2 − 2(n+ 1) + 1

n+ 1
= n−1+

1

n + 1
≥ n−1.

This shows that we can never achieve

|f(1/n)− fn(1/n)| < ǫ

for all large enough n ∈ N and we do not have uniform convergence.

Problem 44 Formulate and prove Weierstrass’ M-Test.

Solution: Weierstrass’ M-Test reads as follows: Let X ⊂ R and fk : X → R

be functions with |fk(x)| ≤ Mk for all x ∈ X with some suitable constants
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Mk ≥ 0. Let gn =
∑n

k=0 fk. Then the sequence (gn) of functions converges
uniformly to a limit function g : X → R if we have

∑∞
k=0Mk < ∞.

Now we develop a proof for the Weierstrass M-Test: First of all, we need
to construct a ”pointwise” limit function g : X → R of the sequence (gn).
For every fixed x ∈ X , we know that

∑n
k=0 fn(x) converges absolutely by

comparison with
∑n

k=0Mk, since 0 ≤ |fn(x)| ≤ Mk and
∑∞

k=0Mk < ∞. Since
absolute convergence implies ordinary convergence, we conclude that for every
x ∈ X , we have convergence of

∑∞
k fk(x), and we denote the limit by g(x).

In this way, we construct the candidate for the uniform limit.

Now it remains to show that the so constructed function g : X → R is, indeed,
a uniform limit of gn =

∑n
k=0 fn. Let ǫ > 0. Then we can find N ∈ N such

that
∑∞

k=N+1Mk < ǫ (since
∑∞

k=0Mk < ∞). Our aim is to show that we have
for all n ≥ N and all x ∈ (0, 1),

|g(x)− gn(x)| < ǫ.

Note that g(x) =
∑∞

k=0 fk(x) and gn(x) =
∑n

k=0 fk(x). This implies that, for
all n ≥ N ,

|g(x)− gn(x)| =
∣
∣
∣
∣
∣

∞∑

k=n+1

fk(x)

∣
∣
∣
∣
∣
≤

∞∑

k=n+1

|fk(x)| ≤
∞∑

k=n+1

Mk ≤
∞∑

k=N+1

Mk < ǫ,

which finishes the proof.

Power Series
The following theorem is just for information. Using the concept of limes superior, it
provides a formula which describes the radius of convergence of every power series.
So far, we only had two methods to calculate the radius of convergence (based on the
Ratio Test and the n-th Root Test), but there are still power series for which both
methods fail to provide a definitive result for the radius of convergence. This was
the case, since we did not have the concept of limes superior to state the complete
result describing the radius of convergence for every possible power series. But as
mentioned above, this result is just for curious students and not part of the official
material covered in this course.

Theorem (Cauchy/Hadamard). Let
∑

akz
k be a complex power series. If the se-

quence (|ak|1/k) is unbounded, then the radius of convergence is equal to zero: R = 0.
Otherwise (|ak|1/k) is bounded and we have the limes superior L = lim supk→∞ |ak|1/k <
∞. If L = 0 then the radius of convergence is equal to infinity: R = ∞. In the only
remaining case 0 < L < ∞, the radius of convergence is equal to R = 1/L.

Problem 45 Calculate the first 5 terms (up to x4) of the Taylor Series of f(x) = esin(x).

Solution: Recall that the Taylor series of a infinitely many times differentiable

function f is given by
∑∞

k=0
f(k)(0)

k!
xk. This formula is very important and

should be known to everybody (by heart). It is not always the case that the
Taylor Series represents the function, even not necessarily within its radius of
convergence, and to check about this coincidence of function and its Taylor
Series we need to investigate the so called remainder term, introduced in the
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Calculus Course and to check whether the remainder term tends to zero for
Taylor polynomials with increasing degrees. But this is another issue.

To calculate the first terms of the Taylor Series, we need to calculate the
derivatives of f : We have

f(x) = esin(x),

f ′(x) = esin(x) cos(x),

f ′′(x) = esin(x)(cos2(x)− sin(x)),

f (3)(x) = esin(x)(cos3(x)− 3 sin(x) cos(x)− cos(x)),

f (4)(x) = esin(x)(cos4(x)− 6 sin(x) cos2(x) + 3 sin2(x)− 4 cos2(x) + sin(x)).

Plugging x = 0 into these expressions, we obtain

f(0) = e0 = 1,

f ′(0) = e0 cos(0) = 1,

f ′′(0) = e0(cos2(0)− sin(0)) = 1,

f (3)(0) = e0(cos3(0)− 3 sin(0) cos(0)− cos(0)) = 0,

f (4)(0) = e0(cos4(0)− 6 sin(0) cos2(0) + 3 sin2(0)− 4 cos2(0) + sin(0)) = −3.

So the first five terms of the Taylor series of f(x) = esin(x) are given by

f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f (3)(0)

6
x3 +

f (4)(0)

24
x4 = 1 + x+

1

2
x2 − 1

8
x4 · · ·

Problem 46 Evaluate by using well-known Taylor series:

π

2

∞∑

n=0

(−1)nπ2n

4n(2n+ 1)!
.

Solution: The give-away here is that we have alternating terms via (−1)n and
the factorials (2n + 1)! in the denominator. This indicates that we should
consider the Taylor series of sin(x), which is

sin(x) =
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1.

Note that the radius of convergence here is R = ∞ and that the Taylor series
represents the function sin(x) on all of R (even on all of C). The remaining
factors π/2 and π2n/4n can be combined to (π/2)2n+1, and we end up with

π

2

∞∑

n=0

(−1)nπ2n

4n(2n+ 1)!
= sin(π/2) = 1.
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